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Abstract: In an underwater environment it is difficult to implement solutions for wireless 

communications. The existing technologies using electromagnetic waves or lasers are not very efficient 

due to the large attenuation in the aquatic environment. Ultrasound reveals a lower attenuation, and thus 

has been used in underwater long-distance communications. The much slower speed of acoustic 

propagation in water (about 1500 m/s) compared with that of electromagnetic and optical waves, is 

another limiting factor for efficient communication and networking. For high data-rates and real-time 

applications it is necessary to use frequencies in the MHz range, allowing communication distances of 

hundreds of meters with a delay of milliseconds. To achieve this goal, it is necessary to develop 

ultrasound transducers able to work at high frequencies and wideband, with suitable responses to digital 

modulations. This work shows how the acoustic impedance influences the performance of an ultrasonic 

emitter transducer when digital modulations are used and operating at frequencies between 100 kHz and 1 

MHz. The study includes a Finite Element Method (FEM) and a MATLAB/Simulink simulation with an 

experimental validation to evaluate two types of piezoelectric materials: one based on ceramics (high 

acoustic impedance) with a resonance design and the other based in polymer (low acoustic impedance) 

designed to optimize the performance when digital modulations are used. The transducers performance 

for Binary Amplitude Shift Keying (BASK), On-Off Keying (OOK), Binary Phase Shift Keying (BPSK) 

and Binary Frequency Shift Keying (BFSK) modulations with a 1 MHz carrier at 125 kbps baud rate are 

compared.  

Keywords: Underwater Acoustic Channel, Underwater Wireless Communication, Transducer 

Optimization, Piezoelectric Ultrasound Emitter Transducers, Digital Modulations. 

1. Introduction 

The oceans still hide a large potential in areas such as pharmaceutics, oil, minerals and biodiversity, but 

the difficulty in communicating in this environment makes ocean exploration a tremendously challenging 

task. The existing Radio Frequency (RF) technologies are difficult to use in this environment and 

therefore, there are many research efforts to develop reliable wireless underwater communication 

technologies (Che et al. 2010). One of the technologies that has shown to be very promising, due to the 

low attenuation, is Ultrasounds (Sameer et al. 2012; Stojanovic & Preisig et al. 2009). Although 

ultrasounds show a low propagation speed of approximately 1500 m/s, the delay can be acceptable for 

real-time communications at distances up to some hundred meters, since to tens of kilometers the 

propagation delay can reach a few seconds, disabling real-time communications. The subaquatic channel 

also reveals other significant challenges that influence the development of underwater acoustic 

communication systems, such as attenuation, which increases with frequency, ambient noise, Doppler 

Effect, and time-varying multipath. 

To develop high data-rate wireless communication systems in underwater environments it is important to 

incorporate the state of the art of conventional digital modulation techniques. Therefore, there are several 

projects under development (Chitre et al. 2008; Preisig et al. 2006; Martins et al. 2014), such as the work 

presented by Kim et al. 2010 which presents an underwater communication system with modulations as 

Amplitude Shift Keying (ASK), Binary Frequency Shift Keying (BFSK), Quadrature Phase Shift Keying 

(QPSK) and 16 Quadrature Amplitude Modulation (16QAM) to transmit an image over a distance of 15 

m, reaching a bit-rate of 3 kbps with carriers from 17 kHz to 23 kHz. Another project is the commercial 
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product presented by EvoLogics et al. 2013, with different underwater acoustic modem models, with a 

maximum data rate of 31.2 kbps, with a frequency band from 48 kHz to 78 kHz. The project described by 

Nowsheen et al. 2010 presents a high data-rate underwater acoustic modem FPGA based, where it was 

implemented a BPSK modulation with 800 kHz carrier, reaching 80 kbps rate.  

Nonetheless, ultrasound communication systems are still very limited, with very low data rates and high 

delays, mostly due to the physical characteristics of the subaquatic channel. Using carriers with upper 

frequencies, the attenuation increases leading to a decrease of the distance reached. For a 1 MHz signal, 

the acoustic absorption achieves 280 dB/km and to this effect also the spreading attenuation has to be 

added, which depends on the transducer geometry.  

Ultrasound transducers are usually manufactured with piezoelectric materials and, to maximize the output 

pressure level with low consumption, the transducer must operate at the resonance frequency as described 

by Sherman & Butler et al. 2007.  

