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Summary

DNA microarrays are one of the most used technologies for gene expression measurement.
However, there are several distinct microarray platforms, from different manufacturers,
each with its own measurement protocol, resulting in data that can hardly be compared
or directly integrated. Data integration from multiple sources aims to improve the as-
sertiveness of statistical tests, reducing the data dimensionality problem. The integration
of heterogeneous DNA microarray platforms comprehends a set of tasks that range from
the re-annotation of the features used on gene expression, to data normalization and batch
effect elimination. In this work, a complete methodology for gene expression data inte-
gration and application is proposed, which comprehends a transcript-based re-annotation
process and several methods for batch effect attenuation. The integrated data will be used
to select the best feature set and learning algorithm for a brain tumor classification case
study. The integration will consider data from heterogeneous Agilent and Affymetrix plat-
forms, collected from public gene expression databases, such as The Cancer Genome Atlas
and Gene Expression Omnibus.

1 Introduction

DNA microarrays have been widely used in the study of several organisms and phenotypes,
with applications ranging from biological sciences to health care and biotechnology. One re-
cent application has been in the study of different types of cancer [1]. The correct classification
of the pathology of a patient, in particular in cancer, is essential to decide which drugs or ther-
apies may be applied [2, Chapter 2][3][4]. Often, tumor samples with an atypical morphology
complicate the analysis. In addition, certain types or subtypes of tumors may have very little
differentiation between them [5].

The analysis based on gene expression is extremely important, given the gaps that traditional
diagnosis methods still present. These data are obtained by measuring the amounts of mRNA
in a sample for the different genes in study. DNA microarrays can monitor simultaneously
expression profiles from a large number of genes [6], as each microarray slide can carry a high
amount of probes. The major issue for statistical microarray data analysis is dimensionality. In
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a typical experiment, a table with thousands of genes for a small number of samples is obtained.
This leads to situations where it is difficult, or even impossible, to employ classical prediction
algorithms leading to poor prediction accuracy in discriminant models [7].

While a great number of studies have been focused on data dimensionality reduction [8, Chap-
ter 13], applying statistical methods like Principal Component Analysis or Linear Discriminant
Analysis, other works turned their attention to the increase in the number of available samples
[9]. One way to increase sample size is the integration of microarray data from different studies
over the same phenotypes. When the platforms have the same identifiers, this implies a data ad-
justment to minimize batch effect, understood as non-biological experimental variation across
multiple microarray experiments [10]. When the platforms have different feature identifiers
(i.e. different probesets), a re-annotation method is needed to make a bridge between them.

Here, it will be presented a re-annotation process based on transcripts, aiming to achieve a
universal process that allows the integration of data from distinct microarray platforms. The
re-annotated data will then be integrated to form a richer dataset, using different approaches,
focusing on reducing batch effect. The resulting integration will be applied on brain tumor
grade classification, performing feature selection and classification through filter and wrapper
methods. The final result is a methodology and a set of computational tools that allows re-
searchers on this area to integrate several gene expression datasets and apply machine learning
algorithms over them, obtaining a subset of the best features-algorithm set for a specific case
study. With the re-annotation based on transcripts it is possible to cross statistical significance
with biological relevance and find the best subset of biomarkers.

2 Microarray fundamentals

Gene expression values are obtained by measuring amounts of mRNA in samples. Early meth-
ods targeted one gene (or a small number of genes) at a time requiring an a priori hypothesis
suggesting which gene could be of interest. This limitation has been surpassed with the rising
of DNA microarrays. Microarrays are physical structures, which have coupled thousands of
specific DNA probes in a plate with a diameter of less than 250 microns [4]. The sequences
of these DNA probes, when in contact with a sample, will hybridize with the complementary
mRNA segments.

2.1 Affymetrix probesets

In single channel microarrays, the measurement corresponds to a certain amount of expression,
which is the case for Affymetrix® platforms. These probesets contain 11 or 16 25-mer probes,
each probe measuring a specific zone of the gene. The small size of the sequence means that
there is a great chance of cross-hybridization in these probesets. Each probe of Affymetrix
is actually a pair of probes. One of these probes is the exact complementary sequence of the
target to measure, called Perfect Match (PM), and the other has only a change of one base
in the middle of the string, called Mismatch (MM) [11][12]. This change in the basis of MM
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probes is considered sufficient to not hybridize with the target, so it is considered that this probe
measures background noise. The specific intensity for a probe is thus given by Eq. 1.

