
 Procedia Economics and Finance   21  ( 2015 )  366 – 373 

2212-5671 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Selection and/ peer-review under responsibility of Tampere University of Technology, Department of Civil Engineering

doi: 10.1016/S2212-5671(15)00188-4 

ScienceDirect

Available online at www.sciencedirect.com

8th Nordic Conference on Construction Economics and Organization

Different module placements in a modular façade system for natural

ventilation

Helenice Sachtª
*
, Luis Bragança

b
, Manuela Almeida

b
 and Rosana Caram

c

ªFederal University of Latin American Integration, Foz do Iguaçu 85867-970, Paraná, Brazil
b
University of Minho, School of Engineering, Guimarães 4804-533, Portugal

c
University of São Paulo, São Carlos 13566-590,São Paulo, Brazil

Abstract

Nowadays natural ventilation has gained prominence because its correct use can reduce energy consumption for cooling systems

and improve thermal comfort among users. In this paper, we report on the modelling initiative, based on the wind tunnel tests that

were carried out for the determination of the influence of natural ventilation in buildings. Indeed, the renewal of air in a closed

environment without using an air conditioning system with mechanical elements can lead to energy savings and, in addition,

provide air quality. The wind tunnel tests were carried out by varying the positioning of six ventilation modules in the façade

system configuration. The modules were positioned below the window-sill (ventilated window-sill) as well as separately above

and below the façade. The wind speed measurements were taken inside and outside the model for the different façades

configurations to evaluate the best performance in relation to natural ventilation. The results supported the positioning of the six

ventilation modules below the window-sill, forming a “ventilated window-sill” as the most effective natural ventilation solution.
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1. Introduction

Ventilation has a significant impact on several important human responses. Low ventilation rates may result in

increased concentration of indoor generated pollutants, which may be associate with sick building syndrome
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symptoms, comfort (perceived air quality), health effects (inflammation, infections, asthma, allergy) and

productivity. Ventilation requirements receive major attention in building regulations across Europe. The ventilation

standards tend to cluster around common values for recommended ventilation rates. For example, the Nordic

countries have adopted the minimum requirement of 0.5 h-1 for the whole building ventilation rates. Some other

countries have also adopted the rates greater than 0.3 h-1. In reality, ventilation is often poor, resulting in increased

concentration of pollutants and hence exposure to health risk (Dimitroulopoulou, 2012). The two fundamental

principles of natural ventilation are stack effect and wind driven ventilation.

In 1990s, the early studies were conducted in the Helsinki Metropolitan Area, indicating the importance of natural

ventilation research in Finland. The investigation was performed among the 473 occupants within the 242 dwellings

(houses and apartments), with the different ventilation systems, in order to evaluate the occurrence of sick building

syndromes and the perceptions of poor indoor air quality. Simultaneously, a two-week period of indoor air quality

monitoring was performed. The main conclusions were as follows (Ruotsalainen et al., 1991):

The most common perception was stuffiness;

22% of the occupants perceived that the ventilation rate of the bedroom was often insufficient;

46% of the occupants felt the bedroom air was sometimes or often stuffy in the mornings during the two weeks;

40% of the occupants felt the bedroom air was usually too dry in winter-time;

At least one day over the two-week period, B Half of the occupants reported that they had had sneezing (51%)

and/or nasal congestion (50%);

About one third of the occupants expressed nasal discharge (34%), nasal dryness (33%), dryness or itching of the

skin (36%), headache or migraine (31%) and lethargy, weakness or nausea (35%); and

25% of the occupants reported that they had had cough and 19% dryness, irritation or itching of the eyes, whereas

only 6% of the occupants expressed breathlessness on at least one day during the two weeks.

The air velocity required for comfort is based on the health of users, the supply of oxygen and the removal of

contaminants. The maximum speed of indoor air is defined by factors such as physiological comfort, building type

and use. For office and commercial buildings, the limit is 0.8m/s. For industrial spaces, 1.5m/s is acceptable to assist

in the removal of toxic substances, heat or other harmful conditions. For residential buildings, the maximum speed

indoor air recommended is 1.0 m/s (Military Handbook, 1990).

