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Abstract 

Information Technology has been one of drivers of the revolution that currently is happening in 

today’s management decisions in most organizations. The amount of data gathered and processed 

through the use of computing devices has been growing every day, providing a valuable source of 

information for decision makers that are managing every type of organization, public or private. 

Gathering the right amount of data in a centralized and unified repository like a data warehouse is 

similar to build the foundations for a system that will act has a base to support decision making 

processes requiring factual information. Nevertheless, the complexity of building such a repository 

is very challenging, as well as developing all the components of a data warehousing system. One 

of the most critical components of a data warehousing system is the Extract-Transform-Load 

component, ETL for short, which is responsible for gathering data from information sources, clean, 

transform and conform it in order to store it in a data warehouse. Several designing methodologies 

for the ETL components have been presented in the last few years with very little impact in ETL 

commercial tools. Basically, this was due to an existing gap between the conceptual design of an 

ETL system and its correspondent physical implementation. The methodologies proposed ranged 

from new approaches, with novel notation and diagrams, to the adoption and expansion of current 

standard modeling notations, like UML or BPMN. However, all these proposals do not contain 

enough detail to be translated automatically into a specific execution platform. The use of a 

standard well-known notation like Relational Algebra might bridge the gap between the conceptual 

design and the physical design of an ETL component, mainly due to its formal approach that is 

based on a limited set of operators and also due to its functional characteristics like being a 

procedural language operating over data stored in relational format. The abstraction that Relational 

Algebra provides over the technological infrastructure might also be an advantage for uncommon 
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execution platforms, like computing grids that provide an exceptional amount of processing power 

that is very critical for ETL systems. Additionally, partitioning data and task distribution over 

computing nodes works quite well with a Relational Algebra approach. An extensive research over 

the use of Relational Algebra in the ETL context was conducted to validate its usage. To 

complement this, a set of Relational Algebra patterns were also developed to support the most 

common ETL tasks, like changing data capture, data quality enforcement, data conciliation and 

integration, slowly changing dimensions and surrogate key pipelining. All these patterns provide a 

formal approach to the referred ETL tasks by specifying all the operations needed to accomplish 

them in a series of Relational Algebra operations. To evaluate the feasibility of the work done in 

this thesis, we used a real ETL application scenario for the extraction of data in two different social 

networks operational systems, storing hashtag usage information in a specific data mart. The 

ability to analyze trends in social network usage is a hot topic in today’s media and information 

coverage. A complete design of the ETL component using the patterns developed previously is also 

provided, as well as a critical evaluation of its usage. 

Keywords: Data Warehousing Systems, Extract-Transform-Load Processes, Relational Algebra,  

ETL Conceptual and Logical Modeling, ETL Patterns, BPMN. 



 

 xi 

Resumo 

As Tecnologias da Informação têm sido um dos principais catalisadores na revolução que se assiste 

nas tomadas de decisão na maioria das organizações. A quantidade de dados que são angariados e 

processados através do uso de dispositivos computacionais tem crescido diariamente, tornando-se 

uma fonte de informação valiosa para os decisores que gerem todo o tipo de organizações, 

públicas ou privadas. Concentrar o conjunto ideal de dados num repositório centralizado e 

unificado, como um data warehouse, é essencial para a construção de um sistema que servirá de 

suporte aos processos de tomada de decisão que necessitam de factos. No entanto, a 

complexidade associada à construção deste repositório e de todos os componentes que 

caracterizam um sistema de data warehousing é extremamente desafiante. Um dos componentes 

mais críticos de um sistema de data warehousing é a componente de Extração-Transformação-

Alimentação (ETL) que lida com a extração de dados das fontes, que limpa, transforma e concilia 

os dados com vista à sua integração no data warehouse. Nos últimos anos têm sido apresentadas 

várias metodologias de desenho da componente de ETL, no entanto estas não têm sido adotadas 

pelas ferramentas comerciais de ETL principalmente devido ao diferencial existente entre o 

desenho concetual e as plataformas físicas de execução. As metodologias de desenho propostas 

variam desde propostas que assentam em novas notações e diagramas até às propostas que usam 

notações standard como a notação UML e BPMN que depois são complementadas com conceitos 

de ETL. Contudo, estas propostas de modelação concetual não contêm informações detalhadas 

que permitam uma tradução automática para plataformas de execução. A utilização de uma 

linguagem standard e reconhecida como a linguagem de Álgebra Relacional pode servir como 

complemento e colmatar o diferencial existente entre o desenho concetual e o desenho físico da 

componente de ETL, principalmente devido ao facto de esta linguagem assentar numa abordagem 
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procedimental com um conjunto limitado de operadores que atuam sobre dados armazenados num 

formato relacional. A abstração providenciada pela Álgebra Relacional relativamente às plataformas 

de execução pode eventualmente ser uma vantagem tendo em vista a utilização de plataformas 

menos comuns, como por exemplo grids computacionais. Este tipo de arquiteturas disponibiliza por 

norma um grande poder computacional o que é essencial para um sistema de ETL. O 

particionamento e distribuição dos dados e tarefas pelos nodos computacionais conjugam 

relativamente bem com a abordagem da Álgebra Relacional. No decorrer deste trabalho foi 

efetuado um estudo extensivo às propriedades da AR num contexto de ETL com vista à avaliação 

da sua usabilidade. Como complemento, foram desenhados um conjunto de padrões de AR que 

suportam as atividades mais comuns de ETL como por exemplo changing data capture, data 

quality enforcement, data conciliation and integration, slowly changing dimensions e surrogate key 

pipelining. Estes padrões formalizam este conjunto de atividades ETL, especificando numa série de 

operações de Álgebra Relacional quais os passos necessários à sua execução. Com vista à 

avaliação da sustentabilidade da proposta presente neste trabalho, foi utilizado um cenário real de 

ETL em que os dados fontes pertencem a duas redes sociais e os dados armazenados no data 

mart identificam a utilização de hashtags por parte dos seus utilizadores. De salientar que a 

deteção de tendências e de assuntos que estão na ordem do dia nas redes sociais é de vital 

importância para as empresas noticiosas e para as próprias redes sociais. Por fim, é apresentado o 

desenho completo do sistema de ETL para o cenário escolhido, utilizando os padrões desenvolvidos 

neste trabalho, avaliando e criticando a sua utilização. 

Palavras-Chave: Sistemas de Data Warehousing, Processos de Extração-Transformação-

Alimentação, Álgebra Relacional, Modelação Concetual e Lógica de ETL, Padrões ETL, BPMN 
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Chapter 1 

1Introduction 

1.1 Context Overview 

It is commonly witnessed in today’s enterprises to an unbridled search for new solutions sponsored 

by management to improve the products or services offered in order to distinguish themselves in a 

competitive market. Enterprises are making significant efforts in the search of new markets, 

domestic and abroad, to maximize exposure and contribute to a sustained and persistent growth. 

The development of new and better products and services and the expanding of activities to new 

markets have contributed to a significant increase in the quantity of information created, treated 

and stored. However, in most of the cases, the bigger the quantity of data to treat the higher are 

the resources consumed in the process and the slower is the response time to typical daily 

requests. Consequently, one of the solutions enterprises adopt and invest is the computerization 

and automation of business processes. 

Information Technology (IT) revolutionized the way enterprises do business, starting with 

automating processes, and then simplifying tasks like registering data, printing documents and 
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controlling machines. With the intensive development of IT, new businesses and working methods 

have revolutionized the day-by-day operations having a clear impact on cost reduction. However, 

these new technologies, which involve frequently high investment costs, are not always fully 

exploited due to the lack of knowledge endangering consequently enterprise’s future. Using IT in 

the most adequate manner can benefit the enterprise by conceding leverage over its direct 

competitors due to product cost reduction or service improvement expanding therefore its 

customer base and market share, or even a higher rate of return. With this in mind, throughout 

the years, enterprises have been investing in software applications in order to potentiate business, 

gathering and treating pertinent information.  

The proliferation of software applications, primarily transactional systems, has resulted in a 

continuous accumulation of data, which does not necessarily reveal an increase of knowledge 

about the business. One major reason has to do with the fact that these applications have been 

developed independently, and were not built with a global data model in mind which provokes 

redundancy and inconsistency of information. The latter case is the main cause for not exploiting 

the potential of IT. It is a real problem for business as it puts into question the entire operational 

support for decision-making processes. Another reason is that transactional systems, by definition, 

are oriented exclusively to serve corporate operational needs, recording and processing the 

company's day-by-day operations that guarantee a smooth running for the company. However, by 

nature, these systems are not very suitable for carrying out data analysis tasks, data correlation or 

even reporting business evolution between different time periods. 

The emergence of Decision Support Systems (DSS) came to fill some gaps providing the ability for 

exploring data stored in existing transactional systems. Usually, DSS are developed in querying 

oriented platforms, having objectives such as helping or counseling decision-making process, 

providing a specialized data repository, and facilitating querying development. However, the 

development of DSS within enterprises did not follow a data integration structured plan, which 

caused many of these systems to be based on only a portion of the existing data of the enterprise, 

thus once again the existence of different "truths" about the same subject. This incongruity 

between reports or analysis made in different DSS only revealed that these systems are not 

intended to support the decision making process of managers of an enterprise. 
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One way to solve the data integration from different systems or applications is the development 

and implementation of Data Warehousing Systems (DWS) in an enterprise. DWS emerged as an 

natural addition to the operational systems of the companies, since they are specifically oriented to 

data analysis, providing an integrated repository of historical data - a data warehouse - instead of 

the operating systems that are oriented for transaction processing and business activity support. 

Thus, a DWS allows for receiving large volumes of information from different sources to be 

extracted, processed, and stored in a single data repository hence enabling the development of 

faster and more effective analysis processes. 

A DWS is intended primarily for users with decision-making capacity - the decision makers - about 

the future of the company, which with the help of specialized tools can analyze patterns and 

variations in the data, thereby extracting the information needed to respond in timely basis to the 

various issues and develop the basis for the daily support of its decision-making processes. Since 

these systems store data from various sources of information, you can also correlate the various 

types of data that so far, only with transactional systems, were a little difficult to correlate in the 

information system. Given the characteristics of a DWS, enterprises began to think about the 

adoption of such a system as an investment in the future. Some advantages are pretty obvious, 

namely: 

• having the potential to serve as decision support systems; 

• allowing for the creation of a centralized and conformed data storage system; 

• providing a robust basis for data analysis tools. 

However, investing in this type of system requires large financial resources since there are 

components of the system that are expensive. This cost is sometimes a factor quite inhibitor in the 

adoption of these systems by small and medium-sized enterprises, because they have less money 

available to consider such prohibitive investment. On the other hand, large enterprises are also 

faced with problems affecting the development of these systems, which are time and the volume 

of data to be processed. As the volume of information to be processed periodically increases, the 

Extract-Transform-Load (ETL) task consumes more and more resources. Since there may be limits 

on the time frame reserved for this task, the solution is to increase the computing power so that 

you can run the task in the time required. The increased computing power has been achieved 



A Relational Algebra Approach to ETL Modeling 

 4 

usually by acquiring computers with increased performance which are even more expensive. 

However, this solution may not be feasible for all enterprises. One possible solution to overcome 

the problems listed above is to take advantage of the computing power of the computers on the 

local networks of enterprises which in the vast majority of the time are available and untapped. If 

used, this computational power will not increase significantly the cost of the system and might in 

turn even reduce it since these computers were already acquired by the enterprise. The use of 

these computers with parallelism might also contribute to reduce the time required to execute the 

ETL. However, commercial ETL tools are not prepared to use local network computers to execute 

ETL tasks, since they are not able to split and distribute data and tasks over existing computing 

nodes, even when their modeling capabilities are becoming a handicap due to the use of 

proprietary notations.  

1.2 Motivation 

The use of proprietary notations in modeling ETL systems is discouraged. With time it will act as a 

reason to block changes in the ETL system. ETL commercial tools are expensive and their adoption 

should be highly weighted, especially in their ability to accept and import diagrams made in 

standard languages. It is our belief that design and execution should be different platforms in a 

choice for more flexibility in the development and maintenance of an ETL system. Bearing in mind 

that the cost of developing a DWS is still prohibitive for some enterprises, mainly for small and 

mid-sized ones, and that the greater amount of resources is spent in the development of the ETL 

system, we propose a different approach for its development. The idea of minimizing the cost of 

this critical DWS component will in turn contribute to the adoption of such systems by financially 

constrained enterprises which keep postponing their DWS projects due to their exacerbated cost. 

In order to develop an ETL system that will be flexible, scalable and reliable, and above all, cheap, 

the use of the computational resources already present in the enterprise is of superior interest. 

Concepts like Grid computing (Foster et al., 2001) and Cloud computing (Vouk, 2008) are still in 

the order of the day. Yet, both approaches have the same goals - distribution and resource sharing 

- with the focus shifting from a technology point of view to a service oriented philosophy. The use 

of grid environments in data processing intensive tasks has been studied in academic and scientific 
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institutions already for a long time. Commercial organizations are now adopting this approach to 

help the mitigation of the impact of the increased amount of data gathered by their enterprise 

information systems that needs to be analyzed, through testing grid middleware software. The 

basic idea is to take advantage (or to attenuate the effect) of the inactivity of their computing 

devices during a regular day helping them to perform those tasks. A grid based approach 

maximizes the investments already made and postpones some other expensive computer 

acquisitions (Demiya et al., 2008).  

One of the objectives of an enterprise information system is to support management's decision-

making processes through the analysis of large amounts of data stored in them. Since data 

increases normally through time, the processing power needed to analyze it in a useful time also 

increases undermining the infrastructure available. A grid environment might be a suitable solution 

to this kind of problem, due to the easiness and inexpensiveness of adding new processing nodes 

to the infrastructure (Poess and Nambiar, 2005, Wehrle et al., 2005). The challenge, however, is to 

bridge the gap between this kind of execution platform and the ETL design phase. The absence of 

a DBMS to execute normal queries that transforms data or the heterogeneity of the computing 

nodes present in a Grid environment are also challenges that must be taken into account in the 

development of the ETL system. By using a scalable technical architecture like a Grid architecture 

and a modeling approach that uses a standard notation/language, all ingredients are set for a Low 

Cost ETL System (Santos et al., 2014).  

In short, the motivation behind this work is based in the need to find a different approach to the 

logical design of the ETL System that could serve two purposes: to bridge the gap between 

conceptual modeling and execution platforms, and to be platform independent thereby opening the 

possibility of different technological architectures as execution platforms. 

1.3 Scope of the Thesis 

Although in the previous section a possibility was stated as a hypothesis for the technological 

infrastructure of an ETL System, a Grid architecture, the challenges that exist in the use of this 
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kind of environment to execute a critical DWS component like the ETL system are many and 

varied.  

Outside the scope of this thesis are problems related to the Grid architecture like for instance node 

communication, bandwidth management, node evaluation and control of task flows. However, and 

considering that such architecture is available and valid, taking advantage of it to execute the ETL 

process is also a challenge mainly due to the question “what are we going to send to the 

computing nodes?” 

Due to the inexistence of a centralized or local DBMS, the use of SQL is not recommendable, 

therefore data transformations must be made using a different grain. The idea is to use the finest 

grain available when dealing with data stored in a relation, which is a Relational Algebra (RA) 

operation. These operations can be distributed and executed over sent data and once the 

transformation concludes the results are sent back to the central computational node. Bear in mind 

that the RA language is part of the foundation of the Relational Model (Codd, 1970), is a 

widespread acknowledged standard that has been used very successfully over the last 40 years in 

the database community. Moreover, one of the primary characteristics of RA Language is the fact 

that it is a procedural language. Operations are executed in a pre-determined order which is 

essential when dealing with flows of data transformations which is the base for ETL processes. One 

of the advantages of this characteristic is the ability to analyze the flow of operations generated in 

search for possible optimizations and therefore minimize processing time and data. Another 

advantage is the ability to narrow the gap between the modeling phase and execution phase, since 

the interpretation and translation of RA operations into execution platforms is easy and common. 

RA language is comprised of a limited set of unary and binary operators with a clear logic of use 

thus easing the translation process into the execution platform.         

With this in mind, the challenge shifted to the modeling capabilities of the RA language. If we were 

to use RA as a modeling language for the ETL system, the major ETL tasks should be studied and 

modelled as patterns that could be instantiated when needed. Patterns will be larger modeling 

entities in terms of grain, which will simplify ETL models and encapsulate process and task 

complexity. As such, the scope of this thesis is to propose RA patterns to model common ETL 

tasks, analyze their usability in a real ETL scenario, and evaluate the feasibility of the proposal. 
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However, there are already some proposals for ETL modeling worth studying, both in the 

conceptual phase of the design and also in the logical phase. These proposals base themselves 

either in new methodologies and diagrams or in standard modeling languages that are extended or 

adapted. Nevertheless the majority of the proposals fail at identifying in detail the operations 

needed to execute each ETL task, especially at the logical level design, leaving a gap between the 

modeling phase and execution phase that must be addressed. 

1.4 Main Objectives 

An ETL system is a crucial component of a DWS, and therefore subject of intensive research by the 

data warehousing community. There are already several ETL commercial tools available in the 

market, which in turn are becoming even more efficient and capable. Nevertheless their modeling 

capabilities tend to be supported by proprietary notations with limited or no ability to interpret and 

import different diagrams, even from standard notations. Moreover, the academic community has 

also been presenting ETL modeling methodologies and notations that in fact are not supported by 

commercial tools. The gap between conceptual methodologies and ETL commercial tools lies in the 

lack of a more formal approach in the logical phase of the design. Common ETL tasks are not 

formally defined in the logical perspective of the flow of operations and the use of RA language can 

bridge the existing gap. Therefore, the main objective of this thesis is to model patterns of 

common ETL tasks using an extended RA language. To achieve this, an in-depth study of the most 

cited ETL modeling methodologies will be conducted, with particular emphasis on the conceptual 

and logical phases of the ETL system without disregarding the physical one. In addition, an 

evaluation of the feasibility of the RA operators over common ETL tasks will also be studied to 

better comprehend the application of each RA operator in this specific domain. The combination of 

these studies will allow for a formal specification of the ETL tasks, more specifically, to model some 

common ETL tasks as patterns, namely: 

1. Changing Data Capture (CDC) as the primary operation to represent source data in the 

Data Staging Area;   

2. Data Quality Enforcement (DQE) focusing in data transformations required to clean, 

conform and standardize data; 
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3. Data Conciliation and Integration (DCI) that conforms information obtained from 

heterogenic data sources with misrepresented values, corrects and integrates them in into 

the repository’s tables;   

4. Slowly Changing Dimensions (SCD) as a means to preserve history in a centralized 

repository;  

5. Surrogate Key Pipelining (SKP) to finalize the process of loading fact data into the data 

warehouse.  

Finally, to demonstrate the application of all the aspects related to the proposed ETL patterns, an 

application over a real ETL scenario was conducted to better assess the merits of the proposal 

made on this thesis, and reveal their strengths and weaknesses. 

1.5 Organization of the Thesis 

In order to expose and discuss appropriately the most relevant scientific and technological aspects 

covered in this work, we structured the remaining part of this thesis as follows: 

 Chapter 2 – ETL Modeling. In this chapter it is presented an in-depth study of the most 

cited ETL modeling proposals for conceptual, logical and physical design of an ETL 

system. A case scenario was used to demonstrate the use of each proposal with a final 

comparison of all the approaches presented and discussed. 

 Chapter 3 – Relational Algebra Approach.  This chapter contains an in-depth study 

about Relational Algebra, and its extended version. In this study, several excerpts of the 

case scenario presented in chapter 2 were used to demonstrate the use and application of 

the RA language in common ETL tasks. 

 Chapter 4 - ETL standard processes specification. As a result of the research made in 

the previous two chapters, several ETL sub processes are studied and modeled as RA 

expressions patterns. 

 Chapter 5 - Specifying a Real ETL System. The application of the patterns proposed 

previously over a real ETL scenario is conducted in this chapter. Two heterogenic sources 
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and one data mart are used to demonstrate the feasibility of the patterns proposed in 

chapter 4, i.e, the instantiation of each pattern to a real ETL modeling system. 