Probe Signal = PM −MM (1)

To calculate the probeset expression, Affymetrix statistical methods (AffyAlg) are applied
over the n probes of the probeset, which aim, among other purposes, to exclude from the calcu-
lation the pairs of probes that present levels outside the normal parameters [13]. The final value
of a probeset measurement is often a log2 intensity (Eq. 2).

Probeset Signal = log2(AffyAlg(nProbe Signal)) (2)

2.2 Agilent probesets

When a microarray considers the existence of two samples on the same experiment, it is called
a two channel microarray. That is the case with many Agilent® platforms. An Agilent probeset
is composed of several identical probes, with a target of 60-mers oligonucleotides. The mea-
surement of the signal by spot (probe) is made using an image processing that measures the
average intensity of pixels of this spot [14]. The datasets used on this work use a cell line,
established through reference samples of various tissues, which serves to ameliorate the errors
inherent in the platform, like for example the background error. The cell line is marked with
green dye (Cy3) and the target sample is marked with red dye (Cy5). The signal that is returned
is a logarithm of the ratio (Eq. 3).

Probeset Signal = log2(Cy5/Cy3) (3)

A microarray experiment generally results in an extensive list of probesets and their expression
intensities (single-channel) or intensity ratios (dual-channel) [15]. With the current state of the
art, it is not possible to cover all genome with probes. There are several zones of the genes
that are not monitored on a microarray experiment. This means that the expression of some
exons is not measured and, thus, the ”gene expression” concept is actually flawed. The target
of a probeset is, in fact, a transcript and not a gene. To meet this proposal, probe designers try
to direct targets to exons that belong to a single transcript [16]. Another goal when designing
microarray probes is specificity. The genome areas that present high levels of repeated patterns
are discarded, because these areas tend to repeat all over the genome and this would cause
cross-hybridization.

3 Related work

There have been several studies targeting data integration between microarray platforms. A
few are summarized in Table 1. The main distinction is at which level the interface between

doi:10.2390/biecoll-jib-2015-281 3

C
op

yr
ig

ht
20

15
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.

http://journal.imbio.de/


Journal of Integrative Bioinformatics, 12(4):281, 2015 http://journal.imbio.de/

platforms is made. Since the majority of the datasets available are at the probeset level, the first
approach could be to directly map probeset values. However, the data files generally do not
have sufficient information to achieve this mapping. The most traditional method is to integrate
at the gene level, where it is possible to resort to probeset-gene mapping files available from
manufacturers. However, several inconsistencies were pointed out for this approach and recent
studies are turning to the transcript level [17].

Culhane et al. [18] made a co-inertia analysis to relate datasets without the need of identifiers
annotation, using a multivariate method that identifies co-relationships in multiple datasets. The
method was able to visually cluster genes with similar expression patterns between platforms.
The authors claim that it is possible to assist in the selection of the strongest features from each
dataset for subsequent analysis. This approach prevents the bottleneck caused by the annotation
based methods for integration, that limit the genes on study to those identified in all the datasets
involved.

Woo et al. [19] compared the variability in expression between three different types of microar-
rays (Affymetrix GeneChip, cDNA and oligonucleotide). The gene identifiers and probeset-
gene mapping were obtained from TIGR and GenBank. The expression value for each gene
was obtained by averaging probesets linked to the gene, adding experimental effects like dye
and array effects. The platforms were compared by concordance of the F-statistics using a
2x2 cross-classification of significant vs. non-significant genes. Affymetrix microarrays shown
greater variation in the magnitude of expression between replicates. However, in terms of sta-
tistical significance, a greater concordance between Affymetrix GeneChips and oligonucleotide
arrays was shown. The analysis was done at the gene level.

Jarvinen et al. [20] compared data between different expression microarrays, using Affymetrix,
Agilent cDNA and a custom-made microarray from a cDNA library. The comparison was made
at the gene-level, using the UniGene cluster ID as a common handle among platforms. The ex-
pression values of probesets with the same ID, called clones, were averaged. A total of 7936
identifiers for Affymetrix, 7117 for Agilent and 7273 in the cDNA microarray were identified,
but only 2340 identifiers were in common among the three platforms. After processing infor-
mation, the authors obtained 1147 identifiers in common, to which they applied the Pearson and
Spearman correlations to compare the gene expression between platforms. The results indicate
variability across the three platforms, being greater among commercial arrays.