Wind tunnel tests are a reliable tool for ventilation studies and determining the influence of natural ventilation in

buildings. Natural ventilation, i.e. renewing air in a closed environment without using air conditioning system with

mechanical elements can lead to energy savings and, in addition, provide air quality. Wind tunnel tests performed

with reduced scale models are important for:

increasing the reliability and effectiveness of construction and also reducing the costs of projects;

allowing the evaluation of the influence of other buildings, surroundings and ground in the ventilation of

buildings;

evaluating the quality of indoor air in relation to the dispersion of pollutants and contaminants; and

allowing the more efficient study of the ventilation of indoor environments and optimising the distribution of

windows for better environmental comfort (i.e. like in the case of this study).

Wind tunnel tests can also be used to study cases, such as direct cross-ventilation, ventilation positioned

downwind or windward and the opening positioned to the wind (positioned at normal or parallel to the flow direction

of ventilation). For advancing energy efficiency, productivity and user health in buildings, engineering innovations

are necessary, such as increasing natural ventilation performance and improving ventilation effectiveness. In turn,

this paper reports on the conduct and results of the wind tunnel measurement. The study on the influence of the

ventilation modules positioning on a façade system was carried out. The positioning of the ventilation modules was

modified in the façade configuration in order to evaluate the results as the air velocity at specific points observed in a

model.
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2. Methodology

2.1. Wind Tunnel

The wind tunnel (atmospheric boundary layer) of the Laboratory of Environmental Comfort and Applied Physics,

Faculty of Civil Engineering, Architecture and Urbanism, UNICAMP, operates with an axial fan sucking air. It was

used for this study. Figures 1 and 2 respectively present a view from the exterior of the axial fan and a general

illustration of the wind tunnel.

Fig. 1. Wind tunnel - UNICAMP. Fig. 2. Overview of a wind tunnel.

The wind tunnel used has a cross-section of the chamber test of 0.9m width by 0.8m height with an area of

0.72m². Inside the wind tunnel, turbulence is generated by means of a roughened surface and zero pressure gradient

(due to the need to generate a turbulent boundary layer). Besides these features, the wind tunnel has other details,

such as:

total length of the tunnel of 9.03m;

length of the test section of 4.80 m;

diameter of the fan blades of 1.20 m, in a total of 16 blades; and

wind tunnel output diameter of 1.25m.

2.2. Model

As the  dimensions  of  the  test  section  of  the  wind tunnel  are  0.9m in  width  by  0.8m height,  with  a  total  cross-

sectional area of 0.72m², the rate of the obstruction test section is recommended to be 5% acceptable up to 7%.

Therefore, the model should block up to 7% area, namely the frontal area of the model, perpendicular to the wind,

should be maximum 0.05m². There are no restrictions of dimensions in the horizontal direction along the wind

tunnel.

The model was built on the scale 1:20, with dimensions of 0.16m in height, 0.28m in width and 0.28m length and

the frontal area is 0.045m². The cross-sectional obstruction of the wind tunnel is 6.3%. Table 1 presents the

dimensions of the model and the real dimensions.
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Table 1. Dimensions of the model.

Measures Real dimensions (m) Model’s dimensions (m)

Height 3.20 0.16

Width 5.65 0.28

Length 5.65 0.28

Scale 1:20

Section area of the wind tunnel (m2) 0.72

Frontal area of the model (m2) 0.045

Cross-sectional obstruction of the wind tunnel (%) 6.3

The model was constituted by the wood paper with thicknesses of 1, 2 and 3 mm and connected by the PVA glue

(Figures 3 and 4).

Fig. 3. Model. Fig. 4. Open model.

