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ABSTRACT

Extreme value theory (EVT) deals with the occurrence of extreme phenomena. The
tail index is a very important parameter appearing in the estimation of the probability
of rare events. Under a semiparametric framework, inference requires the choice of a
number k of upper order statistics to be considered. This is the crux of the matter
and there is no definite formula to do it, since a small k leads to high variance and
large values of k tend to increase the bias. Several methodologies have emerged in
literature, specially concerning the most popular Hill estimator (Hill, 1975). In this
work we compare through simulation well-known procedures presented in Drees and
Kaufmann (1998), Matthys and Beirlant (2000), Beirlant et al. (2002) and de Sousa
and Michailidis (2004), with a heuristic scheme considered in Frahm et al. (2005) within
the estimation of a different tail measure but with a similar context. We will see that
the new method may be an interesting alternative.
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1. INTRODUCTION

Extreme value statistics are being increasingly used in the environment, engineering, finance,
among other sciences, given the need to account for the possible occurrence of extreme phenomena
in the modeling.

Let {Xn}n≥1 be a sequence of independent and identically distributed (iid) random variables
(rv’s), with common distribution function (df) F . If for some sequences of real constants an > 0
and bn, n ≥ 1, the limit

P (max(X1, . . . , Xn) ≤ anx+ bn) −→
n→∞

Gξ(x)

exists for some non-degenerate function Gξ with ξ real, then F is said to belong to the max-domain
of attraction of Gξ, denoted F ∈ D(Gξ). This function is called generalized extreme value (GEV)
and is given by

Gξ(x) = exp(−(1 + ξx)−1/ξ), 1 + ξx > 0,

(G0(x) = exp(−e−x)). Parameter ξ is the so-called tail index and determines the shape and weight
of the tail. Thus, ξ > 0 implies a heavy tail (Fréchet max-domain of attraction) with polynomial
decay and infinite right-end-point, whenever null means an exponential tail (Gumbel max-domain
of attraction) and ξ < 0 corresponds to a light tail (Weibull max-domain of attraction) with finite
right-end-point.

The tail index plays a determinant role concerning the inference within rare events like, for
instance, the estimation of an unusual high quantile (e.g. the Value-at-Risk in finance) or the dual
problem of estimating the probability of exceeding a high level x, i.e., p = 1 − F (x). The Hill
estimator (Hill 1975),

ξ̂k,n :=
1

k

k∑

i=1

log
Xn−i+1:n

Xn−k:n
,
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with Xn:n ≥ Xn−1:n ≥ ... ≥ X1:n being the order statistics of {Xn}n≥1, is perhaps the most
applied in literature and assumes that F belongs to max-domain of attraction of a heavy tail
(ξ > 0). Observe that it depends on the k upper order statistics, where k ≡ kn → ∞ and k/n → 0,
as n → ∞ (i.e., k ≡ kn is an intermediate sequence), in order to achieve consistency.

The choice of k is the estimation core, being somewhat ambiguous, since small values of k
results in greater variance and large values lead to an increased bias. The plot (k, ξ̂k,n), 1 ≤ k < n,

usually shows a plateau region from which we may infer the values of k where ξ̂k,n approximates
the true value (see Figure 1). This problem often accompanies extreme-values semi-parametric
inference and has been much studied in the literature. See, e.g., Beirlant et al. (2004) for a survey.
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Figure 1: Hill plots of 1000 realizations of a Fréchet model with ξ = 1.

For non-null ξ, Beirlant et al. (2002) stated, under little restrictive conditions,

Yi := (i+ 1) log
Xn−i:n ξ̂i,n

Xn−(i+1):n ξ̂i+1,n

= ξ + b(n/k)

(
i

k

)−ρ

+ ǫi, i = 1, ..., k, (1)

where the error term ǫi is zero-centered and b is a positive function such that b(x) → 0, as x → ∞.
The so called second order tail parameter ρ is usually replaced by ρ = −1. For more details, see
Beirlant et al. 2004 and references therein. Least squares estimators of ξ and b(n/k) derived from
(1) are expressed as