Ballester et al. [11] established an annotation pipeline at the transcript-level. The probe se-
quences were collected from the Affymetrix site and were aligned with the genome using the
Ensembl exonerate tool. An association probeset-transcript was made if at least 50% of their
probes match the transcript, considering 1 bp as maximum mismatch. Probes with match in
more than 100 different places on the genome were discarded. Aiming to improve annotation,
the 3’ untranslated regions (3’ UTRs) were considered.

Bellis [21] pointed the problem of annotation dependency on the reliability of files provided
by manufacturers with the association of probesets-transcripts-genes. The authors refer that the
assumption that an exon read leads to a specific transcript is ambiguous, which implies the need
for extra validation. To analyze if two probesets annotated to the same gene are measuring the
same entity, they used Pearson correlations, complemented by networks of positive and negative
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correlations. This structure compares all the probesets and genes and assigns them to different
classes. The result was a full textual description of the association of each probeset to genes,
exons and transcripts.

Table 1: Related works
Level Platforms Reannotation Data integration Feature selection Work
Probeset Oligonucleotide; Spot-

ted cDNA
clustering no need direct from clustering

evidences
[18]

Gene Spotted oligonu-
cleotide; Spotted
cDNA; GeneChips

open databases expression average gene rank [19]

Oligonucleotide; Spot-
ted cDNA; Custom
cDNA

open databases expression average expression correlation [20]

Transcript Oligonucleotide genome align-
ment

not considered not intended to [11]

Oligonucleotide annotation files average of clones
with correlation

not intended to [21]

Integrating multi-platform microarray data raises many difficulties, and therefore it is often
avoided due to the lack of good results. Other authors who have taken this challenge focus on
specific integration issues, and the methods used widely diverge. Kostadinova [22] examined
how the combination of several related microarray datasets affects different areas of prepro-
cessing and analysis of gene expression data, such as missing value imputation, gene clustering
and biomarkers detection. Meng et al. [23] used a top-level approach, with multiple co-inertia
analysis to relate two datasets, by maximizing the covariance between eigenvectors in paired
dataset analysis. With this method, they can integrate and compare multi-omics data, indepen-
dent of data annotation. The majority of the authors also focus on a single vendor or on datasets
that are only one-channel or two-channel based. Papiez et al. [24] combined data sets from two
types of microarrays: oligonucleotide and cDNA. They extract a set of genes common for both
platforms and remove batch effects obtaining combined p-values from the two experiments.
Even being different platforms, both datasets considered only intensity values.

Although being difficult, data integration has been seen as an important achievement, even
leading to proprietary solutions, like the ones described by Willis et al. [25]. In this work, a
combination of Thomson Reuters solutions was used, including the Data Annotation and Pro-
cessing tool, MetaCore Pathway Analysis and the Biomarkers Module of Thomson Reuters
Integrity for a simple workflow to process omics data and identify biomarkers of target engage-
ment through pathway analysis and data integration.

4 Methodology

This work intends to establish a general methodology/architecture for microarray data integra-
tion and application. The process begins with data collection of gene expression datasets from
different free available sources. These datasets must be normalized for expression values and
phenotypes, to achieve a common structure across them. The re-annotation processes are then
applied to bring heterogeneous annotation datasets into a common backbone of features. The
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datasets could then be integrated, taking into account the batch effect, and applied on a case
study where it is possible to select the best features and classification algorithm. The system
was named Integrated Gene Expression Information System (IGEIS) (Fig. 1).

Figure 1: IGEIS structure

4.1 Data collection

The first decision to be made is at what level to perform the data integration: at microarray
spot level, probeset level, transcript level or at the gene level. An important factor is at which
level the data are available. If data are on a higher level, then it is not possible to descend
to a lower level. This stage also encompasses scaling of expression values, as some are on a
logarithmic scale and others are on an absolute scale. As most differential expression tools
use the logarithmic scale, this was chosen. A more intricate problem is the standardization
of phenotypic meta-data. Clinical data are often provided in plain text. This leads to a need
of manual intervention to achieve homogeneous and unambiguous information that associates
gene expression levels to specific phenotype attributes.

