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Abstract 

The main purpose of this thesis is to assess the potentialities of Hybrid Composite Plates 

(HCPs) for the shear strengthening of reinforced concrete (RC) beams. HCP is a thin plate of 

Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced 

Polymer (CFRP) laminates applied according to the Near Surface Mounted technique (NSM). 

Due to the excellent bond conditions between SHCC and CFRP laminates, these 

reinforcements provide the necessary tensile strength capacity to the HCP, while the high 

post-cracking tensile deformability and resistance of SHCC avoids the occurrence of 

premature fracture failure of this cement composite in the stress transfer process between 

these two materials when the HCP is crossed by a shear crack. 

Different HCPs with different CFRP laminates percentage are adopted for the shear 

strengthening of the beams. Two different processes are investigated to apply the HCPs to the 

beam’s concrete substrate: by using epoxy adhesive; in addition to the epoxy adhesive it is 

also used mechanical anchors. From the results it was verified that when epoxy adhesive is 

only used, the shear strengthening contribution of the HCPs is limited by the tensile strength 

of the concrete substrate of the strengthened beams. Mechanical anchors were therefore used 

in order to prevent a premature debonding of the HCPs and apply a certain confinement to the 

concrete in the zone of the beam to be strengthened, resulting favorable effects in terms of 

shear strengthening.  

Experimental programs with intact and damage RC beams are carried out to assess the shear 

strengthening contribution of HCPs. The results obtained from these tests are also used for 

determining the predictive performance of the analytical model developed to evaluate the 

shear resistance of RC beams strengthened with HCPs. 

To further explore the potentialities of HCPs for the shear strengthening of RC beams, 

advanced numerical simulations are performed by using a FEM-based computer program, 

whose adequate predictive performance is demonstrated by simulating the experimental tests 

carried out.  

 

Keywords: Hybrid Composite Plate; CFRP laminates; Shear strengthening; Mechanical 

anchors; Numerical simulation; Finite Element Method. 
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Sumário 

O principal objetivo desta tese é avaliar as potencialidades de um novo tipo de painel compósito 
hibrido no reforço ao corte de vigas de betão armado (BA). Este fino painel, designado na língua 
inglesa por Hybrid Composite Plate e com a abreviatura HCP, é composto por argamassa reforçada 
com fibras, a qual após endurecida é reforçada por finas lâminas de polímero reforçado com fibras de 
carbono (CFRP) aplicadas segundo a técnica “Instalação próxima da superfície” que na bibliografia 
em Inglês é conhecida por NearSurfaceMounted (NSM). Estes laminados de CFRP são instalados em 
finos entalhes executados no painel e colados com resina epóxi. Esta argamassa apresenta 
comportamento de endurecimento em tração, designada na língua inglesa por 
StrainHardeningCementitious Composite (SHCC), pelo que após o início da fendilhação da matriz 
desenvolve capacidade crescente de resistência à tração até nível de extensão relativamente elevado.O 
elevado desempenho em tração do SHCC permite mobilizar eficazmente a elevada resistência em 
tração dos laminados de CFRP, pois as microfibras que reforçam o SHCC evitam a ocorrência de 
rotura precoce por fratura durante o processo de transferência de tensões destes para o meio 
circundante, situação esta que ocorre quando o HCP é atravessado por fenda de corte que se 
desenvolve na viga a reforçar. 
Diferentes configurações de HCP foram investigadas para o reforço ao corte de vigas de BA, em 
especial a percentagem e inclinação de laminados de CFRP e o processo de fixar os HCPs às faces 
laterais da viga a reforçar. No que respeita a este último aspeto, dois métodos foram estudados, um em 
que o HCP é aplicado recorrendo apenas a adesivo epóxi, e um outro em que para além do adesivo 
epóxi o painel é fixo recorrendo a ancoragens mecânicas. Os programas de ensaios experimentais 
evidenciaram a elevada eficácia desta técnica de reforço, principalmente quando os HCP são 
aplicados com adesivo e ancoragens, pois o nível de reforço garantido pelo HCP aplicado 
exclusivamente por adesivo está limitado pela resistência à tração do betão do substrato da viga a 
reforçado, dado ocorrer destacamento precoce do HCP. Este destacamento é evitado recorrendo a 
ancoragens mecânicas, as quais permitem ainda introduzir algum confinamento no betão da viga a 
reforçar dado poderem ser aplicadascom uma certa pós-tensão, resultando maior eficácia de reforço 
ao corte de vigas de BA conseguida com a presente técnica. 
Recorrendo a conceitos e formulações existentes no quadro do comportamento e reforço ao corte de 
vigas de BA, foram desenvolvidas duas novas formulações, cuja capacidade preditiva foi avaliada não 
somente com os resultados obtidos nos programas experimentais executados, mas também recorrendo 
a resultados experimentais existentes na bibliografia da especialidade. 
No intuito de melhor compreender as potencialidades da técnica de reforço desenvolvida neste 
trabalho, recorrendo a estudos paramétricos, foi inicialmente avaliada a capacidade preditiva de um 
modelo constitutivo existente no programa de elementos finitos FEMIX, fazendo a simulação dos 
ensaios executados experimentalmente. Constatou-se que o modelo constitutivo que modela o 
amolecimento em tração e em corte do processo de abertura e deslizamento de uma fenda em betão 
permite simular com elevado rigor quer a resposta deformacional, como o padrão de fendilhação 
registado nos ensaios experimentais. Utilizando este modelo, foram efetuados estudos paramétricos 
para evidenciar a influência de parâmetros relevantes na eficácia da técnica de reforço proposta. 
 
Palavras chave: Reforço ao corte, Painel compósito híbrido; laminados de CFRP; argamassa com 
endurecimento em tração; Formulações analíticas; Análise não linear material (FEM) 
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Chapter 1  

Introduction 

There is a great need for upgrading Reinforced Concrete (RC) structures all over the world in 

order to carry higher ultimate loads or to satisfy certain serviceability requirements. One of 

the strengthening methods that have been applied in the last three decades includes the 

external bonding of thin steel plates to tensile or shear regions of the RC members using an 

epoxy adhesive or mechanical anchors. However, there are two major disadvantages of this 

method: difficulty to manipulate the steel plates at the construction site due to their weight, 

and also durability debilities associated with a reduction in the bond between steel plates 

surface and adhesive, or even the susceptibility of the steel plates to corrosion (Abdel-Jaber  

et al. 2003; Saafan 2006). 

Fiber reinforced polymer (FRP) composite materials are regarded as an alternative for 

externally bonded steel plates, by adopting externally bonded reinforcement (EBR) technique 

(Abdel-Jaber et al. 2003; Saafan 2006). Numerous research studies have been carried out to 

evaluate the efficiency of the EBR technique to increase the flexural and shear strength of RC 

members (Khalifa et al. 1998; Abdel-Jaber et al. 2003). However, this technique has some 

issues that can compromise its strengthening effectiveness, such as: debonding of the FRP, 

lack of protection (vandalism and fire), preparation of the surface, and stress concentration 

caused by anchorage devices when used for avoiding the premature debonding of the FRP. 

The Near Surface Mounted (NSM) FRP laminates/rods is another strengthening technique 

that has been used to increase the shear capacity of RC beams (Nanni et al. 2004, Dias and 

Barros 2013). In this method, carbon fiber reinforced polymer (CFRP) laminates/rods are 

embedded into grooves open on the concrete cover using an adhesive. Research has shown 

that a significant increase in the shear resistance of RC beams is reachable using the NSM 

CFRP technique (De Lorenzis and Nanni 2001, Dias and Barros 2010, Rezazadeh et al. 

2014). However, debonding of the FRP laminates/rods and/or fracture of concrete 

surrounding these composites are still inevitable, which limit their strengthening potential. 

Strain Hardening Cementitious Composite (SHCC) is a class of fiber reinforced cement 

composites (FRCC) that exhibits ductile behavior under tensile load, with a strain hardening 

response rather than the tension softening character presented by conventional fiber 

reinforced cement composites (FRCC) after crack initiation (Li 1998). In recent years, SHCC 
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has been used for developing new construction systems and for the structural rehabilitation, 

since this type of materials exhibits ductile shear response, high energy absorption capacity, 

and stable hysteretic loops even at large drifts (Parra-Montesinos and Wight 2000, Esmaeeli 

et al. 2015).  

In this present work, thin plates of SHCC strengthened with CFRP laminates according to the 

NSM technique are used to increase the shear capacity of RC beams. This strengthening 

technique is called Hybrid Composite Plate (HCP). Due to the excellent bond conditions 

between SHCC and CFRP laminates, these reinforcements provide the necessary tensile 

strength capacity to the HCP, while the high post-cracking tensile deformability and 

resistance of SHCC avoids the occurrence of premature fracture failure of this cement 

composite in the stress transfer process between these two materials when the HCP is crossed 

by a shear crack. To bond the CFRP laminates into the SHCC plate, slits are opened on the 

surface of the plate and CFRP laminates are inserted into these slits and bonded to the 

surrounding SHCC with an appropriate epoxy adhesive. The HCPs are bonded to the lateral 

faces of the beams using epoxy adhesive, and mechanical anchors can also be used       

(Figure  1-1). The mechanical anchors are used to prevent a premature debonding of the HCPs 

due to the relatively low tensile strength of the concrete substrate of the strengthened beams. 

Furthermore, by installing the mechanical bolts with a certain prestress (controlled by the 

applied torque) some confinement can be introduced to the concrete in the zone of the beam 

to be strengthened, resulting favorable effects in terms of shear strengthening. 

 

 
Figure  1-1: Hybrid shear strengthening technique for RC beams 
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Besides the contribution of the SHCC for the strengthening efficiency of HCPs, the SHCC 

also assures some protection to the CFRP laminates and adhesive in terms of vandalism, 

aggressive environmental conditions, and fire. 

 

The thesis is organized in seven chapters including this introduction: 

Chapter 2 provides a review of the available literature about the object of this thesis. In this 

chapter the fundaments of shear for RC beams, and the different shear strengthening 

techniques are presented and discussed. 

Chapter 3 presents the experimental program carried out to investigate the effectiveness of 

HCPs for the shear strengthening of RC beams. The experimental program is described in 

detail, and the obtained results are presented and discussed. The results include the failure 

modes, and the load-deflection response of the tested beams, as well as the strain field 

developed in the CFRP laminates during the load process.  

In chapter 4, a brief description of the multi-directional fixed smeared crack model used to 

simulate the experimentally tested beams is given. This model, available in FEMIX computer 

program, is specially dedicated to simulate RC elements failing in shear, since it includes a 

constitutive law for the smeared cracks for simulating not only the fracture mode I softening 

behavior, but also the shear softening. After has been demonstrated that this model is capable 

of predicting with high accuracy the relevant behavioral aspects of the tested beams, an 

extensive parametric study is carried out for assessing the influence of some particularities of 

the adopted shear strengthening systems on their strengthening effectiveness for RC beams. 

In Chapter 5, the shear behavior of the SHCC is investigated by Iosipescu shear test method. 

The experimental program is detailed and the obtained results are presented and discussed. 

For better understanding the shear behavior of SHCC, numerical simulations and parametric 

studies are carried out. 

In chapter 6, two prominent models that are used to predict the shear capacity of RC beams 

are presented: Truss Model (TM) and Modified Compression Field Theory (MCFT). Based 

on the MCFT, a new formulation is proposed to predict the shear capacity of RC beams 

strengthened with HCPs.  

Finally in chapter 7, the relevant achievements of the research activities carried out are 

presented, and recommendations for future work are provided.  
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Chapter 2  

An Overview on the Shear Strengthening of the Reinforced 

Concrete Beams 

2.1 Introduction 

Reinforced Concrete (RC) structures often require repair and strengthening due to alterations 

on the load or support conditions, deterioration of the materials, or structural damage caused 

by earthquake or extreme loading events. Externally bonded steel plates, fiber reinforced 

polymer, and reinforced concrete layers are some of the many techniques presently available.  

