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Abstract—Many of our everyday tasks require the control of
the serial order and the timing of component actions. Using the
dynamic neural field (DNF) framework, we address the learning
of representations that support the performance of precisely
time action sequences. In continuation of previous modeling
work and robotics implementations, we ask specifically the
question how feedback about executed actions might be used by
the learning system to fine tune a joint memory representation of
the ordinal and the temporal structure which has been initially
acquired by observation. The perceptual memory is represented
by a self-stabilized, multi-bump activity pattern of neurons
encoding instances of a sensory event (e.g., color, position or
pitch) which guides sequence learning. The strength of the
population representation of each event is a function of elapsed
time since sequence onset. We propose and test in simulations
a simple learning rule that detects a mismatch between the
expected and realized timing of events and adapts the activation
strengths in order to compensate for the movement time
needed to achieve the desired effect. The simulation results
show that the effector-specific memory representation can be
robustly recalled. We discuss the impact of the fast, activation-
based learning that the DNF framework provides for robotics
applications.

I. INTRODUCTION

Fluent execution of many of our everyday sequential

activities requires the integration of information about both

the temporal order and the timing of component actions. This

is most obvious in skills like sports and music where a series

of precisely timed movements has to be executed to guarantee

a successful performance. But also in other routine tasks like

for instance handing over an object to another person, the

timing of the reach, grasp and place actions is fundamental

for the smoothness and skillfulness of the joint behavior. The

learning mechanisms that make such temporally extended

behaviors possible are a matter of debate. On the basis

of the observed tight coupling between the temporal and

ordinal dimensions of serial behavior, it has been argued that

a single learning system would be responsible for forming

a fully integrated representation for sequencing and timing

[6], [12], [17]. On this view, memory for the timing of

events would also define the sequential event structure and

vice versa. However, several experimental findings have been

interpreted as evidence that the timing information may be

stored independently of the order of actions it was combined

with during training [21]. For instance, learning studies report

a two stage learning process in which the acquisition of the

ordinal sequence is typically much faster than the acquisition

of the temporal sequence [15]. Moreover, once learned with

a certain timing, the ordinal sequence of movements can

be expressed with different movement rates, preserving the

relative but not the absolute timing of component actions.

Significant changes in the temporal pattern of the sequence

may thus occur without affecting the ordinal structure.

In previous work we have developed a Dynamic Neural Field

(DNF) model [10], [11] of sequence learning with a twofold

goal in mind: 1) to address the open experimental question to

which extent temporal and ordinal learning are independent

processes, and 2) to use the insights from the modeling work

to endow autonomous robots with the capacity to efficiently

learn order and timing of perceptual-motor sequences.

The aim of the present paper is to extend our previous

work by specifically addressing the important role of sensory

feedback about executed actions for the learning process.

Dynamic Neural Fields [2], [8] provide a rigorous mathe-

matical framework to explain the formation of self-sustained

activity patterns in neural populations which are the basis of

the fast, activation-based learning implemented in the model.

A memory layer represents the serial order and relative timing

of events as an adjustable activation gradient over neural

populations encoding instances of a cue (e.g., color, position

or pitch) which guides sequence learning. The strength of

activation of each event is a function of elapsed time since

sequence onset. The serial order can be recalled with the

correct timing by integrating in a decision layer the tonic

input from the memory layer with a release of proactive

inhibition [22] controlling the time to movement onset [10].

We have tested the DNF model in a real-world experiment

in which the humanoid robot ARoS first memorizes a short

musical sequence played by a human by watching color

coded keys on a screen and then tries to execute the sequence

on a keyboard from memory without external cues. ARoS

was able to learn and represent in the memory gradient

first the serial order and subsequently the precise timing

of observed events in very few demonstration-execution

cycles [11]. However, the correct sequence recall from a

perceptually acquired memory was only possible since the

fingers of the robot hand were positioned directed over the

keys. ARoS could thus execute the keystrokes at the expected

time with negligible (and constant) motor delays. Here, we



present an extension of the DNF model that is able to

learn effector-specific sequence representations that take into

account varying movement times of component actions by

integrating sensory and/or proprioceptive feedback. Evidence

from neurophysiological studies suggest that abstract and

motor-related representations of order and timing exist in sep-

arate but closely interacting neural structures [19]. Consisting

with this hypothesis, the model implements the idea that the

detection of a mismatch between the expected timing of the

memorized perceptual event and executed timing of the same

event drives the adjustment of the memory strength of the

respective motor population. We show results of the learning

and adaptation process in model simulations and discuss the

impact of the findings for future robotics implementations.