4.2 Re-annotation

The consistent homogeneous feature annotation is a very important step to compare expression
data from different platforms. It is only possible to combine values of expression of a probeset
with another one if both have the same target. The manufacturers provide annotation to their
probesets, but with the constant evolution of platforms, this is quickly outdated [11]. The
probeset targets are typically (sets of) exons that comprise transcripts. If two probesets have
different transcripts as target from the same gene, it is not surprising that they present different
expression values.
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The re-annotation starts with probe sequence alignment with the genome. This stage is done by
collecting the sequences of each probe and registering all the matches those sequences present
along the genome. As only exons are expressed, the matches of interest are the ones that lie
on these sections. Given the exon-transcript correspondence, it is then possible to establish
a probe-transcript correspondence, having in mind that the same exon can belong to multiple
transcripts due to alternative splicing. For the contribution ratio of a probeset to a transcript
expression value, the quantity of matches that the probeset makes with the transcript will be
used, divided by the total matches on the whole genome (Eq. 4).

psetR(ij) =
npm(ij)

npm(ij) + npn(i)

(4)

where: psetR - probeset ratio for this transcript; npm - number of probe matches on the tran-
script; npn - number of probe matches outside the transcript; i - probeset index; j - transcript
index.

For the determination of npn, it is necessary to check if each hit is outside the bounds of the
target transcript, because a probe may have a hit in another transcript that has overlapping
sections and, therefore, be identified erroneously as an outside match. Where it is not possible
to find the probe sequences, or when a probe does not have matches, it will be discarded. A
transcript expression value will be the weighted average of corresponding probesets (Eq. 5):

te(j) =

∑ n
i=1(psetV(ij) ∗ psetR(ij))∑ n

i=1psetR(ij)

(5)

where: te - transcript expression; psetV - probeset expression value; n - number of probesets
that match transcript j. With Eq. 5 it is possible to restructure datasets on a transcript based
manner.

4.3 Datasets integration

The method used for integration may be generic or adapted for a specific case study. On brain
tumor grade determination, the problem to solve is a classification task, with 4 distinct classes
(1 to 4), being 1 the less malignant grade and 4 the higher malignant grade, called glioblastoma.
To exemplify, the distribution of the expression values across samples of an Affymetrix dataset
is shown in Fig. 2, specifically for the probeset 201292 at (gene TOP2A). This probeset was
highlighted from a previous eBayes analysis, presenting a p-value of 8.02E-34 in this analysis,
run to determine differential expression significance. In Fig. 2, a positive correlation between
expression and tumor grade is clearly evident.

The platforms to be integrated are from Affymetrix and Agilent so, in this stage, batch ef-
fect needs to be considered, as well as ratio-intensity differences between them. Since pre-
normalization already done over datasets is not known, it is not possible to establish a concrete
mathematical transformation to achieve this goal. It was then chosen to experiment six different
ways to obtain a comparison:
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Figure 2: Expression/grade distribution for Affymetrix probeset 201292 at. Grade 0 corresponds
to non-tumor samples and grade 1 was not represented on collected datasets

• Raw. Where the datasets are joined without any transformation.

• Norm. Where the data is mean subtracted and divided by standard deviation.

• Linear. A set of reference features are selected, that present the lowest dataset and inter-
grade expression variation in all datasets. When joining two datasets, one is used as base
and a linear model is built that represents the linear variation between expression values
of references from the base and the references of the new dataset. That model is then
used to adjust the entire values of the new dataset. This is applied to linear data, without
log2 transformation.

• LinearLog2. The same as the previous, but applied to log2 transformed data.

• Grade. Since the grade is an ordered value, dividing all data by the mean of values of
common grade brings the heterogeneous datasets to levels that are comparable. This is
applied to linear data, without log2 transformation.

• GradeLog2. The same as the previous but applied to log2 transformed data.

4.4 Find candidate biomarkers

Four candidate machine learning algorithms were used, suitable for multi-level classification
tasks: Ordinal Logistic Regression (OLR); Support Vector Machines (SVM); k-Nearest Neigh-
bors (k-NN); and Linear Discriminant Analysis (LDA).