The following study of existing literature will focus on shear strengthening and retrofitting of 

RC beams. It includes a review of two different materials for strengthening of concrete 

structures Fiber Reinforced Polymer (FRP) and Fiber Reinforced Concrete (FRC).  

2.2 Fundamental Concepts of Shear 

Despite of vast efforts to calculate the shear strength of concrete members over the last 100 

years, there is no fully accepted physical model that describes shear failure. The reason is that 

shear is a complex mechanism and it depends on many factors such as dowel effect of the 

flexural reinforcing bars, internal friction due to interlock of aggregates, and contribution of 

compressive struts formed during the loading process of a beam failing in shear (Halim et al. 

2011). 

2.2.1 Crack development 

A crack forms in the direction that requires the minimum amount of energy for concrete 

fracture (Carolin and Täljsten 2005). When a simply support beam is subjected to uniformly 

distributed load, three types of cracks are identified: 

 Flexural cracks: They form in the tensile zone near the mid-span, and have a 

predominant orientation orthogonal to the axis of the beam, and propagate to the 

compressive zone of the cross section. These cracks form in the regions that are 

governed by flexural deformation. 
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 Flexure-shear cracks: The flexural cracks formed in regions where flexural and shear 

deformation are both significant. 

 Web shear cracks: This type of cracks generally forms near the supports of deep cross 

section beams with thin webs, in the zones of beam of relatively small bending 

moments and high shear forces.  

Figure  2-1 shows the formation of the type of cracks that can be formed in a beam subjected 

to uniformly distributed load (ACI Committee 2011). 

 
Figure  2-1: Types of cracks in concrete beams subjected to shear and bending moments    

(ACI Committee 2011) 

 
When a RC beam without shear reinforcement is subjected to shear deformation, the shear is 

resisted by three main components (Abdel-Jaber et al. 2003) (Figure  2-2): 

1. Concrete in compression zone, cV  [20-40%]; 

2. Internal friction, aV  [35-50%]; 

3. Dowel effect provided by longitudinal bars, dV  [35-50%]; 

In an uncracked region of a concrete beam with a shear span (a) to effective depth (d) ratio 

(a/d, see Figure  2-4) less than 2.5, the shear force is transferred by inclined compressive 

struts to the supports, and orthogonally to the struts are developed tensile strains that justify 

the occurrence of inclined cracks in this region. In cracked regions of the member, the 

behavior of the concrete between cracks is still governed by the continuous mechanics, as 

well as the behavior of the uncracked concrete in the compression zone. The integration of 

the shear stresses over the depth of the compression zone gives a shear force component, 

which is generally considered as the concrete contribution for the shear resistance (ACI-

ASCE Committee 445 1999). 
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Figure  2-2: Components of shear resistance for concrete cracked without shear reinforcement 

 
Shear transfer mechanism in the crack surface of a concrete beam is due to aggregate 

interlock effect. The physical explanation for aggregate interlock is that aggregates 

protruding from the crack surface provide resistance against slip of the both faces of a crack 

(ACI-ASCE Committee 445 1999). As shown in Figure  2-3, the crack in high-strength 

concrete ( ' 70cf MPa ) progresses through rather than around aggregates, and this type of 

crack has a smooth surface with relatively small aggregate interlocking shear resisting 

mechanism. 

 
Figure  2-3: Crack in high strength concrete 

 
Dowel effect is not significant in concrete beams without transverse reinforcement, because 

the shear resisting mechanism due to dowel effect becomes limited by the tensile strength of 

concrete cover in the zone where the shear crack crosses the longitudinal tensile bars (ACI-

ASCE Committee 445 1999). However, in concrete beams with high percentage of 

longitudinal bars of relatively large diameter, particularly when bars are arranged in more 
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than one layer, the dowel action may be significant, since this arrangement can form a stiff 

internal member. 

2.2.2 Shear failure modes of concrete beams 

Web compressive failure: during the loading process of a RC beam susceptible to shear 

failure, diagonal compressive struts are formed (Figure  2-4) that can fail by concrete 

crushing. This type of failure generally occurs in RC beams over reinforced in shear, and is of 

brittle nature since concrete crushing occurs before yielding of the shear reinforcement.  

 
Figure  2-4: Shear failure due to concrete crushing in the web region 

 
Web shear failure: It forms near the support areas of the beam where relatively small bending 

moments and high shear forces are installed. This type of failure is predominant in RC beams 

without transverse reinforcement (Figure  2-5). It occurs when the principal tensile stress 

reaches the concrete tensile strength, and diagonal shear crack is formed. The load at this 

occurrence coincides with load carrying capacity of the beam. If the beam has transverse 

reinforcement, the load can increase after the occurrence of web shear cracks due to the 

resisting contribution of the stirrups crossing this type of cracks (Blanksvärd 2009, ACI 

Committee 2011). 

 
Figure  2-5: Web shear failure 
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Flexural-shear failure: in this type of failure, cracks form in the tension region of beams, and 

propagate diagonally toward the compression zone of the concrete member (Figure  2-6). A 

flexural-shear failure is characterized by the yielding initiation of the longitudinal bars, 

crossing the crack (Figure  2-2). It is followed by the occurrence of the shear failure, since due 

to the hardening nature and dowel effect of the longitudinal steel bars, the load continues to 

increase moderately, and finally the flexural crack degenerates in a critical flexural-shear 

crack.  

 
Figure  2-6: Flexural-shear failure 

 
2.3 Fiber Reinforced Polymer for Shear Strengthening 

Bonding steel plate to the tension zones of concrete members with adhesive resins was shown 

to be a workable technique for increasing the shear and flexural strengths of RC beams. Many 

buildings and bridges have been strengthened by this technique. Because steel plates can 

corrode, leading to a deterioration of their bond to the concrete substrate, and due to the 

difficulty of their installation, which requires the use of heavy equipment, researchers have 

started using FRP materials as an alternative to steel plates (ACI Committee 440 2000). The 

use of FRP composites for strengthening RC structures was first studied at Swiss Federal 

Laboratory for Material Testing and Research (EMPA). Since then, many research studies in 

flexural and shear strengthening of RC structures have been carried out, particularly in USA, 

Japan, and Europe (ACI Committee 440 2000). FRP composites consist of high strength 

fibers embedded in a polymer resin. The fibers are the main constituent to carry the load and 

have a wide range of strength and stiffness. Continuous Glass (GFRP), Aramid (AFRP), and 

Carbon (CFRP) fibers are common reinforcements used with FRP composites. A comparison 

among CFRP, GFRP, AFRP, and steel bars in terms of stress-strain relationship is illustrated 

in Figure  2-7.  
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Some advantages of FRP reinforcement are as follows (Sena-Cruz 2004): 

 Light weight 

 Corrosion resistance 

 High longitudinal resistance 

 Electromagnetic transparency 

 

And some disadvantages of FRP reinforcement are as follows (Alnatit 2011): 

 No yielding before rupture 

 Abrupt degradation of properties under high temperatures 

 Low transverse strength  

 Low modulus of elasticity (a part carbon FRP) 

 Low durability of glass fibers in a moist environment 

 Low durability of some glass and aramid fibers in an alkaline environment 

 
Figure  2-7: A comparison among CFRP, GFRP, AFRP, and steel in term of stress strain 

relationship (Alnatit 2011) 

 
Recently, application of CFRP have attracted special attention of researchers for shear 

strengthening of RC structures according to Externally Bonded Reinforcement (EBR), Near 

Surface Mounted (NSM), and Embedded Through Section (ETS) techniques.  

A literature review on the shear strengthening of RC beams with aforementioned techniques 

is provided in the following sections.  
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2.3.1 Externally Bonded Reinforcement 

Common shear strengthening configurations of this technique include: (a) side bonding,      

(b) U-wrapping, and (c) fully wrapping (Figure  2-8) (ACI Committee 440 2000).  

The following procedures are used in the application of the EBR technique: 

1. The cement past is removed by sandblast or emery;  

2. The edges of the beams must be rounded in U-wrapping and fully wrapping to prevent 

stress concentration in the FRP regions at the corners of the beam’s cross section;  

3. The concrete surface and FRP sheets are cleaned;  

4. The surface of concrete and FRP sheets are saturated by an appropriate epoxy 

adhesive;  

5. FRP sheets are fixed to the surface of the concrete beams.  

 

(a) 2 sided 
(b) 3-sided 

“U-wrapped” 
(c) Completely wrapped 

Figure  2-8: Typical wrapping schemes for shear strengthening using FRP sheets or strips 
(ACI Committee 440 2000) 

 
The curing time of the adhesive, indicated by supplier, must be respected before submitting 

the strengthened element to the work loading conditions. 

Khalifa and his co-workers investigated the performance of two-span continuous RC beams 

(Figure  2-9 and Figure  2-10) (Khalifa et al. 1999) and T cross section RC beams (Figure  2-11 

and Figure  2-12) (Khalifa and Nanni 2000) strengthened in shear with externally bonded 

carbon fiber reinforced polymer sheets (CFRP). In these experimental programs the shear 

behavior of the strengthened beams with CFRP sheets were investigated by considering the 

following variables: CFRP amount (sheet or strip), 90°/0° ply combination, configuration of 

the CFRP sheets (such as wrapping scheme), and also anchorage of the CFRP sheets.  
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The two-span continuous RC beams were grouped into three series with different longitudinal 

and transverse reinforcement, and also different concrete compressive strength. Series CW 

consisted of two beams of 2 32  as longitudinal reinforcement in top and bottom zones of the 

beam. The stirrups in the monitored shear span were designed to occur shear failure in this 

span. The concrete compressive strength of this series was 27.5 MPa.  

 

 
Figure  2-9: Two-span continuous beams (dimensions in mm) (Khalifa et al. 1999) 
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Figure  2-10: Test set-up and strengthening schemes (Khalifa et al. 1999) 

 
Series CO consisted of three beams with equal longitudinal reinforcement as that of series 

CW. No steel stirrups were provided in monitored shear span. The concrete compressive 

strength of this series was 20.5 MPa. And finally series CF consisted of four beams flexurally 

reinforced with 2 16  bars at bottom and top zones, with no shear reinforcement. The 

concrete compressive strength of this series was 50 MPa. Table  2-1 presents the 

strengthening schemes, ultimate load, and also failure mode of two-span continuous beams. 

 

 



Chapter 2 

14 
 

Table  2-1: Details and results of the continuous RC beams (Khalifa et al. 1999) 
Beam 

designation 
Strengthening schemes 

Ultimate load 
(kN) 

Failure mode 

CW1 - 508 Shear  

CW2 
The first ply was attached in form of  

continuous U-wraps (90°), the second ply 
was bonded to the two sides of the beam (0°) 

623 Shear  

CO1 - 220 Shear  

CO2 Strips in the form of U-wraps 265 
CFRP 

debonding 

CO3 Continuous sheets in the form of U-wraps 330 
CFRP 

debonding 
CF1 - 268 Shear  
CF2 Continuous sheets in the form of U-wraps 337 Flexural 

CF3 
The first ply was attached in form of  

continuous U-wraps (90°), the second ply 
was bonded to the two sides of the beam (0°) 

394 Flexural 

CF4 
Continuous sheets in the form of completely-

wraps 
400 Flexural 

 

(a) Beams specimens and detailing dimensions 
(b) Anchored system used in T cross 

section beams 
Figure  2-11: T cross section beams (dimensions in mm) (Khalifa and Nanni 2000) 

 
The strengthening schemes, ultimate load, and failure mode of the T cross section beams are 

presented in Table  2-2.  