 Chapter 6 - Conclusions and Future Work. To end this work, a critical analysis of this 

thesis’ proposal is presented in comparison with the most cited ETL modeling proposals 

for a low cost ETL approach, presenting when appropriate some of the publications 

accomplished in several of the topics approached in this thesis. Finally, we suggest some 

possible future lines for future researching and application.  
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Chapter 2 

2ETL Modeling 

Designing and implementing a Data Warehousing Systems (DWS) is a complex and burdening task, 

prone to errors, and with an overwhelming failure rate. These facts lead to the presentation of 

several methodologies in order to minimize the risk of failure and maximize the projects outcome. 

Inmon, who coined the term Data Warehouse (DW), presented in 1994 his view of a DWS 

development (Inmon and Hackathorn, 1994, Inmon, 2005), whose concept was extended latter to 

a higher degree with its Corporate Information Factory (Inmon et al., 2001). This approach 

focused in the design and implementation of a single data warehouse for the entire company, 

using the 3NF as the basis to database design. Later, Kimball et al. (1998) presented another 

perspective for data warehousing development, referred in the area as “a data warehouse bus 

architecture”, defending the design and implementation of distinct parts of a DW, as autonomous 

components (data marts), covering each one different business and decision-making processes. 

Together, such components will form the company’s DW. In this methodology, it was also 

presented the foundation of dimensional modeling as the basis to define a way to store data in a 
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data warehouse. Nevertheless both authors clearly define that a DWS is independent from any 

other Online Transaction Processing (OLTP) system. Usually, OLTPs act as information sources 

providing data to populate a DW. This process, also called Extract, Transform and Load (ETL) 

process, is one of the most critical components of a DWS, consuming about 60-70% of the time 

spent in the development of the entire DWS. 

The data warehousing research community has been focusing their attention in the different 

components of the development of a DWS, with particular emphasis in the final stages of the DWS, 

i.e. data analysis, data mining and data querying. Nevertheless, other DWS issues have also been 

studied and developed, like the ones related to dimensional modeling and management or ETL 

processes specification and validation. This chapter presents an in-depth study and analysis about 

ETL specification and validation, using for that purpose a very typical ETL task as working example: 

the Slowly Changing Dimension case. 

2.1 Managing the ETL process 

In Inmon’s Corporate Information Factory (Figure 1), the data warehouse is mainly served with 

integrated data treated by the Integration/Transformation layer. This layer is responsible for 

accessing and extracting data from various source systems (or applications), combining and 

transforming it (when necessary) into corporate data, loading it into an Operational Data Store 

(ODS) for further analysis before being transferred to the data warehouse.  

Inmon characterizes this layer has an “unstable set of programs” mainly due to the fact that any 

DWS is an evolving system that integrates an ever-increasing amount of data from evolving 

sources and applications. Nevertheless, one of the most important tasks assigned to this layer is 

the correct representation of Metadata, i.e., the steps and transformations done to the data, giving 

the possibility to analysts to understand the correct meaning and origin of the data being analyzed. 

The management of this layer should be attributed to a data warehouse administrator, being this 

the best profile to handle all the particularities associated with the I&T layer. On the other hand, 

Inmon identifies two types of ETL tools: 1) those that produce code and can access legacy data on 
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its own; and 2) those that produce a parameterized run-time module that can only access flattened 

legacy data in order to clean, conform and integrate data into the ODS. 

 

Figure 1 - Inmon's Corporate Information Factory architecture - extracted from (Inmon et al., 2001) 

Ralph Kimball, another recognized data warehouse practitioner’s guru, proposes an integrated 

approach for DWS design and development. In his point of view, a data warehouse is the “sum” of 

all the data marts developed over a common ground of requirements, referring such view as “a 

data warehouse bus architecture”. In order to succeed in this approach, Kimball also proposed a 

management methodology (Figure 2). This methodology, the Business Dimensional Lifecycle, has 

three parallel branches: the top one deals with the DWS’ infrastructure; the middle branch 

approaches the design and development of the data warehouse and all tasks necessary to 

populate it; and the bottom branch is related to the design and development of the application’s 

interface for users. All tasks in every branch are supported by a diversified group of tabular forms 

identifying the role and tasks of every stakeholder involved, providing more control in the DWS 

project management. 
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Figure 2 - Kimball's Business Dimensional Lifecycle diagram - extracted from (Kimball et al., 1998) 

He used the same approach for the ETL systems design and development with his proposal of the 

ETL Design & Development task (Kimball and Caserta, 2004). Kimball advises on a series of steps, 

aggregated in two main threads, i.e., the Planning and Design Thread (Figure 3) and the Data 

Flow Thread (Figure 4), which are both developed in parallel. The former thread is dedicated to the 

correct management of the ETL process by dedicating special attention to the requirement 

analysis, system definition and implementation and finally testing, documenting and system tuning. 

The latter one details the usual steps taken in the design and development of the ETL tools. 

Summing up, the planning thread is mainly comprised of schemas and maps that represent the 

ETL process by identifying data sources, transformations and destinations. The data flow thread, 

builds and tests each component of the ETL process, giving particular emphasis to SCD problems 

and surrogate key lookup and substitution. 

 

Figure 3 - The Planning and Design thread - extracted from (Kimball and Caserta, 2004) 
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Figure 4 - The Data Flow thread - extracted from (Kimball and Caserta, 2004) 

Although both Inmon and Kimball advise on how to manage and build a DWS, the ETL component 

is dealt frequently using ad hoc tools and a significant lack of formal design and methodology 

application. The definition and development of an ETL component is responsible for 60 to 70% of 

the total DWS development efforts, which makes it quite critical. The majority of organizations that 

have a DWS (Mannino and Walter, 2006), identify the ETL component has a critical DWS 

component due to its impact in the remainder of the system and constantly in need of 

optimizations to reduce the time consumed in the refreshment process. With this in mind, a closer 

look to the proposals presented by the data warehousing research community during the last years 

will be made, following a chronological approach in order to reflect better the evolution made until 

now. 

2.2 ETL Modeling – Industry Practitioners 

In recent years, the design of an ETL component for a DWS has become a strong focus of 

attention by an increasing number of researchers encouraged by the lack of standards for its 

development. Another reason stands with the fact that an ETL system is one of the most important 

components of a DWS thus affecting greatly the success of the DWS itself. Let’s first analyze two 

of the most known data warehousing field practitioners, Inmon and Kimball, and afterwards some 

proposals coming from important academic researchers in the field. 
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 The Inmon’s Approach 

Chronologically speaking, only after coining the term Data Warehouse, Inmon started presenting 

his view and approach to the development of a system that would support its new concept. The 

mechanisms used to gather, clean and conform data for deliver to the data warehouse were called, 

as stated previously, ETL tools or processes. However, no design methodology was specified. It 

was considered, that these tools, or pieces of software, were developed as needed, specifically 

oriented to its application field. Many of these procedures were then simple database queries. 

 The Kimball’s Approach 

On the contrary, Kimball proposed a very complete and extensive methodology for the design and 

implementation of a DWS, with some particular focus on the design of ETL processes (Kimball and 

Caserta, 2004). Nevertheless, his approach for ETL design is very ad-hoc, without using any 

formality or known notation. Figure 5 presents an adapted diagrammatic example of the high-level 

design of an ETL process. If necessary, an in-depth design might be elaborated in order to best 

represent each source-to-target flow.  

Kimball then resumes the design of an ETL process to a table filled with properties of the tools 

used in the process in addition to the identification of all objects involved. It also gives a series of 

best practices, tips and tricks, about how to develop better tools for ETL processes. 

2.3 ETL Conceptual Modeling 

One of the first proposals for ETL modeling was based on the independence between different 

layers. First we develop the conceptual design then the logical design and finally the physical 

design, as it is normally used in database design methodologies. Here, the most important 

proposals of conceptual models from data warehousing researchers are presented in a 
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chronological order, using as a working example a part of an ETL process that loads some data 

into a dimension table with history, representing customers (Figure 6) of an OLTP system 

(Microsoft’s Adventure Works Sample Database)1. 

 

Figure 5 - ETL high-level design - adapted from (Kimball et al., 1998) 

                                                

1  http://msftdbprodsamples.codeplex.com 
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Figure 6 – An excerpt of the Adventure Works Database focusing on the table “Customer” and its related tables 

The dimension Customers is typical recognized as a SCD in which changes to OLTP customer’s data 

must be reflected into the data warehouse with or without preserving their history. In this 

example, Customers’ dimension (Figure 7) data comes from several OLTP tables. We assumed that 

a dimension integrates two identical tables: one storing current data (the dimension table itself) 

and the other storing historical data (the historical table). This approach will offer us the ability to 

preserve all history without the overburden of extending the actual size of current data or adapt 

the dimension table structure, since historical data is stored in a separate table, having the 

advantage of requiring only a simplified task for detecting and storing changed data (Santos and 

Belo, 2011a). Ordinary browsing data operations over the dimension table works quite well once 

we keep historical data separated from regular dimension data. This does not happen in a SCD 

type 2. 
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Figure 7 - Data Warehouse Dimension Customer 

2.3.1 A Novel Proposal from Vassiliadis and Simitsis 

Over the last ten years or so, Vassiliadis et al. (2002a) have been researching and evolving a 

design approach for the ETL component of a DWS. Their first proposal was based on the need to 

correctly identify the mapping between attributes of data sources and attributes of data warehouse 

tables. Therefore, they define a graphical notation (Figure 8) and the corresponding Unified 

Modeling Language (UML) metamodel with the aim of documenting and formalizing the ETL 

process in a customizable and extensible approach. The primary reason for this approach, instead 

of using Entity–relationship (ER) modeling or conventional UML modeling, was the fact that, in the 

ETL environment, attributes needed to be treated as first-class citizens. In ER or UML modeling the 

attributes are part of an entity or class, and this approach is not compatible with the 

transformations needed to be done at the attribute level in an ETL environment. 
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Figure 8 - Vassiliadis' notation for the representation of the conceptual model of ETL activities - extracted from (Vassiliadis 

et al., 2002a) 

In subsequent work, Simitsis and Vassiliadis (2003) detailed a methodology for the usage of the 

previous conceptual model. This methodology is comprised in four steps. 

1. Identification of the proper data stores; 

2. Candidates and active candidates for the involved data stores; 

3. Attribute mapping between the providers and the consumers; 

4. Annotating the diagram with runtime constraints. 

The first two steps are normally executed in the requirements and analysis stage. The ETL 

designer knows the data warehouse in detail and therefore must correctly identify adequate data 

stores, and if many arise as complimentary, he must, in step 2, choose which ones to use and 

how. Step 3 is the most burdening task, since the designer needs to represent the mappings 

between source attributes and destination attributes. This task may involve source administrators 

with the purpose of eventually clarifying source data codes, their access restrictions and their 

meaning. Finally, in the last step, all information particular to the execution and restrictions of the 

ETL activity must be annotated to better document the process. It also serves the purpose of 

feeding information to the next step of the modeling phase. 
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In Figure 9 we present a high-level example of the use of this notation, where we identify the main 

data sources used to load the data warehouse dimension DimCustomer. 

 

Figure 9 - High-level example of ETL activities represented using Vassiliadis' notation 

A lower-level detail of this diagram (Figure 10) presents mappings between source and target 

attributes as well as correspondent transformations. Notice the denormalization of an XML attribute 

into several attributes of the dimension DimCustomer, several data type conversions and the use 

of a function to timestamp the date from which the tuple is valid. 

As already referred, the approach to store data in a dimension with history is obtained generically 

through the use of two base tables. One stores current data, which we normally address as the 

dimension itself, and another table that stores historical data, which represents the old values of 

current data. In Vassiliadis’ proposal there exists a transformation that typically applies to 

attributes identified as SCD Type 1, 2 or 3. However for the example chosen there is no clear 

graphical notation to use, mainly because the steps needed to maintain the dimension and its 

history up to date are less conceptual and more logical. 
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Figure 10 - Low-level example of ETL activities represented using Vassiliadis' notation 
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2.3.2 The Trujillo and Luján-Mora UML approach 

Other data warehousing researchers that presented some work over the ETL modeling phase were 

Juan Trujillo and Sergio Luján-Mora. Their view over the conceptual modeling of the ETL process 

was opposite to the Vassiliadis’ view. As studied previously, Vassiliadis proposed a novel approach 

to the design of the conceptual model of the ETL process, particularly presenting a new graphical 

notation. Trujillo on the other hand used UML and extended it with mechanisms and icons (Figure 

11) to better represent the ETL model (Trujillo and Luján-Mora, 2003). The basis to this approach 

was to use a world accepted notation, known by most software and database designers, and 

therefore remove the need to learn a new notation and reduce the time spent on the design of the 

ETL. 

As it can be seen in Figure 11, Trujillo’s UML extension proposal is based in common ETL activities. 

The filtering, conversion, aggregation and loading of data are some of the tasks performed 

frequently in an ETL process. In Figure 12 it is presented the first part of how the working example 

chosen is represented in UML using the proposed mechanisms and icons. This part gathers the 

data from different table sources, joins it and transforms it into a final table, identified as 

Customer_Final. 

This table is then used to load data into Customer’s dimension using two separate operations 

(Figure 13). The Insert operation only loads new data, discarding unchanged and updated data to 

an auxiliary table. This auxiliary table is used with the Update operation that only updates existing 

data. The primary problem with the use of this notation is that it is not possible to represent the 

necessary operations to maintain a historical table of a dimension as needed by the working 

example. There is no graphical notation to represent the transfer of old data (previous values of 

update data) into the historical table. Also, Trujillo’s approach does not provide any graphical 

representation for the other, more common, SCDs which are one of the most common data 

warehouse requirements. 
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Figure 11 - Trujillo's UML ETL mechanisms and icons – extracted from (Trujillo and Luján-Mora, 2003) 
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Figure 12 - Working example of Trujillo's proposed UML extension (Trujillo and Luján-Mora, 2003) 
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Figure 13 - Loading data into the dimension "Customer" 
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2.3.3 The Mixed Approach from Luján-Mora, Vassiliadis and Trujillo 

As a direct consequence of a research partnership, Luján-Mora, Vassiliadis and Trujillo proposed a 

framework for modeling ETL processes using extended UML supporting attributes as first-class 

citizens (Luján-Mora et al., 2004). The idea is to represent the process as a multi-level UML 

diagram that can be drilled-down to more detailed levels, extending the representation of data 

mappings between attributes presented in the ETL process. The concept of data mapping is used 

to represent shared information at the various levels (database, table or attribute), detailing the 

transformations necessary between source data and their target. Figure 14 presents an example of 

the detail of each of the four levels proposed. In the first level, Level 0, source schemas and target 

schemas are identified along with a high level data mapping package. In the second level, Level 1, 

the data mapping package is detailed to represent each target table data flow. In the third level, 

Level 2, the dataflow level is detailed to represent how each target table relates to the source 

tables in terms of data transformations. In the fourth level, Level 3, the data transformations are 

detailed to the attribute level identifying the sequence of transformations and cleaning tasks to be 

performed. 

 

 

Figure 14 - Data mapping levels – extracted from (Luján-Mora et al., 2004) 
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2.3.4 Conceptual Modeling using UML Activity Diagrams 

Following the proposal of modeling ETL processes using UML (Trujillo and Luján-Mora, 2003), Lilia 

Muñoz develops the concept and characterizes a lower level of this approach by defining the 

dynamic aspects and behavior of the ETL processes (Muñoz et al., 2008). The proposed modeling 

framework has a higher level where the elements of the ETL process are specified, like sources, 

targets and the ETL process itself. At the lower level, the ETL process is specified in terms of flows 

of activities using metaclasses of UML Activity Diagrams (Figure 15).  

In this proposal all ETL mechanisms used by Trujillo (Trujillo and Luján-Mora, 2003) are 

characterized to present a set of customizable templates to be used in the conceptual model. 

Figure 16 presents a generic model of a reusable activity in a ETL process. 

 

Figure 15 - Muñoz' two level modeling framework using UML AD – extracted from (Muñoz et al., 2008) 
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Figure 16 - Template proposed to represent ETL activities - extracted from (Muñoz et al., 2008) 

Figure 17 presents the first two ETL operations displayed in Figure 12 using UML Activity Diagrams 

templates proposed in (Muñoz et al., 2008). The first operation is a filter applied to table 

Sales.CustomerAddress and the second operation is a three table join operation over the common 

attribute CustomerID. 

Since this approach uses UML Activity diagrams, it is possible to design the steps needed to 

correctly maintain a dimension with history thus filling the gap present in the previous approach, 

however, as we can observe in Figure 17, a simple join operation requires a rather complex 

diagram. Since normal ETL processes tend to gather information from several OLTP systems, with 

many tables and attributes, the size and complexity of the ETL conceptual diagram based on this 

framework would be overwhelming. 

2.4 ETL Logical Modeling 

Logical modeling is perceived as the second phase of the ETL modeling task. This phase is 

normally a continuation of the previous one, working on its output to generate an input for the 

following phase, i.e., the physical design. In the previous section a study of the different proposals 

for ETL conceptual modeling was made. Some of them used new models, and others used 

extensions to standard modeling languages. Although there were various proposals to conceptual 

modeling, the logical modeling phase is somewhat more uniform since there is a common view 

that the logical design of the ETL should be represented as a workflow of operations (Bouzeghoub 

et al., 1999). Following the same methodology as in the previous section, let’s study and analyze 

the ETL logical modeling proposals, again in chronological order. 
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Figure 17 - Partial ETL working example modeled using UML AD 

2.4.1 Logical Modeling from the Perspective of Vassiliadis and Simitsis 

Paired with the proposals already studied over conceptual modeling, Vassiliadis et al. (2002c) also 

proposed an approach to the logical modeling phase of the ETL process. The original idea is to 

model each activity using a graphical notation (Figure 18) and build the workflow as a series of 

activities particular to the ETL task. Activities work on data received from a set of inputs, it can 

also receive a set of parameters and produces two outputs, the transformed data and rejected 

data. The task or activity performed over the input data can be one of three major groups, i.e., 

filters, unary or binary transformations. 

 

Figure 18- An elementary activity – extracted from (Vassiliadis et al., 2002c) 
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Using the graphical notation proposed, over the example of Figure 9, the workflow generated is 

presented in Figure 19. Here, data is extracted from different sources, joined and transformed so it 

can be loaded into the DW. 

 

Figure 19 - The logical model of the conceptual model presented in Figure 9 (Vassiliadis et al., 2002b) 

The similarity of the high level conceptual diagram presented in Figure 9 and the high level logical 

diagram presented Figure 19 is enormous. Such diagram represents a conceptual model. The 

notation used there already suggests a series of steps normally present in a logical design. Authors 

additionally state that the workflow can be modeled by a graph that they referred as Architecture 

Graph. The graphical notation used to build the graph is presented in Figure 20. The purpose of 

this extended notation is to clearly define all components and tasks of an ETL logical model, so it 

can be evaluated and optimized using proposed algorithms exploiting the graph and generating 

metrics that measure the vulnerability of the nodes through dependencies and responsibilities. 

The diagram of Figure 21 presents an extract of the ETL logical model using the Architecture Graph 

notation. Based on the workflow presented in Figure 19, it focus on the join between 3 tables over 

attribute CustomerID, representing mappings between input attributes and output attributes with 

details over the join operation.  
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Figure 20 - The graphical notation of the Architecture Graph – extracted from (Vassiliadis et al., 2002b) 

The logical modeling of the ETL is perceived as a workflow of activities. The order of the activities 

is relevant in the minimization of the workload needed to complete the process. As such, Simitsis 

et al. (2005b) based on the previously proposed ETL logical model graphical notation defined 

several other transitions that maintain the Architecture Graph’s state. 

The Swap transition defines that it is equivalent to swap unary activities like selection, projection, 

null checking and primary key violation, etc. The Factorize/Distribute transition can be used to 

change the order of activities when using binary and unary activities together, for instance, when 

at least two unary activities perform the same task in different flows followed by a binary activity, 

it is equivalent to perform the binary activity first and then execute the unary activity over its 

result. The opposite is also true, it is possible to distribute an unary activity over the flows that 

converge into the binary activity. Finally, the Merge transition groups activities in order to force 

their execution together, the Split transition indicates that a grouped activity can be split. 
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Figure 21 - A fragment of the Architecture Graph model (Vassiliadis et al., 2002b) 
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Figure 22 - Transition examples - Swap, Factorize and Distribute, Merge and Split – extracted from (Simitsis et al., 2005b) 

These properties can be applied to the working example and several join operations may be 

swapped of order if the overall workload diminishes. The 3 table join operation might be split in 

two separate join operations if the result of the first join greatly reduces the result table’s size. 