The process used to select the best pair of training algorithm - feature set is to firstly choose
the possible algorithm candidates and then test each against possible combinations of feature
sets. Obviously, this would result on a large processing burden. Then, the first step is to do a
filtering stage, to reduce the initial set to a more reasonable subset. Two filtering methods will
be used: Pearson’s correlation of each feature with the tumor grade and differential expression
analysis using empirical Bayes (eBayes), which will give a rank with p-values of the features
that best differentiate the four tumor grades. Since some algorithms do not deal well with data
collinearity, features that have a high Pearson’s correlation among them will be eliminated.
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With the reduced feature set (rfSet), a greedy wrapper algorithm is deployed to choose, for each
algorithm, the best feature subset. The main steps of this algorithm are are shown in Fig. 3.

Figure 3: Algorithm for best feature set selection

The first iteration is made with only sets with a single feature, testing each algorithm with each
of the filtered features. The features which present the best results will be kept and then used
as base for the next set of tests, where an additional feature, from the rest of filtered features,
is included to organize sets of 2-features combinations. This method is repeated until reaching
the maxSetSize threshold. The test criterion was the lower classification error rate (number of
misclassifications over total number of samples) by Leave One Out Cross Validation (LOOCV).
For OLR, the Akaike’s Information Criterion (AIC) was calculated, due to lower computation
burden.

5 Implementation and Results

Gene expression datasets and phenotypes where collected from Gene Expression Omnibus
(GEO) and The Cancer Genome Atlas (TCGA), targeting all datasets that present good quality
and have samples with explicit brain tumor grade classification. For re-annotation, the probe
sequences were obtained from the official sites of the respective vendors and genome anno-
tation was gather from Ensembl. Computational tools were developed with R programming
language, using Bioconductor project framework broadly. The database used for datastage and
re-annotation processes was implemented over the MySQL Management System.

5.1 Data collection

The data was collected from GEO at the probeset level, while in TCGA the data was found
in three levels. This restricted the integration to a level not lower than that of probesets. The
Affymetrix and Agilent probeset identifiers were collected from the original datasets. Assuming
a specific identifier of a manufacturer measures the same sequence, even if the platform is
different, a global set of unique probeset identifiers were collected, for each manufacturer. The
Agilent platforms were:

• Human 1A Microarray: Design ID: 011521; Design Format: 1 X 22K;
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• Human 1B Microarray: Design ID: 011871; Design Format: 1 X 22K;

• Human 1A Microarray (V2): Design ID: 012097; Design Format: 1 X 22K;

• Whole Human Genome Microarray: Design ID: 026652; Design Format: 4x44K v2;

• Whole Human Genome Oligo Microarray: Design ID: 012391; Design Format:1x44K.

The Affymetrix platforms were:

• Human Genome U133 Plus 2.0 Array

• Human Genome U133A

• Human Genome U133B

• Human Genome U95Av2

The Agilent probe sequences were collected with the eArray tool, available in the following
URL: https://earray.chem.agilent.com/earray, using the option Microarray→ Browse Microar-
ray Designs, selecting ”H. sapiens”. The Affymetrix sequences were taken from the Web site
through the option Products→Microarray Solutions→ 3’ IVT Expression Analysis→ select
desired microarray → Technical Documentation→ Sequence Files (Tabular). It was checked
that all probesets of U133A and U133B are also in U133 Plus 2.0 and that some U95Av2
probesets are also in U133 Plus 2.0. So, the collection was started with the 54613 U133 Plus
2.0 probesets, to which 12286 U95Av2 specific probesets were added, making a total of 66899
unique probeset identifiers. On U133 Plus 2.0 array, 9711 probes were identified with duplicate
sequences and in the U95Av2 array 1722 duplicate sequences were found. After joining the
two sets, repeated sequences were noted in 22351 probes.

5.2 Re-annotation

Using Biostrings, with the human genome version BSgenome.Hsapiens.UCSC.hg19, the match
of each probe sequence with the genome was done. Each probe could have zero or more
matches along the genome. A maximum of one base pair (bp) mismatch [11] was allowed.
From the 799238 Affymetrix probes less than 5% do not have any matches in the genome.
Most probes present only one match, while a maximum of 366059 matches was registered for
a single probe. The largest numbers of matches were recorded in 4 probes of the probeset
1008 f at. There are also cases where the same probe matches in several distinct regions of the
same gene. For example, in the probeset 1557055 s at a probe was detected with 10 distinct
matches in the gene RP11-206L10.11 (ENSG00000228794). The distribution of number of
matches per probe is given in Tab. 2.