ξ̃LS
k,n = Y k − b̃LS

k,n/(1− ρ) and b̃LS
k,n = (1−ρ)2(1−2ρ)

ρ2

1
k

∑k
i=1

((
i
k

)−ρ − 1
1−ρ

)
Yi. (2)

One method consists in finding the k value that corresponds to the smallest estimate of the
Hill’s asymptotic mean squared error (AMSE)

AMSE(ξ̂k,n) =
ξ2

k +
(

b(n/k)
1−ρ

)2
. (3)

More precisely, for fixed ρ = −1, compute the least squares estimates of ξ and b(n/k) by using
(2). Obtain the Hill’s AMSE in (3) by replacing ξ and b(n/k) with the respective estimates. Take

k̂1opt as the value of k that minimizes the obtained estimates of the AMSE and estimate ξ as ξ̂
k̂1

opt
,n
.

Alternatively, the value of k for which the respective AMSE is minimal is

kopt ∼ b(n/k)−2/(1−2ρ)k−2ρ/(1−2ρ)
(

ξ2(1−ρ)2

−2ρ

)1/(1−2ρ)
(4)

Consider again the least squares estimates for ξ and b(n/k) by using (2) and fixed ρ = −1,

for k = 3, ..., n. Compute k̂opt,k according to the expression (4). Take k̂2opt = median{k̂opt,k, k =

3, ..., ⌊n
2 ⌋}, where ⌊x⌋ denotes the largest integer not exceeding x. Estimate ξ by ξ̂

k̂2

opt
,n
.



For more details about these two methods, see Beirlant et al. 2002 Matthys and Beirlant (2000)
and references therein. We denote them, respectively, AMSE and Kopt.

The adaptive procedure of Drees and Kaufmann (1998), here denoted DK, is based on results
for a class of Generalized Pareto models, known has Hall’s class, where the maximum random
fluctuation of

√
i(ξ̂i,n − ξ), i = 1, ..., k − 1, with k ≡ kn an intermediate sequence, is of order√

log logn. The derived stopping time criterion seeks the optimum k under which the bias starts
to dominate the variance. More precisely, for ρ = −1:

1. State rn = 2.5× ξ̃ × n0.25, where ξ̃ = ξ̂2
√
n,n.

2. Compute k̃(rn) := min{k = 1, ..., n− 1 : maxi<k

√
i|ξ̂i,n − ξ̂k,n| > rn}. If

√
i|ξ̂i,n − ξ̂k,n| > rn

is not satisfied for any k, impute 0.9× rn to rn and repeat step 2. Else move to step 3.

3. For ε ∈ (0, 1), usually ε = 0.7, obtain

k̂DK =

1
3
(2ξ̃2)1/3

(
k̃(rεn)

(k̃(rn))ε

)1/(1−ε)


The procedure considered in Sousa and Michailidis (2004) looks for an estimate of the optimal

value k based on the Hill sum plot, (k, Sk), k = 1, ..., n− 1, where Sk = kξ̂k,n. Since E(Sk) = kξ,

then the sumplot is expected to be approximately linear for the values of k where ξ̂k,n ≈ ξ. The
slope of this linear part is an estimator of ξ. Thus, an algorithm was developed to establish
where there is a breakdown of linearity. Considering the regression model y = Xξ + δ, with
y = (S1, ..., Sk)

′, X = [1 i]ki=1 and δ the error term, the method is based on a sequential testing
procedure discussed in McGee and Carleton (1970). This process checks the null hypothesis that
a new point y0 is adjacent to the left or to the right of the set of points y = (y1, ..., yk), through
the statistics

F = s−2

(
(y0 − ŷ∗0)

2 +

k∑

i=1

(ŷi − ŷ∗i )
2

)
,

where ∗ denotes the predictions based on k + 1 and s2 = (k − 2)−1(y′y − ξ̂X ′y). We have F
approximately distributed by F1,k−2 and thus the null hypothesis is rejected whenever F is larger
than the (1 − α)-quantile, F1,k−2;1−α. The algorithm runs along the following steps:

1. Fit a least-squares regression line to the initial k = νn upper observations, y = [yi]
k
i=1 (usually

ν = 0.02).