The optimization of the logical workflow is based on the premises that the changes can be made 

without risking the workflow execution. In addition to the optimization process and to better 

represent the ETL, the authors use LDL++ language, an evolution of LDL (Naqvi and Tsur, 1989), 

to define templates of the semantics to use in the ETL logical design (Vassiliadis et al., 2003). 

According to them, since LDL++ is a logic-programming, declarative language that supports 

recursion, complex objects, negation, external functions, choice, aggregation and updates, it is 

easier to use, rewrite and compose statements in comparison to SQL.  

Through the use of LDL++ a framework of templates for the common ETL activities is defined and 

those templates are then instantiated when designing the ETL. The templates proposed include 

selection, not null checking, domain mismatch, projection, surrogate keys, aggregation, etc. 

After the presentation of the conceptual model and the logical model, the authors, through the use 

of LDL++ represent the semantics and present a semi-automatic method for the conversion of the 

conceptual model into the logical model (Simitsis, 2005, Simitsis and Vassiliadis, 2008, Vassiliadis 

et al., 2005). This method is composed of a set of rules, algorithms and steps that lead to the 

correct representation of the logical workflow of the ETL. As a consequence of previous research, 

the authors then propose a set of algorithms based on state space search that takes into account 
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the workflow generated in LDL++ and tries to minimize the workload of the workflow by swapping, 

merging or splitting activities (Simitsis et al., 2005c). 

As result of several years of research in the ETL design phase, the authors developed an ETL 

design tool that incorporates the graphical notations proposed – ARKTOS II (Vassiliadis et al., 

2005), nevertheless the development of this tool was stopped by lack of funding. 

2.4.2 Using BPMN and BPEL for ETL design 

More recently, Akkaoui and Zimanyi (2009) have presented an approach to the ETL modeling 

phase based on Business Process Modeling Notation2 (BPMN) which is a standard notation. BPMN 

has an intuitive set of conceptual tools to express business processes and is independent of the 

tools used. It also has the advantage of being able to be translated into execution languages like 

Business Process Execution Language3 (BPEL), which is an execution language that uses web 

services to specify actions within business processes. 

The authors consider the ETL process as a particular type of business process and therefore it 

should be modeled as such, using a proposed ETL palette in BPMN. The constructs proposed are 

divided in four categories: flow objects, artifacts, connecting objects, and swimlanes. Through the 

use of the proposed ETL palette, the working example that loads a dimension from source tables 

into the data warehouse would look like Figure 23. 

                                                

2  http://www.omg.org/spec/BPMN/2.0/ 
3  http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html 
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Figure 23 - Example of an ETL workflow using BPMN (Akkaoui and Zimanyi, 2009) 



ETL Modeling 

37 

Zooming in in the collapsed task SCD, the steps needed to correctly maintain the dimension with 

history are presented in Figure 24.  

 

Figure 24 - Subtasks present on SCD collapsed task 

After presenting the BPMN ETL palette, the authors also present a series of steps to translate the 

BPMN model into BPEL that is represented in XML language. 

The use of BPMN in the design of ETL processes has the advantage of making the diagrams easier 

to understand to all stakeholders but due to the nature of the language designers have too much 

freedom to define the processes making this approach less formal, i.e., the same kind of operation 

can be design in different ways depending on the designer.  

2.5 ETL Physical Modeling 

The last phase of the ETL modeling task is dedicated to the physical model, where some physical 

options (and optimizations) are taken into account and complemented in the logical model 

previously designed. Most available ETL commercial tools adopt proprietary graphical notations to 

represent the workflow of tasks to be performed in the ETL process, through hand-coded routines, 

SQL statements, or other conventional ways for program execution, implementing the ETL process 

in order to populate the data warehouse adequately. Nevertheless, this approach is usually 

platform dependent and might constrain any future data warehouse developments (or changes), 
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since the ETL process is ordinarily designed and executed by a specific tool. As we know, the use 

of standard notations instead of proprietary notations will reduce this risk and contributes to a 

global understanding of the standard notation. In addition, a common setback of these tools is the 

lack of automatic optimizations to the ETL workflow. 

In the previous sections, we have seen proposals from (Simitsis et al., 2005b) that permit changes 

to the workflow in order to optimize it, and the use of LDL++ and state space search algorithms to 

reduce the workload of the ETL workflow (Simitsis et al., 2005c). In (Tziovara et al., 2007) an 

additional level of optimization is taken into account, applied mainly in the physical model. The 

idea is to use sorters between ETL activities in the workflow, taking advantage of sorted data to 

improve activities performance. The authors proposed an ”Exhaustive Ordering Algorithm” that 

tests the insertion of sorters before a specific activity, and evaluates the impact on the overall 

workflow. 

Recently, there has been done some efforts in the design of the ETL process in conjunction with 

QoX metrics (Dayal et al., 2009, Simitsis et al., 2009, Simitsis et al., 2010, Dayal et al., 2010). As 

the ETL process is a computational intensive set of tasks that executes periodically, it has to be 

designed to deal with failure inside a limited time window. Some of the QoX metrics in analysis are 

Reliability, Maintainability, Freshness, Recoverability, Scalability, Availability, Flexibility, Robustness, 

Affordability, Consistency, Traceability and Auditability. In order to maximize these metrics some 

tradeoffs must be made, since the use of some of them will undoubtedly hurt other metrics, for 

instance, increasing reliability through the use of redundancy (task replication) will increase the 

ETL time of completion endangering the time window available. 

2.6 Methodologies Comparison 

Inmon (1994, 2005) and Kimball (1998, 2004) considered by many the grand-parents of the Data 

Warehouse approach, presented respectively the data warehouse concept and the Dimensional 

model. Although they advocate different methodologies to the design and implementation of a 

DWS, Kimball’s methodology is somewhat more defined and structured than Inmon’s. Nevertheless 

both methodologies are quite weak in their formalization, using nonstandard diagrams and 
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notations. In regard to SCD modeling, Kimball advises on a series of tips and best practices 

normally assigned to each type of SCD, on the other hand, Inmon bases his data warehouse 

approach on a 3NF relational model therefore a SCD dilemma is not present. 

After studying in this chapter the most relevant proposals from data warehousing researchers for 

the conceptual and logical design of the ETL process and applying them to a SCD scenario, a brief 

tabular comparison of the referred approaches is presented in Table 1 and Table 2. 
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Table 1 - Comparison of conceptual design approaches. 
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Table 2 - Comparison of logical design approaches. 
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Chapter 3 

3Relational Algebra Approach 

In 1970, Edgar F. Codd presented a research paper with the fundamentals of the relational model 

as an attempt to separate the logical from the physical design of a database (Codd, 1970). The 

basic principle that supports the relational model is the definition of relation, which is considered to 

be a finite set of n-tuples, where n is the degree of the relation, or number of attributes. 

Definition - Consider a set of domains D1, D2, …, Dn not necessarily distinct and where n>0. R is a 

relation if it is a subset of the cartesian product of these set of domains. All members of the 

relation R are n-tuples where n is considered to be the degree of the relation. 

Later, Codd redefined a few properties associated with the concept of relation (Codd, 1979), which 

could be represented in a tabular format, such as: 

 There is no duplication of tuples; 

 Row order is insignificant; 

 Attribute order is insignificant; 

 All table entries are atomic values. 
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Table 3 - Example of a relation represented in a tabular format 

Number Name City 

123 John London 

125 Ana Lisbon 

128 Peter Miami 

Along with the theory that supported the relation model, Codd presented also two data 

manipulation languages, called Relational Algebra (RA) and Relational Calculus (RC), that were 

able to access and query data stored in relations in order to answer to common queries. 

In subsequent years, after the presentation of the relational model, several database management 

systems were developed based on this approach, like System R (Astrahan et al., 1976) and 

INGRES (Held et al., 1975, Stonebraker et al., 1976). Nevertheless, the users’ need to access 

summarized data led to the development of aggregate functions that in turn needed the ability to 

store and represent duplicate tuples. 

The theoretical foundations to support these aggregate functions were only formalized later in the 

work of (Klug, 1982) and developed by (Ozsoyoglu et al., 1987), and the use of duplicates was 

formalized through the use of Bag Theory (or multisets) instead of Set Theory in (Dayal et al., 

1982). All authors support their proposals in Codd’s Relational Model and extended the common 

operations of RA with new operations. 

The difference between RA and RC lies in the fact that RA is a procedural language, where the 

order of each operation is crucial and RC is a non-procedural language, where the order of the 

operations is not important. Another way to understand the difference is that RA is preoccupied on 

how to get the data needed to answer the query instead of RC that works on what data to get. 

Being a procedural language, the use of RA is normally associated with step by step operations and 

suits very well as a platform to model the logical phase of an ETL process. Using the example 

already presented previously (Figure 10), this chapter analyzes the primitive and extended RA 

operators and operations presenting their syntax and demonstrating their use. 
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The set of primitive RA operators include the selection and projection operations that were 

introduced in (Codd, 1970), the cartesian product, union and difference that are mathematical 

operations already defined in Set Theory and the rename operation that was presented in (Todd, 

1976). 

3.1 Selection (or Restriction) 

The selection operator was first introduced by Codd as Restriction, however it is commonly known 

as Selection and acts as a horizontal filter over a relation, therefore this is a unary operator since it 

works over one relation. The relation that results from this operation has the same structure of the 

original relation, however the contents must satisfy the condition defined. This operator has the 

same behavior either if working with Sets or Bags (multisets), although algebraic expressions using 

the relation’s attributes might be used in the definition of the condition in Extended Algebra. 

Nevertheless the result relation has the same structure of the original relation. 

The operator is graphically represented by the Greek small letter sigma (σ) and the syntax for the 

operation is: 

𝜎 𝐹(𝑅) 

where F is a logical propositional expression made up of elementary algebraic conditions, and R is 

the relation over which the operation is applied. 

The application of such operation in an ETL scenario is commonly associated with the need to filter 

data to load into a data warehouse. Figure 25 presents an excerpt from the low-level conceptual 

model of the example used in chapter 2, where selections and joins are made to gather the 

necessary data to load into the dimension Customer.  

The conceptual model presented gathers only the customers whose addresses Type ID are 2. 

Using RA to specify this requirement, the expression would be: 

RA expression: 𝜎 ( 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑦𝑝𝑒𝐼𝐷=2 ) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠) 
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Figure 25 - An excerpt of the low-level conceptual model presented in Figure 10 focusing on the selection operation 

Next, other common RA expressions are presented, focusing in their syntax, modus operandi and 

application in the selected ETL scenario. 

3.2 Rename 

The rename operation is used to change attributes names and also relations’ name. It is normally 

used to facilitate the understanding of the contents of the attribute or relation, by changing its 

name to a more comprehensive one. Renaming an attribute is also common when the attribute is 

used in future RA operations that require identical attribute names to work with. 

In an ETL scenario renaming attributes is very common since source systems can vary and their 

attribute naming conventions might be different from the data warehouse attribute naming. 
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The rename operator is also a basic RA operator, is graphically represented by the Greek small 

letter rho (ρ) and the syntax for the operation is: 

𝜌𝑆(𝑎1,…,𝑎𝑛)(𝑅) 

where 𝑎1, … , 𝑎𝑛 is the list of the names of the new attributes contained in the new relation S that 

should appear in the result relation. 

Using the ETL scenario from Figure 26, a rename operation is used to transform one attribute of 

Sales.Customer relation into a matching name of an attribute of DimCustomer, i.e. AccountNumber 

needs to be renamed to CustomerAlternateKey. 

 

Figure 26 - An excerpt of the low-level conceptual model presented in Figure 10 focusing on data mappings between source 

relations and dimension relation 

RA expression: 𝜌𝑆𝑎𝑙𝑒𝑠𝐶𝑢𝑠𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐾𝑒𝑦) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) 

An alternative to the renaming operation is achieved by the use of the operation of Projection. This 

operation is used as a vertical filter over a relation, where only certain attributes appear in the 

result relation (with or without renaming) and therefore it is a unary operator as the previous 

operators. 

3.3 Projection 

The relation resulting from a projection operation contains only the attributes desired, but the 

contents depend on whether we use sets or bags as the basis for this operation. In Set Theory 

there are no duplicates therefore the result of the projection operation must not contain any 
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duplicate tuples. In an extended version of RA, which is supported by Bag Theory, duplicates are 

allowed therefore not removed, and in addition new attributes may be added to the result relation 

as the result of any function that uses attributes from the original relation. 

The operator is graphically represented by the Greek small letter pi (π) and the syntax for the 

operation is: 

𝜋𝑎1,…,𝑎𝑛
 (𝑅) 

where 𝑎1, … , 𝑎𝑛 is the list of attributes contained in the relation R that should appear in the result 

relation (Set Theory). 

The application of such operation in an ETL scenario is commonly associated with the need to filter 

unwanted attributes. In Figure 25 after the select operation only some attributes are needed, 

therefore the unneeded attributes are projected out with the following RA expression: 

RA expression: 𝜋( 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,   𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐼𝐷 ) (𝜎 ( 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑦𝑝𝑒𝐼𝐷=2 ) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠)) 

Notice that as the result of a RA expression is also a relation, it can be the operand of another RA 

expression, this property is called closure. Therefore RA operations can be nested producing 

expressions that are hard to analyze. In order to simplify these analyses, a RA expression can be 

fragmented into simpler operations that use temporary relations to store results that are later used 

in subsequent operation. This is possible due to the use of the assignment symbol ← . 

Example :  

𝐶𝑢𝑠𝑡𝑇𝑦𝑝𝑒2 ← 𝜋( 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,   𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐼𝐷 ) (𝜎 ( 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑦𝑝𝑒𝐼𝐷=2 ) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠)) 

or 

 𝑇1  ← 𝜎 ( 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑦𝑝𝑒𝐼𝐷=2 ) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠) 

 𝐶𝑢𝑠𝑡𝑇𝑦𝑝𝑒2  ← 𝜋( 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,   𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐼𝐷 )( 𝑇1 ) 
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As already stated, the projection operation can also be used to add attributes and to apply users’ 

functions. Through the use of another excerpt from the conceptual model presented in the 

previous chapter (Figure 27), now focusing in a few data transformations and normalizations, the 

projection operation would be used to decompose the XML attribute Demographics into a set of 

attributes matching the Dimension’s attributes. 

 

Figure 27 - An excerpt of the low-level conceptual model presented in Figure 10 focusing on the data normalization process 

𝑆_𝐼𝑛𝑑𝑖𝑣 ← 𝜋(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐼𝐷,𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,1)→𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,2)→𝐺𝑒𝑛𝑑𝑒𝑟,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,3)→𝑌𝑒𝑎𝑟𝑙𝑦𝐼𝑛𝑐𝑜𝑚𝑒,

 𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,4)→𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,5)→𝑂𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,6)→𝐻𝑜𝑢𝑠𝑒𝑂𝑤𝑛𝑒𝑟𝐹𝑙𝑎𝑔,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,7)→𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,8)→𝐵𝑖𝑟𝑡ℎ𝐷𝑎𝑡𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,9)→𝑇𝑜𝑡𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,10)→𝑁𝑢𝑚𝑏𝑒𝑟𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐴𝑡𝐻𝑜𝑚𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,11)→𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑟𝑠𝑂𝑤𝑛𝑒𝑑,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,12)→𝐷𝑎𝑡𝑒𝐹𝑖𝑟𝑠𝑡𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒)

 (𝑆𝑎𝑙𝑒𝑠. 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) 

After selecting the necessary data and filtering the attributes needed for future operations, data 

gathered from different relations is joined and matched for subsequent transformations. The join 

operation is based on the set based cartesian product, which combines two sets into a single set 

with all elements combined. 
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3.4 Cartesian Product 

In the relational model, the cartesian product combines all the tuples of the first relation with all 

the tuples of the second relation; therefore it is a binary operation since it needs two operands 

(relations). The operator used is the same as in Math and is graphically represented by (X) and the 

syntax for the operation is: 

𝑅 × 𝑆 = { ( 𝑟, 𝑠 ) ∶ 𝑟 ∈ 𝑅 ∧  𝑠 ∈ 𝑆 } 

Although the cartesian product was defined to work with Sets, this same operation can be applied 

to bags (multisets). If the operands are bags, the result will also be a bag, therefore duplicates 

may exist and order is important. Another characteristic of the cartesian product is that it is a basic 

RA expression and rarely used alone due to its modus operandi. Nevertheless if a selection is used 

on the result of a cartesian product a Join is achieved. There are several kind of joins, with 

different purposes, some were presented with the relational model and others only appeared when 

RA was extended.  

3.4.1 Natural Join 

The natural join combines all the tuples of both relations over the set of common attributes. The 

result relation is composed of all attributes from both relations. The graphical symbol used for this 

operator is (⋈) and the syntax for the operation is: 

𝑅 ⋈ 𝑆 

The use of this operation is very common in an ETL scenario, since data gathered from source 

systems is normally dispersed over several relations and therefore must be joined for future 

integration. Using Figure 25 as example, three relations are joined over the common attributes.  
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𝜋(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐼𝐷,𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,1)→𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,2)→𝐺𝑒𝑛𝑑𝑒𝑟,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,3)→𝑌𝑒𝑎𝑟𝑙𝑦𝐼𝑛𝑐𝑜𝑚𝑒,

 𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,4)→𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,5)→𝑂𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,6)→𝐻𝑜𝑢𝑠𝑒𝑂𝑤𝑛𝑒𝑟𝐹𝑙𝑎𝑔,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,7)→𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,8)→𝐵𝑖𝑟𝑡ℎ𝐷𝑎𝑡𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,9)→𝑇𝑜𝑡𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,10)→𝑁𝑢𝑚𝑏𝑒𝑟𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐴𝑡𝐻𝑜𝑚𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,11)→𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑟𝑠𝑂𝑤𝑛𝑒𝑑,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,12)→𝐷𝑎𝑡𝑒𝐹𝑖𝑟𝑠𝑡𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒)

 (𝑆𝑎𝑙𝑒𝑠. 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)  

⋈ (𝜋( 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,   𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐼𝐷 )  (𝜎 ( 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑦𝑝𝑒𝐼𝐷=2 ) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠)))

⋈ 𝜌𝑆𝑎𝑙𝑒𝑠𝐶𝑢𝑠𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐾𝑒𝑦) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) 

or, alternatively: 

T1  ← σ ( AddressTypeID=2 ) (Sales. CustomerAddress) 

𝑇2   ← 𝜋( 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,   𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐼𝐷 )( 𝑇1 ) 

𝑇3   ← 𝜋(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝐼𝐷,𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,1)→𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,2)→𝐺𝑒𝑛𝑑𝑒𝑟,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,3)→𝑌𝑒𝑎𝑟𝑙𝑦𝐼𝑛𝑐𝑜𝑚𝑒,

 𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,4)→𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,5)→𝑂𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,6)→𝐻𝑜𝑢𝑠𝑒𝑂𝑤𝑛𝑒𝑟𝐹𝑙𝑎𝑔,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,7)→𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,8)→𝐵𝑖𝑟𝑡ℎ𝐷𝑎𝑡𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,9)→𝑇𝑜𝑡𝑎𝑙𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,10)→𝑁𝑢𝑚𝑏𝑒𝑟𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐴𝑡𝐻𝑜𝑚𝑒,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,11)→𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑎𝑟𝑠𝑂𝑤𝑛𝑒𝑑,

𝑔𝑒𝑡𝑋𝑀𝐿𝑒𝑙𝑒𝑚(𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠,12)→𝐷𝑎𝑡𝑒𝐹𝑖𝑟𝑠𝑡𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒)

 (𝑆𝑎𝑙𝑒𝑠. 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) 

𝑇4 ← 𝑇3  ⋈ 𝑇2 

𝑇5 ← 𝜌𝑆𝑎𝑙𝑒𝑠𝐶𝑢𝑠𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒𝐾𝑒𝑦) (𝑆𝑎𝑙𝑒𝑠. 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) 

𝐶𝑢𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑇4  ⋈ 𝑇5 
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In this particular case there are common attributes, but if the joining attributes had different 

names, a different type of join could have been used, the equijoin which is a particular case of the 

theta join. 

3.4.2 Theta Join 

It is not always possible to use the natural join operation, since it is necessary to have common 

attributes between the relations being joined or, if there is no interest in joining the relations over 

the common attributes. In these cases it is possible to associate a set of conditions to the join 

operation. The theta join uses the same graphical symbol as the natural join and the syntax is very 

similar, i.e., there is only the addition of a predicate to the join. 