Chapter 2 

15 
 

 
Figure  2-12: Test setup and strengthening schemes (Khalifa and Nanni 2000) 

 
Table  2-2: Details and results of the T cross section RC beams (Khalifa and Nanni 2000) 

Beam 
designation 

Strengthening 
schemes 

Ultimate load 
(kN) 

Failure mode 

BT1 - 180 Shear  

BT2 
Continuous sheets in 
the form of U-wraps 

310 
CFRP 

debonding 

BT3 Two plies (90°/0°) 314 
CFRP 

debonding 

BT4 
Strips in the form of 

U-wraps 
324 

CFRP 
debonding 

BT5 
Strips on the two 
beam sides only

242 
CFRP 

debonding 

BT6 
Continuous U-wraps 

with end anchor 
442 Flexural 

Based on the results, the authors concluded: 

 EBR technique can be used to increase the shear capacity of RC beams in both 

positive and negative moment regions.  
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 The proposed anchor system can be very effective in strengthening configurations 

where bonded/or development length of FRP is critical, i.e. premature debonding of 

the CFRP has tendency to occur. 

 Applying CFRP sheets in U-wrap scheme is more effective than applying CFRP 

sheets on the beam’s lateral sides.  

 The contribution of the CFRP was decreased by increasing the percentage of existing 

steel stirrups.  

Shear strengthening of pre-damaged RC beams with CFRP strips was studied by Alzoubi     

et al. (2007). The experimental program included four rectangular beams (Figure  2-13).  

 
(a) (b) 

Figure  2-13: (a) longitudinal reinforcement, (b) strengthening scheme (dimensions in cm) 
(Alzoubi et al. 2007) 

 
B1 was control beam and B2 was a beam without pre-damaged and strengthened with EBR 

technique to upgrade its shear capacity. Two beams were damaged up to 50% (B3) and 89% 

(B4) of ultimate load carrying capacity of the control beam (B1), and then fully unloaded. 

These last two beams were repaired and strengthened with EBR technique. After have been 

repaired, the beams were loaded up to failure. Table  2-3 represents the details and results of 

the tested beams. The strengthened and repaired beams failed in shear with debonding of the 

CFRP strips, which means that the full tensile capacity of the FRP was not mobilized  

Table  2-3: Details and results of the beams (Alzoubi et al. 2007) 
Beam 

designation 
Percentage of 
damaged (%) 

Ultimate 
load (kN) 

Deflection at 
ultimate load (mm) 

Failure mode 

B1 - 155 0.408 Shear 
B2 0 235 0.610 Debonding of the CFRP 
B3 50 230 0.689 Debonding of the CFRP
B4 89 225 0.695 Debonding of the CFRP

Barros and Dias (2003) investigated the strengthening effectiveness of EBR strips of CFRP 

sheet (U-wrapped) and laminate strips of CFRP embedded into the slits made on the lateral 

surface of the concrete beams (NSM technique). Figure  2-14 shows the details of the beams.  



Chapter 2 

17 
 

 

  
Series A

  
Series B

Figure  2-14: Details of the control beams (dimensions in mm) (Barros and Dias 2003) 

 
The details and results of the strengthened beams are presented in Table  2-4. 

Table  2-4: Main results of the tested beams (Barros and Dias 2003) 

 
Concrete 

Compressive 
strength (MPa) 

Beam 
designation 

Shear reinforcing system 
Ultimate 
load (kN) 

Deflection 
at peak 

load (mm) 

B
ea

m
s 

Se
ri

es
 A

 

37.6MPa 

VA10 - 100 2.8 
VAE-30 Stirrups (300mm spacing) 169 16.2 

VAM-19 
Strips CFRP sheet (190mm 

spacing) 
122 3.8 

VACV-20 
Vertical CFRP Laminate 

(200mm spacing) 
158 12.9 

VACI-30 
Inclined CFRP Laminate 

(300mm spacing) 
158 31 

B
ea

m
s 

Se
ri

es
 B

 

49.5MPa 

VB10 - 74 2 
VBE-15 Stirrups (150mm spacing) 121 8.5 

VBM-8 
Strips CFRP sheet (80mm 

spacing) 
111 4.4 

VBCV-10 
Vertical CFRP Laminate 

(100mm spacing) 
131 6.8 

VBCI-15 
Inclined CFRP Laminate 

(150mm spacing) 
120 4.3 

The results shown the laminate strips of the CFRP were most effective than strips of the 

CFRP sheets in terms of load carrying capacity, ductility of the beam, and post peak load 

carrying capacity. In the post-peak stage of the beams reinforced with laminates of the CFRP 

a very high residual load carrying capacity was sustained up to a relatively large deflection, 

which was not happened on the beam reinforced with strips of CFRP sheets. 

In a study conducted by Mofidi and Chaallal (2011), conceptual modeling of FRP sheets was 

studied. The experimental observations have shown that in a RC beam with no or low shear 

reinforcement, the beam failed along a single shear crack line (Figure  2-15a), while in a RC 

beam with suitable percentage of transverse reinforcement the shear crack pattern tended to 

be distributed over a large width (Figure  2-15b). The last condition was also true when a RC 
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beam was strengthened with CFRP sheets, such was the case of the beam in Figure  2-15c that 

was reinforced with EBR CFRP sheets. The beam failed with one major shear crack and two 

surface shear crack (in the concrete cover) that joined the major shear crack in the concrete 

core. This led to debonding of CFRP sheet attached to a large chunk of concrete. On the other 

hand, a more distributed crack pattern can accelerate premature debonding of the CFRP 

sheets (Figure  2-15c).  

 

(a) beam without shear reinforcement (b) beam with shear reinforcement 

(c) beam with shear reinforcement and reinforced with EB FRC sheet 
Figure  2-15: Effect of shear reinforcement and epoxy-bonded FRP sheets on cracking pattern 

(Mofidi and Chaallal 2011) 

 
Based on the results in literature (Mofidi and Chaallal 2011, Barros and Dias 2003, Khalifa  

et al. 1999), debonding of the FRP is the main disadvantage of the EBR technique that avoids 

the full exploitation of the strengthening potentialities of these materials. However, proper 

anchoring can prevent/delay premature debonding, as long as special attention is taken to 

consider the high stress concentrations developed in the anchored zones in order to avoid 

premature rupture of the FRP (Coelho et al. 2012). 

2.3.2 Near Surface Mounted 

In this technique slits are opened on the surface of the RC beams, and laminates/rods are 

inserted into these slits, and bonded to the concrete substrate by using an appropriate epoxy 
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adhesive (Figure  2-16). Typically, the CFRP laminates have a cross section of about 1.4 mm 

thick and 10 to 20 mm width, while FRP rods can have a diameter between 8 to 12 mm.  

 
(a) 

 
(b) 

Figure  2-16: Near Surface Mounted FRP laminate to increase the beam (a) shear capacity, (b) 
bending capacity 

 
The following procedures are used in the application of the NSM technique: 

1- Slits are opened in the concrete cover using a saw-cut machine; 

2- The slits and laminates/rods are cleaned by compressed air and appropriate cleaner 

(acetone for instance), respectively;  

3- The slits are filled by an appropriate adhesive (epoxy for instance); 

4- The laminates/rods are inserted into the slits and adhesive in excess is removed.  

AA
B

B
CFRP

laminate
Epoxy

adhesive

Sec. A-A

Epoxy
adhesive

CFRP
laminate

Sec. B-B

Concrete Cover

Epoxy
CFRP laminate
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The adhesive curing time recommended by the supplier should be respected, unless reliable 

experimental results support other decision.  

The first known experiment with NSM in shear strengthening of RC beams was reported by 

De Lorenzis and Nanni (2001), by using CFRP rods. Figure  2-17 presents the cross section of 

the eight beams that were tested under four point bending configuration with a shear span 

ratio (a/d) of 3. 

 
Figure  2-17: Cross section of beams: (a) beams without stirrups, and (b) beams with stirrups 

(dimensions in inches) (De Lorenzis and Nanni 2001) 

 
Table  2-5 presents details and results of the tested beams.  

 
Table  2-5: Details and results of the tested beams (De Lorenzis and Nanni 2001) 

Beam 
designation 

Steel stirrups NSM FRP rods 
Ultimate 
load (kN) 

Failure 
mode Quantity 

Spacing 
(mm) 

Quantity 
Spacing 

(mm) 

Inclination 
of the 
CFRP

Anchorage 
in flange 

BV - - - - - - 181 SC 
B90-7 - - 2 no. 3 178 90 No 230 BF 
B90-5 - - 2 no. 3 127 90 No 255 BF 

B90-5A - - 2 no. 3 127 90 Yes 371 SP 
B45-7 - - 2 no. 3 178 45 No 331 BF
B45-5 - - 2 no. 3 127 45 No 356 SP
BSV 2 no. 3 355 - - - - 306 SC 

BS90-7A 2 no. 3 355 2 no. 3 178 90 Yes 414 SP+FF 
SC = shear compression; BF = bond failure of NSM rods; SP = splitting of concrete cover; and FF = flexural 
failure.  

 
The results have shown that in the absence of steel stirrups, an increase in load carrying 

capacity as high as 106% with respect to the control beam was observed. The failure of this 

beam was followed by the splitting of a bottom concrete cover region due to shear 

deformation of the longitudinal reinforcement that eventually led to cover delamination and 

loss of anchorage of the FRP rods. Based on the results, the authors concluded that the shear 

capacity of the strengthened beams with NSM technique can be increased by: decreasing the 
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space of the FRP rods; anchoring the rods into the flange of the beam; adopting an inclination 

of 45° for the rods. 

Rizzo and De Lorenzis (2009) investigated the shear capacity of RC beams strengthened in 

shear with different type of NSM reinforcements (laminates and rods), spacing and 

inclination of the laminates/rods, and mechanical properties of the groove-filling epoxy. For 

bonding the FRPs, two types of epoxy paste were used, one, type a, of a tensile strength and 

secant tensile elastic modulus of 18.6 MPa and 4.15 GPa, respectively, and the other, type b, 

of 22.8 MPa and 12.87 GPa for these corresponding properties. One beam was strengthened 

in shear with EBR CFRP laminates. Figure  2-18 shows the geometry of the tested beams.  

  
Figure  2-18: Geometrical details of the RC beams (Rizzo and De Lorenzis 2009) 

 
Table  2-6 presents the strengthening and ultimate load of the tested beams. 
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Table  2-6: Details and results of the tested beams (Rizzo and De Lorenzis 2009) 

Beam 
designation 

Strengthening 
system 

Type of groove-
filling epoxy 

Inclination of the 
CFRP fibers 

Spacing of the 
strengthening 

system 

Ultimate 
load (kN) 

C - - - - 244 

UW90 
Externally 

bonded CFRP 
laminate 

- 90 
Continuous 

strengthening 
283 

NB90-73-a 

NSM CFRP bars 

a 90 73 353 
NB90-73-b b 90 73 297 
NB90-45-b b 90 45 301 
NB45-146a b 45 146 322 
NB45-73a a 45 73 300 
NS90-73a NSM CFRP 

strips 
a 90 73 345 

NS45-146a a 45 146 310 

The results show that the beams strengthened with NSM technique supported higher load 

capacity than beams strengthened with EBR technique. In EBR technique the strengthening 

potentialities of the CFRP were not fully mobilized due to premature debonding of the CFRP. 

The increase in shear capacity was about 16% for the beam strengthened with externally 

bonded U-wrapped strip, and ranged between 22% and 44% for the beams strengthened with 

NSM reinforcement.  

Dias and Barros (2010) compared the performance of the RC beams strengthened in shear 

with NSM CFRP laminates and EBR technique. They examined 15 almost full scale T cross 

section beams under three point bending configuration. Nine beams were strengthened with 

different inclination and percentage of the CFRP laminates. Figure  2-19 shows the geometry 

of the control beam (C-R).  

 
Figure  2-19: Geometry of the control beam (dimensions in mm) (Dias and Barros 2010) 

 
Three beams were strengthened by EBR technique with different percentage of strips of the 

CFRP sheets. Table  2-7 presents the details and results of the tested beams. 

