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ABSTRACT: The huge efforts for the achievement of highly purified biomolecules are growing every day. A great number of efficient

techniques, such as chromatography, are already available in laboratory for separation processes. However, membrane-based technolo-

gies are the best match to assure simplicity, efficiency and easy scale-up procedures. Herein we report the modification of a commer-

cial microfiltration membrane for plasmid DNA purification by agarose gel impregnation. The membrane was characterized by SEM,

ATR-FTIR, EDS, contact angle, and porosity measurements. Additionally, the membrane pore radius was estimated from observed

rejections of different proteins and with that information the rejection of a 6050 bp plasmid DNA (pDNA) molecule was estimated

for different values of flux using a theoretical model of large flexible molecules in membranes with parallel cylindrical pores, which is

applicable to pDNA ultrafiltration in conventional membranes, as recently shown in the literature. The experimental results show that

the modified membrane has higher pDNA rejections than the predicted by the model, suggesting that the different type of porous

structure that a hydrogel has, may have a positive effect on pDNA rejections as compared to other biomolecules with more rigid

structures, making this type of modified membranes potential better candidates to be used for the selective recovery of pDNA in this

type of bioprocesses. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41610.
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INTRODUCTION

The demand of highly purified biomolecules has triggered the

development of new separation technologies. Herein, pDNA has

been extensively investigated, to obtain a highly purified mole-

cules for gene therapy applications and DNA vaccine.1,2 The

purification of pDNA has already been achieved through the

use of different techniques, including chromatography, enzy-

matic, and membrane processes.3–6 Here, microfiltration (MF)

and ultrafiltration (UF) membranes have gained special interest,

avoiding precipitation of solvents, and centrifugation steps.

However, the purification of pDNA, namely from RNA and

proteins by ultrafiltration remains a challenge in these type of

bioprocesses. Other authors have reported that an improved

purification of pDNA, using an UF membrane, can only be

obtained when the lysate solution is submitted to extensive

periods of incubation.7

Currently, there are several UF membranes commercially avail-

able that can be used for pDNA purification.4,5 Considering the

size of pDNA molecules, surface modification of microfiltration

membranes also arises as a possible choice, offering the possibil-

ity of adjusting the desired selectivity in each particular case.

Several studies have shown the enhancement of membrane

properties such as protein-resistance, biocompatibility, charge,

and hydrophobicity through surface modification processes.8–12

In the present study, an agarose coating was impregnated to a

commercial MF membrane with 0.22 mm of nominal pore

diameter by an adaptation of a method described in literature.13

This linear polysaccharide was chosen based on its hydrophilic

and thermoresponsive character that allow the production of a

porous and simultaneously rigid structure.14 The deposition of

the agarose layer and its impregnation through the porous

structure of the MF membrane was expected to provide a sub-

stantial increase of pDNA rejection comparing to the nonmodi-

fied membrane, and its selective retention was investigated. The

MF membrane used in this work was selected based on its cost-

effective value, mechanical strength and heat resistance which

facilitates the impregnation of a hot solution.15 The modified
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MF membrane was morphological and chemically characterized.

So far, it is the first time that a modified MF membrane is eval-

uated for its possible application in a pDNA purification

process.

MATERIALS AND METHODS

Materials

Agarose (Mw 5 120,000 Da) was purchased from Grisp (Porto,

Portugal). Terrific Broth medium for bacterial culture and kana-

mycin sulfate were obtained from Sigma-Aldrich (Sintra, Portu-

gal). NZYMaxiprep kit for bacterial cell lyses and plasmid DNA

purification was acquired from NZYTech and Tris–HCl 10 mM

IZASA. Microfiltration membranes, Nylaflo (pore diameter of

0.22emm) from Pall Corporation.

Methods

Modification and Characterization of the Membranes. The

Nylaflo membrane is a nylon 6,6 hydrophilic membrane.

Herein, a modification on the surface of this membrane was

performed using an adaptation of a method already described

in literature13 through the deposition of agarose [Figure 1(B)]

to improve pDNA rejection. An agarose solution (2% w/v) at

70�C was poured on to the surface of the microfiltration mem-

brane which was placed on a previously heated glass plate; a

second plate was used to form a sandwich. The glass plates

were then clamped together, taking care to ensure that no air

bubbles were trapped in the gel. After 30 min., the membrane

was cooled down to room temperature.16

Bacterial Growth, Cell Lysis, and pDNA Purification. The

plasmid production procedure was adapted from the litera-

ture.17,18 The 6050 bp plasmid pVAX1-LacZ was amplified in a

cell culture of E. coli DH5a. The fermentation was carried out

at 37�C in 250 mL of Terrific Broth medium, supplemented

with 50 mg mL21 of kanamycin. Growth was suspended at the

late log phase (OD600 nm � 10–11) and cells were harvested by

centrifugation. Afterwards, pDNA extraction was performed

using an NZYMaxiprep kit. After the extraction and purifica-

tion, pDNA was stored at 4�C before membrane filtration.