𝑅 ⋈𝐹 𝑆 

3.4.3 EquiJoin 

The equijoin operation is a particular case of the Theta Join since the predicate associated with the 

operation is an equality. As in the Theta Join, the structure of the result relation is composed of all 

the attributes from both relations. 

Using the previous example all natural join operations could have been written using the equijoin 

syntax. 

𝑇4 ← 𝑇3  ⋈𝑇3.𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷=𝑇2.𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷 𝑇2 

and  

𝐶𝑢𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑇4  ⋈𝑇4.𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷=𝑇5.𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷 𝑇5 

The use of natural joins, when possible, makes the expression smaller but difficult to comprehend 

over which attributes the join operation is being done. If using equijoins, the joining attributes 

must be specified therefore it is easier to understand. 
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3.5 Attribute Extension 

The ability to add new attributes to the result of a RA expression was introduced in the extension 

of RA (Baralis and Widom, 1994). The new attribute could be populated with values computed 

from other tuple’s attributes or as a result of a user’s function. This operation is similar to the 

extended projection where it was also possible to add new attributes to the result relation. The 

operator that adds attributes is represented by the Greek small letter epsilon (ε) and the syntax for 

the operation is: 

ε(X = expr)(R) 

where X is the new attribute’s name, expr is an expression evaluated over each tuple of R. 

Using the same running example as in previous demonstrations, Figure 28 shows the addition of 

two new attributes to dimension Customer. The attribute Start_Date is populated with the result of 

a function that determines the systems’ date and the attribute End_Date is populated with special 

state called Null. The absence of information is very common in databases, either by being 

inapplicable in some property or unknown at present time (Vassiliou, 1979, Codd, 1979). 

Whenever this occurs the attributes in question store a special value, the Null value, commonly 

represented in RA as the Greek small letter omega (ω) 

 

Figure 28 - An excerpt of the low-level conceptual model presented in Figure 10 focusing on the addition of new attribute 

The RA expression for this example would have been 

𝐶𝑢𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡 ← 휀(𝑆𝑡𝑎𝑟𝑡_𝐷𝑎𝑡𝑒=𝑆𝑦𝑠𝐷𝑎𝑡𝑒( ),𝐸𝑛𝑑_𝐷𝑎𝑡𝑒 = 𝜔)(𝑇6) 



A Relational Algebra Approach to ETL Modeling 

 54 

3.6 Relational Algebra Trees 

Another form of representing a RA expression is through the use of RA trees. A RA tree has several 

properties: 

 Each leaf corresponds to the base relations used in the expression 

 Non-leaf nodes are the result of a RA operation 

 The root of the RA tree is the result of the entire RA expression 

 The tree is traversed from leaves to root 

The graphical representation of a RA expression that results from the use of a RA tree provides a 

better way to interpret and comprehend the complexity of the expression ( 

Figure 29). There are also a few techniques that can be used in order to optimize operations by 

changing and reordering operations and producing an equivalent optimized RA tree.  

The running example used so far in this chapter to introduce and explain the RA operators is the 

result of the application of the conceptual model proposed by (Vassiliadis et al., 2002a) on a 

specific ETL scenario, a SCD with history preservation. Nevertheless, as already discussed in the 

previous chapter, this proposal does not support very well this specific scenario, therefore, and 

since some of the steps needed to maintain this dimension up-to-date are better modelled in a 

logical perspective rather than a conceptual one, the logical modeling proposal by (Akkaoui and 

Zimanyi, 2009) used in the previous chapter will be used to present the remaining RA operators. 

Figure 24, presented in the previous chapter, models, in BPMN, the steps needed to maintain the 

dimension up-to-date with history preservation by isolating new from already existing/updated 

customers. Figure 30 is an excerpt of Figure 24 that focuses on determining if a Customer is new 

or already existing in the dimension Customer. This goal can be achieved by the use of already 

presented RA operators in conjunction with the difference operator. 
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Figure 29 – RA tree with the representation of the RA expression presented in Section 3.4.1 

Sales.CustomerAddress

σ  (AddressTypeID=2)

Sales.Individual

π (CustomerID,ContactID,getXMLelem(Demographics,1)→MaritalStatus, 

getXMLelem(Demographics,2)→Gender, getXMLelem(Demographics,3)→YearlyIncome, 

getXMLelem(Demographics,4)→Education,getXMLelem(Demographics,5)→Ocupation, 

getXMLelem(Demographics,6)→HouseOwnerFlag, getXMLelem(Demographics,7)→CommuteDistance, 

getXMLelem(Demographics,8)→BirthDate, getXMLelem(Demographics,9)→TotalChildren, 

getXMLelem(Demographics,10)→NumberChildrenAtHome, getXMLelem(Demographics,11)→NumberCarsOwned, 

getXMLelem(Demographics,12)→DateFirstPurchase)

π (CustomerID, AddressID)

Sales.Customer

ρSalesCust(CustomerID,CustomerAlternateKey)
⋈ 

⋈ 

CustResult

ε(Start_Date=SysDate(), End_Date=ω )
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Figure 30 – An excerpt of the BPMN logical modeling presented in Figure 24 focusing in determining new/existing customers 

3.7 Difference and Intersect 

The difference is set operation that creates a set with the elements that are present in the first set 

that are not present in the second set and therefore it is a binary operation since it needs two 

operands (relations). The operator used is the same as in Set Theory and is graphically 

represented by (-) and the syntax for the operation is: 

𝑅 − 𝑆 = {𝑥: 𝑥 ∈ R ∧ 𝑥 ∉ S} 

Assuming that only new and update customers are in the relation Customer_NameC the RA 

expression to determine the new customers would be 

𝑁𝑒𝑤𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ← 𝜋𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑁𝑎𝑚𝑒𝐶)  − 𝜋𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷(𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) 

and in turn existing customers could be achieved by the intersect operator such as  

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ← 𝜋𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑁𝑎𝑚𝑒𝐶)  ∩ 𝜋𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷(𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) 

Although the intersect operation is not a basic algebra operation, it can be implemented through 

the use of two difference operations. Nevertheless, the common intersect operation uses the 

common graphical set representation (⋂) and the syntax for the operation is: 

𝑅 ∩ 𝑆 = {𝑥: 𝑥 ∈ R ∧ 𝑥 ∈ S} 
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This has the same result as: 

𝑅 − (𝑅 − 𝑆) 

These two operations have quite different outcomes when using bags instead of sets. Although the 

basis are the same, subtract from one relation the contents of the other or find the common tuples 

in both relations, the ability for these relations to hold duplicates change the outcome of the 

operation drastically when in comparison with set difference or set intersect. Assuming that there 

are duplicate tuples in both operand relations, the result relation has to take into account the 

occurrences of the tuples in each relation. The minimum cardinality of each duplicate tuple remains 

in the result relation. 

Once the existing/updated customers are identified, the process to expire the data implies several 

steps (Figure 31): set the End_Date of the expired tuples and move them to the dimension that 

holds historical data. One approach to set the End_Date is through the use of the attribute 

extension operation. 

 

Figure 31 - An excerpt of the BPMN logical modeling presented in Figure 24 focusing in the tasks to maintain dimension 

DimCustomer up-to-date 

𝐸𝑥𝑝𝑖𝑟𝑒𝑑𝐷𝑎𝑡𝑎 ← 휀(𝐸𝑛𝑑_𝐷𝑎𝑡𝑒=𝑆𝑦𝑠𝐷𝑎𝑡𝑒( )−1)(𝜋(∗) (𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ⋈ 𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟))   

where the * in the projection means all attributes with the exception of End_Date. For easier 

understanding the expression could also be represented in a RA tree (Figure 32). 



A Relational Algebra Approach to ETL Modeling 

 58 

 

Figure 32 – RA tree determining expired data of the running example 

After determining the expired data the next step would be to add these tuples into the dimension 

historical table through the use of the Union operator and the assignment symbol. 

3.8 Union and Insert operation 

The union is a set operation that creates a single set with all the elements from two compatible 

sets. In the relational model based on sets, the union operation combines all the tuples of the first 

relation with all the tuples of the second relation without duplicates; therefore it is a binary 

operation since it needs two operands (relations). The operator used is the same as in Set Theory 

and is graphically represented by (⋃) and the syntax for the operation is: 

𝑅 ∪ 𝑆 = {𝑥: 𝑥 ∈ R ∨ 𝑥 ∈ S} 

Thus inserting the expired data in the dimension historical table would be: 

𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← 𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ∪  𝐸𝑥𝑝𝑖𝑟𝑒𝑑𝐷𝑎𝑡𝑎 

The cardinality of the result relation of a union operation is at most the sum of the cardinality of 

both operands due to duplicate elimination. In extended RA the cardinality of the result relation is 

exactly the sum of the cardinality of both operands since there is no duplicate elimination. 

The use of the assignment symbol has two different meanings. It can be used, as already 

presented, to decompose complex RA expressions using the left side of the assignment as a 
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temporary relation or view. Or, if the left side is an already existing base relation, it can be used 

for insert, update and delete operations. 

After inserting expired data in the historical table (DimCustomer_history), those tuples must be 

removed from DimCustomer.  

3.9 Delete operation 

Similar to the insert operation, the removal of tuples from a relation is obtained through the use of 

the assignment and difference operators.  

𝑅 ← 𝑅 −  𝑆  

where R and S are union compatible relations. 

Applying the syntax of this operation to the step needed in the running example, the expression 

would be as follows 

𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ← 𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 − (𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ⋈ 𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) 

or in a RA tree 

 

Figure 33 - RA Tree removing expired data from DimCustomer 

Finally, and to end the case presented in Figure 33, updated customers are added to 

DimCustomer. In this case, and since expired data was already removed from dimension 
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DimCustomer , and that only new or existing customers were retrieved from the source systems, 

all data present in relation Customer_NameC can be added to DimCustomer. Let us assume that it 

would be better, for performance issues, that such tuples are ordered by the primary key before 

being added to the dimension. Such task can be achieved in RA through the use of specific 

operator that sorts tuples according to determined attributes.  

3.10 Sorting 

Although one of the properties of the relational model states that the order of the tuples is 

irrelevant, that property is not entirely followed by DBMSs for performance reasons, but is also 

inadequate for some query analysis. Once data is stored, common data analysis require that data 

is presented in an orderly fashion. The operator that allows for tuple sorting is graphically 

represented by the Greek small letter tau (τ) and the syntax for the operation is: 

τL(𝑅) 

in which L is the list of attributes over which the relation should be ordered by. Once this operator 

is applied to a relation, the result is no longer a relation but a list. 

Sorting and adding Customers to dimension DimCustomer in RA would be 

𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ← 𝐷𝑖𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ∪ (휀
(

𝑆𝑡𝑎𝑟𝑡_𝐷𝑎𝑡𝑒=𝑆𝑦𝑠𝐷𝑎𝑡𝑒( ),
   𝐸𝑛𝑑_𝐷𝑎𝑡𝑒= 𝜔

)
(𝜏(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷)(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑁𝑎𝑚𝑒𝐶))) 

or in a RA tree 
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Figure 34 – RA Tree adding new and existing customers to dimension DimCustomer 

3.11 Additional Operators 

Based on the primitive RA operators, presented earlier, a series of auxiliary operators are 

presented next. These operators simplify the algebra expressions, but they can be rewritten using 

the primitive ones. 

3.11.1 SemiJoin 

The semijoin operation is used to identify the tuples of a relation (R) that have correspondent 

tuples in another relation (S). The result relation has the same structure of the first operand (R), 

nevertheless it can be expressed using a Natural Join followed by a projection over the first 

operands’ attributes. The graphical symbol used for this operator is (⋉) and the syntax for the 

operation is: 

𝑅 ⋉𝐹 𝑆 

𝑅 ⋉𝐹 𝑆 ⇔  𝜋<𝐴𝑡𝑡𝑅> ( 𝑅 ⋈F 𝑆) 
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3.11.2 OuterJoins 

Dealing with Null valued attributes in joining relations is sometimes necessary, and in those 

occasions natural joins and equijoins filter tuples that don’t have a corresponding tuple due to the 

absence of related information (Nulls). Bearing this in mind, a set of extended RA operations were 

defined to deal with this special value. 

The outerjoin is a variant of a join operation, therefore the result relation structure is the same as 

if using a theta join operation (all attributes of both relations), where non-correspondent tuples 

also appear in the result table, with the other relation’s attributes Null (ω). The graphical symbol 

used for this operation varies according to specificity of the operation, since the outerjoin can be to 

the left, right or full. The syntax for the operation is: 

Left Outer Join : 𝑅 𝐹𝑆  

In this case, the result relation of this operation will be comprised of all the combining tuples of a 

typical join plus all tuples of R that do not have corresponding tuples in S. With this operation 

there is no joining loss of information regarding relation R because all tuples of R will be present in 

the result relation. In the result relation, those tuples that have no correspondence in relation S 

will have their S attributes with Null value. 

Right Outer Join : 𝑅 𝐹𝑆  

This variant of outer join will have the same behave in a similar way of the left outer join, but this 

time all tuples of relation S will be in the result relation regardless of having or not a corresponding 

tuple in relation R. 

Full Outer Join : 𝑅 𝐹𝑆  

Lastly, the full outer join will result in a relation with all the tuples of relation R and relation S. 

Tuples that match will be present like a normal join operation, unmatched tuples will also be 

present with the other relation’s attributes with Null values. 
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3.11.3 Division 

The division operation is used when there is the need to determine the tuples of a relation (R) that 

correspond (in pre-determined attributes) to all tuples in another relation (S). The graphical symbol 

used for this operator is the common sign for division (÷) and the syntax for the operation is: 

 

𝑅 ÷ 𝑆 

All attributes of relation S must be contained in relation R. The result relation will only have the 

attributes of relation R that are not present in relation S.  

This operation can also be expressed with the basic RA operators. 

Assuming that AttA are the attributes of relation R that are not present in relation S 

𝑇1 ←  𝜋<𝐴𝑡𝑡𝐴> ( 𝑅 ) 

𝑇2 ←  𝜋<𝐴𝑡𝑡𝐴> ( ( S × T1) − R)  

𝑇 ← 𝑇1 − 𝑇2 

3.12 Aggregation 

The Relational Model revolutionized the way data was stored and accessed. Nevertheless the need 

to extract information from stored data was not satisfied by the use of simple selections, 

projections and joins. In order to compare data, to answers to particular questions, new operations 

were developed and implemented, first in database management systems and later formalized 

when Extended Relational Model was proposed (Dayal et al., 1982, Klug, 1982, Ozsoyoglu et al., 

1987, Grefen and de By, 1994). 
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One set of operations developed in DBMS and later formalized accordingly to the extended 

relational model was aggregate functions. The idea is to compute and determine specific values 

applied to an attribute. There are five functions with special properties and characteristics: 

 MAX – determines the maximum value of an attribute 

 MIN – determines the minimum value of an attribute 

 COUNT – counts how many values an attribute has 

 SUM – sums all the values of an attribute 

 AVG – calculates the average value of an attribute 

The MAX, MIN and COUNT functions can be applied to every type of attribute; on the other hand 

SUM and AVG can only be applied to numeric attributes. The operator is graphically represented by 

the Greek small letter gamma (γ) and the syntax for the operation is: 

γL(𝑅) 

where L is the list of elements composed of individual attributes (grouping attributes), and/or 

elements of the form θ(A) where θ is the aggregate function and A the attribute to which the 

function is applied. 

To demonstrate the use of this operator in an ETL scenario let’s use an excerpt of Figure 17 which 

represents a three relation joining operation using UML Activity Diagrams proposed by (Muñoz et 

al., 2008). This operation was already used previously in this chapter to present the Natural Join 

and that operation will not be the primary focus of this section. The focus is the notification 

process and the ability to store aggregated data stored in TableTemp.  

It is normal in an ETL process to log a series of data important for future analyses like errors, task 

completion times and records processed. Analyzing the quantity of data processed and time 

required for task completion will serve as valuable information for the ETL system monitoring 

phase. 
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Figure 35 - An excerpt of the conceptual model presented in Figure 17, focusing in a three relation joining operation 

Consider first that in the most critical ETL operations a notification process exists, similar to the 

presented, which upon task completion inserts a record in TableTemp. Let’s assume that 

TableTemp structure is comprised of: 

𝑇𝑎𝑏𝑙𝑒𝑇𝑒𝑚𝑝 = < 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐼𝐷, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷, 𝐷𝑎𝑡𝑒, 𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑, 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 > 

where OperationID identifies the ETL operation, ProcessID identifies a set of operations in the ETL 

system, Date is the day, Start is the time of the beginning of the operation, End is the time of 

completion of the operation, Duration is the amount of time needed to complete the operation and 

Records is the amount of tuples processed. Assume also that after each ETL run data is 

aggregated and disseminated over a few statistical tables and then the table is cleared for the next 

ETL run. 
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To properly maintain this table the ETL system must update it every time the operation concludes 

with data gathered from the ETL system configuration and from the operating system. 

Nevertheless the data needed to calculate the number of records processed is gathered with the 

use of a RA operation called aggregation. Using the COUNT function over a set of tuples the 

number of records is determined and used to populate the record to insert in TableTemp.  

γCOUNT(CustomerID)(𝐶𝑢𝑠𝑡𝑅𝑒𝑠𝑢𝑙𝑡) 

Once the ETL process terminates, several analyses could be triggered and statistical tables could 

be updated with information stored in TableTemp. The ETL manager can analyze data stored in 

TableTemp  or in the statistical tables that could also be used as input for process optimization in 

future ETL runs. For instance, if the average time taken to complete an operation was an 

important input for optimization, aggregation and possibly sorting would be used in the relation 

algebra expression needed to identify such operations. 

𝜏𝐴𝑉𝐺_𝐷𝑈𝑅(γ(OperationID,AVG(Duration)→AVG_DUR)(𝑇𝑎𝑏𝑙𝑒𝑇𝑒𝑚𝑝)) 

Let’s suppose that two of the statistical tables present have the following structure: 

𝑆𝑡𝑎𝑡𝑠 = < 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷, 𝐷𝑎𝑡𝑒, 𝑆𝑢𝑚𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 > 

𝑊𝑎𝑟𝑛𝑖𝑛𝑔 = < 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷, 𝐷𝑎𝑡𝑒 > 

and that the stored data is used to monitor each ETL run. Stats table stores the amount of time 

taken for each process in an ETL run. Warning table signals all processes that consumed double 

the average they normally take to complete the task. The RA expressions needed to keep these 

tables up-to-date would be: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ←  𝛾(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷,𝐷𝑎𝑡𝑒,𝑆𝑈𝑀(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)→𝑆𝑢𝑚𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)(𝑇𝑎𝑏𝑙𝑒𝑇𝑒𝑚𝑝) 

𝐴𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ←  𝛾(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷,𝐴𝑉𝐺(𝑆𝑢𝑚𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)→𝐴𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)(𝑆𝑡𝑎𝑡𝑠) 

𝑇1 ← (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ⋈ 𝐴𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 
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𝑇2 ← 𝜎(𝑆𝑢𝑚𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛>𝐴𝑣𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛∗2)(𝑇1) 

𝑇3 ← 𝜋(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝐷,𝐷𝑎𝑡𝑒)(𝑇2) 

𝑊𝑎𝑟𝑛𝑖𝑛𝑔 ←  𝑊𝑎𝑟𝑛𝑖𝑛𝑔 ∪ 𝑇3 

𝑆𝑡𝑎𝑡𝑠 ← 𝑆𝑡𝑎𝑡𝑠 ∪  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

3.13 Duplicate Elimination 

Extended RA works over bags and therefore duplicates are allowed, nevertheless there is an 

operator that transforms a bag into a set by removing duplicate tuples. The operator that removes 

duplicates is graphically represented by the Greek small letter delta (δ) and the syntax for the 

operation is: 

δ(𝑅) 

Using one of the previous statistical tables, table Warning, which is used to store processes that 

consume double the average time normally needed, let’s suppose that the ETL manager wanted to 

know in which days those occurrences happened. The expression: 

𝜋(𝐷𝑎𝑡𝑒)(𝑊𝑎𝑟𝑛𝑖𝑛𝑔) 

will return a list of dates, with possible duplicates that don’t add any value to the answer, therefore 

the use of the duplicate elimination operator 

δ (π(Date)(𝑊𝑎𝑟𝑛𝑖𝑛𝑔))  

3.14 Algebraic Laws 

User queries are often long and complex, being frequently difficult to process. When these queries 



A Relational Algebra Approach to ETL Modeling 

 68 

are written or translated to RA expressions there is an optimization process that can simplify or 

improve the time taken to answering them. Query optimization is often based on the principles of 

the algebraic laws applied to sets and bags. 