There are several factors that influence the signal quality: structural damping, electrical damping and 

acoustic impedance mismatch. Structural damping is due to the energy dissipation in geometrical 

deformations of the transducer when the electrical field is applied. Electrical damping is due to transducer 

capacitor effects which result in a time lag between the application of the electrical signal and the 

transducer response. However, to the 1 MHz limit range, the most significant factor is the acoustic 

impedance mismatch, since the structural and electrical damping only affects the signal quality above tens 

of MHz in piezoelectric ceramic transducers and hundreds of MHz in piezoelectric polymer transducers 

(M. S. Martins et al. 2010). The acoustic impedance mismatch, between the transducer and the medium, 

causes acoustic waves to be reflected back to transducer. The resonance transducers are designed to 

overcome this fact, since the internal acoustic waves are synchronized with the electrical drive signal, 

causing an addition of the two signals and therefore increasing the output. On the other hand, to 

communicate using digital modulations it is not advisable to operate with resonance transducers since 

synchronization is not possible due to the lack of periodicity of the modulated signal. 

This work is focused in the study of the influence of the acoustic impedance on the ultrasonic transducer 

performance, operating with high and wideband frequencies (100 kHz to 1 MHz range), using digital 

modulations, being also addressed how to improve the signal quality.  

The projector used in this study was a piston type with a piezoelectric disk, which operates in the 

thickness mode. The piston-type transducer was selected because it is easy to be manufactured and is low-

cost. The study presented in this work is not exclusive for the transducers under consideration and it can 

be applied to other types of piezoelectric transducers, since the study just shows the interference of the 

acoustic signals when the energy is transferred from the transducer to the medium. Two types of 

piezoelectric materials were used: the ceramic Lead Zirconate Titanate (PZT) (high acoustic impedance) 

(Bove et al. 2001) and the polymer Polyvinylidenefluoride (PVDF) (low acoustic impedance) (Wang et 

al. 2006; Sencadas et al. 2009). 

With the objective of evaluating the performance of ultrasound transducers using digital modulations, 

such as: Phase-Shift Keying (PSK), Frequency Shift keying (FSK) and Amplitude Shift Keying (ASK). A 

Matlab/Simulink Model was developed to estimate the transducer performance to guide transducer 

construction and performance evaluation, since it allows for the most suitable design to be selected. Using 

Field Programmable Gate Arrays (FPGAs), a reconfigurable platform to develop all the necessary 

building blocks to implement different types of digital modulations was developed. Two experimental 

set-ups were developed: a small water tank, where digital modulations measurements were carried out to 

perform signal analysis and to validate the simulation model; and a swimming pool where the difference 

of linearity of both types of piezoelectric materials were studied for a wide frequency range. 

 

 



1.1 Piezoelectric transducers background 

This section introduces the main concepts on piezoelectric transducers needed to support the decisions 

made in the materials selection and transducer dimensioning and fabrication.  

Usually, at high frequencies piezoelectric ultrasonic transducers operate in the 33 mode, that is, the 

deformation is along the polarization axis and the excitation electric field point in the same direction. The 

free displacement of the material in direction 3, without restraining force and assuming uniform strain 

over the surface, according Leo et al. 2007 is given by: 

vd 33
 

Eq.1
 

where 𝜉 is the free displacement, v is the applied voltage and d33 is the coupling coefficient in the 

thickness direction. The deformation creates a pressure wave in the medium, whose force amplitude can 

be obtained according to Sherman & Butler et al. 2007, by: 

 

 fcppAF p 2, 
 

Eq.2
 

where c is the sound speed, ρ is the material density, Ap is the area of the piezoelectric element and  f is 

the signal wave frequency.  

In order to increase the pressure wave amplitude, several piezoelectric disks, in a stack configuration, can 

be used. This configuration allows multiplying the free displacement by the number of layers n. In this 

case, the displacement is given by (Abrar & Cochran et al. 2004): 

 

vnd 33  

Eq.3 

Despite this increase in strain, the intensity of the produced force does not change (Leo et al. 2007; Lewin 

& Bloomfield et al. 1997). The maximum force that the piezoelectric element can apply to a medium is 

obtained by: 
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Eq.4

 

where SE
33 is the elastic compliance coefficient and tp is the thickness of a single layer.  