Based on the results, these authors concluded that: 

  NSM technique was more effective than EBR technique, since the NSM provided a 

larger increase of load carrying capacity after shear crack formation. 
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 The arrangement consisting of laminates at 45° was most effective in all the series 

with different CFRP percentage, and laminates at 60° were more effective than 

vertical laminates. 

 The effectiveness level of the NSM technique is limited by concrete tensile strength, 

since at failure, a certain volume of concrete was attached to the CFRP laminates.  

 
Table  2-7: Details and results of the tested beams (Dias and Barros 2010) 

Beam 
designation 

shear reinforcement system in the smaller beam shear span ( iL ) Ultimate 
load 
(kN) 

Shear 
strengthening 

Quantity 
Percentage 

(%) 
Spacing 

(mm) 
Angle (°) 

C-R - - - - - 207 
2S-R 

NSM CFRP 
laminates 

- - - - 304 
7S-R - - - - 467 

2S-4LV 
2×4 laminates 
(1.4×9.5 mm2) 

0.08 180 90° 337 

2S-7LV 
2×7 laminates 
(1.4×9.5 mm2) 

0.13 114 90° 374 

2S-10LV 
2×10 laminates 
(1.4×9.5 mm2) 

0.18 80 90° 398 

2S-4L45 
2×4 laminates 
(1.4×9.5 mm2) 

0.08 275 45° 393 

2S-7L45 
2×7 laminates 
(1.4×9.5 mm2) 

0.13 157 45° 422 

2S-10L45 
2×10 laminates 
(1.4×9.5 mm2) 

0.19 110 45° 446 

2S-4L60 
2×4 laminates 
(1.4×9.5 mm2) 

0.07 243 60° 386 

2S-6L60 
2×6 laminates 
(1.4×9.5 mm2) 

0.11 162 60° 394 

2S-9L60 
2×9 laminates 
(1.4×9.5 mm2) 

0.16 108 60° 413 

2S-4M 

EBR CFRP 
wet lay-up 

sheets 

4 strips of CFRP wet 
lay-up sheets U 

configuration – 1 
layer (0.176×60mm2) 

0.07 180 90° 311 

2S-7M (1) 

7 strips of CFRP wet 
lay-up sheets U 

configuration – 1 
layer (0.176×60mm2) 

0.10 114 90° 325 

2S-7M (2) 

7 strips of CFRP wet 
lay-up sheets U 

configuration – 2 
layer (0.176×60mm2) 

0.21 114 90° 370 

Analytical and numerical research have shown the NSM technique for the shear 

strengthening of the RC beams can be more effective if the FRP laminates are deeper 

installed into the slits. The depth of the slits is limited to the concrete cover, and in general 

does not exceed 30 mm. In the analytical model proposed by Bianco et al. (2014) it is 

assumed four failure modes for the NSM laminates crossing a critical shear crack: 1) 

debonding, 2) concrete semi-conical tensile fracture, 3) mixed shallow semi-conical plus 
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debonding, and 4) laminate tensile fracture. The semi-conical is formed when the axis of the 

laminate is assumed positioned at the surface of the beam’s lateral face. According to 

theoretical fundaments of this model, if the laminate is positioned deeper into the core of the 

beam’s web, the concrete fracture is formed by higher surface than the one corresponding to 

the semi-cone, resulting higher resisting concrete fracture and, consequently, higher shear 

strengthening effectiveness for the NSM technique. Recently an experimental program was 

carried out to study the effectiveness of installing the laminates deeper into the slits by Barros 

and Dias (2013). This experimental program was composed of one reference beam       

(Figure  2-20) and four strengthened beams with CFRP laminates, where laminates were 

positioned at different depth/inclination into slits opened at lateral faces of the beam’s web in 

the shorter span of the beam (a, as indicated in Figure  2-20).  

 

Figure  2-20: Geometry of the reference beam (dimensions in mm) (Barros and Dias 2013) 

 
The details and results of the tested beams are represented in Figure  2-21 and Table  2-8.  

 

 

 

 
Figure  2-21: NSM shear strengthening configurations (CFRP laminates at dashed lines) 

(dimensions in mm) (Barros and Dias 2013) 
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Table  2-8: Details and results of the tested beams (Barros and Dias 2013) 

Beam 
designation 

shear reinforcement system in the smaller beam shear span (a) 
Ultimate 

load 
(kN) 

Deflection 
at 

maximum 
load

 

(mm) 

Quantity 
Percentage 

(%) 
Depth of 

groove (mm) 
Spacing 

(mm) 
Angle 

(°) 

3S-R - - - - - 331 10.7 

3S-4LI-S2 
2×4 laminates 
(1.4×20 mm2) 

0.113 21 350 52° 555 16.7 

3S-4LI-P2 
2×4 laminates 
(1.4×20 mm2) 

0.113 35 350 52° 599 17.5 

3S-4LI4LI-SP1 
2×8 laminates 
(1.4×10 mm2) 

0.113 35 350 52° 550 20.3 

3S-4LI4LV-SP1 
2×8 laminates 
(1.4×10 mm2) 

0.101 35(90°)/15(52°) 350/350 52°/90° 566 16 

Based on the results, the 3S-4LI-P2 beam (2×4 laminates (1.4×20 mm2) and depth of 35 mm) 

has shown better behavior in terms of maximum load carrying capacity and also deflection 

corresponding to maximum load at loaded section. The option for having two independent 

laminates in each slits (3S-4LI4LI-SP1 beam), or use of CFRP configurations with two kinds 

of inclinations for the laminates installed at different depth inside the slits (3S-4LI4LV-SP1 

beam) provided a more ductile behavior after peak load for the beam strengthened with NSM 

technique.  

Based on the results reported in literature (De Lorenzis and Nanni 2001, Dias and Barros 

2010, Chaallal et al. 2011, Dias and Barros 2013) debonding and concrete cover detachment 

are the failure modes that can compromise the shear strengthening effectiveness of NSM and 

EBR techniques. This is mainly caused by the relatively low concrete tensile strength that 

limits the force that can be transferred by bonding to the surrounding concrete            

(Chaallal et al. 2011).  

2.3.3 Embedded Through Section 

In the Embedded Through-Section (ETS) technique, steel or FRP bars are inserted into holes 

executed through the cross section and bonded with an appropriate epoxy adhesive       

(Figure  2-22). This technique can be more effective than the two previous techniques (EBR 

and NSM) due to the higher confinement that surrounding concrete provides to the ETS bars, 

and larger concrete fracture surface that is mobilized during the pull-out process applied to 

the ETS bars crossing the shear cracks.  
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Figure  2-22: Embedded Through-Section (ETS) strengthening technique concept for the 

shear strengthening of reinforced concrete beams (Barros and Dalfre 2013) 

 
The ETS technique is composed of the following steps: 

1- The position of the longitudinal bars and stirrups has to be found by a rebar detector 

in order do not introduce any damage in these reinforcements during the execution of 

the holes for the installation of the ETS bars;  

2- The position of the ETS bars has to be marked on the RC beams, and holes are made 

with the desire inclination through the core of the cross-section of the RC beams;  

3- The holes are cleaned by compressed air;  

4- The holes are filled by an appropriate adhesive epoxy (cement based adhesives have 

been also used when using ETS steel bars);  

5- The bars are inserted into the holes and adhesive in excess is removed. 

Chaallal et al. (2011) carried out an experimental program to assess the effectiveness of ETS 

technique by comparing the performance of EBR, NSM, and ETS shear strengthening 

techniques. The experimental program has involved twelve tests performed on T cross 

section beams. The details of the beams are presented in Figure  2-23. Two variables were 

examined in that experimental program: 

a) Effectiveness of the strengthening technique 

b) Presence of internal steel stirrups 

 

 

Adhesive

ETS bar

Potential
shear crack
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Figure  2-23: Details of tested beams: (a) longitudinal view; (b) cross-section with no 

transverse reinforcement; (c) cross-section with transverse steel stirrups (dimensions in mm) 
(Chaallal et al. 2011) 

 
Series S0 is formed of beams without shear reinforcement. S1 and S3 consisted of the beams 

with transverse reinforcement, spaced at / 2s d  for S1 series and 3 / 4s d for S3 series, 

where d= 350 mm represents the effective depth of the beams. The average concrete strength 

was 25 MPa for S0 and S1 and 35 MPa for S3 series. Sand coated CFRP rods with nominal 

diameters of 9.5 mm and 12.7 mm are used for NSM and ETS strengthening methods, 

respectively. The average tensile strength and modulus of elasticity were 1870 MPa and 

143.9 GPa, respectively. The CFRP sheet used for EB series is a unidirectional carbon fiber 

fabric that presents an ultimate stress and young´s modulus of 3650 MPa and 231 GPa, 

respectively. 

The main results of the experimental program are presented in Table  2-9. The results have 

shown that the average shear capacity of the strengthened beams has increased around 23%, 

31%, and 60% when using the EB U-jacket sheet, NSM FRP rods, and ETS CFRP rods, 

respectively. The ETS technique was more efficient in term of mobilizing the tensile capacity 

of FRP systems. The failure of the strengthened beams with EBR and NSM techniques were 

FRP sheet debonding and concrete cover delamination, respectively, and all the 

corresponding beams failed in shear. In the series of ETS beams, the S1 and S3 failed in 

bending, while S0 failed in shear. At failure of the beams strengthened according to NSM and 
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EBR techniques, the maximum tensile strain of the FRP was much lower than their ultimate 

tensile strain. 

Table  2-9: The main results of the experimental program (Chaallal et al. 2011) 
Strengthening 

method 
Beam 

designation 
Shear strengthening 

system 
Ultimate load 

(kN) 
Total shear 

resistance (kN) 
Failure mode 

Control 
S0-CON - 123 81 Shear 
S1-CON Stirrups@175mm 351 232 Shear 
S3-CON Stirrups@263mm 294 194 Shear 

EBR 

S0-EB 
Continuous sheets in 
the form of U-wraps 

181 120 Shear 

S1-EB 
Stirrups@175mm 

Continuous sheets in 
the form of U-wraps

378 251 Shear 

S3-EB 
Stirrups@263mm 

Continuous sheets in 
the form of U-wraps 

335 222 Shear 

NSM 

S0-NSM 
NSM strengthening 
d=9.5mm @130mm 

198 131 Shear 

S1- NSM 
Stirrups@175mm 

NSM strengthening 
d=9.5mm@130mm 

365 242 Shear 

S3-NSM 
Stirrups@263mm 

NSM strengthening 
d=9.5mm@130mm 

380 252 Shear 

ETS 

S0-ETS 
ETS strengthening   

d=12.7mm @130mm 
273 181 Shear 

S1-ETS 
Stirrups@175mm 

NSM strengthening 
d=12.7mm@130mm 

397 263 Flexural 

S3-ETS 
Stirrups@263mm 

NSM strengthening 
d=12.7mm@130mm 

425 282 Flexural 

The presence of steel stirrups resulted in a decrease of the contribution of CFRP to the shear 

resistance for the beams strengthened with the EBR and NSM techniques. While the 

contribution of CFRP did not significantly decrease with the presence of transverse steel 

reinforcement in the specimens strengthened with the ETS technique. 

Barros and Dalfre (2013) carried out a comprehensive experimental program composed of 14 

RC beams. Two variables were examined in that experimental program: 

1. Percentage of existing steel stirrups.  

2. Inclination of the ETS steel bars (45° or vertical). 

The experimental program was formed by two series of RC beams with different cross 

section (150×300 mm2 and 300×300 mm2) with a total length of 2450 mm and a shear span 

of 900 mm. Figure  2-24 shows the configuration of the beams.  
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Series A 

Series B 
Figure  2-24: Geometry of the beams (dimensions in mm) (Barros and Dalfre 2013) 

 
Table  2-10 presents general information of series A and series B and also the results of the 

tested beams. The authors concluded that: 

 Inclined ETS bars were more effective than vertical bars, and the shear 

strengthening effectiveness was increased with the percentage of ETS bars. 