3.14.1 Commutativity and Associativity 

Operations like the cartesian product, natural join, union and intersect uphold the commutative 

and associative laws, either using the Set or Bag Theory. 

Commutative laws: 

 𝑅 ×  𝑆 = 𝑆 ×  𝑅 

 𝑅 ⋈  𝑆 = 𝑆 ⋈  𝑅 

 𝑅 ∪  𝑆 = 𝑆 ∪  𝑅 

 𝑅 ∩  𝑆 = 𝑆 ∩  𝑅 

Associative laws: 

 ( 𝑅 ×  𝑆 ) × 𝑇 = 𝑅 × ( 𝑆 ×  𝑇 ) 

 ( 𝑅 ⋈  𝑆 ) ⋈ 𝑇 = 𝑅 ⋈ ( 𝑆 ⋈  𝑇 ) 

 ( 𝑅 ∪  𝑆  ) ∪ 𝑇 = 𝑅 ∪ ( 𝑆 ∪  𝑇 ) 

 ( 𝑅 ∩  𝑆  ) ∩ 𝑇 = 𝑅 ∩ ( 𝑆 ∩  𝑇 ) 

Any other type of join operation besides natural join might not uphold the associative law. See, for 

instance, the example of a theta join: 

 ( 𝑅 ⋈𝑐 𝑆 ) ⋈𝑑  𝑇 = 𝑅 ⋈𝑐 ( 𝑆 ⋈𝑑 𝑇 ) 

in which c and d are join conditions. If d condition refers to attributes of relation R the equality is 

not valid. 

3.14.2 Laws for Selection 

The selection operation maintains the structure of the base relation and filters the tuples according 

to the condition defined. Bearing this in mind there are a few equivalences that can be deducted 
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and used in query optimization: 

 𝜎𝑐 ∧ 𝑑( 𝑅 ) =  𝜎𝑐 ( 𝜎𝑑 ( 𝑅 ))  

 𝜎𝑐 ∨ 𝑑( 𝑅 ) =  𝜎𝑐 ( 𝑅 ) ∪ 𝜎𝑑 ( 𝑅 )  - does not apply for Bags 

 𝜎𝑐 ( 𝜎𝑑 ( 𝑅 )) =  𝜎𝑑 ( 𝜎𝑐 ( 𝑅 ))  

 𝜎𝑐 ( 𝑅 ∪ 𝑆 ) =  𝜎𝑐 ( 𝑅 ) ∪ 𝜎𝑐 ( 𝑆 ) 

 𝜎𝑐 ( 𝑅 − 𝑆 ) =  𝜎𝑐 ( 𝑅 ) − 𝜎𝑐 ( 𝑆 ) =  𝜎𝑐 ( 𝑅 )– 𝑆 

Additionally, and only if condition c can be applied to relation R alone, a few more equivalences 

can be deducted: 

 𝜎𝑐 ( 𝑅 ×  𝑆 ) =  𝜎𝑐 ( 𝑅 ) × 𝑆 

 𝜎𝑐 ( 𝑅 ⋈  𝑆 ) =  𝜎𝑐 ( 𝑅 ) ⋈ 𝑆 

 𝜎𝑐 ( 𝑅 ⋈𝑑  𝑆 ) =  𝜎𝑐 ( 𝑅 ) ⋈𝑑 𝑆 

 𝜎𝑐 ( 𝑅 ∩  𝑆 ) =  𝜎𝑐 ( 𝑅 ) ∩ 𝑆 

3.14.3 Laws for Projection 

The projection operation is often used to filter out attributes that are not needed, either to answers 

the query or for future operations. Therefore it is a good practice to project out the unneeded 

attributes prior to any join operation. Some equivalences that allow to project prior to the join 

operation: 

 𝜋𝐿( 𝑅 ⋈  𝑆 ) =  𝜋𝐿( 𝜋𝑀 ( 𝑅 )  ⋈  𝜋𝑁 ( 𝑆 )) 

 𝜋𝐿( 𝑅 ⋈𝑐  𝑆 ) =  𝜋𝐿( 𝜋𝑀 ( 𝑅 )  ⋈𝑐  𝜋𝑁 ( 𝑆 )) 

 𝜋𝐿( 𝑅 ×  𝑆 ) =  𝜋𝐿( 𝜋𝑀 ( 𝑅 )  × 𝜋𝑁 ( 𝑆 )) 

In all these cases L ⊆ M and L ⊆ N and M ∩ N ≠ ∅, which means that the reduced attributes of 

relation R and relation S must contain their joining attributes in addition to the output attributes 

represented by L.  

There are laws that can be applied to sets and cannot be applied to bags and vice versa. The 

projection operation in conjunction with other operations has that kind of problems. When using 

bags the following equivalence holds true but it does not for sets: 
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 𝜋𝐿( 𝑅 ∪  𝑆 ) =  𝜋𝐿( 𝑅 ) ∪  𝜋𝐿( 𝑆 ) 

Additionally it is not possible to distribute (or push down) the projection operation over the 

intersection or difference operation. 

3.14.4 Laws for Duplicate Elimination, Grouping and Aggregations 

As extended RA was presented, algebraic laws that defined the behavior of each operation were 

also demonstrated. The duplicate elimination and grouping operators have, in one particular case, 

the same result since grouping by all attributes is the same has using duplicate elimination  

𝛿( 𝑅 ) =  𝛾𝐴( 𝑅 ) 

where A is the list of all attributes of relation R.  

The algebraic laws when using aggregations and duplicate elimination are simple due to the 

behavior of grouping.  

𝛿 ( 𝛾𝐿( 𝑅 )) =  𝛾𝐿( 𝑅 ) 

where L is a list of grouping attributes and aggregate functions over relation R. There is no need to 

use duplicate elimination since the grouping/aggregation does not produce duplicates. 

On the other hand, the removal of duplicates prior to the use of aggregate functions might affect 

the outcome depending on the aggregate function used. MIN and MAX functions are not affected 

by duplicate and in this case the following law holds true. 

𝛾𝐿( 𝑅 ) = 𝛾𝐿(𝛿 ( 𝑅 ))  

A small optimization that can also be adopted when using aggregations is to project out unneeded 

attributes has already stated. 

𝛾𝐿( 𝑅 ) = 𝛾𝐿(𝜋𝑀 ( 𝑅 )) 𝑤ℎ𝑒𝑟𝑒 𝐿 ⊆ 𝑀  
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Chapter 4 

4ETL standard processes specification 

The ETL component of a data warehousing system is comprised of several tasks that are 

responsible for gathering data from information sources, transforming it (through cleaning, 

conforming and conciliating it), and finally loading it into the data warehouse (Kimball and Caserta, 

2004). As already stated previously, the modeling phase of an ETL system is crucial to the success 

of its development, and therefore subject of intensive research by the data warehousing 

community. This chapter focuses on presenting a set of ETL patterns based on RA operations that 

were applied to common ETL activities. The goal of this approach was to achieve a standard and 

formal specification of ETL activities that still lacks in common ETL design methodologies, as 

already focused in chapter 2. 

A typical ETL scenario integrates one or more data sources, the data providers, a staging area, 

where data, once extracted from sources, is cleaned, transformed and conformed accordingly to 

business necessities, and a data warehouse (or a data mart) to receive the data prepared to 

support decision-makers views (Figure 36). 
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Figure 36 - A generic view of a data warehousing system functional architecture. 

An ETL process integrates several tasks, mainly defined as a workflow process (Vassiliadis et al., 

2002b, Simitsis et al., 2005a, Tziovara et al., 2007) that are normally executed in a dedicated 

environment. However, unusual DWS environments, such as grid environments, start to arise as an 

approach to deal with ETL performance bottlenecks when dealing with large amounts of data in a 

limited time window (Santos et al., 2012).  

4.1 Changing Data Capture 

Let us first assume that the data warehouse we will use is supported by a dimensional model 

(Kimball and Ross, 2002) and therefore data extracted from sources will be cleaned, transformed 

and integrated into dimensions and fact tables. Capturing changes in information sources is a 

critical operation that is required for the correct maintenance of a data warehouse. The challenge 

of this task varies according to the number and variety of the data sources involved with, which 

can be very diversified, and so is the primary challenge to access data. The data needed to 

populate a data warehouse might be stored in mainframes, flat files, XML files, DBMS, Web logs, 

etc., being its access sometimes complicated. Nevertheless, and exclusively for modeling purposes, 

let’s assume that data is extracted from source systems and correctly represented in a relation’s 

format. Let’s also assume that the ETL process extracts all the data existent in a source system to 
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load into a specific dimension, since it might not be possible to extract only new and changed data. 

We shall call the relation that stores the data extracted 𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆´𝑥. This relation consists of a 

list of attributes that includes a business key and a finite set of additional attributes (Equation 1). 

The business key is normally identified as a primary key and may be a single attribute or a set of 

attributes. 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆´𝑥
=  〈𝐵𝐾𝑆´𝑥

, 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝〉 
(1) 

where 𝐵𝐾𝑆´𝑥
is the business key of source 𝑆´𝑥 and 1 ≤ 𝑥 ≤ 𝑛 and 𝑛 ≥ 1, and 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝 are 

additional data attributes needed for the dimension and 𝑝 ≥ 1. 

Let’s also assume that the previous extraction has been stored to facilitate the detection of new or 

changed tuples (Equation 2). 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆´𝑥
=  〈𝐵𝐾𝑆´𝑥

, 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝〉 
(2) 

Now, to determine the new and changed tuples a subtraction is the only operation needed 

(Equation 3). 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥(𝐵𝐾𝑆𝑥 ,𝐴𝑡𝑡1,…,𝐴𝑡𝑡𝑝) ← 𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆´𝑥
− 𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆´𝑥

 (3) 

To prepare for the next extraction, the previous extraction is discarded and the current extraction 

will be the next previous extraction (Equation 4). 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆´𝑥
← 𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆´𝑥

 
(4) 

From this point on a series of transformations, mainly due to quality enforcement rules, are applied 

to the data extracted before integrating it into the DW.  

4.2 Data Quality Enforcement 

Usually, the information sources of a DWS contain inaccurate data, unknown or null data and 

sometimes inconsistent data that are spread generally by operational systems’ objects, constraints 
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or rules. This imposes the inclusion of cleansing tasks in data warehousing populating systems to 

detect and filter (and sometimes recover) potential data anomalies in the source’s data before 

loading it into a DW. Often, these tasks are implemented and executed through the use of 

proprietary tools that analyze and transform the data accordingly to some predefined business 

requirements. Cleansing tasks are undoubtedly important. They are mainly concerned with 

identifying problems in metadata and data (Hernández and Stolfo, 1998, Rahm and Do, 2000, Lee 

et al., 1999), i.e., inconsistencies at attribute and row level, rather than defining a strategy to 

execute the procedures needed to deal with those problems. 

4.2.1 Dirty Data and Data Quality 

A data warehouse usually receives information from several sources, frequently of heterogeneous 

nature. These sources are responsible to support day-to-day business activities, storing and 

providing data to ensure common tasks in regular operational services. Nevertheless, these 

business activities not always provide such systems with accurate or even known data. It is 

common that during the normal use of an information system, data might not be available for 

input or data might be inaccurately introduced in the system due to some not expectable event like 

a human error. The balance between allowing attributes to be null or forcing their introduction is 

also a compromise to be made in the development of any information system. However, it is quite 

important to keep in memory that business cannot be stalled by overzealous requirements of an 

information system. When building a DW, several heterogeneous data sources are normally 

considered for integration and data can be presented in a lot of different formats, i.e., relational 

databases, structured or semi-structured files, or even free-form files. When analyzing source data, 

the more permissive the rules are the more difficult it is to validate the data that was stored.  

Analyzing the types of data quality problems present in source data (Rahm and Do, 2000), as 

classified in Table 4, it is notorious that cleaning tasks complexity is far greater when several 

sources are involved. When dealing with a single source, the majority of the problems with dirty 

data are a reflex of lack of constraints, integrity constraints, domain constraints or even referential 

integrity. If the schema is permissive, it is also normal to find at the instance level data misspelled, 

redundant or attributes that contradict each other, such as the attributes age and date of birth, for 
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instance. However, if multiple heterogeneous sources are used, the complexity of the problems 

associated with creating an integrated repository escalates to a higher degree of complexity. In 

this case we are dealing not only with data quality issues but also with data conciliation problems.   

Table 4 - Data quality problems (Rahm and Do, 2000) 

Single-Source Problems Multi-Source Problems 

Schema Level 

(Lack of integrity constraints, 

poor schema design) 

Instance Level 

(Data entry errors) 

Schema Level 

(Heterogeneous data 

models and schema 

designs) 

Instance Level 

(Overlapping, contradicting and 

inconsistent data) 

- Uniqueness 

- Referential integrity 

- Misspellings 

- Redundancy duplicates 

- Contradictory values 

- Naming conflicts 

- Structural conflicts 

- Inconsistent aggregating 

- Inconsistent timing 

Although the problems associated with poor data quality are mostly identified, the tasks or 

procedures needed to deal with them are much diversified. In (Costa, 2006) a brief summary of 

actions is presented to solve data anomalies like the ones identified previously in Table 5. These 

tasks (Figure 37) are normally executed during the transformation phase of an ETL process. 

Table 5 - Anomalies resolution strategy (Costa, 2006) 

N. Description 

1 Data Decomposition – obtain atomic values 

2 Transformations: 

2.1 Standards (uppercase, lowercase, acronyms and abbreviations) 

2.2 Normalization (i.e. enforce business rules) 

2.3 Corrections 

3 Correct null values 

4 Referential integrity enforcement 

5 Data enrichment 

6 Duplicate data resolution 

7 Expert intervention 

8 Enforce Data Domains 

9 Enforce Mandatory Data Entry 

10 Change Data Type 

11 Change Multidimensional Model 
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Figure 37 - Data transformation and cleaning tasks (Costa, 2006) 

4.2.2 Modeling DQE Tasks with Relational Algebra 

For demonstration purposes the dimension structure presented in Equation 3 will be used as the 

basis for the following transformations. The data stored in 𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
refers to new and 

changed data extracted from a source system. 

Data Decomposition 

Let us assume now that the attribute 𝐴𝑡𝑡𝑝 in Equation 3 is an alphanumeric attribute that was used 

to store information that according to the data warehouse structure is now stored in several 

different attributes, for example we will define three new attributes, as defined in Equation 5. 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎_𝑑𝑆𝑥
=  〈𝐵𝐾𝑆𝑥

, 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝, 𝐴𝑡𝑡𝑥, 𝐴𝑡𝑡𝑦, 𝐴𝑡𝑡𝑧〉 
(5) 

This is a common example of the use of data decomposition task. The contents of attribute 𝐴𝑡𝑡𝑝 

should be decomposed into three new attributes 𝐴𝑡𝑡𝑥, 𝐴𝑡𝑡𝑦, 𝐴𝑡𝑡𝑧. The RA expression that will allow 

us to obtain that decomposition is presented in Equation 6. 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎_𝑑𝑆𝑥
 ← 휀[𝐴𝑡𝑡𝑥=𝑠𝑢𝑏𝑠(𝐴𝑡𝑡𝑝,1),𝐴𝑡𝑡𝑦=𝑠𝑢𝑏𝑠(𝐴𝑡𝑡𝑝,2),𝐴𝑡𝑡𝑧=𝑠𝑢𝑏𝑠(𝐴𝑡𝑡𝑝,3) ](𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥

) (6) 

where the function subs is a user-defined function that extracts a set of characters from an 

attribute. The first argument is the attribute to be parsed and the second argument of the function 

defines which set of characters is intended (first, second, etc.). Generalizing, using the extend 

operator, 휀 (Baralis and Widom, 1994), that creates new attributes based on data present in other 
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attributes, either by algebraic operations or user-defined operations, it is possible to decompose 

the contents of any attribute. 

Standardization 

The standardization task has the goal to conform data that came from distinct sources in different 

formats but that has the same meaning. This happens frequently in cases that are associated with 

the use of upper or lower case characters in attributes and with the use, or misuse, of acronyms 

and abbreviations. Although recognized as standardization, there are a lot of different approaches 

to deal with the problems raised by these cases. In the case of upper and lower case characters, a 

system (or an user-defined function) will suffice in conforming the data. However dealing with 

acronyms and abbreviations requires the use of auxiliary tables to match and substitute the 

attribute to be treated. Unfortunately, it happens often to be necessary to do the standardization 

task by hand. 

For the upper and lower case standardization scenario, let us assume that attribute 𝐴𝑡𝑡𝑥, which 

was previously generated by the standardization operation, should be in upper case letters. 

Therefore, Equation 7 presents the creation of a new attribute based on the 𝐴𝑡𝑡𝑥 attribute but with 

all letters in uppercase, and Equation 8 removes the old 𝐴𝑡𝑡𝑥 attribute from table preserving the 

new one. Finally, Equation 9 renames the new attribute to the old name restoring the original 

structure of the table. 

𝑇𝑒𝑚𝑝1 ←  휀[𝐴𝑡𝑡𝑥1=𝑢𝑝𝑝𝑒𝑟(𝐴𝑡𝑡𝑥) ](𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎_𝑑𝑆𝑥
) (7) 

𝑇𝑒𝑚𝑝2 ← 𝜋𝐵𝐾𝑆𝑥 ,𝐴𝑡𝑡1,…,𝐴𝑡𝑡𝑝,𝐴𝑡𝑡𝑥1,𝐴𝑡𝑡𝑦,𝐴𝑡𝑡𝑧
(𝑇𝑒𝑚𝑝1) (8) 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎_𝑢𝑆𝑥
← 𝜌𝐵𝐾𝑆𝑥 ,𝐴𝑡𝑡1,…,𝐴𝑡𝑡𝑝,𝐴𝑡𝑡𝑥,𝐴𝑡𝑡𝑦,𝐴𝑡𝑡𝑧 (𝑇𝑒𝑚𝑝2) (9) 

With RA trees it’s quite simple to show how this set of operations works and understand clearly the 

sequence of operations followed. If there was a need to convert an attribute to a lower case then 

the approach to follow would be similar to the presented in Figure 38. 
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Figure 38 - RA tree representation for upper case transformations 

Another standardization scenario we have to deal with is the existence of acronyms and 

abbreviations. To conform an attribute that is supposed to store abbreviations/acronyms of some 

sort, first an auxiliary table must be created integrating all possible values encountered in the 

source table and their correspondence in order to perform transformations required. In this 

particular case, and since there is a lookup in an auxiliary table, new representations of the 

abbreviations/acronyms might appear in the source table having no correspondence in the auxiliary 

table. In this case those tuples must be stored in a temporary table that will require an expert 

intervention in order to establish the correct correspondence in the auxiliary table and rerun the 

transformation for these tuples. In this case the attribute 𝐴𝑡𝑡𝑦 stores abbreviations but previous 

data analysis reports that there are different abbreviations for the same meaning. Let us also 

assume that an auxiliary table was created to store all known correspondences (Equation 10). 

𝑎𝑏𝑏_𝑚𝑎𝑡𝑐ℎ =  〈𝐴𝑡𝑡𝑦, 𝐴𝑡𝑡𝑦1〉 
(10) 

The task for conforming data is basically represented by the result of a join operation identifying 

the conformed abbreviation that will be stored in the data warehouse (Figure 39 (a)), and 

afterwards the identification of tuples that have attribute values with no match in the auxiliary 

table thus in need of an expert attention (Figure 39 (b)). The proposed operations reflect the steps 

needed to conform abbreviations, but the approach to deal with acronyms is the same. 
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a) 

 

 

 

b) 

Figure 39 - (a) Conforming abbreviations and (b) identifying non correspondences 

The majority of the cleaning tasks needed to be done in the ETL process fall into the category of 

normalization and correction, where data was introduced in the OLTP systems with errors. The 

common approach to deal with these errors is the same has presented in the previous task. First, 

we need to identify variations of the correct value, build an auxiliary table with all valid 

correspondences (or mappings) between dirty values and clean values, and then conforming the 

data as necessary. Data not treated should be stored in a quarantine data staging table to be 

examined latter by an expert that will diagnose and correct (if possible) the problems, providing a 

correction patch that will be applied in future populating processes, i.e., insert all correspondences 

needed in the auxiliary table. 