To ensure good acoustic signal quality, the force that the transducer can apply to the medium must be 

greater than the generated acoustic wave force, otherwise, the piezoelectric material displacement will be 

deformed, generating acoustic waves with low amplitude and noise. This condition allows for the 

calculation of the layer thickness and the number of layers for a specific frequency and material. Through 

equations 2 and 4 it is possible to obtain: 
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Eq. 5 

Another important aspect is related to the transducer acoustic impedance. The sound wave created inside 

the transducer reflects, in part, at the boundary established by different densities ρ and bulk modulus B of 



the transducers and the medium. This reflection creates deformations on the acoustic signal transmitted to 

the medium, which can be calculated by: 

 )()()( pinwinwout DtSLRtSTtS 
 

Eq.6
 

Here, Sout and Sin are the output sound wave and the sound wave created inside the active element, 

respectively, in Pascal (Pa) as function of time (t), Tw is the transmitted sound wave intensity percentage, 

Rw is the reflected sound wave intensity percentage, L is the internal energy loss and Dp is the delay of the 

reflected sound wave, introduced by the active element thickness.  

2 Materials Selection and Transducer Fabrication 

Before carrying out the experimental validation, piezoelectric materials and transducer dimensions 

needed to be selected. This section will describe the materials selection and the transducer manufacture.  

Among all the piezoelectric materials, the most common to these types of applications are the ceramics: 

Lead Zirconate Titanate (PZT), Lead Titanate (PT), Lead Magnesium Niobate (PMN) and Lead Zinc 

Niobate (PZN) (Abrar & Cochran 2004; Bove et al. 2001;  Shrout et al. 2008). However, other often used 

materials are the polymers Polyviylidenefluoride (PVDF) and P(VDF-TrFE) (Levassort et al. 1998; 

Schmerr et al. 2006; Shrout et al. 2008; Lewin & Bloomfield et al. 1997) and single crystals of PZT, 

PMN and PZN (Saitoh et al. 1998; Yamamoto et al. 2013).  

This study focuses on PZT-5H since this is the most interesting material for large scale applications due 

to its availability and price. For comparison, the PVDF polymer will be used, since it is an interesting 

material due to the low acoustic impedance (3.3x106 kg/m²s) and price. With values near to the medium 

acoustic impedance (.5x106 kg/m²s), it is possible to minimize the acoustic signal distortions and allow a 

better acoustic energy transference from the transducer to the medium, resulting in a reduction of the 

acoustic energy accumulated inside the transducer. 

For a better understanding on how the acoustic impedance mismatch influences the ultrasonic transducer 

performance, Figure 1 shows the acoustic pressure wave along the transducer thickness and the medium, 

when positioned at the center of the acoustic pattern. The transducer dimensions were defined to operate 

at 1 MHz resonance frequency, resulting in a 2.05 mm thickness for PZT-5H and 1.125 mm for PVDF, 

and a diameter with 2.5 times the wavelengths. 

 
a) 

 
b) 

Figure 1: FEM simulation of two piston transducers: PZT-5H (a) and PVDF (b). 

Figure 1a shows that the pressure wave inside the PZT-5H transducer has a much higher level than the 

acoustic pressure transferred to the medium, since the boundary between the two materials holds back 
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most of the acoustic energy. In Figure 1b this effect is reduced, with the acoustic energy having a better 

transference form the transducer to the medium.  

The utilization of a matching layer, in this case, would not be useful since the frequency of the digital 

modulation signal would be unknown leading to unknown matching layer thickness. With electronic 

control it is possible to improve the signals quality by overcoming the internal energy, but this means 

high power consumption and cost. 

These signals were obtained from a FEM simulations using a multiphysics platform in a 2D symmetric 

plane considering piezoelectric strain models for the active element actuation and pressure acoustic model 

for the pressure waves. The simulations setups are the same for all transducers, where only the active 

element is replaced. The outside boundaries of the medium were configured as match boundaries to work 

as absorbers, removing all the echoes. The selected mesh is divided in areas with triangular shape and a 

size of 10% of the wavelength. The simulations were performed with the following settings: fresh water 

as propagation medium, 20 C˚ of temperature and sine wave excitation signal with 12 V of amplitude.  

Further, the results will be representative for their respective family of materials: ceramic, polymer and 

piezoelectric, respectively. 

The transducer design specifications must be exclusive for each material, ensuring the best performance. 