2. Using the test statistic F , determine if a new point y0 = yj for j > k, belongs to the original
set of points y. Go adding points until the null hypothesis is rejected.

3. Consider knew = max(0, {j : F < F1,k−2;1−α}). If knew = 0, no new points are added to y and
thus move forward to step 4. Return to step 1. if knew > 0 by considering k = knew.

4. Estimate ξ by considering the obtained k.

Although in a different context concerning the estimation of a bivariate tail dependence mea-
sure, but with a similar problematic, Frahm et al. (2005) presented a heuristic procedure aiming
to find the plane area of the estimator sample path. Ferreira (2014, 2015) adapted this method to
the Hill estimator, whose algorithm is described below:

1. Smooth the Hill plot (k, ξ̂k,n) by taking the means of 2b+1 successive points, ξ̂1,n, ..., ξ̂n−2b,n,
where the bandwidth b = ⌊0.005× n⌋ (and thus each moving average consists in 1% of the
data).



2. Define the regions pk = (ξ̂k,n, ..., ξ̂k+m−1,n), k = 1, ..., n − 2b − m + 1, with length m =

⌊
√
n− 2b⌋. The algorithm stops at the first region satisfying

k+m−1∑

i=k+1

∣∣∣ξ̂i,n − ξ̂k,n

∣∣∣ ≤ 2s,

where s is the empirical standard-deviation of ξ̂1,n, ..., ξ̂n−2b,n.

3. Consider the chosen plateau region pk∗ and estimate ξ as the mean of the values of pk∗
(consider the estimate zero if no plane region fulfills the stopping condition).

In the sequel it will be referred as plateau method.

In this work we compare through simulation the performance of these methods within the
estimation of the tail index and the exceedance probability. A simple estimator under ξ > 0 is
given by (Dijk and de Haan, 1992)

p̂k,n :=
k

n

(
x

Xn−k:n

)−1/ξ̂

.

In this measure, the plateau algorithm will be applied to the respective sample path (k, p̂k,n) in a
similar manner of the variance estimation considered in Ferreira (2015). More precisely, we choose
the plane region in step 2 at the same position of the one found for the ξ estimation.

2. SIMULATION STUDY

We consider 1000 independent samples of sizes n = 100, 1000, generated from the following
models:

• Pareto(ξ) with d.f. F (x) = 1− x−1/ξ, x > 1, ξ > 0: (ξ = 1);

• Cauchy with d.f. F (x) = 1
2 + 1

π arctanx, x real: (ξ = 1);

• Burr(β,τ ,λ), with d.f. F (x) = 1 − (β/(β + xτ ))λ), x > 0, β, τ, λ > 0, ξ = 1/(τλ): we take
Burr(1,1,1) (ξ = 1)

• Fréchet(ξ) with d.f. F (x) = exp
(
−x−1/ξ

)
, x > 0, ξ > 0: (ξ = 1);

• Log-Gamma(τ ,λ), with d.f. F (x) =
∫ x

1
λτ

Γ(τ) (log t)
τ−1t−λ−1dt, x ≥ 0, τ, λ > 0, ξ = 1/λ: we

take Log-Gamma(2,1) (ξ = 1).

The bias and root mean squared error (rmse) values obtained for the tail index are reported in
Table 1. The results concerning the exceedance probabilities, p = 0.001, 0.0001, respectively in the
cases n = 100, 1000, are reported in Table 2. Regarding the tail index, the AMSE method presents
the smaller rmse, followed by the DK except in the Pareto model. Indeed, this latter methodology
was developed for the so-called Hall’s class that leaves out the simple Pareto case considered here.
The plateau procedure has also a good performance, in particular, for small sample sizes. The
worst performance for n = 100 is associated with the Kopt method. The sumplot methodology
was developed under the assumption of a Pareto tail behavior and therefore it is not surprising its
best performance within the Pareto model. However, it revealed to be the worst method in the
remaining models, in particular, for n = 1000. In what concerns the exceedance probability, the
best results for n = 100 lie in the plateau and Kopt methods. In the case n = 1000, the methods
have a broadly similar performance, except the sumplot with the highest rmse.
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bias (n=100) AMSE Kopt DK Plateau Sumplot