 For an ETS shear strengthening ratio of 0.16%, a ductile flexural failure mode was 

assured in beams of flexural reinforcement ratio of 1.88%. 

 For the tested beams, the contribution of the ETS bars was limited by the concrete 

crushing or yielding of the longitudinal reinforcement.  

 In the beams strengthened with ETS technique the strengthening effectiveness has 

increased with the percentage of the steel stirrups. 
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Table  2-10: General information and corresponding results of the tested beams             
(Barros and Dalfre 2013) 

 
Beam designation 

Shear strengthening 
system 

Ultimate 
load (kN) 

Deflection 
corresponding to the 
maximum load (mm) 

Se
ri

es
 A

 

Reference - 109 4.0 
S300.90 Stirrups@300mm 165 8.4 

E300.90 
ETS strengthening 

(90°) 310@300mm 
161 7.0 

E300.45 
ETS strengthening 

(45°) 310@300mm 
204 12 

S300.90/E300.90 
Stirrups@300mm 
ETS strengthening 

(90°) 310@300mm 
231 13.1 

S300.90/E300.45 
Stirrups@300mm 
ETS strengthening 

(45°) 310@300mm 
244 14.0 

S225.90 Stirrups@225mm 180 9.9 

S225.90/E225.90 
Stirrups@225mm 
ETS strengthening 

(90°) 310@225mm 
244 14.5 

Se
ri

es
 B

 

Reference - 203 4.5 
S300.90 Stirrups@300mm 232 5.6 

E300.90 
ETS strengthening 

(90°) 310@300mm 
239 6.1 

E300.45 
ETS strengthening 

(45°) 310@300mm 
336 9.4 

S300.90/E300.90 
Stirrups@300mm 
ETS strengthening 

(90°) 310@300mm 
390 15 

S300.90/E300.45 
Stirrups@300mm 
ETS strengthening 

(45°) 310@300mm
397 20 

Breveglieri et al. (2014) carried out an experimental program composed of 10 T-cross section 

RC beams, organized in two series: series A without steel stirrups; series B with two steel 

stirrups, spaced at 300 mm, in monitored shear span. The beams were designed in order they 

fail in shear. Figure  2-25 shows the reference beam with no steel stirrups in the monitored 

shear span.  

 
Figure  2-25: Tested beams: geometry, steel reinforcements applied in all beams (dimensions 

in mm) (Breveglieri et al. 2014) 
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The following variables were examined in this experimental: 

a) Inclination of the ETS bars 

b) Shear strengthening ratio 

The details and results of the tested beams are presented in Table  2-11.  

Table  2-11: General information and corresponding results of the tested beams (Breveglieri et 
al. 2014) 

Beam 
designation 

Shear strengthening 
system 

Ultimate 
load (kN) 

Deflection 
corresponding to the 
maximum load (mm) 

0S-Ref - 156 4.66 

0S-ETS300-90 
ETS strengthening 

(90°) 310@300mm 
218 4.37 

0S-ETS300-45 
ETS strengthening 

(45°) 310@300mm 
349 - 

0S-ETS180-90 
ETS strengthening 

(90°) 310@300mm 
257 4.31 

0S-ETS180-45 
ETS strengthening 

(45°) 310@300mm
269 6.56 

2S-Ref Stirrups@300mm 242 4.70 

2S-ETS300-90 
Stirrups@300mm 
ETS strengthening 

(90°) 310@300mm 
316 5.32 

2S-ETS300-45 
Stirrups@300mm 
ETS strengthening 

(45°) 310@300mm 
407 7.03 

2S-ETS180-90 
Stirrups@180mm 
ETS strengthening 

(90°) 310@300mm 
407 8.27 

2S-ETS180-45 
Stirrups@180mm 
ETS strengthening 

(45°) 310@300mm 
505 8.37 

The load carrying capacity of the strengthened beams increased more than 30%, and reached 

a maximum of 136% compared to control beam. The authors concluded that the inclined ETS 

bars (45°) were more effective than vertical ones due to the larger available resisting bond 

length assured. They also pointed out that the average inclination of the shear failure crack of 

the strengthened beams varied between 39° and 45°. Therefore, the ETS bars were almost 

orthogonal to the critical shear cracks. As mentioned in previous sections, the effectiveness of 

EBR and NSM techniques has decreased with the increase of the percentage of steel stirrups. 

In the ETS technique the strengthening effectiveness has increased with the percentage of the 

steel stirrups. The detrimental group effect observed in the two previous techniques (EBR and 

NSM) due to the mutual interaction consecutive FRP shear reinforcements did not occur in 

the ETS technique, even for minimum spacing of the ETS bars.  
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2.4 Fiber Reinforced Concrete for Shear Strengthening 

Fiber Reinforced Concrete (FRC) is being used not only to restore the load carrying capacity 

and deflection of damaged structures, but also to increase the load carrying and energy 

dissipation performance of concrete and masonry structures. The relatively high post-

cracking residual strength and energy absorption of FRC is taking into account for the use of 

this composite in the structural rehabilitation and strengthening. The results obtained by 

several researchers in experimental programs also show the potential reduction or, even the 

total replacement, of steel stirrups by taking advantage of the shear resistance of FRC   

(Kwak et al. 2002, Slater et al. 2012). 

Recently, Strain Hardening Cementitious Composite (SHCC) is used to produce thin plates to 

increase the shear and flexural capacity of the RC beams (Esmaeeli et al. 2013a) and also 

energy dissipation of beam-column joint (Esmaeeli et al. 2014). SHCC is a class of fiber 

reinforced cement composites (FRCC) that exhibits ductile behavior under tensile load, with 

a strain hardening response rather than the tension softening character presented by 

conventional FRCC after crack initiation (Li 1998). In SHCC materials, the fiber bridging 

mechanisms developed during the crack opening process allow a gradual increase of tensile 

capacity from crack initiation up to a relatively high tensile strain (more than 1%), where a 

failure macro-crack finally occurs, followed by a strain-softening stage (Figure  2-26). The 

tensile strain hardening phase is accompanied by the formation of a diffuse crack pattern of 

very small crack width. 

(a) (b) 
Figure  2-26: (a) Schematic illustration of uniaxial stress-strain curves for brittle, quasi-brittle, 
and strain-hardening cementitious materials, (b) Schematic of three deformation stages of a 

SHCC during a uniaxial tensile test 
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Maheri et al. (2004) studied the use of CARDIFRC strips for repairing RC beams. 

CARDIFRC is a high performance fiber reinforced cementitious composite (HPFRCC), 

which is characterized by high compressive strength (up to 200 MPa), high flexural tensile 

strength (up to 30 MPa), and high energy absorption capacity. This matrix was reinforced 

with a large percentage of brass-coated short steel fibers (up to 8% in volume and 6-13 mm 

long and 0.16 mm diameter) (Farhat et al. 2007). Two types of beams were tested, non-

ductile beams without shear reinforcement that were tested under three point bending, and 

ductile beams that were reinforced with steel stirrups and tested under four point bending. 

Figure  2-27 shows the geometry of the ductile beams. 

 
                                                                                                   Section A-A 

Figure  2-27: Typical dimensions of the tested beams, and reinforcement details of the ductile 
beams (Maheri et al. 2004) 

 
CARDIFRC strips were made in two thicknesses (16 mm and 20 mm) and two types of mixes 

(Table  2-12).  

 
Table  2-12: Mix and material properties of CARDIFRC Mix I and Mix II                     

(Maheri et al. 2004) 

 
Fiber (6mm) 

(kg/m3) 
Fiber (13mm) 

(kg/m3) 
Indirect tensile 
strength (MPa) 

Compressive 
strength (MPa) 

Mix I 390 78 24 207 
Mix II 351 117 25 185 

 
The beams were pre-loaded up to of about 75% of the average failure of the control beams. 

Then the damaged beams were retrofitted with CARDIFRC plates by using three types of 

strip configurations, as shown in Figure  2-28.  
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Figure  2-28: Retrofit configurations: (a) one plate bonded on the tensile face, (b) one plate 
bonded on the tensile face and four plates bonded on the vertical sides, and (c) one plate 

bonded on the tension face and two plates fully covering the vertical faces                    
(Maheri et al. 2004) 

 
The main results of the experimental program are presented in Table  2-13, demonstrating a 

noticeable strengthening effectiveness of the CARDIFRC plates on the stiffness and ductility 

of the repaired beams. The stiffness of repaired beams has increased with the thickness of 

retrofitting plates. This technique was able to change the failure mode of the beams from 

brittle shear to a ductile flexural failure.  
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Table  2-13: Details and main results of the tested beams (Maheri et al. 2004) 

 
Retrofit 

configuration 

Plate 
thickness 

(mm) 
Mix type Beam No. 

Ultimate 
load (kN) 

Maximum 
deflection 

(mm) 
Failure mode 

N
on

-d
uc

ti
le

 b
ea

m
s 

Control 
beam 

- - 1 32 8.6 Flexure 
- - 2 29 4.1 Shear
- - 3 30 4.9 Shear
- - 4 26 3.3 Shear 

Figure  2-28a 

16 
I 

1 35 9.1 Flexure 
2 31 8.0 Flexure 

II 
1 47 8.5 Flexure 
2 40 3.5 Shear 

20 
I 1 41 8 Flexure 

II 
1 35 8.7 Flexure 
2 31 5.2 Shear/Flexure 

Figure  2-28b 
16 

I 
1 43 9.7 Flexure 
2 46 9.1 Flexure 
3 43 9.4 Flexure 

II 
1 53 9.3 Flexure 
2 42 9.11 Flexure 
3 54 20.1 Flexure 

20 II 
1 35 8.8 Flexure 
2 37 8.8 Flexure 

Figure  2-28c 16 

I 
1 76 9.4 Flexure 
2 85 9.9 Flexure 
3 84 9.1 Flexure 

II 
1 86 19.6 Flexure 
2 80 9.3 Flexure 
3 68 9.1 Flexure 

du
ct

il
e 

be
am

s 

Control 
beam 

- - 1 42 23.8 Flexure 
- - 2 46 30.9 Flexure 
- - 3 45 26.2 Flexure 

Figure  2-28a 
16 

I 1 57 25.5 Flexure 
I 2 64 20.5 Flexure 

20 
I 1 77 17.4 Flexure 
I 2 84 21 Flexure 

Figure  2-28b 
16 

I 1 65 15.9 Flexure 
I 2 61 14 Flexure 

20 
I 1 60 14.4 Flexure 
I 2 58 20.4 Flexure 

Figure  2-28c 
16 

I 1 130 14.2 Flexure 
I 2 146 23.5 Flexure 

20 I 1 133 17.3 Flexure 

 

In a study conducted by Mostosi et al. (2011), the use of High Performance FRC (HPFRC) 

was investigated for the shear strengthening of RC beams. Two kinds of HPFRC were used: 

i) a HPFRC with a self-leveling rheology that can be cast with a thin thickness; and ii) a new 

thixotropic material. Figure  2-29 and Table  2-14 show the geometry of the beams and the 

specimens’ characteristics, respectively. The HPFRC jacket was reinforced with a wire mesh 

of 2.05 mm diameter bent wires, assembled with a spacing of 25.4 mm. A perfect bond 

between the beam’s concrete substrate and HPFRC jacket was assured by sandblasting. 
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Figure  2-29: Beam geometry (dimensions in mm) (Mostosi et al. 2011) 

 
Table  2-14: Specimens characteristics (Mostosi et al. 2011) 

Beam 
designation 

  
Thickness 

of the 
jacket 

Material Type Mesh 
Ultimate 
load (kN) 

Maximum 
deflection 

(mm) 

Un-
Reinforced 

beam 
 

- 
No 

reinforced 
- - 450 - 

Beam B 

 

Lower 
surface 

50 mm Self-leveling 
Welded wire 
mesh U bent 

773 11.9 
Lateral 
surface 

50 mm Self-leveling 

Beam D 

 

Lower 
surface 

50 mm Self-leveling 
Welded wire 
mesh U bent 

741 12.1 
Lateral 
surface 

50 mm thixotropic 

Beam E 

 

Lower 
surface 

50 mm Self-leveling 
Welded wire 
mesh U bent 
to a height 

of 20 cm on 
lateral 

surfaces 

670 16.9 
Lateral 
surface 

30 mm thixotropic 

 
For the beams strengthened with HPFRC jacket (beams B, D, and E), as opposed to reference 

beams, the failure mode was governed by flexural. The author concluded that the reinforced 

HPFRC jacket can have a contribution like the conventional shear reinforcement.  