II. MODEL DESCRIPTION

An overview of the model architecture consisting of several

coupled dynamic neural fields is presented in the Fig. 1.

The three fields on top implement the learning and memory

of perceived sequential events. The five fields on bottom

implement a novel motor-related learning mechanism that

allows the cognitive system to adapt the order and timing of

actions based on sensory feedback about the executed actions.

This functionality of the perceptual sequence memory has

been already tested in real-world experiments in which a

human teacher demonstrates a sequence to the robot and

the robot tries to recall this sequence from memory without

any external cues. Several demonstration-execution cycles are

usually necessary to ensure that the stored information is

correct. Although different sources of sensory input may have

been used as well (e.g., auditory) we refer in the following to

the input from the vision system to have a concrete example

in mind. In the robotics experiments, sequence learning was

guided by a color cue, the fields are thus spanned over the

dimension color.

The vision system provides the sensory information that is

represented by neural populations in the perception field,

uPER, which in turn triggers through excitatory connections

(solid line) the evolution of localized activity pattern of

corresponding populations in the perceptual sequence mem-

ory field, uMEM . Inhibitory connections (dashed line) from

uMEM to uPER destabilize the bump in the perception

field, which ensures that newly arrived sensory information

will be encoded at a different field site in uPER, even

if that information is repeated during the course of the

sequence. The Past sequence memory field, uPA receives

weak excitatory input from uMEM and as a result a memory

trace of successive sequence demonstrations in uPA builds

up. The functional role of this memory trace is to preshape

neural populations in uPER creating an expectation about

upcoming perceptual events. This significantly speeds up the

processing of the external input, which may be noisy and

ambiguous, and is essential to adjust the sequence memory

in successive demonstrations (for details see [11]).

As the result of the perceptual learning process, uMEM

stores all sequence elements with the strength of activation

decreasing from element to element as a function of elapsed

Fig. 1. Schematic view of the DNF architecture with several interconnected
fields implementing perceptual sequence memory, motor sequence memory
and sequence recall.

time since sequence onset. Fig. 2 shows an example of a

sequence memory with 5 perceptual events (top panel). The

stored information of order and timing can be overtly (in

the robotics experiment) or covertly (in the simulation layer)

recalled as shown by the time course of neural population

activity encoding the different events (bottom panel). Note

that the onset time of the suprathreshold population responses

is aligned with the timing of the corresponding external

events (vertical bars).

The perceptual memory represents abstract, effector-

independent sequence information. During sequence

execution, the movement onset time has to be adjusted

to compensate for the duration of the effector movements

that are supposed to achieve the desired action effect at

the expected time. Starting with the bias from the already

acquired sequence knowledge, the dynamic interactions of

neural populations in the motor memory and recall layers

in a series of adaptation trials realize this goal. At the

beginning of the first execution trial, the Action Onset

Memory (uAMEM ) equals the stored pattern in uMEM , that

is, the multi-bump in uAMEM represents the serial order

and the expected relative timing of events. In the Internal

Simulation Field (uIS), a covert recall of the perceptual

memory (uMEM ) is performed, whereas the Action Onset



Fig. 2. Self-stabilized multi-bump pattern representing sequence memory
(top). Time course of population activity during sequence recall (bottom).
Vertical lines indicate the timing of the external events.

Field (uACT ) encodes overt sequence planning. The two

fields receive a multi-bump pattern from uMEM and from

uAMEM , respectively, as a subthreshold input. Continuous

increase of baseline activity in the preshaped fields uIS and

uACT brings all neural populations closer to the threshold

necessary to trigger the evolution of a self-stabilized bump.