Duplicate data in source systems is common and identifying them is not an easy task. It is even 

more difficult to deal with these duplicates after detecting them. To avoid future problems, data in 

the source systems should be corrected in order to avoid future duplicates. However, in order to 

identify duplicates there must be an attribute that should be unique, but for some reason is not, 

that will allow us to determine these duplicates and deal with them. 

Let us assume for our demonstration that the attribute 𝐴𝑡𝑡𝑧 stores information that should be 

unique in the dimension, i.e. the attribute 𝐴𝑡𝑡𝑧, which was part of a larger attribute in the 

beginning of our demonstration, identifies each tuple. One method to identify duplicates is to find if 
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a given data instance is present in more than one tuple and therefore violating the uniqueness of 

the value stored in 𝐴𝑡𝑡𝑧 (Figure 40). If such records exist then they must be stored apart for expert 

supervision. 

 

Figure 40 - Eliminating duplicates 

After identifying the duplicates, they should be removed from the dimension table in order to 

proceed to the next task, probably data loading. All the duplicate detections will wait for expert 

intervention in a specific quarantine data staging (Equation 11). 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎_𝑓𝑖𝑛𝑎𝑙𝑆𝑥
← 𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎_𝑎𝑏𝑏𝑆𝑥

−  𝑠𝑟𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎_𝑑𝑢𝑝𝑆𝑥
 

(11) 

4.3 Data Conciliation 

In order to take full advantage of a DWS, all potential sources of data must be studied and 

analyzed for current or future integration in its DW. This multitude of sources increases the rate of 

failure if not dealt with proper care and attention. 

In today’s organization is common to find different transactional systems that evolved through 

different periods in the organizations’ life, probably even in different departments or services units. 

Nevertheless, it is also likely to find several representations of common concepts in these systems. 
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For instance, if one system deals in some way with clients and another system deals with 

customers, several misrepresentations of data might occur, like different codes, names, addresses 

or other information for a same entity. The correct representation of this information in a data 

warehouse is often the most difficult tasks that one may find in an ETL system which aims at 

maintaining the data warehouse up-to-date and correct.  

The problem of integrating data from heterogeneous sources is mainly categorized in two aspects: 

schema and semantics heterogeneity. Schema integration has been widely studied by the database 

research community (Lenzerini, 2002) and culminated in the presentation of several prototypes 

and algorithms (Rahm and Bernstein, 2001). Semantics integration is also a challenge that has 

been studied by several researchers and analyzes problems not only at schema-level but also at 

instance-level (Rahm and Do, 2000, Kedad and Métais, 1999). Nevertheless these approaches do 

not formalize any set of logical steps needed to maintain and integrate data coming from 

heterogeneous sources inside a DW. 

Data, once extracted from a source 𝑆𝑥, has to be integrated, therefore transformed, in order to 

represent a unified and common view in the DW. The problem arises when these heterogeneous 

sources contain just partial information when in comparison to the data stored in the DW, and also 

when we have the need of storing historical information about changes that occur in the sources. 

This transformation phase is then comprised of several processes, mainly dedicated to the 

cleaning, conciliation and integration with or without dealing with changes. 

4.3.1 Conciliation Phase 

As already stated, the conciliation phase parses source data and matches it to existing integrated 

data already present in the DW. In this process two possibilities occur, data is matched and 

therefore integrated into a common representation in the DW, or data is unmatched, which means 

that it is new information that has no correspondence to existing data in the DW, and therefore it 

must be added to the data warehouse with the correct transformations which also means that all 

auxiliary conciliation support tables must be updated with this new information. 
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An example of a conciliation scenario is presented in Figure 41 where the extraction process 

detected new or changed tuples in the Products’ relations from two sources that must be 

conciliated and integrated into the Data Warehouse. Therefore the assignment of the correct 

surrogate keys to the extracted data must be modelled in order to successfully integrate the data 

into the data warehouse and also to preserve history when changes in the source systems occur.  

 

Figure 41 - Example of extracted data that must be conciliated and integrated into the data warehouse  

Notice that the conciliation table is used to map business keys to surrogate keys, and that in the 

example shown only a few correspondences exist in comparison with data extracted from sources. 

That means that in the end of the conciliation process new surrogate keys have to be created and 

correspondences to current surrogate keys must be updated. 

Continuing with the assumption that the data warehouse is based in the dimensional model 

proposed by (Kimball et al., 1998) which is basically organized as follows: fact tables that store 

events or facts and dimension tables that act as qualifiers of those facts. These tables are 

normally, in a simplified approach, organized in a star schema, where the fact table references the 

dimension tables. Therefore first we deal with dimension data and only after we deal with the 

facts. In both cases, for the conciliation phase, we need a conciliation table, for each dimension, 

that helps us with mapping business keys from the heterogeneous sources into the surrogate keys 
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used in the DW. Surrogate keys are a normal approach to avoid using complex business keys in 

the DW, not only because of performance issues but also because it is not always possible to store 

business keys in the DW mainly when dealing with heterogeneous sources.  

Consider a relation 𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑡𝑎𝑏𝑙𝑒 as a list of attributes having a surrogate key, and a list of 

business keys (derived directly from the heterogeneous sources previously referred) – (Equation 

12). 

𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑡𝑎𝑏𝑙𝑒 =  〈𝑆𝐾, 𝐵𝐾𝑆1
, … , 𝐵𝐾𝑆𝑛

〉 (12) 

in which 𝑆𝐾 is the surrogate key, normally a natural number, 𝐵𝐾𝑆1
, … , 𝐵𝐾𝑆𝑛

 are the attributes that 

belong to the business key of a source 𝑆𝑥, where 1 ≤  𝑥 ≤  𝑛. A business key from a specific 

source might not be a single attribute but rather a set of attributes, which imposes that some 

additional adjustments must be made to the equation. The business keys will allow us to integrate 

data from different sources correctly, since they will map an instance, from a specific source, to a 

surrogate key that will in turn guarantee data integrity in the DW.  

The common structure of source data after being extracted and cleaned was presented in 

(Equation 3). 

A graphical approach to the conciliation process is presented in Figure 42, where for each source 

processed a matching task is performed to map the business keys into the data warehouse 

surrogate keys. Whenever a source tuple is unmatched, it is stored in a separate table for further 

revision since it will probably be new data that will need to be processed and updated with a 

matching correspondence in the conciliation auxiliary table (𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑡𝑎𝑏𝑙𝑒).  

The matching process can be expressed in RA and is presented using RA trees in Figure 43. In 

Figure 43(a) the join operation between source data and the auxiliary table will result in 

determining the matching tuples and the correct correspondence to the surrogate key. In Figure 

43(b) the subtract operation is used to remove from source data those tuples that were matched, 

therefore remaining those that do not have correspondence in the auxiliary table. These tuples 
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must then be dealt with, normally through human interaction that determines the correct 

correspondence to a surrogate key (new or already defined) in the conciliation auxiliary table. 

 

Figure 42 - ETL Conciliation process. 

 

a) 

 

b) 

Figure 43 - (a) Conciliated Data; (b) Unmatched Data. 
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The structure of the result table after the conciliation phase is very similar to the source table, the 

only change is the presence of the surrogate key (𝑆𝐾) instead of the business key (𝐵𝐾𝑆𝑥
) – 

(Equation 13). 

𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
=  〈𝑆𝐾, 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝〉 

(13) 

After the conciliation phase, begins the integration phase, where data coming from different 

sources is integrated into the dimension table. In this phase, dealing with changes (Santos and 

Belo, 2011b), normally called changing dimensions, has to be adjusted to the fact that we are 

dealing with multiple sources. 

4.4 Slowly Changing Dimensions 

Perhaps one of the most important quests is to ensure consistency (and correctness) in the data 

warehouse's structures, especially at dimension table’s level. As is known, dimension tables are 

used to provide subject oriented information by providing data elements to filter, aggregate or 

describe facts in a data warehouse. Thus, it is quite important that dimensions remain consistent 

accordingly in some data warehouse's time frame even when some values of their attributes 

change over time. When this occurs, dimension tables are classified as SCD. 

SCD (Kimball and Caserta, 2004) are not a new concept. Often, during the dimensional modeling 

phase of a data warehouse the term appears frequently, referring to dimension tables that have 

attributes whose values could change over time. Data warehouse designers sometimes select and 

integrate attributes in dimension tables that must have special populating procedures to ensure 

that their values keep consistency as time passes, ensuring that the DW, and in particular the 

schema where they are integrated, keeps an integrated state in all time frames considered in its 

own structure (Griffin et al., 2005). Even requiring such special procedures, SCD are very 

important to keep up-to-date dimension properties in a data warehouse - an address of a customer 

or supplier, a production standard cost of a product, an employee's salary, just to name a few, 

guaranteeing that facts have an up-to-date dimensional support. Special oriented ETL processes 

are responsible to maintain SCD, acting accordingly to the updating strategy previously defined. 



A Relational Algebra Approach to ETL Modeling 

 86 

The way they are implemented followed all the dimensional modeling requisites established for 

every dimension table classified as SCD; the same occurs if the dimension was classified as Rapidly 

Changing Dimension (RCD); its treatment is quite similar to SCD not differing in any relevant 

aspect, unless the form it varies in time. 

Usually, every SCD process starts with a changing event occurrence in a specific information 

source (one or more) that provides the data to feed the dimension table. Usually, a CDC process 

detects the update event and records it accordingly to some predefined SCD requisites - temporal 

labels, metadata format, operation markers, operational systems application or user, etc. After, in 

a DWS staging area the remaining part of the SCD process is triggered and the SCD strategy 

applied. Although we always speak in terms of process, SCD strategies are applied at the attribute 

level, for a particular dimension table. For each dimension table, DWS designers use to define what 

kind of updates attributes will be modified over time. They must prevent all the possible cases of 

attribute changing, once it is not very recommendable to change dimension table structures when 

the DWS is already in production. Over a same SCD we could have to apply distinct updating 

strategies for a single record. Frequently, this involves different processes for different SCD 

strategies. 

Based on the most traditional approaches founded in the literature to deal with SCD, the following 

types can be identified (Kimball and Ross, 2002, Kimball and Caserta, 2004, Kimball et al., 2008): 

Type 1 - whenever occurs a change in an attribute classified as type 1, the change must be 

reflected in the dimension's attribute overwriting its previous value; no kind of history will 

be kept about the values changing.  

Type 2 - this is the first SCD strategy that allows keeping historical data about changes in 

dimensions' attributes; every change is recorded as a new dimension record keeping the 

old one for historical reasons; all the records about a same entity are connected through 

conceptual pointers, which allow navigating among all the changes of a specific entity. 

Type 3 - it allows also to maintain historical data, but only to some level of depth, which is 

the number of times that we must replicate the definition of the attribute for which we 
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want to keep history; for instance, if we want to keep the last three addresses of a 

customer (depth 3), we must defined three attributes with the same definition to receive 

the last three address values. 

Type 4 - this type considers the use of an auxiliary table especially oriented to keep the 

changes that dimension's attributes suffer over time, while the dimension table maintain 

the most recent records; this simplify a lot all the processes required to update the values 

of SCD attributes and keeps simple all data browsing tasks over the dimension. 

Type 6 - basically, this updating strategy is a combination of the techniques used in SCD 

types 1, 2 and 3, with the objective to usufruct from the advantages of each one of them 

(Kimball and Ross, 2002, Manh Nguyen et al., 2007). 

4.4.1 SCD Type 1 

When an attribute is identified as a SCD type 1 attribute, the methodology to deal with the 

changes is simple, the attribute is simply updated. Since the old attribute value is lost, all future 

analysis refer to the new value, therefore history is not retained. 

Let us assume that the SCD process follows the conciliation process and therefore use 

𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
 (Equation 13) as the basis to modeling the SCD Type 1 task. 

In a SCD Type 1 the typical structure of the dimension itself is presented in Equation 14 which is 

the same as Equation 13 therefore simplifying the task, since the only steps needed are the 

removal of the changed tuples from the dimension (Equation 15, Equation 16 or Figure 44) and the 

addition of the new and changed tuples that result from the conciliation process (Equation 17). 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =  〈𝑆𝐾, 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝〉 
(14) 
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𝑂𝑙𝑑_𝑑𝑎𝑡𝑎 ←  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⋉ 𝜋(𝑆𝐾)(𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
) 

(15) 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 − 𝑂𝑙𝑑_𝑑𝑎𝑡𝑎 
(16) 

 

Figure 44 - Removal of changed tuples using a SCD Type 1 strategy 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ∪ 𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
 

(17) 

4.4.2 SCD Type 2 

When an attribute is identified as a SCD type 2 attribute, the methodology to deal with the 

changes is complex. Since history is preserved in the dimension relation, additional attributes are 

needed to identify the timeframe in which the tuples are valid. Therefore the structure of the 

dimension relation (Equation 18) is somewhat different than in SCD type 1. 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =  〈𝑆𝐾, 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝, 𝑆𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒, 𝐸𝑛𝑑𝐷𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡〉 
(18) 

where 𝑆𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒 and 𝐸𝑛𝑑𝐷𝑎𝑡𝑒 are two Data type attributes, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 attribute is typically a bit 

attribute that identifies if tuple is actual or not. 

Let us consider that the type 2 attribute is one of the 𝐴𝑡𝑡1, . . . , 𝐴𝑡𝑡𝑝 attributes. In order to process 

correctly the changes in the type 2 attribute, we first need to separate current from historical data 
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(Equation 19) since updates will force current data to become history by changing the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 

𝐷𝑎𝑡𝑒𝑇𝑜 attribute. 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ←  𝜎(𝑐𝑢𝑟𝑟𝑒𝑛𝑡=1)(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛) 
(19) 

Expiring data are those tuples in which the SK is present in both 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 

𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
 (Equation 20) and must be removed from the dimension (same expression as 

already defined in Equation 16). To complete the expiring process we add the changed data with 

𝐸𝑛𝑑𝐷𝑎𝑡𝑒 attribute set to the expiring date, normally two days prior to the day the ETL process is 

running, and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 attribute set to 0 which means expired data (Equation 21). 

𝑂𝑙𝑑_𝑑𝑎𝑡𝑎 ←  𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⋉ 𝜋(𝑆𝐾)(𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
) 

(20) 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ∪ 𝜋(𝑆𝐾,𝐴𝑡𝑡1,…,𝐴𝑡𝑡𝑝,𝑆𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒,𝑡𝑜𝑑𝑎𝑦()−2,0) (𝑂𝑙𝑑_𝑑𝑎𝑡𝑎) (21) 

The entire process of expiring data can be presented in a RA tree as in Figure 45. 

 

Figure 45 – Expiring data process using a SCD Type 2 strategy 

 Finally, and after the process of expiring data is concluded, all data is added to the dimension 

correctly time stamped and current (Equation 22 and Figure 46). 



A Relational Algebra Approach to ETL Modeling 

 90 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ∪ 휀(𝑆𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒=𝑡𝑜𝑑𝑎𝑦( )−1,𝐸𝑛𝑑𝐷𝑎𝑡𝑒=𝜔,𝑐𝑢𝑟𝑟𝑒𝑛𝑡=1)(𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
) 

(22) 

 

Figure 46 - Adding data using a SCD Type 2 strategy 

4.4.3 SCD Type 3 

As a compromise to the disadvantages present in the type 2 approach, type 3 is able to store 

historical changes to the degree needed. This is accomplished by the used of additional attributes 

that store previous values. Typically only one level is used, but it is possible, but not advisable, to 

use more. In order to process properly this approach we need to correctly identify the type 3 

attribute, which in this case will be 𝐴𝑡𝑡𝑝. The structure of the dimension relation therefore reflects 

this approach (Equation 23). 

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =  〈𝑆𝐾, 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝, 𝐴𝑡𝑡𝑝_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠〉 
(23) 

in which 𝐴𝑡𝑡𝑝 is the type 3 attribute, and 𝐴𝑡𝑡𝑝_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 is the attribute that will hold the previous 

𝐴𝑡𝑡𝑝 value. This approach requires that whenever a change occurs, the previous value will be 

stored in attribute 𝐴𝑡𝑡𝑝_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and the current value of the attribute will be stored in 𝐴𝑡𝑡𝑝. First 

step is accomplished through the use of Equation 15 and Equation 16 which removes from the 

dimension the changed tuples. Second step, in Equation 24 conciliated data is joined with old 

valued attributes to be added into the dimension. 
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𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 ∪ ((𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
)  (𝜌(𝑆𝐾,𝐴𝑡𝑡𝑝_𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)(𝜋(𝑆𝐾,𝐴𝑡𝑡𝑝)(𝑂𝑙𝑑_𝑑𝑎𝑡𝑎))))  (24) 

Figure 47 represents in a RA tree all the operations needed to maintain a SCD Type 3 up to date.  

 

Figure 47 - SCD Type 3 operations 

4.5 Data Integration on a SCD Type 4 

This phase is primarily responsible to load conciliated data into the DW. The challenge is to deal 

with changed source data. 

Let us assume that in a data warehouse the structure of one of its dimensions is comprised of two 

identical tables (SCD Type 4): one storing current tuples and the other storing historic tuples 

(Santos and Belo, 2011a). The common structure of such a table is presented in (Equation 25). 
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𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  〈𝑆𝐾, 𝐴1, … , 𝐴𝑚, 𝑆𝑡𝑎𝑟𝑡𝐷𝑎𝑡𝑒, 𝐸𝑛𝑑𝐷𝑎𝑡𝑒〉 
(25) 

in which 𝑆𝐾 is the surrogate key, normally a natural number, 𝐴1, … , 𝐴𝑚 are additional data 

attributes needed in the dimension and 𝑚 >=  1. Since we are dealing with multi source data, a 

specific source might not contain all the information to correctly fill all dimension attributes, 

nevertheless each source attributes exist in the dimension’s attributes - { 𝐴𝑡𝑡1, … , 𝐴𝑡𝑡𝑝 }  ⊆

 { 𝐴1, … , 𝐴𝑚 }. 

Assuming that the extraction process (CDC) only provides new and changed tuples from source 

systems to the transformation phase, the methodology to deal with new tuples is somewhat 

different from the one used to deal with changed tuples, mainly due to the necessity of conforming 

data. Changed tuples are already integrated into the dimension so the only task needed is to 

preserve history, i.e., updates that occurred in source systems must be reflected in the data 

warehouse dimension without losing history, therefore we transfer old data to the historical table 

and insert changed tuples into the dimension that holds current values (Figure 48).  

 

Figure 48 - Example of conciliated data that must be integrated into the DW 

In order to simplify the interpretation of the RA model, we present in Figure 49 the RA tree with 

the operations that identify expired data in the dimension. 
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Figure 49 - A RA tree identifying expired data 

Figure 50 presents the appropriate operations to transfer expired data from the dimension, since it 

is only supposed to store current data, to the historical table in order to preserve history. 

 

 

Figure 50 - Transferring expired data from a dimension table to a historical table. 

After removing the expired data from the dimension, the last step needed is to add the updated 

values to the dimension without losing correspondence with data that was obtained from other 

sources (Figure 51).  

Dealing with new data from 𝑐𝑜𝑛𝑐_𝑑𝑖𝑚𝑑𝑎𝑡𝑎𝑆𝑥
 is based on the determination of tuples which 

surrogate keys do not have correspondence in the dimension. Those tuples are added to the 

dimension after being time stamped, identifying the validity of the information, with the 

particularity of leaving the dimension attributes that are not known in the current source in a null 

state – this is achieved by the left outer join (Figure 52). 
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Figure 51 – Updating dimension with changed data 

 

 

Figure 52 – The RA tree that adds new data into the dimension 



ETL standard processes specification 

95 

The result of the integration process for the example shown in Figure 48, would be like the one 

presented in Figure 53. 

4.6 Surrogate Key Pipelining 

After dealing with dimension data, the process of loading facts into the data warehouse becomes 

simplified. The only task we need to perform now is the correct translation of the business keys to 

the correspondent surrogate keys. This process, also known as SKP, lookups up, in sequence, on 

the auxiliary conciliation tables for the correct surrogate key (Figure 54). 