For some probesets (0,6%), no match has been identified for any probe. This could be ex-
plained by the upgrade of the genome annotation. Other possibilities could be pointed, like the
fact that approximately 200 Mbp of theTab human genome, mainly from the centromeres and
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Table 2: Number of genome matches per probe
matches 1 2 3 4 5

probes 675561 44974 13528 6229 4097
matches 6 7 8 9 10

probes 2776 1761 1502 1106 835

the short arms of the acrocentric chromosomes, are missing from the human reference genome
[26]. The Genome Reference Consortium (GRC) builds the genome reference leaving these se-
quences in structures outside chromosomes. A GRC genome assembly, for H. Sapiens species,
is composed by [27]: 24 ”relatively complete” sequences for chromosomes 1 to 22, X and Y; a
complete mitochondrial sequence; several ”unlocalized sequences” (their exact location within
the chromosome is not known); several ”unplaced sequences” (their chromosomal association
is not known); and several ”alternate loci” (contain alternate representations of specific re-
gions). Considering these ’extra’ genome sections, 487 additional probes were identified. The
rest of the probes were analyzed with BLAST tools from Ensembl and UCSC, but continued to
return no matches.

Annotation through GeneAnnot [28] presented incomplete results (Table 3) and is gene centric,
i.e., it is not possible to obtain the exact chromosome location. The information obtained from
GeneAnnot can be found through Affymetrix annotation files. The fact that some probes do
not match any region of the genome could be due to outdated Affymetrix probe design (Build
133, April 2001 for U133 Plus 2.0 Array) when compared with the genome assemblies that are
frequently updated by GRC (February 2009 for GRCh37/hg19). Probes that showed no match
were discarded.

Table 3: Some Probesets Annotation by GeneAnnot
Probeset Gene Chromo. Strand Start End
224344 at COX6A1 12 + 120875893 120878545

1565535 x at M74301 ? ? ? ?
1554232 a at BC018433 ? ? ? ?
208303 s at CRLF2 X - 1314869 1331616

Among the probes with matches, 95.2% registered at least one match in the genes referenced
by Ensembl, getting 5% of the probes without apparent connection to any gene. 79.6% of the
probes with matches in genes had at least one match in an exon. The remaining cover zones of
introns, UTRs, or boundary regions that do not belong in their totality to exons. The annota-
tion process was made by stages, crossing the probe matches obtained from Biostrings with the
genome information contained on the Ensembl database. From Ensembl, for each exon, infor-
mation was collected about the corresponding gene, sequence, location (start and end) on the
respective chromosome, and strand. A filter was applied to return only the exons present in the
24 chromosomes from 1 to Y. The information extraction for exons was made using biomaRt
R package, because it allows to associate the sequence of each exon to the rest of the informa-
tion. The transcript annotation data obtained with the biomaRt package include non-normalized
fields that would require a considerable processing time for their normalization. Thus, the En-
sembl data for transcripts and genes was collected using the BioMart web tool in CSV format
from http://www.ensembl.org/biomart/martview, with the options: Database: Ensembl Genes
72→ Dataset: Homo sapiens genes (GRCh37.p11)→ Attributes. It was possible to identify,
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for each transcript, the gene, the strand, start and end positions on the chromosome. In parallel,
the transcript-exons map was built.

5.3 Datasets integration

Three datasets came from GEO, built with Affymetrix HG-U133Plus2.0, HG-U133A and HG-
U133B platforms: GDS1962 (23 samples grade 0, 45 g2, 31 g3, 81 g4); GDS1815 6 (24 g3, 76
g4); and GDS1975 6 (26 g3, 59 g4). Two datasets were taken from TCGA, built with Agilent
platforms: TCGA AGIL2 (10 g0, 232 g4); and TCGA AGIL4 (7 g2, 20 g3). As GDS1962
is the most complete and balanced dataset, it was used for preliminary Affymetrix probesets
tests. For Agilent, TCGA AGIL2 g4 subset was trimmed, leaving only 40 g4 samples. The
two Agilent datasets were joined on TCGA AGIL2 4 (10 g0, 7 g2, 20 g3, 40 g4). Higher-
level datasets were built from probeset data. Gene level datasets were produced averaging all
probesets associated with each gene. Transcript datasets were produced by weighted average
of the probesets associated with each transcript (Eq. 5) [29].