The PZT-5H transducer dimensions were defined to operate at the resonance frequency to replicate the 

conventional commercial transducers. Else, the PVDF transducer dimensions were defined to operate at 

the optimal conditions for 1 MHz range, generating non periodic signals. 

Before defining the transducer dimensions, it is necessary to verify if the piezoelectric material has the 

required strength to produce vibrations at 1 MHz frequency in underwater environments. Table A.1 

shows the main physical properties and the project considerations of these materials for the proposed 

application, according to equations 1 to 6: 

 

Table A.1: Comparison of some characteristics of PZT-5H and PVDF (M. Martins et al. 2012). 

Physical Property PZT-5H 2mm PVDF 8x28 

Thickness(m) 2,00E-3 2,80E-5 

Resonance Frequency (Hz) 1,05E+6 5,02E+6 

Sound Speed (m/s) 4,20E+3 2,25E+3 

Density (kg/m^3) 7,50E+3 1,47E+3 

Acoustic Impedance Z [106kg/m²s] 33 3.3075 

Relative Dielectricic constant ℇr 3100 12 

Piezoelectric Coefficient d33 (C/N) 5,12E-10 3,40E-11 

Elastic compliance coefficient 
ES33  (1/Pa) 2,07E-11 4,72E-10 

Layers 1 8 

Max Applied Force/Excitation Tension (N/V) 3,88 8,08E-1 

Applied Force at 1MHz/Excitation Tension (N/V) 1,49 7.92E-1 

Max Operating Frequency Underwater (Hz) 2,61E+6 1,02E+6 

Transmitted wave percentage at 1MHz (%) 32% 78% 

 

In order to operate at 1 MHz resonance frequency, the PZT-5H disk must have a thickness of 2 mm.  

From Table A.1, PZT-5H shows that a larger force than the necessary can be applied to the medium 

without sacrifice the piezoelectric material full displacement. However, PVDF has a higher SE
33 than 



PZT-5H, and therefore it cannot be applied the displacement to the medium at the same vibration 

frequencies with the same material thickness. 

Therefore, the solution for the lack of force and for the acoustic energy retained inside the active element 

is the use of thin films. From equation 4, by reducing the active element thickness, it is possible to 

increase the force applied to the medium and, by equation 6, reducing the active element thickness results 

in a decrease of the internal reflected wave propagation delay. This will minimize the signal distortion 

since the transmitted and reflected waves will be almost synchronized. 

For the PVDF, a multilayer topology to increase the acoustic performance (Abrar & Cochran et al. 2004; 

Martins et al. 2012) was selected and, at 1 MHz operational frequency, the thickness of the PVDF 

transducer was limited by the piezoelectric strength (Eq.6). In this case, the total thickness could not 

exceed 225 µm. According to Martins et al. 2012, a PZT transducer shows an acoustic pressure output 

21.9 dB higher than the one for PVDF. However, using a structure of 8 layers of 28 µm thick PVDF, it is 

possible to reduce this difference to 5.5 dB. With 225 µm the PVDF transducer has a resonance frequency 

of 5 MHz, but in an underwater environment it just shows the necessary strength to reach 1 MHz. 

The eight layers of the transducer were then glued with silicone in a compression press. Finally, the active 

element was glued to a stainless steel mass and the active element outside surface was isolated with a thin 

silicone layer to protect it from water. Each layer was connected with a parallel drive excitation circuit.  

As the number of layers increases the performance is improved, but manufacturing complexity and power 

consumption also increases. 

Therefore, the multilayer transducer was manufactured. In Martins et al. 2012 it is possible to find more 

details about the assembling methods used in transducers described above.  

 

3 Simulations and Experimental Setup 

 

3.1 Sceneries Setup 

The swimming pool dimensions are: 12 m long, 4 m wide and 3m deep. Two test distances were defined: 

10 cm and 12 m, where measurements were performed at 50 cm deep and in the middle of the pool (2 m 

either side). It was used fresh water at a temperature of 13 ºC and 7.2 pH. The drive signal was a sine 

wave of 100 cycles burst with 16 V amplitude and at each distance, several frequencies were measured: 

100 kHz, 200 kHz, 300 kHz, 400 kHz, 500 kHz, 600 kHz, 700 kHz, 800 kHz, 900 kHz, 1 MHz, 1.2 MHz 

and 1.4 MHz.  