 

 

Figure 53  - Example of the final result of the conciliation and integration process 
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Figure 54 - SKP with heterogeneous sources 

When processing facts from different sources, each tuple lookups for the dimension’s 

correspondent surrogate key (given their business key), and proceeds in the same way for all the 

remaining dimensions. The tuple is ready to be loaded into the fact table when all processes 

conclude with success. Error occurrences or unmatched tuples must be signaled and dealt with in 

the recuperation phase that is normally a human interaction phase. 

The SKP can also be modeled in RA, through a series of operations that prepare the fact table to 

be loaded into the data warehouse and separate the unmatched tuples for further revision.  

Consider the following definition a common structure of a fact table from source before the SKP 

(Equation 26). 

𝐹𝑆1
=  〈𝐵𝐾𝑑𝑖𝑚1

, … , 𝐵𝐾dim𝑧  , 𝑚1, … , 𝑚𝑝〉 
(26) 

where 𝐵𝐾𝑑𝑖𝑚𝑥
 is the business key and 1 ≤  𝑥 ≤  𝑧 of the 𝑧 dimensions present, and 𝑚1, … , 𝑚𝑝 are 

the measurements present in the fact table. 

and the structure of the fact table after the SKP (Equation 27) 
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𝐹′𝑆1
=  〈𝑆𝐾dim1  , … , 𝑆𝐾dim𝑧  , 𝑚1, … , 𝑚𝑝〉 (27) 

where 𝑆𝐾𝑑𝑖𝑚𝑥
 is the correct surrogate key of each dimension and 1 ≤  𝑥 ≤  𝑧, and 𝑚1, … , 𝑚𝑝 are 

the measurements present in the fact table. 

The steps needed to substitute the business keys for the surrogate keys for each dimension are 

presented as a RA tree in Figure 55. 

 

Figure 55 - Surrogate Key mapping for a dimension 

All the following surrogate key substitutions follow the same approach with the necessary 

adjustments to the RA expressions. 

The business keys from the fact table that for some reason don’t find the correct correspondence 

in the conciliation table must be signaled for human revision therefore stored appropriately as 

presented in (Figure 54). The RA tree modeling this behavior is presented in Figure 56. 
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Figure 56 - Unmatched Surrogate Key mappings 
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Chapter 5 

5Specifying a Real ETL System 

Internet was mainly used to connect services, users and organizations through information 

exchange, both private or public information, by using email protocol (POP, IMAP, STMP), news 

transfer protocol (NNTP) or Internet websites (HTTP). This sort of communication was based in the 

need to make available information to interested parties. Information and news were broadcasted 

by organizations mainly through corporate websites and via email through mailing lists. Trending 

subjects were mainly determined by news companies, since the news broadcast choices were their 

responsibility. 

This approach to news dissemination has somewhat changed since the appearance of multiple, 

and very successful, Virtual Social Networks (VSN) – also referred frequently as Online Social 

Networks. There are several popular and different VSN with different characteristics that nowadays 

have several million active users in a daily basis. According to (Pallis et al., 2011), VSNs are 

classified by their scope (entertainment or business), their data model (centralized or 

decentralized), their system model (web-based or cloud-based) and network model (user-oriented 

or content-oriented). The revolution in news dissemination comes from the use of these networks 

where users can broadcast, comment, publish and share information through their network of 
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friends, colleagues and acquaintances that in turn can do the same thing (Kumar et al., 2010). 

Therefore news and trending subjects are no longer originating only from news corporations but 

also from influential individuals that use VSNs to spread their opinion (Mislove et al., 2007, Yu et 

al., 2011).  

With millions of daily active users, VSNs are also an enormous source of data and information. VSN 

users post and comment over news available and/or trending subjects, thus making these 

networks a good source of information for users and also for search engines (Gloor et al., 2009). It 

is now common for users to search for topics of interest in their VSN instead of search engines too. 

Nevertheless VSNs are not search engines and seeking for correlated data in users’ post messages 

was not an easy task. Metadata that classified each post would facilitate searching and indexing 

information, and as such the use of hashtags appeared and became popular, primarily in Twitter 

social network and afterwards in every post and message social network users felt the need for it. 

As we know, a hashtag is a word or an unspaced phrase that starts always with the hash character 

(#). Using hashtags in a common post acts as some kind of metadata over its contents. In the last 

few years, hashtags have become very popular in social network sites and applications. They also 

become very useful for searching similar tagged messages, simply because search engines return 

messages based in those tags. Additionally, social networks have used hashtags to check for 

trending subjects in any temporal time window, as it happens with Instagram (Figure 57). 

With this background in mind, we will demonstrate the application of the modeling proposal 

presented in the previous chapter over a case study involving the development of a centralized 

repository, and in particularly the modeling phase of the ETL component that will gather, clean, 

conform and integrate heterogenic data gathered from two different VSNs.  

5.1 The Information Sources 

The case study we selected includes two different VSNs. The first one virtual social network (SNA) 

is mainly used as a network of users and organizations with specific professional skills, much like 

LinkedIn, where the primary purpose is to present, divulge and comment news and information 
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about personal skills and organization achievements. The second virtual social network (SNB) is a 

recreational network of users that communicate and share media contents with their family and 

friends, much like Facebook. 

 

Figure 57 – Top 10 HashTags – extracted from (Instagram, 2015) 

The logical design of the first source of this case study is presented in Figure 58. This VSN defined 

in its business model that customers were able to create and own several login identifications 

(LoginID). This would allow each customer to assume different profiles and post accordingly to the 

profile used. For instance, a customer might have a private profile for family and friends and 

another profile that would act as his work profile for colleagues, partners, clients and 

acquaintances. Once logged in, a customer can post messages in the VSN and associate hashtags 

to the post. Hashtags in this VSN are not standardized and can be freely created by customers. 
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Another characteristic of this VSN is the ability to comment another users’ post message and use 

hashtags on the comments. Parallel to posting and commenting, customers can browse other 

customers’ messages and support or disapprove the message by creating an event that classifies 

the post accordingly. This kind of behavior is also common on VSN and can contribute to finding 

influential users. Finally, and to complement the classifying event, the owner of the post is notified 

whenever his post messages receive support or otherwise disapproval. 

 

Figure 58 – The Logical Model of SNA 

The logical design of the second source of this case study is presented in Figure 59. Although the 

logical design of this VSN is somewhat more elaborated than the previous VSN, the working 

methodology is basically the same. The primary difference is the fact that each Client can only own 

one account or login. After logging in the VSN, a client can post new messages, and classify that 

message according to its type (text, video, photo, etc.) and add attachments to the message that 
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are stored in the network. The client can also select from a predefined set of hashtags which ones 

are the most adequate to categorize his post message. Clients can also browse existing messages, 

reshare them, comment and tag them as they would normally do in a normal post message. 

Besides posting new messages and resharing other users’ posts, clients can comment post 

messages and tag those messages with hashtags. It’s clear for this VSN business that post 

messages are somewhat different from comments mainly by the fact that comments cannot have 

attachments and are limited to text only. 

 

Figure 59 - The Logical Model of SNB 
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5.2 The data mart HashTags 

Users post and comment in both networks using hashtags to better characterize the message they 

wanted to transmit. After a real world event, users tend to opine heavily in social networks and 

trending subjects often arise very fast, like for instance when people made a stand against the 

terrorism attack in Paris. The hashtag #JeSuisCharlie rocketed to the top of hashtags used in 

January with a peak of six thousands post messages per minute in Twitter social network. 

Being aware and detecting emerging trends through the analysis of hashtag content in post 

messages is critical to maintain a social network on top of things. Therefore, and since we are 

dealing with two heterogeneous sources, a common unified repository is needed to store the data 

from both sources. A data mart is a possible answer to this need, as it can serve as a data 

repository and data source for mining and reporting over common unified data. By taking into 

account the primary advantages of a data mart, we designed and implemented a specific one – 

“HashTags” – especially conceived to receive data coming from the two social networks 

information sources. Therefore, the dimensional model of this data mart (Figure 60) should 

support the previous identified needs to store the different hashtag data from the social networks. 

The grain of the fact table is the use of hashtags in comments or posts in the social networks that 

act as sources in a daily basis. However, if the period of analysis changes, from a daily basis to an 

hourly basis, or different, the changes in the model are restricted to the dimension time (dimTime) 

and corresponding relationship to the fact table. Since a hashtag can be used several times in the 

period chosen, the fact table must contain an attribute that counts the amount of times the 

hashtag was used in that day, in what is normally called measurement. 

5.3 Modeling the ETL System with Relational Algebra 

In this section we will present an instantiation of the RA patterns, proposed previously in Chapter 

4, to model the populating process of the star schema represented in Figure 60. We considered 

that the dimension 𝑑𝑖𝑚𝑇𝑖𝑚𝑒 is fully populated in advance and therefore will not be included in the 

modeling scenario. The dimension 𝑑𝑖𝑚𝑆𝑜𝑐𝑖𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘 is also already populated with what 

categorizes the sources - Social Network A (SNA) and Social Network B (SNB) -, but is fully 
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prepared to receive other additional sources. The remaining dimensions and the fact table need to 

be populated with data being extracted from both the Social Networks OLTP systems. Since we are 

dealing with two different sources, the primary challenge will be the conciliation of data extracted. 

Several conciliation tables will be needed mainly to standardize common concepts and to map 

business keys into the surrogate keys of the dimensions. After loading the dimensions 

appropriately, the fact table will also be populated with aggregated data, after the process of 

translating the business keys to the fact table primary keys, in what is normally called SKP process.   

 

 

Figure 60 - The logical schema of the data mart “HashTags” 

5.3.1 Populating the dimension table 𝒅𝒊𝒎𝑯𝒂𝒔𝒉𝑻𝒂𝒈 with SNA’s data  

The table dimension 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 is populated with data coming from both social networks’ 

information sources, which imposes that the correspondent information flows must be modeled 

separately. In SNA users can create hashtags freely, which originates several different hashtags for 

a same purpose. Therefore we need to make facts standard. Thus, the first process to run is to 
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gather data from SNA as we proposed before in Section 4.1. Then we continue the normalization 

(correction) of the hashtag values using an auxiliary conciliation table, as proposed in Section 4.2.2 

in the topic Standardization. 

The extraction process gathers all data from the table 𝐻𝑎𝑠ℎ𝑇𝑎𝑔 and stores it into the table 

𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆′𝑎
 (Equation 28) and through the use of the patterns proposed before in Section 

4.1. New or changed data is stored in 𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆𝑎
for future transformation (Equation (30). 

 

𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆′𝑎
=  〈𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷, 𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐, 𝑃𝑜𝑠𝑡𝐼𝐷〉  

(28) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆′𝑎
= 〈𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷, 𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐, 𝑃𝑜𝑠𝑡𝐼𝐷〉  

(29) 

𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆𝑎(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷,𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐,𝑃𝑜𝑠𝑡𝐼𝐷) ← 𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑎
− 𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑎

 
(30) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑎
← 𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑎

 
(31) 

The table 𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝑛𝑜𝑟𝑚  was used for conforming hashtag values (Equation 32), following the 

approach presented previously in section 4.2.2 in the topic Normalization and Correction, in which 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐 is the attribute value coming from the source and 𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐1 is the 

conformed value of the attribute. 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝑛𝑜𝑟𝑚 = 〈𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐, 𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐1〉 
(32) 

The operations of Figure 61 were defined to conform the hashtag values into the table 

𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔_𝑛𝑜𝑟𝑚𝑆𝑎
, and unmatched tuples into the table 𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔_𝑒𝑥𝑝𝑆𝑎

for expert 

supervision. This last table is a typical quarantine table.  

After conforming the hashtag values for SNA, the dimension table 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 of the data mart 

can now be populated following the conciliation process described before in Section 4.3.1.. 
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(a) 

 

 

 

(b) 

Figure 61 - (a) Conforming HashTag description (b) unmatched tuples 

𝑐𝑜𝑛𝑐_ℎ𝑎𝑠ℎ𝑡𝑎𝑔 =  〈𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑆𝐾, 𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐, 𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷〉 
(33) 

The matching process will separate existing value from new values. Existing values are discarded 

and new values must be dealt with by expert supervision, mainly by updating the conciliation table 

and generating the correct Surrogate Key for those new values. 

 

 

(a) 

 

(b) 

Figure 62 - (a) New hashtag data from SNA and (b) Surrogate key replacement for hashtag data  
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The integration of hashtag data from SNA into dimension 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 is achieved through 

Equation 34. 

𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 ← 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 ∪ 𝑐𝑜𝑛𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆𝑎
 

(34) 

5.3.2 Populating the dimension table  𝒅𝒊𝒎𝑯𝒂𝒔𝒉𝑻𝒂𝒈 with SNB’s data  

SNb has a different approach about how to store hashtag data. In this social network users 

associate predefined hashtags to their posts, instead of having the possibility to create their own. 

Nevertheless the steps required to populate correctly the table  𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑡𝑎𝑔 involve to extract and 

conciliate OLTP’s data. 

𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆′𝑏
=  〈𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷, 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛〉  

(35) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆′𝑏
=  〈𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷, 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛〉 

(36) 

𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆𝑏(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷,𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) ← 𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑏
− 𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑏

 
(37) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑏
← 𝑠𝑟𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆´𝑏

 
(38) 

The table used to receive the conciliated data was already defined in Equation 33. The conciliation 

operations will be presented next. In Figure 63, the first RA tree substitutes a business key by its 

correspondent surrogate key, while the second RA tree determines new hashtag data coming from 

SNB with no correspondent surrogate key in the conciliation table. This tuples need expert 

intervention, i.e., assignment of the correct Surrogate Key and its update in the conciliation table.  

Finally the integration of hashtag data from SNB into dimension 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 is achieved through 

Equation 39. 
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(a) 

 

(b) 

Figure 63 – (a) Surrogate key replacement for hashtag data and (b) New hashtag data in need of surrogate key assignment 

𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 ← 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 ∪ 𝑐𝑜𝑛𝑐_𝑑𝑖𝑚ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝑆𝑏
 

(39) 

5.3.3 Populating 𝒅𝒊𝒎𝑪𝒍𝒊𝒆𝒏𝒕 with SNA data 

Populating the Customers/Client dimension from different sources usually leads to data quality and 

conciliation problems. Once those problems are addressed the main focus of attention turns to 

history preservation since data changes over time which can affect future analysis.  

The extraction phase follows the patterns already defined and used in previous sections and 

presented next. 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑎

=  〈𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷, 𝑇𝑖𝑡𝑙𝑒, 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒, 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒, 𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑆𝑢𝑓𝑓𝑖𝑥, 𝐷𝑂𝐵, 𝑃ℎ𝑜𝑛𝑒, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦〉  
(40) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑎

=  〈𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷, 𝑇𝑖𝑡𝑙𝑒, 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒, 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒, 𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑆𝑢𝑓𝑓𝑖𝑥, 𝐷𝑂𝐵, 𝑃ℎ𝑜𝑛𝑒, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦〉 
(41) 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑎
← 𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑎 − 𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑎 

(42) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑎
← 𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑎

 
(43) 
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In this scenario, a normalization procedure must be applied to concatenate 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒 and 

𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒 to fulfill the requirements of the 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 dimension and in addition project out 

unwanted attributes. 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡_𝑛𝑜𝑟𝑚𝑆𝑎

←  𝜋(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒+𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒→𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑎𝑚𝑒,𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠,𝐷𝑂𝐵,𝐶𝑜𝑢𝑛𝑡𝑟𝑦)(𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑎
) 

(44) 

After data quality issues are addressed, the conciliation phase begins by mapping the business key 

to the dimensions’ surrogate key through the use of a conciliation table. 

𝑐𝑜𝑛𝑐_𝑐𝑙𝑖𝑒𝑛𝑡 =  〈𝐶𝑙𝑖𝑒𝑛𝑡𝑆𝐾, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷, 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷〉 
(45) 

Again, and as already used in previous sections that deal with populating dimensions, the new 

tuples with no matching surrogate key must be dealt by expert supervision. 

 

 

(a) 

 

(b) 

Figure 64– (a) Surrogate key replacement for client data and (b) New client data in need of surrogate key assignment 

After conciliating data, history preservation is the next phase and is achieved through the use of a 

series of patterns that were previously defined in Section 4.5. The first step is the identification of 

expired data (Figure 65), then its transference from dimension 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 and to 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡_ℎ𝑠𝑡 

(Figure 66). 
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Figure 65 – Identification of changed and expired client data from SNA 

 

 

 

(a) 

 

(b) 

Figure 66 – (a) Removing expired client data from 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 and (b) Adding removed client data to 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡_ℎ𝑠𝑡 

After expired data is transferred, changed clients can be added into the dimension 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 

(Figure 67) followed by new clients (Figure 68). 
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Figure 67 – Adding changed clients of SNA to dimension 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 

 

 

Figure 68 – Adding new clients of SNA to dimension 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 

Using these sets of operations we preserve the history of a client. The dimension 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 only 

maintains updated data. 
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5.3.4 Populating 𝒅𝒊𝒎𝑪𝒍𝒊𝒆𝒏𝒕 with SNB data  

The data about clients coming from SNB has a similar structure to the client’s dimension in the data 

mart, therefore besides projecting out the unwanted attributes, the only task needed is the correct 

surrogate key attribution through the matching process that uses a conciliation table.  

𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑏
=  〈𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷, 𝑁𝑎𝑚𝑒, 𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝐷𝑂𝐵, 𝑃ℎ𝑜𝑛𝑒, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦〉  

(46) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑏
=  〈𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷, 𝑁𝑎𝑚𝑒, 𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝐷𝑂𝐵, 𝑃ℎ𝑜𝑛𝑒, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦〉 

(47) 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑏
← 𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑏

− 𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑏
 

(48) 

𝑝𝑟𝑒𝑣_𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑏
← 𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆′𝑏

 
(49) 

After the execution of the extraction process, we proceed to filter out all the unwanted attributes 

renaming them accordingly to their corresponding attributes in dimension tables. 

𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡_𝑛𝑜𝑟𝑚𝑆𝑏
←  𝜋(𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷,𝑁𝑎𝑚𝑒→𝐶𝑙𝑖𝑒𝑛𝑡𝑁𝑎𝑚𝑒,𝐸𝑚𝑎𝑖𝑙𝐴𝑑𝑑𝑟𝑒𝑠𝑠,𝐷𝑂𝐵,𝐶𝑜𝑢𝑛𝑡𝑟𝑦)(𝑠𝑟𝑐_𝑑𝑖𝑚𝑐𝑙𝑖𝑒𝑛𝑡𝑆𝑏

) 
(50) 

The conciliation table used to correctly assign the surrogate key was defined in Equation 45 and 

the conciliation process is almost identical to the one presented in the previous section. 

 

(a) 

 

(b) 

Figure 69 – (a) Surrogate Key replacement for client data and (b) New client data in need of surrogate key assignment 

Since both sources have all the attributes necessary to populate the attributes of dimension 

𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 the history preservation phase is also almost identical to the previous section. If that 
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was not the case only a few projections would have been different. Figure 70 through Figure 73 

detail the operations of expiring changed clients data, and the addition of new clients to dimension 

𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡. 

 

Figure 70 - Identification of changed and expired client data from SNB 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 71 – (a) Removing expired client data from 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 and (b) Adding removed client data to 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡_ℎ𝑠𝑡 
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Figure 72 - Adding changed clients of SNB to dimension 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 

 

 

Figure 73 - Adding new clients of SNB to dimension 𝑑𝑖𝑚𝐶𝑙𝑖𝑒𝑛𝑡 
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5.3.5 Populating 𝑯𝒂𝒔𝒉𝑻𝒂𝒈𝑭𝒂𝒄𝒕𝒔 with SNA data 

Gathering hashtag usage from SNA implies filtering data from OLTP System tables, conform it and 

aggregate it according to previously defined goals. For this scenario the following RA expressions 

will accomplish the objective. 

𝑇1 ← 𝐿𝑜𝑔𝑖𝑛 ⋈  𝜎(𝐷𝑎𝑡𝑒=𝑡𝑜𝑑𝑎𝑦( )−1)(𝑃𝑜𝑠𝑡)  
(51) 

𝑇2 ←  𝜋(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐷𝑎𝑡𝑒)(𝑇1) ⋈ 𝐻𝑎𝑠ℎ𝑇𝑎𝑔  
(52) 

Since clients could create their own hashtags freely in SNA, the standardization process used for 

populating 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 (Equation 32) will also be used in the populating process of the fact table 

with data gathered from SNA (Equation 53). 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠𝑆𝑎
← 𝜋(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐷𝑎𝑡𝑒,𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐1→𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝐷𝑒𝑠𝑐)(𝑇2  ⋈  𝐻𝑎𝑠ℎ𝑇𝑎𝑔_𝑛𝑜𝑟𝑚) 

(53) 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠_𝑜𝑐𝑐𝑢𝑟𝑆𝑎
 ←  𝛾(𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷,𝐷𝑎𝑡𝑒,𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐷𝑒𝑠𝑐,𝐶𝑂𝑈𝑁𝑇(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐷𝑒𝑠𝑐)→𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠)(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠𝑆𝑎

) 
(54) 

𝐻𝑇_𝐹𝑎𝑐𝑡𝑠𝑆𝑎
←  휀(𝑆𝑜𝑐𝑖𝑎𝑙𝑁𝑒𝑡𝑆𝐾=1)(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠_𝑜𝑐𝑐𝑢𝑟𝑆𝑎

) 
(55) 

Equation 54 aggregates the occurrences of hashtag data for each client and Equation 55 adds an 

attribute to properly identify the origin of the data (SNA).  