5.4 Find candidate biomarkers

Pearson’s correlation and eBayes filters were applied on these datasets and the probesets were
sorted by rank. Over this, a cleaning process was performed to remove collinear probesets,
using a 0.9 Pearson’s correlation cutoff. Finally, only a set of the 200 best ranked probesets were
kept for further tests. The wrapper method was tuned to make combinations until a maximum
of 20 features. Also, the quantity of the best combinations preserved between cycle iteration
was limited to 20. For k-NN, k was always set to 3. The main results are provided in Tables 4,
5 and 6.

Table 4: Results for classifiers (columns), filtering methods (rows) at the probeset level. #P -
number of probesets; ER - Error Rate

OLR SVM k-NN LDA
Pearson Affy #P: 16 ER: 0.25 #P: 13 ER: 0.11 #P: 18 ER: 0.14 #P: 13 ER: 0.19

Cor. Agil #P: 02 ER: 0.13 #P: 6 ER: 0.04 #P: 06 ER: 0.01 #P: 05 ER: 0.04

eBayes Affy #P: 16 ER: 0.28 #P: 10 ER: 0.09 #P: 20 ER: 0.14 #P: 12 ER: 0.17
Agil #P: 05 ER: 0.17 #P: 09 ER: 0.03 #P: 06 ER: 0 #P: 04 ER: 0.03

Table 5: Results for classifiers (columns), filtering methods (rows) at the gene level. #G - number
of genes; ER - Error Rate

OLR SVM k-NN LDA
Pearson Affy #G: 16 ER: 0.26 #G: 19 ER: 0.08 #G: 14 ER: 0.14 #G: 19 ER: 0.17

Cor. Agil #G: 03 ER: 0.12 #G: 08 ER: 0.03 #G: 05 ER: 0.01 #G: 11 ER: 0

eBayes Affy #G: 16 ER: 0.23 #G: 17 ER: 0.09 #G: 18 ER: 0.14 #G: 19 ER: 0.17
Agil #G: 05 ER: 0.17 #G: 04 ER: 0.01 #G: 06 ER: 0 #G: 13 ER: 0

The differences between results associated with the filtering method are not significant, so one
will be used arbitrarily. It is also possible to see that the accuracy is always better for Agilent
datasets, and SVMs have the best performance when considered both platforms. In the matters
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Table 6: Results for classifiers (columns), filtering methods (rows) at the transcript level. #T -
number of transcripts; ER - Error Rate

OLR SVM k-NN LDA
Pearson Affy #T: 18 ER: 0.25 #T: 14 ER: 0.1 #T: 20 ER: 0.14 #T: 17 ER: 0.17

Cor. Agil #T: 03 ER: 0.09 #T: 06 ER: 0.03 #T: 07 ER: 0.01 #T: 17 ER: 0.04

eBayes Affy #T: 18 ER: 0.23 #T: 18 ER: 0.07 #T: 17 ER: 0.13 #T: 13 ER: 0.16
Agil not converge #T: 06 ER: 0.02 #T: 04 ER: 0.02 #T: 06 ER: 0

of probeset, gene or transcript level, the former presented slightly worse results. Between gene
and transcript, it is not possible to distinguish a clear difference. Besides the identification of
the best classification algorithm, it is important to compare the prediction features obtained for
Affymetrix and Agilent. If a transcript/gene is related to the grade phenotype, then it should be
relevant for both platforms. To check this premise, eBayes was applied to rank features sepa-
rately, and then pairwise Kendall’s coefficient of concordance (W) was calculated. For genes,
W = 0.675 was obtained, and for transcripts W = 0.711. There is a considerable discordance
about feature relevance between Affymetrix and Agilent. Deepening the analysis, the features
selected as the best predictor with SVM for Affymetrix was used for Agilent tests and vice
versa. With Affymetrix predictors, a LOOCV error of 0.10 for genes and 0.09 for transcripts,
was obtained when these predictors were applied on Agilent. For Agilent predictors, an error
of 0.29 for genes and 0.32 for transcripts was obtained, when applied on Affymetrix data. It is
clear that predictors obtained from Agilent data tend to overfit more and loose generalization.