When the most active population in uACT reaches this

threshold, the corresponding motor response (i.e. effector

movement) is initiated. During movement execution, sensory

or proprioceptive feedback is registered and used as an input

to the Feedback Field (uF ) which represents this input as

a bump. The process of adaptation of the initial memory

representation is based on a comparison between the time

course of suprathreshold activity in uF and uIS to detect

a potential mismatch between the expected timing and the

currently executed timing of events. To compensate this

mismatch, we adopt a simple learning rule proposed in

[1] (see the pseudo-code below) to adapt the resting level

in uAMEM as a function of the activity states in uF and uIS .

if uIS > 0 and uF < 0 then

hAMEM = hAMEM/(1 + β) ∗ f(uIS) /faster
else if uIS < 0 and uF > 0 then

hAMEM = hAMEM/(1− β) ∗ f(uF ) /slower
else

hAMEM = hAMEM

end if

The adaptation of the resting level h can be performed

globally, that is, the h value is changed for the whole

field, leading to an equal temporal adjustments for all event

representations, or locally at field sites with suprathreshold

activity, leading to temporal adjustment of the currently

processed action only. When the movement is executed with

a delay, i.e. the suprathreshold activity appears later in uF

than in uIS , the resting level in uAMEM is increased in order

to start the movement earlier in subsequent trials. Conversely,

when the activity appears in uF earlier than in uIS , the

resting level in uAMEM is reduced to delay movement onset.

During execution, the working memory of a realized ac-

tion/event effect is stored in the Past Events field (uPE).

Inhibitory connections to uIS , uACT and uF guarantee

that existing bumps at corresponding field sites become

suppressed. Once the activity is below threshold, the next

action onset can be planned in uACT .

III. MODEL EQUATIONS

As stated earlier, the model is based on the theoretical

framework of Dynamic Neural Fields, that was originally

proposed by Wilson and Cowan (1973) and Amari (1977) to

explain pattern formation in a neural tissue [2], [23].

The population dynamics in each field is governed by a

integro-differential equation, which describes the activation

of a single layer of interconnected neurons along a one-

dimensional domain:

τ u̇(x, t) = −u(x, t)+S(x, t)+

∫
w(x−y)f(u(y, t))dy−h(t),

(1)

where u(x, t) represents the activity at time t of a neuron

encoding feature value x, τ defines the time scale of the field

dynamics, S(x, t) represents the time dependent localized

input at site x from vision system and/or connected fields,

h(t) is the resting level to which the field activity converges

without external stimuli, the coupling function w(x − y)
determines the strength of connectivity between neurons and

f(u) gives the firing rate function.

To implement a working memory function, the field dynamics

must be in a bi-stable regime, that is, a stable homogeneous

resting state representing the absence of information coexists

with localized activation bumps representing specific value

of the dimension represented by the field. In this regime,

localized transient input of sufficient strength destabilize

the resting state and drives the evolution of bump states

whereas transient inhibitory input may be used to implement

a ”forgetting” mechanism. A continuous decrease of the

global inhibitory input h will systematically reduce the gap

to the threshold for a bump formation of populations that

get only subthreshold excitation from connected neuronal

pools. Eventually, the excitation will be sufficiently strong

to trigger a suprathreshold response. The interested reader

may consult [2], [8] for a rigorous mathematical analysis of

the memory function provided by the field dynamics in the

bi-stable regime.

In his original work, Amari [2] analysed coupling function

of lateral-inhibition type that does not support stable multi-

bump solutions necessary to implement a memory functions

for sequences. Laing et al. (2002) proposed a coupling

function with oscillatory rather than monotonic decay and

have shown that multiple regions of suprathreshold activity

can persist simultaneously in a field. For the memory fields



uMEM , uPA, uPE and uAMEM we adapt the connection

function used in [14]:

w(x) = A−b|x|(bsin|αx|+ cos(αx)), (2)

where the parameter b > 0 controls the rate at which the

oscillations in w decay with distance. The parameters A and

α are added to control the amplitude and the zero crossings

of w.