In order to load properly the fact data into the data mart, business keys will be substituted by 

surrogate keys, a process usually called Surrogate Key Pipelining (Figure 54). In this scenario the 

attributes 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷, 𝐷𝑎𝑡𝑒 and 𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐷𝑒𝑠𝑐 need to be replaced by the corresponding 

surrogate keys. 

Through the use of the client’s conciliation table already defined in Equation 45, the RA tree 

presented in Figure 74 maps the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐼𝐷 from SNA to the correct surrogate key from the data 

mart.  
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Figure 74 – Surrogate key assignment for customers from SNA 

 

Figure 75 represents the steps needed to identify unmatched customers in the assignment of a 

surrogate key and therefore in need of expert supervision.  

 

Figure 75 – Unmatched customers surrogate key assignment 

The next surrogate key assignment is the transformation of the attribute 𝐷𝑎𝑡𝑒 into the surrogate 

key used for dimension 𝑑𝑖𝑚𝑇𝑖𝑚𝑒 and for this the conciliation table used is a projection of 𝑑𝑖𝑚𝑇𝑖𝑚𝑒 

itself (Equation 56). In this case there is no need to identify unmatched surrogate key assignments 

since all the dates extracted from the source have a correspondence in the conciliation table. 

𝑐𝑜𝑛𝑐_𝑑𝑎𝑡𝑒 ←  𝜋(𝐷𝑎𝑡𝑒𝑆𝐾,𝐷𝑎𝑡𝑒)(𝑑𝑖𝑚𝑇𝑖𝑚𝑒) 
(56) 
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Figure 76 - Surrogate key assignment for dates from SNA 

 

To finalize the Surrogate Key pipeline process, the last business key (identifying the hashtags 

used) is mapped into the correct surrogate key in Figure 77. 

 

Figure 77 - Surrogate key assignment for hashtags from SNA 

 

The following RA tree (Figure 78) identifies the unmatched tuples in which there was no 

correspondence for 𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐷𝑒𝑠𝑐 when joined with the conciliation table and therefore in need of 

expert supervision. 
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Figure 78 - Unmatched hashtag surrogate key assignment 

The populating process of the fact table with data gathered from SNA OLTP System is finalized 

after the SKP process and the addition of the result into the fact table (Equation 57). 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐹𝑎𝑐𝑡𝑠 ← 𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐹𝑎𝑐𝑡𝑠 ∪ 𝐻𝑇_𝐹𝑎𝑐𝑡𝑠_𝑡𝑎𝑔𝑆𝑎
  

(57) 

5.3.6 Populating 𝑯𝒂𝒔𝒉𝑻𝒂𝒈𝑭𝒂𝒄𝒕𝒔 with SNB data 

Although the OLTP diagram from SNB appears to be more complicated than SNA diagram, the fact 

that hashtags are predefined facilitates the process of gathering facts. 

Equation 58 gathers hashtags used in posted messages and Equation 59 gathers hashtags used in 

comments, then all data is grouped to aggregate the number of occurrences a certain hashtag was 

used that day for each client. Finally, and before the surrogate key pipeline process starts, a new 

attribute is added to identify the source of the data (SNB).  

𝑇1 ←  𝜋(𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷,𝐷𝑎𝑡𝑒,𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷)( 𝜎(𝐷𝑎𝑡𝑒=𝑡𝑜𝑑𝑎𝑦( )−1)(𝑀𝑒𝑠𝑠𝑎𝑔𝑒) ⋈ 𝑀𝑒𝑠𝑠_𝑇𝑎𝑔) 
(58) 

𝑇2 ←  𝜋(𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷,𝐷𝑎𝑡𝑒,𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷)( 𝜎(𝐷𝑎𝑡𝑒=𝑡𝑜𝑑𝑎𝑦( )−1)(𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠) ⋈ 𝐶𝑜𝑚𝑚_𝑇𝑎𝑔) 
(59) 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠𝑆𝑏
 ← 𝑇1  ∪ 𝑇2 

(60) 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠_𝑜𝑐𝑐𝑢𝑟𝑆𝑏
 ←  𝛾(𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷,𝐷𝑎𝑡𝑒,𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷,𝐶𝑂𝑈𝑁𝑇(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷)→𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠)(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠𝑆𝑏

) 
(61) 
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𝐻𝑇_𝐹𝑎𝑐𝑡𝑠𝑆𝑏
←  휀(𝑆𝑜𝑐𝑖𝑎𝑙𝑁𝑒𝑡𝑆𝐾=2)(𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝑠_𝑜𝑐𝑐𝑢𝑟𝑆𝑏

) 
(62) 

The surrogate key pipeline process substitutes the business keys used in SNB OLTP for the 

surrogate keys used in the data mart. Similar to the tasks presented in the previous section, the 

following RA tress represent the mapping procedures for attributes 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷 (Figure 79), 𝐷𝑎𝑡𝑒 

(Figure 81) and 𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐼𝐷 (Figure 82). 

 

Figure 79 – Surrogate key assignment for clients from SNB 

Figure 80 identifies the unmatched clients in the mapping process subject to expert revision.  

 

Figure 80 – Unmatched clients surrogate key assignment 

In the RA tree presented in Figure 81, the date conciliation table used was previously defined in 

Equation 56. 
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Figure 81 – Surrogate key assignment for dates from SNB 

 

Figure 82 – Surrogate key assignment for hashtags from SNB 

Figure 83 is almost identical to Figure 78 and identifies tuples in need of supervision due to 

absence of correspondence in the hashtag conciliation table. 

 

Figure 83 – Unmatched hashtag surrogate key assignment 
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The populating process of the fact table with data gathered from SNB OLTP System is finalized 

after the SKP process and the addition of the result into the fact table (Equation 63). 

𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐹𝑎𝑐𝑡𝑠 ← 𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐹𝑎𝑐𝑡𝑠 ∪ 𝐻𝑇_𝐹𝑎𝑐𝑡𝑠_𝑡𝑎𝑔𝑆𝑏
 

(63) 

5.4 A Global View of the Populating Process 

While the previous sections of this chapter have presented the set of steps needed to populate a 

data mart from two heterogenic OLTP sources (as an example of a Real ETL scenario), a 

generalized view of all the ETL is also significant to evaluate the modeling proposal presented. To 

represent and model this global view of the populating process we used BPMN45. The 

representation of the all modeling process in RA trees was also possible but the diagram would not 

be easy to read and interpret for the stakeholders. BPMN notation allows us to create a few more 

layers of abstraction that facilitates the interpretation of the activity flows. The idea was to 

encapsulate the main tasks that can be expanded to its sub processes that in turn contain the 

instantiation of the RA patterns proposed. In Figure 84 a higher level of the ETL process is 

presented with the main tasks, like for instance the Populating process of 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 with data 

from SNA.  

Following the characteristics of BPMN, in this diagram one pool was used, with three lanes, 

corresponding to the population of each dimension and fact table. Each collapsed process is further 

expanded for better understanding of the tasks involved.  

Analyzing the collapsed process referent to Populating 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 with data from SNA (Figure 

85), the basic steps are the CDC, DQE and DCI tasks, as would normally be in the populating 

process of a typical dimension. 

                                                

4 http://www.bpmn-tool.com/en/tutorial/ 
5 http://www.omg.org/news/meetings/workshops/SOA-HC/presentations-2011/14_MT-2_Brookshier.pdf 
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Figure 84 – BPMN high level model of the ETL for the scenario used 

 

Figure 85 – Expanded process for Populating 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 with data from SNA 

Digging further into each collapsed process, it is now visible the sequence of operations defined in 

previous sections of this chapter, i.e., the RA expressions and trees used to process data from 

OLTP systems into the data mart (Figure 86, Figure 87 and Figure 88). 

 

Figure 86 – Expanded process for the CDC used for populating 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 with data from SNA 
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Figure 87 - Expanded process for the DQE used for populating 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 with data from SNA 

 

Figure 88 - Expanded process for the DCI used for populating 𝑑𝑖𝑚𝐻𝑎𝑠ℎ𝑇𝑎𝑔 with data from SNA 

The other collapsed processes referent to the populating procedure of the dimensions are very 

similar to the one presented. In fact only a few particularities exist as it can be shown in the full 

diagram in Appendix. 

Loading a fact table is nevertheless different, data has to be extracted and transformed from OLTP 

sources and submitted to the SKP process before loading it into the data mart as it can be seen in 

Figure 89. 
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Figure 89 - Populating 𝐻𝑎𝑠ℎ𝑇𝑎𝑔𝐹𝑎𝑐𝑡𝑠 with data from the SNA – expanded process. 

 

The complete diagram of this Real ETL System Specification is presented in Figure 90. 
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Figure 90 – The complete ETL model diagram for the data mart “HashTag
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Chapter 6 

6Conclusions and Future Work 

6.1 Conclusions 

In times of crisis, those that are best prepared tend to overcome, prosper and endure. This 

philosophy is essential for the survival of organizations and people. The global crisis that has affected 

the world in the last years has made some profound changes in market behavior, people choices with 

particular emphasis in financial and political choices, altering dramatically their consumption and 

priorities. These changes have a high impact on the normal business of organizations and enterprises, 

which must adapt themselves in order to survive and also search for opportunities to improve or 

diversify. 

Detecting consumer changes, improvement opportunities or simply information to make a decision is 

not an easy task. This task would also have a higher rate of success if it could be made based on 

factual data instead of intuition. Therefore, having data to support management in their decision-

making processes is essential for an organization that has as a primary goal growth and prosperity.  

Ensuring the existence of factual data to support business decisions is no longer an issue, on the 

contrary, we now have access to an ever increasing amount of data from disparate sources of 
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information – e.g. OLTP systems, personal working files, or Internet information. The problem now is 

to select which data is important, how to gather it, and above all how to store it in conjunction with all 

the data gathered from other sources. This centralized and unified repository, a data warehouse 

(Inmon and Hackathorn, 1994), will serve as an essential platform for querying and reporting that 

would in turn support management decision making processes. Such a repository and all the 

components necessary to load and maintain it is what we normally address as a DWS. One of its most 

critical components is the ETL component, which is responsible for extracting data from information 

sources, cleaning, transforming and conforming it and, finally, loading it into the data warehouse. Due 

to its complexity, this component normally takes the majority of the effort in its design and 

implementation.  

ETL design has gained increased importance as means to alleviate the risk of managing the ETL 

process. Researchers and industry practitioners have proposed several approaches to the design and 

management of this critical DWS component. Inmon (1994, 2001, 2005) and Kimball (1998, 2004) 

proposed ad-hoc approaches that lack formality not contributing to a recognized and viable solution. 

In turn, Vassiliadis et al. (2002a, 2002b, 2002c, 2003, 2005, 2005c, 2007, 2008) proposed a three 

level architecture similar to the conventional database design composed of conceptual, logical and 

physical models, presenting a novel graphical notation for the conceptual model. In our view, this 

generates complex and rather difficult to read diagrams. The logical model is also based on a new 

graphical notation that specifies the workflow of tasks needed to populate a DW. The same problem 

applies to this approach, i.e., the diagrams produced are extensive and difficult for interpreting. 

Trujillo et al. (2003, 2004) proposed an extension to the UML notation to support the design of ETL 

tasks. The advantage of using a standard notation is rapidly undermined by the specificities of the ETL 

process, since several common tasks are not clarified in the extension proposed. UML activity 

diagrams (Muñoz et al., 2008) are used to minimize this problem but the consequence is a rather 

complex diagram even for the simplest tasks.  

In the view of Akkaoui and Zimanyi (2009), the ETL process should be modeled has a business 

process instead of a database model as previous researchers have attempted to do. Therefore, they 

propose an extension to BPMN to deal with the specificities of common ETL tasks. This proposal has 

the advantage of using a standard modeling language that is easily translated into a programming 
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language like BPEL. In our point of view, this approach generates diagrams that are easy to read and 

interpret but gives too much freedom to the designer due to some lack of rigor, i.e., a common task 

may be designed with different mechanisms depending on the designer.  

Although several proposals have been made for the conceptual and logical design of the ETL process, 

there still has not emerged a standard notation commonly accepted and used in the development of 

the ETL component of a DWS. As a consequence, the physical model of the ETL process varies, with 

each ETL commercial tool proposing a proprietary design notation, which in turn does not help in the 

task of selecting a commercial tool due to the financial commitment enterprises need to make. We 

believe that a standard, widespread ETL modeling notation is still lacking and its existence would 

facilitate the task of selecting a commercial tool to implement the ETL component. The main 

advantage of such standard notation would be the separation of the design and implementation, 

contributing to the development and improvement of new modeling tools. 

An ETL process is certainly complex because it comprises disparate tasks such as extraction and 

transformation of data to be loaded into a data warehouse. The transformation task is not a simple 

attribute mapping, data type conversion or attribute renaming one; it contains undoubtedly very 

important tasks of cleaning and conforming data to provide the data warehouse with correct data that 

faithfully reflects what actually happened in the operational systems. The data warehouse must use 

clean and conformed data to better support management decision-making processes with 

effectiveness. However due to the nature of many information systems that are supporting business 

activities – usually conventional OLTP systems -, data being gathered might not always be accurate 

and correctly stored. Therefore, the cleansing tasks of the ETL process must try to identify the data 

problems and inconsistencies, performing transformations in order to guarantee minimum data quality 

and prepare data for loading into the data warehouse. Data quality issues are increasingly more 

pertinent when dealing with multiple and heterogeneous sources, augmenting the risk of failure or, 

even worse, the risk of misrepresenting information in a system conceived for supporting 

management decision-making assessments. Another issue closely linked to heterogeneous sources, is 

the different representation of common concepts. To deal with these issues, conciliation tasks must be 

prepared to transform source data into a conformed and unified view of the business. And finally in 

order to correctly load cleaned and conformed data into the data warehouse, the surrogate key 
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pipeline process must correctly attribute a surrogate key to each business key. These processes, CDC, 

DQE, DCI and SKP are commonly implemented in ETL commercial tools, but are poorly supported in 

proposed modeling methodologies and notations, especially in the logical design. Some of the existing 

conceptual modeling notations have diagrammatic representations of these processes but there is no 

logical implementation for them. This is a major handicap that does not contribute to reducing the gap 

between conceptual design and physical implementation of the ETL process (Oliveira et al., 2013). 

A less common approach to the design of the ETL process, studied in this thesis, is through the use of 

RA operations and trees. The RA representation of the tasks in trees facilitates the understanding of 

how the flow of operations are organized, giving a clear picture for possible optimizations of the entire 

ETL process. This approach is well supported for uncommon DWS environments, where a database 

management system normally does not exist, mainly because the flow of operations is well defined. 

The RA operators are known and easily implemented in any execution language, which in turn will 

undoubtedly contribute to a higher degree of flexibility and usability.  

In this thesis we proposed the use of patterns of RA operations to represent the most common ETL 

tasks, starting with CDC task that extracts source data and determines changes in the extracted data 

using mainly a RA subtract operator. DQE tasks are varied, but the primary concern is to represent 

correctly all data extracted. Several transformations might occur in this phase, mainly data 

corrections, or data normalizations and standardizations. These tasks were accomplished mainly 

through the use of user functions applied to attributes, or auxiliary tables that mapped incorrect to 

correct values (Santos and Belo, 2013). Conciliating Data from heterogeneous sources is a challenge 

mainly because of all the human interaction needed to maintain the conciliation tables up-to-date. 

Conciliation tables map business keys from source data to correspondent surrogate keys, which is of 

extremely importance when dealing with multiple sources due to the different possible representations 

common concepts can have in each source system. Besides it, the task itself is mainly achieved 

through join and subtract operations (Santos and Belo, 2014). Integrating conciliated data in 

dimensions depends on the selected strategy for history preservation (SCDs) (Santos and Belo, 2011b, 

2011c), nevertheless we advocate that history preservation should be done through the use of an 

auxiliary table to ease the computational burden of the maintenance of the dimension (Santos and 

Belo, 2011a). Therefore this task is mainly achieved through an expiration procedure that transfers old 
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and changed data to an historical table tagging it as expired, and adds the new updated records to 

the SCD. After extracting, cleaning, conforming and conciliating data, the loading process of the data 

warehouse must take into account that primary keys of the dimensions and fact tables are probably 

different from the OLTP systems where data was gathered. The process of replacing business keys by 

surrogate keys is normally called SKP and is achieved through the use of a set of tables that map the 

business key into the correct surrogate key through join and project operations. 

Even though all the most common ETL tasks were modelled using RA operators, there are still a few 

common tasks in an ETL System that are beyond this approach. In a conceptual view, whenever a 

task fails it can be modelled to restart, or it can trigger a message event. These tasks or events are 

not modelled in RA operators, since the RA language is oriented to data manipulation and not to 

control flows of operations. Another particularity of the RA language is the fact that it does not take 

into account execution optimizations like the ones present in a DBMS.  The concept of indexes and 

their impact on bulk loading or in referential integrity control is not present in a higher level language 

like RA. All other optimizations that commercial DBMS implement on their database engines are also 

not applied in RA language. 

Nevertheless, the proposal merits and demerits were evaluated through the use of real ETL system 

specification that included two heterogeneous sources and one data mart. The patterns for the 

common ETL tasks proposed in chapter 4 were instantiated to the testing scenario and we can 

observe that common tasks once modeled are applied with no effort or ambiguity. To present the 

entire model in a user-friendly diagram (high level diagram), BPMN language was used to better 

represent the execution flows. In fact, BPMN was only used to be reader friendly and no special data 

warehouse artifacts or tasks were used in that notation. As a proof of concept we also tested 

successfully the modeling approach over an uncommon technological infrastructure composed of a 

few computers, a grid architecture, that were prepared to execute the ETL process without the need 

of a DBMS provided the nodes received the instructions and data stored in a XML format (Santos et 

al., 2011, 2012, 2014). 
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6.2 Future Work 

Although the objectives planned for this work have been attained, further research and development 

can be achieved in this area of expertise by analyzing current trends in the Data Warehousing 

community with particular emphasis in the design of the ETL component. A new area of research 

called Semantic ETL, that reduces the initial work of discovering and identifying source attributes and 

their correct mappings to data warehouse attributes, is of significant value to minimize the initial effort 

of the ETL design phase. 

Another area of interest that might influence the development of future DWS is the recent evolution of 

new DBMS, namely NoSQL and NewSQL database engines, which also support non-relational 

databases like hierarchical, graph and object-oriented databases. Data warehouses are commonly 

supported by the dimension model, which bases itself in the relational model, therefore other non-

relational DBMS sources will augment the complexity of the ETL system, especially in the extraction 

and transformation processes therefore in the ETL design phase.  

All modeling proposals presented in this work can also be improved through the use of the RA 

operations proposed by the scientific community – e.g. Carreira et al. (2007) or Kis and Buza (2009). 

In addition, other RA operators could be developed to provide a formal support to current DBMS 

operations, like the existence of auto-incremental attributes (also known as identity attribute), or 

hash-based attributes, just to name a few. The latter proposal would be very helpful in the modeling 

phase of a SKP process and also in the definition of surrogate keys that are frequently present in data 

conciliation tables that support conventional DCI processes. 

Another line of research worth to be explored is the integration of the proposal we made on this thesis 

with other conceptual modeling proposals (Oliveira and Belo, 2013a, 2013b, 2014, Belo et al., 2014), 

as a continuous effort to minimize the gap between the conceptual and physical design of an ETL 

System. Just to end, it is important to refer we believe that the formalization of each ETL pattern with 

a regular standard language will improve the robustness of any ETL design process facilitating its 

conversion for a conventional ETL implementation and execution platform. 
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