Burr 0.1136 0.1798 0.1338 0.0424 0.3085
Fréchet 0.0101 0.1489 0.0827 0.0362 0.2158
Cauchy 0.0070 0.1121 0.0282 -0.0306 0.2166

Log-Gamma 0.1512 0.2918 0.1803 0.2242 0.4240
Pareto -0.0882 0.0349 -0.1396 -0.0139 -0.0311

rmse (n=100) AMSE Kopt DK Plateau Sumplot

Burr 0.2848 0.4546 0.2887 0.3058 0.4243
Fréchet 0.2261 0.4610 0.2371 0.2606 0.3327
Cauchy 0.2953 0.5366 0.2991 0.3737 0.4118

Log-Gamma 0.3003 0.5708 0.3595 0.3523 0.5045
Pareto 0.1975 0.3665 0.4256 0.2010 0.1262

bias (n=1000) AMSE Kopt DK Plateau Sumplot

Burr 0.0710 0.0475 0.0662 0.0142 0.3123
Fréchet -0.0122 0.0620 0.0577 0.0107 0.2735
Cauchy 0.0199 0.0194 0.0064 -0.0147 0.1707

Log-Gamma 0.1496 0.1896 0.2646 0.2025 0.5249
Pareto -0.0402 0.0187 -0.0901 -0.0002 -0.0002

rmse (n=1000) AMSE Kopt DK Plateau Sumplot

Burr 0.1319 0.1303 0.1279 0.1465 0.3372
Fréchet 0.1032 0.2446 0.1069 0.1166 0.2927
Cauchy 0.1115 0.1470 0.1152 0.1765 0.2124

Log-Gamma 0.1957 0.3568 0.2833 0.2380 0.5404
Pareto 0.0860 0.2116 0.3648 0.0760 0.0321

Table 1: Bias and rmse of the tail index estimation.
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bias (n=100) AMSE Kopt DK Plateau Sumplot

Burr 0.0002 -0.0008 -0.0004 -0.0009 0.0056
Fréchet 0.0002 -0.0008 0.0001 -0.0006 0.0118
Cauchy 0.0017 -0.0004 0.0009 -0.0006 0.0174

Log-Gamma 0.0003 -0.0008 0.0025 -0.0004 0.0338
Pareto -0.0004 -0.0007 -0.0008 -0.0004 0.0381

rmse (n=100) AMSE Kopt DK Plateau Sumplot

Burr 0.0020 0.0009 0.0012 0.0009 0.0130
Fréchet 0.0011 0.0009 0.0015 0.0009 0.0241
Cauchy 0.0046 0.0012 0.0039 0.0011 0.0335

Log-Gamma 0.0011 0.0009 0.0053 0.0010 0.0878
Pareto 0.0008 0.0009 0.0009 0.0008 0.0603

bias (n=1000) AMSE Kopt DK Plateau Sumplot

Burr 0.0001 -0.0001 -0.0001 -0.0001 0.0004
Fréchet 0.0001 -0.0001 -0.0001 -0.0001 0.0012
Cauchy 0.0000 -0.0001 -0.0007 -0.0001 0.0008

Log-Gamma 0.0000 -0.0001 0.0003 -0.0001 0.0037
Pareto -0.0001 -0.0001 -0.0001 -0.0001 0.0503

rmse (n=1000) AMSE Kopt DK Plateau Sumplot

Burr 0.0001 0.0001 0.0001 0.0001 0.0007
Fréchet 0.0001 0.0001 0.0001 0.0001 0.0016
Cauchy 0.0001 0.0001 0.0008 0.0001 0.0012

Log-Gamma 0.0001 0.0001 0.0005 0.0001 0.0051
Pareto 0.0001 0.0001 0.0001 0.0001 0.0729

Table 2: Bias and rmse of the exceedance probability estimation, considering p = 0.001 for n = 100
and p = 0.0001 for n = 1000.
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