Afterwards, the parts in acrylic (variations of the facades with 2.5m x 2.5m and 2mm thickness) were cut in the

Laboratory of Automation and Prototyping for Architecture and Construction (LAPAC), Faculty of Civil

Engineering, Architecture and Urbanism (FEC) UNICAMP (Figure 5).

Fig. 5. Configuration of the facades for the wind tunnel tests.
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The facades are mobile and interchangeable in order to take advantage of the same base model to test possibilities

of ventilation. The two variations of the facade positions (see the characteristics below) were built. Each ventilation

module has the dimensions of 0.50 x 0.50 m. The cases tested were the six ventilation modules positioned below the

window-sill (ventilated window-sill) (02A) as well as the three ventilation modules positioned above the façade and

the three ventilation modules positioned below the façade (02B). Each of these cases was tested twice, considering

the door for ventilation exit open or closed (Figure 5).

The purpose for these tests was to evaluate the internal and external speeds for each configuration of the facade.

These tests were important to emphasise how such variations influence to obtain more efficient natural ventilation.

In this case, the most important in the velocity measurements in the wind tunnel were the indoor values relative to

the speed of incidence on the facade.

To measure the internal speeds of the model in the wind tunnel, the three sensors hot wire anemometer

thumbnails were installed inside, through the holes in the bottom. The internal sensors (P2, P3 and P4) were

positioned at a height of 0.80m from the floor in the scale of 1/20, which corresponds to a person sitting. In addition,

the two external sensors were installed on the outlet air opening (door) (P5 and P6), in order to obtain the wind

speed when leaving the model (Figure 6).

In  the  main  model,  the  sensor  (P1)  was  installed  on  the  facade  for  the  purpose  of  measuring  the  speed  of  the

external wind before reaching the physical model. The Figure 7 presents the model positioned inside the wind tunnel

with this front sensor.

Fig. 6. Positioning of the sensors in the model. Fig. 7. Model positioned inside the tunnel.

3. Results

The measurements were performed to compare the speeds of the two variations of the facades studied in order to

determine which one offers the best performance relative to natural ventilation. The internal and external speeds

were quantified by the tests in the wind tunnel. The results of the wind tunnel tests were achieved by comparing the

internal speeds and the wind speed of incidence, close to the facade in order to determine the configuration that

offers the best ventilation conditions.

3.1. Wind speed measurements

Tables 2 and 3 present the values of the average air velocity at specific points observed in the model (the three

internal points and the three external points), according to the configuration of the façade. The speed measurement

inside and outside the model is clarified as follows:

V1 = Wind speed at the point P1 to the facade 6m and 1.55m in height;
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V2 = Wind speed at point P2 in the edge to 0.80m in height;

V3 = Wind speed at the midpoint P3 to 0.80m in height;

V4 = Wind speed at point P4 in the edge to 0.80m in height;

V5 = Wind speed at point P5, in the air outlet (door) to 1.00m in height;

V6 = Wind speed at point P6, in the air outlet (door) to 1.70m in height.

Table 2. Case 02A: With and without cross ventilation - Average speeds by frequency

Frequency

(Hz)

Average speeds by frequency (m/s)

V1 V2 V3 V4 V5 V6

2AO 2AC 2AO 2AC 2AO 2AC 2AO 2AC 2AO 2AC 2AO 2AC

3 1,25 1,24 0,81 0,59 0,75 0,59 0,60 0,57 0,95 - 0,97 -

5 2,45 2,27 1,18 0,59 1,28 0,59 0,73 0,57 1,89 - 1,87 -

7 3,74 3,77 1,34 0,60 2,00 0,59 1,08 0,57 2,70 - 2,69 -

9 5,06 5,04 1,33 0,60 2,63 0,60 1,59 0,58 3,39 - 3,41 -

11 6,26 6,00 1,64 0,60 3,36 0,61 1,90 0,58 4,23 - 4,24 -

13 7,30 6,98 1,80 0,61 3,89 0,64 2,28 0,58 4,99 - 5,02 -

Case 01A:

2AO= Case 02A with cross-ventilation (open door)