In the remaining fields, uPER, uIS , uACT and uF , we apply

a connection function of lateral inhibition type to guarantee

the existence and stability of a 1-bump solution:

w(x− y) = wexce
(
(x−y)2

2σ2
exc

)
− winhib, (3)

where wexc > 0 and σexc > 0 define, respectively, the
amplitude and standard deviation, and winhib > 0 represents
a constant lateral inhibition.
The strength of individual actions representations in uMEM

is controlled by a state-dependent dynamics for the baseline
activity hMEM (x, t) [5]:

ḣMEM (x, t) =(1− f(uMEM (x, t)))(−hMEM (x, t) + hMEM0)

+
1

τhMEM

f(uMEM (x, t)),

(4)

where f is the Heaviside step function, hMEM0
< 0 defines

the level to which hMEM converges without suprathreshold

activity at position x and τhMEM
> 0 measures the growth

rate when it is present.

To retrieve the activation gradient from the memory, we

apply a simple linear dynamics for the baseline activity of

the uIS field:

τhIS
ḣIS(t) = 1, hIS(t0) = hIS0

< 0. (5)

Changing the value of τhIS
allows for recalling the sequence

with different speeds, while preserving the relative timing

of events. However, to ensure that the sequence of events is

executed with the same speed in uIS and uACT , time scale

parameters must have the same value in both fields.

The adaptation of activation gradient in uAMEM is per-

formed using the following h-dynamics:

ḣAMEM (x, t) =β(1− f(uIS(x, t))f(uF (x, t)))

(f(uF (x, t))− f(uIS(x, t))),
(6)

where f is again the Heaviside step function and β is the

adaptation rate parameter.

IV. RESULTS

We report results of a model simulation that shall illustrate

the basic functioning of the learning and adaptation of the

joint representation of order and relative timing of perceptual-

motor sequences. Fig. 3 shows a snapshot at time t = 700
of the first execution trial of a perceptual sequence memory

of 6 elements.

As can be seen in the figure, the subpopulation representing

the fourth sequence element is above threshold in uIS and

uACT , which means that at that moment the specific action

is being executed. Neural populations in uIS and uACT

Fig. 3. Snapshot of field activities of a model simulation at time t = 700.

appear to be preshaped by the tonic input from the memory

field uMEM , as can be seen by subthreshold activations of

component actions that have not been executed yet. The

activation peak in uF is just about to reach the threshold since

the processing of feedback is delayed with respect to the ex-

pected timing represented in uACT . Once the subpopulation

in uF becomes active, neurons in uF drive through excitatory

connections the evolution of a suprathreshold activity peak

in the connected population in uPE . Mediated by inhibitory

connections, the existence of the peak in uPE automatically

suppresses the suprathreshold activity in the corresponding

populations in uIS , uF and uACT . This negative feedback

can be clearly seen at the field locations of the three action

representations that have been already executed.

Details of the activity gradient adaptation in uAMEM are

discussed next.

A. Effect of a global adaptation of the resting level in

uAMEM

At the beginning of the first execution trial, the activity

gradients in uMEM and in uAMEM are equal. Assuming

equal time scales for the h-adaptation in uIS and uACT , the

simulated timing of the expected action effect matches the

executed onset of the first movement. Obviously, the sensory

feedback about the execution of the first action appears to

be significantly delayed and consequently also the execution

of the whole sequence. To change sequence onset to earlier

times, a global h-level adaptation has been used, as shown

in Fig. 4. This increases the gradient as a whole without

affecting the relative timing encoded in the relative strengths

of population representations of successive actions (top). The

resulting stronger preshaping in uACT reduces in subsequent

learning trials the movement onset for all component actions



Fig. 4. Global adaptation of resting level in uAMEM . Top panel of the
figure presents comparison of Perceptual Sequence Memory uMEM (solid
line) and Action Onset Memory uAMEM (dotted line). Bottom panel shows
the time course of activity in uIS and uF before (left) and after (right) the
global h-level adaptation.

by a constant amount of time (bottom).