Esmaeeli et al. (2013a) investigated the potentialities of a hybrid composite plate (HCP) for 

the shear strengthening of RC beams with a/d=2.15. HCP was composed of CFRP sheet 

glued with epoxy adhesive to the interior surface of a thin plate of SHCC.  

Table  2-15 shows the details of the strengthening configurations adopted in these beams that 

were tested under three point bending load.  
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Table  2-15: Shear strengthening schemes and beam’s geometry and reinforcement 
(dimensions in mm) (Esmaeeli et al. 2013a)  

Beam 
designation 

Beam Type Section 
shear 

strengthening 
scheme

CB 

 

Control 
Beam 

BF 

 

CFRP Shear 
strengthening 

BH 

 

HCP Shear 
strengthening 

BS 

 

SHCC Shear 
strengthening 

According to the obtained average load versus mid-span deflection, Figure  2-30, the 

maximum load carrying capacity of the beam strengthened with HCPs (BH) was 19% more 

than the maximum load carrying capacity of the control beam (CB).  

 
Figure  2-30: Load Deflection curves (Esmaeeli et al. 2013a) 
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The crack pattern of the beam strengthened with HCPs (BH) has more flexural cracks, visible 

on the external surface, than the beam strengthened with SHCC plate (BS) (Figure  2-31) due 

to the strengthening contribution of the CFRP sheet. 

Figure  2-31: Typical cracks pattern and the failure modes of the beams                      
(Esmaeeli et al. 2013a) 

 
In a study conducted by Ruano et al. (2014), the performance of steel fiber reinforced 

concrete (SFRC) as a retrofitting material for reinforced concrete beams was assessed. The 

experimental program was composed of 18 RC beams with and without steel stirrups.   

Figure  2-32 shows one example of the RC beams with still stirrups, the test setup, and the 

repair/strengthening scheme. Eight beams with stirrups were damaged (up to failure load), 

and repaired with SFRC and loaded again. One beam without steel stirrups was tested as 

control beam, and the other beams were strengthened with FRC. Three types of high 

performance with self-compacting matrix were used as repair/strengthening materials: plain 

concrete, FRC with 30 kg/m3 of steel fibers and FRC with 60 kg/m3 of steel fibers.  

 
(a) 

(b) 

 
(c) 

Figure  2-32: (a) one example of RC beams, (b) test setup, and (c) repair/strengthening 
scheme (dimensions in mm) (Ruano et al. 2014) 
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The results of the tested beams are presented in Table  2-16. The beam without steel stirrups 

strengthened with plain concrete jacketing (beam 3) presented debonding and spalling of the 

steel reinforcement. While, the SFRC jacketing prevented the debonding, preserving the 

integrity of the beam (beams 9 and 15). The beams with stirrups strengthened with fiber 

reinforced concrete increased their shear strength while for the case of beams strengthened 

with plain concrete no strength increase was found. The authors concluded reinforced 

concrete jacketing looks like an efficient method for shear strengthening of reinforced 

concrete beams with stirrups. 

 
Table  2-16: Details and results of the tested beams (Ruano et al. 2014) 
Beam 

designation 
Stirrups Repaired Jacketing 

Load capacity before 
repairing (kN)

Ultimate 
load (kN) 

1 Yes No Plain concrete - 245.4 
2 Yes No Plain concrete - 284.9 
3 No No Plain concrete - 172.9 
4 Yes Yes Plain concrete 221.7 215.8 
5 Yes Yes Plain concrete 221.7 248.1 
6 Yes Yes Plain concrete 221.7 263.5 
7 Yes No FRC 30kg/m3 - 278.5 
8 Yes No FRC 30kg/m3 - 276.2 
9 No No FRC 30kg/m3 - 152.7 
10 Yes Yes FRC 30kg/m3 257.9 252.3 
11 Yes Yes FRC 30kg/m3 245.0 299.3 
12 Yes Yes FRC 30kg/m3 221.9 275.6 
13 Yes No FRC 60kg/m3 - 262.4 
14 Yes No FRC 60kg/m3 - 298.0 
15 No No FRC 60kg/m3 - 252.0 
16 Yes Yes FRC 60kg/m3 188.5 293.5 
17 Yes Yes FRC 60kg/m3 189.5 291.1 
18 Control No - - 116.1 

 

2.5 Conclusion 

Based on the literature, the following conclusions can be drawn in terms of the benefits 

provided by the use of FRP and FRC for the shear strengthening of RC beams: 

1- The strengthening and repairing techniques based on the use of fiber reinforced 

polymer (FRP) and fiber reinforced concrete (FRC) materials have been recognized as 

very effective to increase the load and deformation capacity of Reinforced Concrete 

(RC) beams.  

2- The ETS technique can be more effective in terms of increasing the load and 

deformation capacity of RC beams failing in shear than NSM and EBR techniques. 

3- At failure of the beams strengthened according to NSM and EBR technique, the 

maximum tensile strain of adopted FRPs was, in general, much lower than their 
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ultimate tensile strain, due to the occurrence of premature debonding of the FRPs 

or/and concrete cover detachment. 

4- The premature debonding in the NSM and EBR technique is caused by the relatively 

low tensile strength of the concrete substrate that limits the maximum load that can be 

transferable between FRPs and concrete element to be strengthened. 

5- The contribution of the FRP systems in EBR and NSM techniques has decreased with 

the increase of the percentage of existing steel stirrups, while in ETS technique the 

strengthening effectiveness was not affected by the detrimental effect between steel 

stirrups and strengthening systems. 

6- Shear strengthening technique based on the use of FRC is capable to transform a 

brittle shear failure in a ductile flexural failure.  

7- FRC jacket/plate can increase the stiffness and the shear capacity of the RC beams 

without or low shear reinforcement. 
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Chapter 3  

Shear Strengthening of Reinforced Concrete Beams with Hybrid 

Composite Plate 

3.1 Introduction 

In this chapter, the assessment of the Hybrid Composite Plate (HCP) for the shear 

strengthening of Reinforced Concrete (RC) beams is investigated. HCP is a thin plate of 

Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced 

Polymer (CFRP) laminates. These HCPs were capable of restoring, and even increase, the 

hysteretic response, energy dissipation, and also the load carrying capacity of beam-column 

joint that were previously damaged (Esmaeeli et al. 2015). HCPs were also very efficient for 

the increase of the flexural capacity of the RC beams (Esmaeeli et al. 2014). Besides the 

contribution of the SHCC for the strengthening efficiency of HCPs, the SHCC also assures 

some protection to the CFRP laminates and adhesive in terms of vandalism, aggressive 

environmental conditions, and fire. The combination of SHCC and CFRP grids was also 

explored in the context of the development of an innovative hybrid composite system for the 

structural rehabilitation, where the benefits of combining these materials in terms of load 

carrying capacity, ductility and cracking behavior were demonstrated (Orosz et al. 2013). 

Due to the excellent bond conditions between SHCC and CFRP laminates, these 

reinforcements provide the necessary tensile strength capacity to the HCP, while the high 

post-cracking tensile deformability and resistance of SHCC avoids the occurrence of 

premature fracture failure of this cement composite in the stress transfer process between 

these two materials when the HCP is crossed by a shear crack. 

The type of HCP schematically represented in Figure  3-1 was used in the experimental 

programs dedicated to the actual chapter. The HCP in these experimental programs is formed 

by a plate of SHCC of 20 mm thick reinforced with CFRP laminates that were applied 

according to the procedures adopted in the NSM technique (Dias and Barros 2010). 

Therefore, slits of a width and a depth of about 4 mm and 11 mm were opened on the lateral 

face of the SHCC plate that will be in contact with the concrete substrate. The slits were filled 

with an appropriate epoxy adhesive (S&P 220). The CFRP laminates were then inserted into 

the slits, and adhesive in excess was removed.  
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Figure  3-1: A schematic view of HCP (dimensions in mm) 

 

3.2 Contextualization of the Experimental Programs 

Besides the assessment of the effectiveness of HCPs for the shear strengthening of the RC 

beams, these experimental programs have also the purpose of investigating the influence on 

this effectiveness of the: 

 Orientation of the CFRP laminates that reinforce the SHCC plate; 

 CFRP shear strengthening ratio; 

 Using mechanical anchors to install the HCPs; 

Finally, the effectiveness of this technique is also explored for shear repairing of pre-

damaged RC beams. 

In the first experimental program six rectangular cross section RC beams were tested, 

composed of two control beams, one with seven steel stirrups in monitored shear span and 

9 11
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one without any shear strengthening in this beam’s span, and four beams shear strengthened, 

one with NSM-CFRP laminates, another one with SHCC plates, and the others two with 

HCPs where the unique difference is the inclination of the CFRP laminates (45º, and 90º). 

The shear strengthening percentage of the CFRP laminates in the beams of this series (Series 

I) was 0.10%fw  . The HCPs in this experimental were bonded using epoxy adhesive.  

In the second experimental program (Series II) eight full scale T cross section beams were 

tested. It was composed of two control beams, one with seven steel stirrups in the monitored 

shear span and the other without any shear reinforcement in this beam’s span, and six beams 

strengthened in shear by using the following three different techniques: NSM-CFRP 

laminates (one beam); SHCC plates (one beam); HCPs (four beams). The HCPs had different 

shear strengthening percentage of CFRP laminates ( 0.08%fw   and 0.14%fw  ). 

Furthermore, the HCPs were bonded to substrate by the two following strategies: the HCPs 

were bonded by applying exclusively epoxy adhesive; besides epoxy adhesive, the HCPs 

were also fixed with mechanical anchors.  

In the third series (Series III), the effectiveness of the HCPs to repair pre-damaged RC beams 

is assessed. For this purpose the damaged control beams (beams without any shear 

strengthening) tested in series I and II were repaired by using HCPs, and were tested again. 

The HCPs were bonded using both epoxy adhesive and mechanical anchors.  

3.3 Series I: Beams of Rectangular Cross Section 

3.3.1 Beams and test setup 

The beams of this experimental program had a rectangular cross section (150×300 mm2) with 

the length of 2500 mm, and 2200 mm clear span (Figure  3-2). The longitudinal steel 

reinforcement consisted of 220 laid at the bottom, and 210 at the top as tensile and 

compression reinforcement, respectively, giving to the beam’s cross section an effective 

depth ( d ) of 261 mm. The steel bars were anchored at the section of the supports with 90° 

hooks to prevent premature anchorage failure and sliding. To localize the shear failure in only 

one of the shear spans, a three point bending test setup with different length of the shear 

spans was selected (Figure  3-2). Since the monitored shear span ( iL ) had a length of 800 mm, 

a shear span to effective depth ratio ( /iL d ) of 3 was assured. A relatively high percentage of 

steel stirrups (8@100 mm) was applied in the other span ( rL ) to avoid that shear failure 
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occurs in this span. Depending on the number of the steel stirrups in iL , the beams were 

categorized in two different types. The type A was designed with steel stirrups 8@100 mm, 

while type B did not include any transverse reinforcement in this span in an attempt of 

assuring flexural and shear failure mode for these respective beams. Four beams of type B 

were strengthened in shear with the following techniques: 1) NSM-CFRP laminates; 2) 

SHCC plates; and 3) HCPs with two inclinations of the CFRP laminate (45º and 90º). 