Scanning Electron Microscopy. The morphology of the mem-

branes was analyzed by scanning electron microscopy (SEM).

Samples were frozen using liquid nitrogen, freeze-dried

overnight, and finally mounted onto aluminium stubs with

double adhesive tape and sputter-coated with gold using a Quo-

rum Q150R ES sputter coater. The samples were analyzed using

a Hitachi S-3400N scanning electron microscope operated at an

accelerating voltage of 20 kV and at different amplifications.

Attenuated Total Reflectance-Fourier Transform Infrared

Spectroscopy. Agarose polysaccharide, modified-Nylaflo and

Nylaflo membranes spectra were acquired in the range of 4000–

500 cm21, using a JASCO 4200 FTIR spectrophotometer, oper-

ating in ATR mode (MKII GoldenGateTM Single Reflexion ATR

System). Data collection was performed with a 4 cm21 spectral

resolution and after 128 scans.

Energy Dispersive Spectroscopy. In order to determine the per-

centage of the characteristic elements of the membranes, an

energy dispersive spectroscopy (EDS) (Bruker XFlash Detector

5010) analysis was carried out. For that, samples were placed on

aluminium stub supports, air-dried at room temperature (RT),

and sputter-coated with gold.19

Contact Angle. Contact angles of the membranes were deter-

mined using a Data Physics Contact Angle System OCAH 200

apparatus, operating in static mode. This assay was performed

with two different polar solvents, namely, water and ethylene

glycol.

For each sample, solvent drops were placed at various locations

of the analyzed surface, at room temperature. The reported con-

tact angles are the average of at least three measurements.

Membrane Porosity. The membrane porosity method has been

previously described.3 Briefly, the total porosity of the mem-

branes was measured through the determination of the amount

of ethanol absorbed by the membranes using the following

equation:20

Pð%Þ5 W22W1

dethanolVmembrane

3100 (1)

where W1 is the weight of the dry membrane and W2 is the

weight of the wet membrane, dethanol the density of the ethanol

at room temperature, and Vmembrane is the volume of the wet

membrane, directly determined by immersion.

Membrane Filtration Tests. All the membrane filtration experi-

ments were performed in a 10 mL stirred cell from Amicon/

Millipore, model 8010, according to a procedure previously

described in the literature.4 A modified-Nylaflo membrane was

placed in the bottom of the filtration cell, being initially flushed

with MiliQ water. Then, water was removed and 10 mL of

10 mM Tris–HCl 0.15M NaCl (pH 5 8.00) buffer were intro-

duced in the filtration cell to determine the hydraulic perme-

ability. This was obtained at a different pressures with

compressed N2 (range 0.025–0.1 bar), measuring the obtained

flux. Six permeability measurements were performed with each

membrane tested and the average value was considered the

hydraulic permeability of each membrane, Lp. To perform the

filtration of the pDNA, the remaining buffer in the filtration

cell was carefully removed and immediately after that 5 mL of

10 mM Tris–HCl 0.15M NaCl (pH 5 8.00) buffer were placed in

the cell with 100 mL of an aliquot of pDNA (recovered by the

Figure 1. Nylon 6,6 (A) and agarose (B) chemical structure.
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method mentioned in ****section 2.2.2). A continuous filtration

of the content of the cell was performed by applying constant

pressure and four samples of 0.5 mL of permeate were collected;

these four samples correspond to the total permeate collected in

each run.

Plasmid DNA Assay. Plasmid concentration was determined by

Ultraviolet/Visible Spectroscopy at 260 nm. The absorbance of

the initial pDNA solution (feed) and the final concentrate were

determined in each run (as well as the absorbance of the four

consecutive permeate collected samples previously mentioned).

The 10 mM Tris–HCl, 0.15M NaCl (pH 5 8.00) buffer was used

as the reference solution for measuring the absorbance due to

the pDNA.