The change in the resting level is governed by equation (6),

with an adaptation parameter β which decreases over learning

iterations i:

β = λ1e
−i + λ2, (7)

where λ1 and λ2 are constant.

This increases the efficiency of the adaptation process

since the temporal difference between the time course of

suprathreshold activations in uIS and uF can be initially

quite big, allowing a larger adaptation of the resting state

per iteration. Smaller values of β on the other hand guarantee

fine adjustment when the expected timing of events and the

time of sensory feedback are already relatively close.

For the case of constant delays for all component actions,

like for the keystrokes in the piano task [11], this global h-

adaptation is sufficient to perfectly synchronize movement

onset with external events (e.g., a metronome). However,

assuming different movement times for individual events, we

still need a mechanism to adjust the amplitudes of particular

peaks of activation in uAMEM . This can be seen when

comparing the time courses of the populations representing

actions 2 and 3 in Fig. 4 (bottom) which are still delayed.

B. Effect of a local adaptation of the resting level in uAMEM

To fine tune the timing of each particular event represented

in the initial perceptual memory, we used a local h-adaptation

in accordance with equation 6. In the example shown in

Fig. 5. Result of local adaptation of resting level in uAMEM . Left
panel: Perceptual Sequence Memory uMEM (solid line) and Action Onset
Memory uAMEM (dotted line) are compared. Right panel: To make
changes in the peak amplitudes better visible, the amplitudes have been
multiplied by a constant factor.

Fig. 5, all action onsets except the first one are delayed by

varying amounts of time. The local adaptation mechanism

has the objective to minimize the difference in the onset of

suprathreshold activity of corresponding local populations in

uIS and uACT . The resulting increase in peak amplitudes in

uAMEM compared to uMEM indicates that movement onset

times appear to be reduced. To verify that the novel motor

memory indeed represents the correct timing of events, Fig.

6 compares for two action representations the time courses

before and after the adaptation process. The bottom panel

shows that the earlier movement onsets produce the action

effects at the time predicted by the internal simulation.

Since the success of the local adaptation process does not

depend on the magnitude of the initial temporal mismatch, it

becomes clear that a global h-adaptation is not a necessary

first step. The adjustment of the timing could be achieved by

the local process alone. However, performing the global adap-

tation first significantly accelerates the adaptation process,

reducing the number of execution-adaptation trials needed to

achieve a satisfactory result. The speed of convergence of the

process depends of course also on the choice of the adaptation

rate parameter (β). As can be seen in the Fig. 7, larger values

of β lead as expected to a faster convergence. However,

increasing β beyond a certain limit may introduce instabilities

in the adaptation process. With larger changes in the memory

strengths in each iteration, the temporal differences between

the onset of suprathreshold activity in uIS and uF start to

oscillate between positive and negative values.

V. DISCUSSION

In this paper, we have used the neuro-plausible modeling

framework of dynamic fields to address the problem of

temporal and ordinal learning of perceptual-motor sequences.

The simulation results demonstrate how feedback about ex-

ecuted actions might be used by the cognitive system to

fine tune a joint memory representation of the ordinal and

the temporal structure which has been initially acquired by

observational learning. The fluent succession of acts in our

performance of highly-trained, sequential behaviors is gen-

erally believed to support the notion of joint representations

[12], [17]. However, the need to rapidly adapt the movement



Fig. 6. Effect of a resting level adaptation in uAMEM on the timing of
events. The top panel of the figure presents the time course of population
activity representing two successive sequence elements in uIS (left) and uF

(right) after the first execution of the sequence. The middle panel shows the
time course of activity in uACT before (left) and after (right) the local h-
level adaptation. The bottom part of the figure presents the time course
of activity in uIS (left) and uF (right) after the adaptation process in
uAMEM .

Fig. 7. The change in the delay between the onset of suprathreshold activity
in uIS and uF with increasing numbers of iterations is plotted for β =

0.0005 (left) and β = 0.002 (right).

rates to changing environmental constraints has been used as

argument against a fully integrated view [21]. The model

architecture solves this problem by assuming that a joint

memory representation is integrated in the action onset layer

with a separate action onset mechanism which preserves the

relative inter-response times encoded in the memory.