The second scenario used for the digital modulations evaluation, both in real tests and simulations, was a 

small water tank with 120×50×40 centimeters (length, width, height). The ultrasonic transmitter and 

receptor position coordinates were (22.5; 23; 11) and (87.5; 23; 11) centimeters. With these dimensions, 

echoes occur very easily and therefore a matching boundary (foam) at the boundary in front of the 

projector was used. The foam did not completely eliminate all the echoes but it was still possible to 

ensure the same settings for the two transducers tested. 

Different tests with different modulations were performed: ASK, FSK and PSK were selected. All the 

modulations were defined as binary with just 1 bit per symbol. Accordingly, two types of modulations 

were defined from the ASK, BASK and OOK. 

Figure 2 shows the drive signals used in both simulations and real experiments. 



 
a) 

 
b) 

 
c) 

 
d) 

Figure 2: Drive signal of digital modulations, a) BASK, b) OOK, c) BFSK and d) BPSK. 

Figures 2a, 2b, 2c and 2d display the drive signals at the transmission module output for BASK, OOK, 

BFSK and BPSK, respectively. The signals were generated at 25 Mega samples per second with 14 bit. 

Since the highest carrier has a frequency of 1 MHz, it is possible to ensure a very good signal quality with 

25 samples per period. Before being sent to the transducer, these signals were amplified 4 times, resulting 

in a 12 V excitation voltage. High variations of frequency and phase were applied for the BFSK and 

BPSK in order to allow an unbiased analysis of the transducer performance in the worst case scenario. In 

this sense, no correction or external interference, like filters or equalizers, was used.  

In the BASK modulation (Figure 2a), the low logic level was set to half of the high logic level amplitude, 

and in OOK (Figure 2b) the high level was the same as  BASK, but with no signal at the low level. In the 

BFSK (Figure 2c) the high logic level was set to 1 MHz and the low logic level to 500 kHz. This high 

difference between frequencies allows for an easy analysis of the results, since close frequencies would 

be masked by the resonance effect. But this difference will be limited by the Doppler Effect and it will 

depend on the underwater environmental conditions, since it is necessary to ensure that the Doppler shift 

does not exceed the difference between the frequencies of different levels. In the BPSK modulation 

(Figure 2d) the logic level transition is made by a 180º phase shift.  

The bit stream selected for tests was a sequence of ‘101’, being therefore possible to analyze the 

transducer reactions to a ‘0’ to ‘1’ and ‘1’ to ‘0’ transitions. The bit period selected for these tests was 8 

µs, corresponding to 8 cycles at 1MHz. For a better understanding of this decision, Figure 3 shows the 

PZT-5H transducer response for a signal burst with 4, 8 and 16 µs periods.  
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Figure 3: PZT-5H transducer response for a signal burst with 4, 8 and 16 µs periods at 1 MHz. 
 

Figure 3 shows that the minimum time necessary for the signal start to stabilize is around 8 µs. Then, to 

increase the probability of sending a good quality signal, it was decided not to use bit periods much below 

8 µs. With 8 µs bit period and 1 MHz carrier, the baud rate is 125 kbps. 

 

3.2 Simulations 

A Matlab/Simulink model was developed to simulate the ultrasonic transducers performance for different 

piezoelectric materials. The Simulink block was defined with 8 inputs and 1 output. The inputs are the 

excitation electrical signal, the water acoustic impedance and the piezoelectric material proprieties: 

density, sound speed, piezoelectric coefficient, elastic compliance coefficient, thickness and the number 

of layers. The output is the acoustic wave signal generated by the transducer. The block diagram 

presented in Figure 4 represents a simplified view of the model and helps to understand the relationships 

between the different sub-blocks. 

 

Figure 4 - Block diagram of the MatLab/Simulink simulation. 

The block diagram is based on equation 6. The model begins by calculating the pressure wave generated 

inside the transducer and it is calculated using a transfer function, where it is included frequency 

proportionality with a zero based in equation 2. It also were included two poles for the electrical and 

structural damping, according to Leo et al. 2007. Based on the transducer acoustic impedances and on the 

medium parameters, the transmitted and reflected pressure wave amplitudes are calculated. The reflected 

wave suffers a time delay, corresponding to the internal propagation time and, in a closed loop system it 

is added to the current internal pressure wave. The model was implemented as a discrete model with a 

sampling time of 40 ns, corresponding to a frequency sample of 25 Mega samples per second.  
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3.3 Experimental test system 

In order to evaluate the results of the subaquatic channel model, experiments were carried out in a test 

tank. The system configuration is shown in Figure 5. 