Type A 

Type B 
Figure  3-2: Geometry and reinforcement arrangement of the concrete beams         

(dimensions in mm) 

 
The characteristics of the beams are presented in Table  3-1. The 7S-R-I beam had 7 stirrups 

in the iL  span in order to assure flexural failure. The C-R-I was a control beam without any 

type of shear reinforcement and strengthening in the iL  span. The NSM-4L90-I beam was 

shear strengthened with four vertical CFRP laminates in each lateral face of the iL  span, 

spaced at 180 mm, and applied according to the NSM technique. The SP-I beam was 

strengthened with SHCC plates applied in each lateral face of iL  span to investigate the 

effectiveness of these plates for the shear strengthening. These plates had overall dimensions 

of 720×300×20 mm3 and were bonded to the concrete beam using an epoxy adhesive 

(S&P220). The SP-4L90-I and SP-3L45-I beams were strengthened by applying HCPs in 

each lateral face of iL  span. The HCP is a 20 mm thick SHCC plate that includes a 

strengthening system formed by CFRP laminates positioned at 90º (SP-4L90-I, Figure  3-3a) 

or 45º (SP-3L45-I, Figure  3-3b). 
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The NSM-4L90-I, SP-4L90-I, and SP-3L45-I beams had equal percentage of CFRP 

laminates. The CFRP shear strengthening percentage, fw , is:  

2

sin
f f

fw
w f f

a b

b s



  (4.1) 

where 150wb   mm is width of the beam’s cross section, 1.4fa 
 
mm and 10fb 

 
mm are 

the dimensions of the NSM CFRP laminate cross section, fs  and f  
represent the spacing 

and inclination of these laminates, respectively (Figure 3-3). 

 
Table  3-1: Shear strengthening/reinforcement configurations applied in the iL beam’s shear 

span of the tested beams 

Beam 
designation 

Shear 
strengthening/reinforcement 

configuration 
Quantity 

Percentage 
of CFRP 
laminates 

(%) 

Spacing, 

fs , 

(mm) 

Angle of 
CFRP 

laminates,

f , (°) 

C-R-I - - - - - 

NSM-4L90-I 
NSM CFRP laminates of 
1.4×10 mm2 cross section 

2×4 CFRP laminates 0.10 180 90 

SP-I SHCC Plates 
20 mm thickness of 

SHCC 
- - - 

SP-4L90-I HCPs (20 mm thickness of 
SHCC reinforced with 

CFRP laminates of 
1.4×10mm2 cross section)  

2×4 CFRP laminates 

0.10 

180 90 

SP-3L45-I 2×3 laminates 250 45 

7S-R-I Steel stirrups 8@100 mm - - - 

 

(a) SHCC plate with vertical CFRP laminates 
( f =90°) 

(b) SHCC plate with inclined CFRP laminates 
( f =45°) 

Figure  3-3: Configurations of the HCPs in beam: (a) SP-4L90-I, and (b) and SP-3L45-I 
(dimensions in mm) 

 
The SHCC plates were cut from panels with a size of 800×800×20 mm3 that were built, each 

one, with a batch of about 13 liters of SHCC. After casting, these panels were sealed by a 

plastic sheet and were kept in a room environment for 24 hours before de-molding. After    
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de-molding, all these panels were transferred to the climate room and were cured under the 

constant conditions of 20°C temperature and 80% humidity up to the age of 28 days, in order 

to follow the curing procedure recommended in Esmaeeli et al. (2012) for this type of panels. 

The load was applied by using a servo closed loop control equipment, taking the signal read 

in the displacement transducer (LVDT) of the servo-actuator to control the test at a deflection 

rate of 0.01 mm/s. The deflections of the beams at loaded section and at mid-span were 

measured by two LVDTs. These LVDTs were supported on an aluminum bar fixed at the 

alignments of the supports of the beams (Figure  3-4a) in order to avoid readings non related 

to the beam deflection, such as support settlements and deformability of the test reaction 

frame (Costa and Barros 2010). With the purpose of obtaining the strain variation along the 

laminates, strain gages (SG) were bonded to the CFRP laminates according to the 

arrangement represented in Figure  3-4b.  

(a) 

 
(b) 

Figure  3-4: Monitoring system- position of the: (a) LVDTs, and (b) strain gages in CFRP 
laminates (dimensions in mm) 

3.3.2 Material properties 

The concrete compressive strength was evaluated at 28 days and 99 days by executing direct 

compression tests with cylinders of 150 mm diameter and 300 mm height according to 

EN206-1 recommendation (de Normalisation 2000). The values of tensile properties of the 

steel bars were obtained from uniaxial tensile tests executed according to EN10002-1 

recommendations (ISO 1990). The tensile properties of the CFRP laminates and epoxy 

adhesive were characterized by executing uniaxial tensile tests according to the 

recommendations of ISO 527-5 (European Standard 1997) and ISO 527-2 (European 

Standard 1996), respectively.  
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The SHCC is composed of a cementitious mortar reinforced with 2% of volume of short 

discrete polyvinyl alcohol (PVA) fibers. The SHCC mix was prepared based on a previous 

study (Esmaeeli et al. 2013b). The dry ingredient materials (sand, S, cement, C, and fly ash, 

FA) were firstly mixed. In the second step, the superplasticizer (SP) and a quarter of the 

water (W) were combined and added to the dry ingredient materials. The rest of the water and 

the viscous modifier agent (VMA) were then combined and introduced into the mix. Finally, 

PVA fibers were added to the mortar. The SHCC mix procedure and proportions are 

presented in Table  3-2 and Table  3-3, respectively.  

 
Table  3-2: SHCC mix procedure (Esmaeeli et al. 2013b) 

Step Mix ingredients in each step Duration (s) 
1 S+C+FA 30 
2 0.25W+SP 150 
3 0.75W+VMA 150 
4 Fibers 300 

 
Table  3-3: SHCC mix proportions based on the weight ratio percentage                     

(Esmaeeli et al. 2013b) 
Fly ash/Cement Water/B* Sand / B* Admixtures/B* PVA fibers** 

120 30 50 2.2 2 

*B: Binder (cement + fly ash) 
**Percentage of total composite mix volume. 

The envelope and the average tensile stress vs. crack opening displacement (COD) obtained 

in notched specimens are presented in Figure  3-5 (Esmaeeli et al. 2013b). According to these 

results, the average tensile stress at crack initiation and the average tensile strength of the 

SHCC were 2.7 and 3.5 MPa, respectively. Table  3-4 represents the average values obtained 

from the experimental programs for the assessment of the relevant properties of the concrete, 

steel bars, CFRP laminates, adhesive epoxy, and SHCC. 

 
Figure  3-5: The envelope and the average tensile stress vs. crack opening displacement 

(COD) obtained in notched specimens (Esmaeeli et al. 2013b) 
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Table  3-4: Material properties 

Concrete 
Compressive strength 

cmf =24.5 MPa (at 28 days) cmf =32.7 MPa (at 99 days) 

Steel 

Tensile strength 8 10 20 

symf (yield stress) 544 MPa 529 MPa 576 MPa 

sumf (tensile strength) 610 MPa 625 MPa 640 MPa 

CFRP laminate 
Tensile strength Elasticity modulus Maximum strain 

fumf =2617 MPa fmE =149 GPa fu =1.75% 

Epoxy adhesive 
Tensile strength Elasticity modulus Maximum strain 

fumf =18 MPa fmE =6.8 GPa fu =0.4% 

SHCC 
Tensile stress at 
crack initiation 

Tensile strength 
Compressive 

strength 
Young’s modulus 

2.7 MPa 3.5 MPa 31.6 MPa 18.4 GPa 

3.3.3 Preparation of the beams 

The CFRP laminates were applied to the NSM-4L90-I beam according to the NSM technique 

described in Dias and Barros (2013). The slits that were opened on the lateral faces of the 

beam for the installation of the CFRP laminates had a width and a depth of about 5 mm and 

15 mm, respectively. 

The CFRP laminates adopted for the reinforcement of the SHCC plates have followed a 

procedure similar to the one taken for the NSM-4L90-I beam. However, in this case the slits 

on the SHCC plates had a width and a depth of about 4 mm and 11 mm, respectively, spaced 

at 180 mm and 250 mm for the SP-4L90-I ( 90f   ) and SP-3L45-I ( 45f   ) beams, 

respectively (Figure  3-3a and Figure  3-3b). The HCPs were applied to their corresponding 

beams 5 days after the application of the CFRP laminates in order to guarantee a proper 

curing of the adhesive.  

To apply the SHCC plates and HCPs to the lateral faces of the concrete beams on Li span, the 

following procedures were executed: 1) a 1-2 mm roughness with sandblast was executed to 

improve the bond conditions between SHCC/HCPs and concrete beams (the inspection of the 

tested beams showed that no slip occurred between substrate and SHCC/HCPs); 2) the 

surfaces of the beams were cleaned by compressed air; 3) an epoxy adhesive (S&P220) layer 

of a thickness of about 1 mm was homogenously applied on the surfaces of the concrete 

beams and SHCC/HCPs that will be in contact; 4) mechanical clamps were used to maintain 

the SHCC/HPCs pressed against the lateral surfaces of the beam up to the time that the epoxy 

resin developed its initial bond. To guarantee a proper curing of the adhesive, one week 

passed between the beams’ strengthening operation and the beams’ test. 
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3.3.4 Tests and results 

3.3.4.1 Global Analysis 

The load vs. deflection curves of the tested beams are represented in Figure  3-6a. The        

SP-4L90-I and SP-3L45-I beams presented higher load carrying capacity and stiffness than 

the other beams, except 7S-R-I beam, which reveals the shear strengthening effectiveness of 

the HCPs for the overall behavior of this type of beams.  

(a)  

(b)  
Figure  3-6: (a) Force vs. deflection at the loaded-section, and (b) 4 90/ NSM L IF F   vs. 

deflection at the loaded-section for the beams strengthened with SHCC plates and HCPs 
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The maximum load and its corresponding deflection of the tested beams are included in  

Table  3-5. The maximum deflection at the loaded section, at peak load, of the SP-3L45-I 

beam was 1.5 and 2.0 times higher than the corresponding deflection of the SP-4L90-I and 

SP-I beams, respectively.  

Table  3-5: Relevant results in terms of load and deflection capacity 

Beam 
designation 

maxF  

(kN) 

Deflection 
at loaded 
section 
(mm) 

Shear 
resistance 

(kN) 

max4 90
( )

NSM L I

F

F  



(%) 

max

max
C R I

F

F  


 

(%) 

max
7

max
S R I

F

F    

(%) 
C-R-I 81 3.3 51 - - 44 

NSM-4L90-I 143 8.2 91 0 77 79 
SP-I 130 6.3 82 4 60 71 

SP-4L90-I 151 8.3 96 14 87 83 
SP-3L45-I 166 12.5 106 39 105 91 

7S-R-I 182 19.9 116 37 125 100 

 

From the obtained results the max max max max max/ ( ) /C R I C R I C R IF F F F F         ratio was evaluated, 

and the values are indicated in Table  3-5, where max
C R IF    and maxF  are the maximum load 

capacity of the C-R-I beam and shear strengthened beams, respectively. For deflections 

greater than the corresponding to the formation of the first shear crack in the NSM-4L90-I 

beam, it was calculated the 4 90/ NSM L IF F    ratio where F  is the increase of the load 

provided by SHCC plates and HCPs ( 4 90NSM L IF F F     ), being 4 90NSM L IF    the load 

capacity of the beam shear strengthened with CFRP laminates applied according to the NSM 

technique, and F is the corresponding (for the same deflection) load capacity of the other 

shear strengthened beams. The values of the 7
max max/ S R IF F    ratio are also presented, where

7
max

S R IF    is the maximum load carrying capacity of the 7S-R-I beam. 