Conceptually, the model belongs to a class of theoretical

approaches known as competitive cuing (CQ) models that

have been widely used in the past to explain data from human

sequence learning ([13], for review and discussion see [18]).

The parallel planning of all sequence elements is one of

the essential features that distinguishes CQ-model from the

fundamentally serial mechanism implemented in also very

popular recurrent neural network models of serial organiza-

tion (e.g., [6], [7]). The DNF model extends the CQ-principle

of storing serial order in an activation gradient to include also

temporal information. The action onset mechanism used to

recover the stored action timing is consistent with neuro-

plausible models of decision making. These models assume

that a decision signal rises in response to information about

the task at hand until a fixed decision threshold is reached

(e.g., [20]). In the action onset layer, neural population

activity rises linearly from a pre-activated state due to the

release of global inhibition. The recent concept of proactive

inhibitory control that has been discussed in relation to

movement preparation and reaction time is in line with

the implemented task-dependent adjustment of the baseline

activity of neural populations [22]. It is important to notice

that the simple linear dynamics implemented in the model

is not a prerequisite, other growth models could have been

used as well as long as the growth rate matches the growth

rate of the dynamics controlling the strength of the memory

representations.

While the presented modeling work takes inspiration from

neurophysiological and behavioral findings, it is also con-

strained by the specific needs of robotics applications. Our

long-time goal is to develop autonomous robots able collab-

orate with humans in a natural that is human-like manner

[9]. We have tested in the past a complex cognitive control

architecture consisting of several coupled DNFs in a task

in which the robot ARoS collaborates with different users in

assembling a toy object from its parts [3]. As shown in many

real world robotics applications [8], the processing principle

of recurrent excitatory feedback from neighboring neurons

has been proven efficient in amplifying noisy and often weak

sensory signals. Moreover, the self-stabilizing properties of

the field dynamics can be exploited to implement a robust

decision making capacity in ambiguous and noisy environ-

ments. In the present study, we have used the formation of

stable bumps to test an activation-based learning mechanism

that supports the rapid acquisition of sequential knowledge

by observation. Observational learning is considered highly

attractive for robotics in general since it may significantly

speed up skill acquisition compared to individual discovery

in potentially dangerous trial-and-error learning [4]. Since

many demonstration would annoy the teacher, the learning

should be fast and efficient. In the observational learning

study mentioned in the introduction, ARoS was able to

correct initial memory errors in sequencing and timing of a

musical sequence consisting of 12 sensory events in only 4-5

demonstration-execution cycles. Due to noise in the encoding

and the recall phase, the effective timing could vary from

trial to trial but still in a range that preserved a recognizable

melody.

The modeling results show that the perceptual memory of

observed sequential information may be used by the cognitive

system as a bias to efficiently develop an effector-specific



motor memory of serial performance. The adaptation rule

implements a comparison between the dynamic states of neu-

ronal populations in different model layers representing the

expected and realized timing of behavior. The mechanisms

is similar to the action monitoring function implemented in

our DNF architecture for human-robot interactions [3].

The focus of the present theoretical work on the important

temporal dimension of sequential behavior does not mean

that all aspects of the order problem have been already

solved. For instance, the order of component actions may

not be fixed but may vary depending on the task context.

Extracting common principles from multiple examples is

the hallmark of recurrent neural network models [6], [7].

From the robotics point of view, it would be interesting to

combine the advantage of a fast activation-based learning by

observation with a slower weight-based learning to extract

such generalized task knowledge [16].

Directly testing in the piano task the feedback learning

extension of the original DNF model was not possible due to

limitations in the precision of the arm and hand control. We

are currently exploring the learning of goal-directed action

sequences such as reaching-grasping-transporting-placing an

object that can be segmented in a series of contact events.

Compared to the musical example, a much reduced temporal

precision is needed (in the range of several seconds not

milliseconds) to produce useful results. Learning and flexible

adapting the timing of these sequences will greatly improve

the smoothness and skillfulness of human-robot interactions.
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