RESULTS AND DISCUSSION

Membrane Characterization

Functionalization of the Membrane with Agarose was Verified

by FTIR Analysis. Figure 2 shows the characteristic peaks of

agarose (A), specifically, at 3359 cm21 (AOH stretching)

hydroxyl group, 1042 cm21 (CAO stretch) CAO groups of

sugar molecules, 1636 (NAH) and 929 cm21 (vibration of

CAOAC bridge of 3,6-anydro-L-galactopyranose), in accordance

with other reports.21,22 The FTIR spectra of the Nylaflo mem-

brane was also acquired with and without agarose surface modi-

fication, Figure 2(C) and (B), respectively. These results only

show that the hydroxyl group peak of agarose at 3359 cm21 is

presented in the modified sample. To further verify that agarose

impregnation has occurred, an EDS analysis was also

performed.

Figure 3 shows that the amount of chemical elements at the

surface of the un/modified Nylaflo membrane. Herein, it can be

concluded that the surface modification was achieved, once the

rate of oxygen elements (characteristic from agarose) increased

in the modified membrane (Table I).

Moreover, SEM images were also acquired for further character-

ization. Here a cross section SEM image shows an agarose layer

over the surface of the Nylaflo membrane (Figure 4).

In addition, the top view of the Nylaflo membrane surface

with/without modification were also analyzed [Figure 5(A,B),

respectively]. The results revealed that different surface mor-

phologies were obtained after the modification process.

As can be seen the Nylaflo membrane surface showed to be

porous [Figure 5(A)], with much larger pores than the nominal

0.22 mm are observed, indicating a wide pore size distribution.

After modification with agarose the pores could not be observed

anymore [Figure 5(B)].

Contact angles in two different solvents were obtained in order

to evaluate the hydrophobic character of each membrane, as

can be seen in Table II. Herein, the Nylaflo membrane showed

Figure 2. FTIR spectra of agarose powder (A), Nylaflo membrane (B),

and modified-Nylaflo membrane (C).

Figure 3. EDS spectra of Nylaflo membrane (A) and modified-Nylaflo

membrane (B).

Table I. EDS Analysis of the Membranes

Samples C (at %) O (at %) N (at %)

Nylaflo 72.06 14.18 13.75

Modified-Nylaflo 57.41 42.59 –

Figure 4. SEM cross-section image of the modified-Nylaflo membrane.
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to be the most hydrophilic, presenting low contact angles in

both the solvents used to perform the assay. For the modified-

Nylaflo an increase on the contact angles was observed, however

the hydrophilic character of the membrane was essentially kept,

which is important to prevent the occurrence of fouling phe-

nomena during the purification process, namely due to protein

adsorption.

The porosity of the membranes, determined gravimetrically, is

analyzed in Figure 6. As can be seen, the porosity of the

modified-Nylaflo membrane decreased to a much lower value

than the original Nylaflo, as previously observed in SEM images

(Figure 5).

The results obtained in the permeability tests are summarized

in Figure 7. As can be seen, the Nylaflo membrane has Lp values

near 11,000 L h m22 bar. By turn, the modified-Nylaflo mem-

brane shows a high decrease on Lp values when compared with

the original Nylaflo. It is worth to note that the Lp values of the

modified-Nylaflo are typical of an UF membrane.

To check the expected pore size reduction, the pore radius of

the modified membranes was estimated from the rejections of

reference proteins using the theory of hindered transport of

spherical solutes in liquid-filled pores,23 more specifically using

the method described as the symmetric pore model, SPM, in

Ref. (24). The SPM enables the immediate determination of the

membrane pore radius from the intrinsic rejections of a refer-

ence solute of known hydrodynamic radius, rs, and the Lp of

the membrane.24 Intrinsic rejections were calculated from the

observed, by estimating the mass transfer coefficient of the pro-

teins in the concentration polarization layer, using the correla-

tion proposed by Opong and Zydney.25 The proteins used in

this work and their relevant properties are summarized in Table

III. The observed rejections and the corresponding estimated

values of pore radius are indicated in Table IV. The absence of

fouling in these tests was checked by measuring the hydraulic

permeability of the membranes before and after filtration. The

average obtained pore radius was 33 nm, which is substantially

Figure 5. SEM images of the surface of Nylaflo membrane (A) and modified-Nylaflo membrane (B).

Table II. Contact Angles of the Membranes

Membranes Water Ethylene glycol

Nylaflo 28.03�6 3.81� 16�6 0.07�

Modified-Nylaflo 32.67�6 5.74� 23.53�6 4.66�

Figure 6. Porosity of the membranes.

Figure 7. Hydraulic permeability of the different membranes tested,

T 5 25�C.
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lower than the nominal value of the pore radius of the nonmo-

dified membrane, which is 110 nm.