The next tests were made joining all datasets on a single one, using different methods for
data integration (Table 7). SVMs are confirmed as the training algorithm that gives the best
results and the division of the data by a reference set of values (grade) also improves accuracy.
As the common grade between all datasets is g3, this was the reference grade used. Joining
heterogeneous datasets aims to produce a robust training set that allows to classify a new sample
with a good rate of assertiveness. With these LOOCV tests it is possible to preliminary confirm
that it is possible to do this with datasets from Agilent and Affymetrix.

Table 7: LOOCV error rate for Affymetrix and Agilent integrated data
Raw Norm Linear LinearLog2 Grade GradeLog2

OLR Genes 0.24 0.28 0.27 0.31 0.2 0.2
Transcripts 0.24 0.3 0.3 0.26 0.19 0.23

SVM Genes 0.11 0.09 0.11 0.09 0.08 0.12
Transcripts 0.09 0.1 0.12 0.15 0.08 0.11

k-NN Genes 0.13 0.16 0.19 0.15 0.14 0.17
Transcripts 0.11 0.18 0.19 0.2 0.14 0.17

LDA Genes 0.16 0.2 0.19 0.16 0.14 0.18
Transcripts 0.16 0.19 0.22 0.19 0.15 0.18

To take the tests a little further, the same joined dataset was used to build a model to predict a
new Affymetrix dataset, collected from TCGA, not used before in any stage. This new dataset
has 10 g0 and 277 g4 samples so, to apply the reference grade method, all data was divided by
grade 0. The results again confirmed the good performance of the method (Table 8).
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Table 8: Confusion matrices for prediction of the new dataset
Genes Predicted Transcripts Predicted

Grade 0 2 3 4 Grade 0 2 3 4

Observed 0 10 0 0 0 Observed 0 10 0 0 0
4 0 6 5 266 4 0 4 8 265

Error rate: 0.038 Error rate: 0.042

6 Conclusions

It is rare to find a work that integrates data from platforms with a different measurement basis,
like the log intensities and log ratios that are addressed in this work. The different feature an-
notation is also an obstacle for this kind of integration, which was overpassed by re-annotation
at transcript level, a crucial step in the integration of gene expression data from different ven-
dors. The original probeset-oriented annotation makes impossible the direct integration of data
due to the use of different identifiers. Since each manufacturer decides which regions of the
genome should be under measurement, and this is not a static assignment, a flexible method
of re-annotation is a great achievement. Gene-level integration can generate divergent results,
given alternative splicing. Confining expression information to a gene level basis means losing
precious information about the different biological functions of genes. The separate analysis
of microarray data followed by result integration is a common alternative, but suffers from the
problem of few samples per experiment, which can lead to skewed conclusions. The option
for a transcript-oriented integration, presented in this work, preserves the proteomic structure,
allowing a biological meaningful integration between data sets of different vendors. This ap-
proach improves the strength of candidate features, by allowing to exclude those with divergent
behavior between platforms, and associating each one to a specific function.

In this work, the process of choosing the best brain tumor grade predictors set and the best
classification algorithm was addressed. The filter methods reduce drastically the initial dimen-
sion of the datasets, and did not present great differences among them. SVMs stood out as the
best classifiers for this case. The use of a reference grade to bring data to equivalent scales
between datasets also shown to be a good method of integration. The level of data to use on the
integration, gene or transcript, needs a more profound interpretation. The probesets used for
expression measurement are exon centric and do not read all exons of a gene. Since the same
exon could be part of several different transcripts, it is common to find many of them with the
same expression value, which causes entropy to learning algorithms. Even filtering the ’clones’,
in many cases the expression value of a transcript is the same as the correspondent gene, when
all the probesets measuring the gene also measure that transcript. It is than clear that it is nec-
essary to upgrade the microarray expression measurement to be possible to use transcript level
effectively. The final model has shown good results when applied to a new dataset, showing
that it is possible to achieve a greater level of generalization based on heterogeneous microarray
dataset integration.
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