 
Figure 5 - Block diagram of the test system. 

The acoustic transmitter module is made up of a Xilinx Spartan-3A FPGA starter kit that it is 

responsible for modulating a bit stream into an electrical signal. Then the drive signals from the FPGA 

modulator are amplified by a 5 W Classe B Push-Pull symmetric voltage amplifier with a maximum gain 

of 12 dB.  

The ultrasonic receptor used to register the pressure waves was the Cetacean ResearchTM C304XR 

hydrophone, with a transducer sensibility of -201 dB, re 1 V/µPa and a linear Frequency Range (±3dB) of 

0.012–1000 kHz. The filter consists of a 2nd order active band-pass from 1 to 2000 kHz with 6 dB gain. 

The digital oscilloscope used to record the measurements was a PicoScope 4227 100 MHz. Both PZT and 

PVDF piston type emitting transducers were homemade: the PZT transduces has a 2 mm thickness and 2 

cm diameter and the PVDF one has a 8 x 28 µm multilayer structure with 2 cm diameter. 

4 Results and Discussion 

As was referred before, two materials types were evaluated: PVDF and PZT-5H. The results include an 

analysis of the frequency range linearity and the digital modulation performance. 

4.1 Frequency Range response 

Figure 6 shows the amplitude response of the two transducers over a wide range of frequencies: 100 kHz 

to 1.4MHz to different distances: 10 cm (Figure 6a) and 12 m (Figure 6b). 

 
a) 

 
b) 

Figure 6: Transducer acoustic pressure response from 100 kHz to 1 MHz, for 10 cm (a) and 12 m (b) 

distance. 

It is observed that PZT-5H has a higher acoustic pressure output, but the response is not linear, with the 

highest level at resonance frequency point of 1 MHz. Both materials in Figure 6 show an acoustic output 

with a growing tendency between 100 kHz and 1 MHz. At 10 cm (Figure 6a) the PZT-5H displays a 
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growth of 13.7 dB between 100 kHz and 500 kHz, but if the range between 500 kHz and 1 MHz was 

considered the growth reaches 16.6 dB. Conversely, the PVDF displays a growth of 14.8 dB between 100 

kHz and 500 kHz range, but to a frequency range between 500 kHz and 1 MHz only reach 3.6 dB.  

In Figure 6b, results for a 12 m distance shows the same tendency: the PZT-5H displays a growth of 16.2 

dB between 100 kHz and 500 kHz and 19.6 dB between 500 kHz and 1 MHz. The PVDF has a lower 

growth: 7.4 dB to the first interval and 3.7 dB to the second interval. 

In conclusion, PZT shows a better response in terms of acoustic power. On the other hand, with respect to 

the bandwidth, PVDF displays an almost flat response between 500 kHz and 1 MHz, this flat behavior 

meeting the requirements for digital communications with high data rates. 

 

4.2 Digital Modulations 

The two materials were simulated and measured with real tests for 4 modulation types: BASK, OOK, 

BFSK and BPSK. 

Figure 7 represents the PZT-5H transducer responses to the BASK and OOK amplitude modulations, 

respectively. 

  

a) b) 

   
c)  d) 

Figure 7: PZT-5H response to BASK and OOK modulations, real measurement and simulation. 

In both amplitude modulations, the results are very similar, being only a difference in relation to the low 

logic level. Due to the slower characteristics of PZT-5H, when comparing the amplitude variations, the 

low logic level in OOK results still display a low amplitude level signal. Nonetheless, real tests (Figure 7a 
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and 7c) and simulation results (Figure 7b and 7d) show that information can still be recovered, but the 

signal displays a high level of degradation. Consequently, in adverse conditions such as turbulence, 

moving agents or by increasing the bitrate information, loss can occur. 

In comparison, the PVDF transducers responses to BASK and OOK modulations are shown in Figure 8. 

  
a) b) 

 
c)                                                                                  b) 

Figure 8: PVDF response to BASK and OOK modulation, real measurement and simulation. 