Plasmid DNA Experiments

Biomolecules separation is important in biology, medicine, and

chemistry.28,29 Herein, pDNA a flexible biomolecule was used in

this study. After membrane characterization quantification of

pDNA rejection was carried out (Figure 8). As can be seen, at

low fluxes the modified-Nylaflo membrane presented near

100% of pDNA rejection and the rejection decreases as the flux

is increased, despite the fact that the hydrodynamic radius of

the plasmid used in these tests, pVAX1-LacZ, is near 83 nm

(value estimated from the diffusion coefficient of the plasmid30

using the Stokes–Einstein equation), i.e., much higher than the

pore radius of the membrane. This type of behavior has been

previously reported in literature for pDNA4,5,31–33 and can be

interpreted as a result of flow-induced deformation of the

molecular structure of these macromolecules which leads to

their permeation through membranes with narrow pores.

Knowing the rp value of the membrane and the radius of gyra-

tion, rg, of the pDNA molecule, Mor~ao et al.33 have recently

shown that one can accurately estimate observed rejections of

this type of flexible molecules in the case of several conventional

(asymmetric polymeric) ultrafiltration membranes.4,5,33 This

model was originally established for linear molecules, namely

linear dextran and linear double-stranded DNA and then

adapted to supercoiled plasmid DNA. The model assumes the

occurrence of total permeation of large flexible macromolecules

provided that they can be sucked into the pores and this only

occurs if the molecule has a favorable configuration and orien-

tation when approaching the pores; then the probability of per-

meation, thus the intrinsic sieving coefficient, can be estimated

from the ratio rg/rp. In order to estimate observed sieving

coefficients one needs, also, to estimate the concentration

polarization of the macromolecule and for the purpose one can

use the correlation obtained by Opong and Zydney25 as

described by Mor~ao et al. in Ref. (33).The theoretical curve

shown in Figure 8 was calculated by this method using

rg590 nm; the rg value depends on the ionic strength of the

solution and was estimated following the method proposed in

Ref. (33). In this case, however, the observed rejections appear

to be significantly higher than predicted, strongly suggesting

that the structure of the hydrogel layer affects the retention of

pDNA molecules, by significantly increasing it. A possible expla-

nation for this phenomenon may be that, although the porosity

of the modified membranes decreases in respect to the nonmo-

dified, the experimental values obtained are still very high; in

fact, near 30% of porosity is a very high value for the mem-

brane porosity of an ultrafiltration membrane, considering that

conventional ultrafiltration membranes have typical porosities

in the range of 2–7%.34,35 The effect of the porosity at the

membrane surface, which can be identified with the ratio of the

pore area to the membrane area, on the rejection of a large flex-

ible molecule like pDNA can be significant, considering that

flow-induced deformation is expected to decrease as the poros-

ity increases, due to less suction effects. In the model used for

the calculations, which is the only one available in literature for

the prediction of sieving coefficients of pDNA, the effect of the

membrane porosity on the degree of molecular deformation is

not considered; thus, it is possible that the deviations between

the experimental results and the theoretical predictions are due

to this effect.

CONCLUSIONS

In this study a commercial 0.22 mm microfiltration membrane

was modified by impregnation of a layer of agarose gel in order

to obtain significant rejection of a pDNA molecule with interest

for gene therapy and DNA vaccines applications. The modified

membrane presented characteristics of an ultrafiltration mem-

brane, namely in terms of hydraulic permeability and pore size,

but a very high porosity compared to conventional asymmetric

polymeric ultrafiltration membranes. The modified membrane

has shown 100% of pDNA rejection at low values of flux, but

the rejection decreases as the flux increases, due to flow-induced

molecular deformation, a phenomenon also observed with other

ultrafiltration membranes, as reported in the literature. How-

ever, the results suggest that less deformation may occur in the

case of the modified membranes tested here, leading to a very

positive effect in terms of selective retention of pDNA mole-

cules. This fact and also the simplicity of the modification

Table III. Selected Properties of the Proteins Tested

Protein Mw (kDa) rs (m) Ds (m2 s21) Ref.

BSA 67 3.55 3 1029 6.95 3 10211 26,27

c-Globulins 158 5.59 3 1029 4.42 3 10211 26,27

Table IV. Observed Rejections of BSA and c-Globulins at 760 rpm, 25�C

at the Indicated Values of Transmembrane Pressure (Protein

Concentrations: 0.3 g L21)

Protein
p
(bar)

Jv

(L h21 m22) Robs Rm

rp

(nm)

BSA 0.05 5.3 0.046 0.057 34

0.10 10 0.054 0.080 28

c-Globulins 0.10 9.8 0.072 0.12 36

Figure 8. Predicted and observed rejections of plasmid pVAX1-lacZ by the

modified-Nylaflo membrane.
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procedure makes this type of modified membranes potential

candidates for practical applications in pDNA purification.
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