2AC= Case 02A without cross-ventilation (closed door)

Table 3. Case 02B: With and without cross ventilation - Average speeds by frequency

Frequency

(Hz)

Average speeds by frequency (m/s)

V1 V2 V3 V4 V5 V6

2BO 2BC 2BO 2BC 2BO 2BC 2BO 2BC 2BO 2BC 2BO 2BC

3 1,28 1,29 0,76 0,59 0,68 0,59 0,60 0,57 0,89 - 1,00 -

5 2,41 2,30 1,09 0,60 0,98 0,60 0,67 0,58 1,73 - 1,88 -

7 3,86 3,98 1,01 0,61 1,79 0,61 0,81 0,59 2,67 - 2,86 -

9 5,10 4,76 1,16 0,61 2,36 0,62 0,93 0,59 3,49 - 3,71 -

11 6,17 5,65 1,40 0,62 2,72 0,66 1,12 0,60 4,17 - 4,41 -

13 6,73 7,43 1,71 0,64 2,77 0,72 1,24 0,61 4,68 - 4,97 -

Case 02B:

2BO= Case 02B with cross-ventilation (open door)

2BC= Case 02B without cross-ventilation (closed door)

For the analysis of the results, the graphs were prepared for showing the air velocities inside and outside the

model as the function of the speed, of 6m from the façade and the height of 1.55m (V1). For cross ventilation, a

linear trend in the velocity variation in the measured points is being observed in most cases. The highest values were

observed in the velocities measured for the points outside the model, positioned at the outlet air opening (P5 and P6)

(Figures 8 and 9).
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Fig. 8. Case 2A with cross ventilation: the speeds at

the internal points and the speed on the facade (V1).

 Fig. 9. Case 2B with cross ventilation: the speeds in

the internal points and the speed on the facade (1).

For these cases, that present the elements of the grid positioned horizontally (2A and 2B), the effective opening

area on the facade was 0.82m² and the area of door was 1,45m². Thus, the area of the air outlet is higher than the

input. According to Chávez and Freixanet (1995), the larger the size of the air outlet opening is in comparison with

the input, the greater the acquired wind speed is. This may explain a fact that the higher speeds were positioned at

the points air outlet port (P5 and P6).

Among the points measured inside the model, the one positioned at the centre (P3) resulted in the higher values

of speed for the cases analysed, followed by the P2 and P4 points values.

For Point P2 located inside the model, on the edge next of the façade, the highest values of the speed were

observed for the Case 2A. For Point P5 (the lowest point of the air outlet), the lower speeds were observed for Case

2B. Based on the cases without cross ventilation, in other words, with the model of the door closed, the near results

were observed for the evaluated facades (Figures 10 and 11).

Figure 10. Case 2A: Without cross ventilation: the

speeds at the internal points and the speed on the

facade (V1).

Figure 11. Case 2B: Without cross ventilation: the

speeds at the internal points and the speed on the

facade (V1).

4. Conclusion

Natural ventilation in buildings is important to maintain indoor air quality, to provide thermal comfort by means

of air movement, to cool the mass of the building during the night and to warm the mass of the building during the

day. The choices of natural ventilation solutions also depend on the detailed analysis of local climate conditions.
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Based on the results obtained by the wind tunnel tests, it was observed that the best configuration of the façade in

terms of natural ventilation was a ventilated window-sill. This solution was better than the ventilation modules

positioned separately above and below the façade.

It was observed that the cross ventilation provided the higher speed and the better internal global distribution of

air inside. Probably, the height difference between the openings of the second solution (the ventilation modules

positioned separately) was insufficient to improve the ventilation.

For the cases with the openings in only one of the facades (without the cross ventilation), the ventilation was low,

about the same regardless of the solution type. It is probably so that the average speed of the internal wind does not

change significantly with the increasing of the size of an inlet opening without cross ventilation. Thus, this study

points out to the necessity of having openings opposite or adjacent in order to ensure better natural ventilation.
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