Real tests (Figure 8a and 8c) are slightly slower in sudden amplitude transitions than in simulations 

(Figure 8b and 8d) for BASK and OOK modulations, and much of the signal deformations are due to 

echoes that overlap the signal. In fact, the remaining echoes that appear at the end of each signal (Figure 

8c) imply that there is an intermediate signal. In general the signals show a high quality, resulting in easy 

information retrieval. 

Figure 9 show the PZT-5H and PVDF transducers response to a BFSK modulation. 
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                                 a)                                                                                  b) 

  
                                 c)                                                                                  d) 

Figure 9: PZT-5H and PVDF response to BFSK modulation, real measurement and simulation. 

Figures 9a and 9b show that the recovery of information in the 500 kHz signal is very difficult due to the 

high level of deformation. This is because the acoustic pressure is proportional to the frequency, resulting 

in a 500 kHz signal with half of the 1 MHz signal amplitude and also that the most of the acoustic 

pressure generated is retained inside the active material. This fact results in an overlapping of signals and 

a deformation on the 500 kHz signal. However, simulation results (Figure 9b) are shown to be very 

similar with the real tests (figure 9a), despite the remaining echoes that appeared in the real tests. 

Figures 9c and 9d present the PVDF transducer response to the BFSK modulation. This signal shows a 

higher quality than the PZT-5H, where the small deformations, presented in real tests (Figure 9c), are due 

to the effect of remaining echoes. 

Figure 10 shows the PZT-5H and PVDF transducers response to a BPSK modulation. BPSK was 

expected to be the worst of all the modulations due to their characteristics, since the stored energy has an 

opposite sign of the drive signal. 

20 30 40 50 60 70

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5
A

m
p
li

tu
d
e 

(V
)

Time (us)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-5

-1.5

-1

-0.5

0

0.5

1

1.5

Time (seconds)

A
m

p
lit

u
d
e

 (
V

)

PZT-5H
BFSK Simulation

50 60 70 80 90

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

A
m

p
li

tu
d
e 

(V
)

Time (us)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (seconds)

A
m

p
lit

u
d
e
 (

V
)

PVDF
BFSK Simulation



  
a) b) 

 

  
                                 c)                                                                          d) 

Figure 10: PZT-5H and PVDF response to BPSK modulation, real measurement and simulation. 

As it is possible to observe in Figure 10a and 10b, the 180° phase shift is absorbed by the accumulated 

internal acoustic pressure, since both signals have opposite signs, masking the phase transition smoothly. 

But, in PVDF (Figure 10c), the case is sorely different. 

For the PVDF real measurements (Figure 10c), the signal amplitude is highly reduced in the 180º phase 

shift. The main reason to this fact is that, when the 180° phase shift is applied, the resulting signal in the 

transducer has double the frequency with half amplitude and offset. The transducer tends therefore to 

produce an acoustic pressure with twice the frequency but without the necessary force. So it generates a 

stunted and deformed acoustic pressure wave. In simulation (Figure 10d) this effect is reduced, being an 

ideal model and without echoes. The signal is cleaner and therefore it will be easier to recover the 

information.  

In a general way, PVDF shows better performance. Low acoustic impedance plays an important role in 

the non-periodic signals when using digital modulations. Real tests results are shown to be slightly slower 

in the sudden amplitude transitions than in the simulations results for all the modulations, and much of the 

signals deformations are due to echoes that overlap the signal, a fact which is ascribed to the reduced 

dimensions of the water tank. 
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5 Conclusions  

A signal quality evaluation of ultrasonic transducers was carried out using Digital Modulations. Two 

types of transducers were tested: PZT-5H ceramic based transducers and PVDF polymers. 

The study includes MATLAB/Simulink simulations and experimental validations for BASK, OOK, 

BFSK and BPSK modulations with a 1 MHz carrier at a 125 kbps baud rate. 

Both materials show a non-linear acoustic output but, in a frequency range between 500 kHz and 1 MHz, 

PVDF shows an almost linear output with a 3.7 dB growth at 12 m. In contrast, PZT-5H shows a 19.6 dB 

growth. 

It was concluded that PZT-5H resonance transducers are not suitable to be used with non-periodic high 

frequency signals. Signal deformation prevents a proper recovery of the information. 

On the other hand, a PVDF transducer, with much lower acoustic impedance than PZT-5H, displays a 

better signal quality and, therefore, provides the signal full demodulation. On the other hand, the PZT-5H 

transducer has a higher output, but fails to perform accurate modulated signals.  
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