The results show that the shear strengthening configuration formed by HCPs including CFRP 

laminates at 45° (SP-3L45-I) was the most effective in terms of maximum load carrying 

capacity ( max max/ C R IF F   ), since an increase of 105% was obtained, while an increase of 87%, 

77%, and 60% was determined for SP-4L90-I, NSM-4L90-I, and SP-I beams, respectively.  

The results in Figure  3-6b and Table  3-5 show that, for deflections higher than the one 

corresponding to the first shear crack in the NSM-4L90-I (2.7 mm) the adopted HCPs 

provided an increase in the beams load carrying capacity and deflection performance. The 

decrease of the stiffness after the formation of the first shear crack in NSM-4L90-I beam   

was not so pronounced in the beams strengthened with HCPs. 
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By comparing the results of the SP-4L90-I and SP-3L45-I beams with those determined in 

the SP-I beam it is verified that the CFRP laminates have contributed for the higher shear 

strengthening effectiveness of HCPs, since the laminates have avoided the degeneration of 

the micro-cracks in the SHCC plates on macro-cracks, which had also a positive effect in 

terms of the stiffness preservation of the beam. 

The obtained experimental results show that SP-3L45-I and SP-4L90-I beams had a 

maximum load of 91% and 83% of the maximum load of the 7S-R-I reference beam               

( 7
max

S R IF   ), respectively, the one designed for flexural failure.  

3.3.4.2 Detailed Analysis 

C-R-I beam 

The C-R-I beam does not include any steel stirrups in the monitored shear span. During the 

loading of the beam, three cracks became visible at a load level of approximately 61 kN. One 

of these cracks, of flexural-shear nature, initiated at 250 mm from the support section, and the 

other two have formed at the center of the shear span. By increasing the load, the crack closer 

to the support section has converted in the shear failure crack, while the other cracks entered 

in a closing process. The crack pattern of the beam at a load of 61 kN and at failure load     

(81 kN) are represented in Figure  3-7a and Figure  3-7b, respectively. The maximum 

deflection at loaded section of the beam at failure load was 3.3 mm. 

(a) Crack pattern at the load level of 61kN (b) Crack pattern at failure load 
Figure  3-7: Crack patterns and failure modes of the C-R-I beam 

 
NSM-4L90-I beam 

In the NSM-4L90-I beam the first shear crack became visible at 260 mm from the support 

section, at the same load of the formation of the first shear crack in the reference beam       

(61 kN). With the increase of load, more shear cracks were formed (Figure  3-8a) in the shear 

span. At a load of 126 kN, cracks were formed along the longitudinal steel bars due to the 

dowel resistance offered by these bars to the propagation of the shear crack. Figure  3-8b 

shows that the laminate number 3 has crossed the shear failure crack. After the shear 
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contribution of this laminate has been exhausted, a sudden failure has occurred with the 

widening of this crack. This was followed by the splitting of a bottom concrete cover region 

due to the shear deformation of the longitudinal bars that have offered dowel resistance to the 

propagation of the shear failure crack. An ultimate load of 143 kN was achieved at a 

deflection of 8.2 mm. The maximum shear capacity of this beam was 77% greater than the 

one of the reference beam. The highest longitudinal strain reached in the CFRP laminates was 

recorded in the SG1 (Figure  3-4b) positioned at 81 mm from the shear failure crack (marked 

with a circle in Figure  3-8b), and was approximately 0.66%, which corresponds to 40% of the 

ultimate strain of the CFRP. This strain value and all those herein reported are not necessarily 

the maximum values, since they are dependent on the relative position of the SGs with 

respect to the shear cracks. Figure  3-9 represents the curves of the load vs. the strain in the 

SG where the maximum CFRP strain was registered in the strengthened beams. Up to the 

formation of the shear crack the maximum strain has increased almost linearly with the 

applied load, but did not exceed the strain value of 0.01% demonstrating that these CFRP 

laminates have marginal shear strengthening contribution during this stage, as expected. 

However, at the formation of the shear failure crack an abrupt increase of strain occurred. 

 
(a) Crack pattern at the load level of 126kN (b) Crack pattern at failure load 

Figure  3-8: Crack patterns and failure modes of the NSM-4L90-I beam 

 

F orce

1  crackst
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Figure  3-9: Force vs. strain in monitored laminates in SGs where the maximum strains were 

registered 

 
SP-I beam 

The SP-I beam was strengthened with two 720×300×20 mm3 SHCC plates with weight of 

around 7.7 kg for each plate. During the loading process several micro-cracks have formed on 

the surface of the SHCC plates. Figure  3-10a and Figure  3-10b show the crack patterns a load 

level of about 124 kN and at failure, respectively. At a load level of 124 kN the cracks are 

visible by spraying oil (WD-40) on the surface of the SHCC plates. At a load of 130 kN a 

shear failure crack became well visible and shear failure occurred. By applying the SHCC 

plates to the lateral faces of the beam, the weight and width of the SP-I beam’s cross section 

became 5% and 27%, respectively, more than the one of the control beam. However, the 

shear resistance and the maximum deflection of the SP-I beam increased 60% and 92% 

compared to the control beam, respectively. In Figure  3-11 the crack patterns of C-R-I (gray 

color) and SP-I (black color) beams are compared at their corresponding maximum load. The 

shear failure crack in both beams has quite similar configuration, but SP-I beam presents 

much more flexural cracks, whose energy in its formation, as well as the resistance of the 

SHCC plate on the propagation of the shear failure crack have contributed for the significant 

increase in terms of load carrying capacity registered in this beam. Both beams presented a 

brittle behavior, with an abrupt load decay at peak load. As already indicated, the SHCC was 

reinforced with 2% in volume of PVA fibers of 40 µm diameter and 8 mm length. The 
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reinforcement mechanisms of these fibers were not able to absorb in a stable way the huge 

amount of energy released in the formation process of critical shear cracks. 

(a) After spraying the oil on the surface of 
the SHCC plates of SP-I beam 

(b) Crack pattern at failure load of the      
SP-I beam 

Figure  3-10: Crack patterns and failure modes of the SP-I beam 

 

 
Figure  3-11: Crack patterns of the C-R-I (gray color) and SP-I (black color) at failure load 

 
SP-4L90-I beam 

The SP-4L90-I beam had no steel stirrups in the monitored shear span, and was strengthened 

with HCPs applied on the beam’s lateral faces in this span. The HCPs were formed by SHCC 

plates strengthened by four vertical ( 90f   ) CFRP laminates spaced at 180 mm          

(Figure  3-3a). Vertical lines in Figure  3-12b represent the position of the CFRP laminates. 

Like in SP-I beam, by increasing the load several micro-cracks have formed on the surface of 

the HCPs. This beam failed at a load level of 151 kN with the formation of a shear failure 

crack between the two CFRP laminates closest to the point load (number 3 and 4), followed 

of the detachment of a part of the HCP that also included some concrete cover (Figure  3-12a 

and Figure  3-12b). This alteration on the failure mode, assured by the HCP, has provided an 

increase of load carrying capacity (17%) and its corresponding deflection (33%) when 

compared to the SP-I beam, due to the contribution of the CFRP laminates. The highest 

longitudinal strain reached in the CFRP laminates was recorded by the SG6 (Figure  3-4b) at 

15 mm from a diagonal thin crack, and was approximately 0.21%, which corresponds to 

Force
SHCC Plate
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12.7% of the ultimate strain of the CFRP laminate. The position of this strain gage is 

illustrated in Figure  3-12b by a circle. The premature detachment of the HCPs justifies the 

relatively low collaboration of the CFRP laminates for the shear strengthening, demonstrated 

by the too low maximum strain registered (Figure  3-9).  

(a) Detachment of the HCPs in          
SP-4L90-I beam 

(b) Failure mode of the SP-4L90-I beam 

Figure  3-12: Crack patterns and failure modes of the SP-4L90-I beam 

 
SP-3L45-I beam 

Although the shear CFRP strengthening ratio has been the same in the SP-3L45-I and        

SP-4L90-I beams ( 4 90 3 45 0.10%SP L I SP L I
fw fw      ), the inclination of the CFRP laminates 

was different, leading to differences on the contribution of these laminates for the shear 

strengthening of this type of beams. The HCPs of the SP-3L45-I beam were formed by SHCC 

plates strengthened with three 45f    CFRP laminates spaced at 250 mm (Figure  3-3b). 

The inclined lines in Figure  3-13a represent the position of the CFRP laminates. The first 

shear crack was detected at a load level of 76 kN. Figure  3-13a shows the crack pattern of 

this beam at a load level of 123 kN, where it is visible the formation of flexural and flexural-

shear cracks. The failure of the beam is governed by the detachment of the HCPs 

(Figure  3-13b), each one bringing together part of the concrete cover of the lateral surface of 

the beam, which is a failure mode already reported in Dias and Barros (2013) when high 

percentage of CFRP laminates are used on the shear strengthening of RC beams. Like in the 

SP-4L90-I beam, the load carrying capacity of the SP-3L45-I beam was limited by this 

typical failure mode. However, the better orientation of the CFRP laminates in relation to the 

shear cracks formed in the concrete core of the SP-3L45-I beam has assured a larger area of 

concrete fracture during the detachment process of the HCPs (as is clearly visible when 

Figure  3-12a and Figure  3-13b are compared), which caused a higher load carrying capacity 

and its corresponding deflection in this beam, when compared to the SP-4L90-I beam. In fact 

failure occurred at a load level of 166 kN, indicating an increase of 105%, 16%, 28%, and 



Chapter 3 

56 
 

10% compared with C-R-I, NSM-4L90-I, SP-I, and SP-4L90-I, respectively. The maximum 

longitudinal strain reached in the CFRP laminates (SG3, Figure  3-4b) was approximately 

0.35%, which corresponds to 21% of the ultimate strain of the CFRP. Like already pointed 

out for the SP-4L90-I beam, the detachment of the HCPs also occurred in the SP-3L45-I 

beam has avoided the mobilization of the shear strengthening potentialities of the CFRP 

laminates. 

(a) Crack pattern in the lateral 
surface of SP-3L45-I beam at the load 

level of 123kN 

(b) Crack pattern in the bottom 
surface at failure load of SP-3L45-I 

beam 
Figure  3-13: Crack patterns and failure modes of the SP-3L45-I beam 

 
7S-R-I beam 

As expected, the beam shear reinforced in the shear span with steel stirrups of 8@100     

(7S-R-I) failed in bending with the yielding of the flexural reinforcement (at 182 kN), 

followed by the concrete crushing (at about 170 kN and a deflection of 20 mm) in the loaded 

zone (Figure  3-14). 

 
Figure  3-14: Crack patterns and failure modes of the 7S-R-I beam 
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3.4 Series II: Beams of T Cross Section 

3.4.1 Beams and test setup 

Figure  3-15 presents the T cross section of the tested beams. The reinforcement systems were 

designed to assure shear failure mode for the beams. The longitudinal reinforcement 

consisted of 2 32  and 1 16  laid at the bottom, and 6 12  at the flange of the beams as tensile 

and compression reinforcement, respectively, giving to the beam cross section an effective 

depth of 355 mm. To localize the shear failure in only one of the shear span, a three point 

bending test setup with different shear span lengths was adopted. The length of the monitored 

shear span ( iL ) was 2.5 times the effective beam’s depth. To avoid shear failure in the other 

span a relatively high percentage of steel stirrups ( 6@ 75 ) was applied in this span ( rL ). 

The experimental program was made up of one beam with steel stirrups 6@112.5  mm    

(7S-R-II beam, 0.28%sw  ), and seven beams with no steel stirrups in iL  shear span.  

Type A 

Type B 
Figure  3-15: Geometry and reinforcement arrangement of the concrete beams       

(dimensions in mm) 

 
The shear strengthening effectiveness of the following variables is aimed to be examined in 

this experimental program: 

 CFRP shear percentage ( fw =0.08% and 0.14%); 

 Application of mechanical anchors; 
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The characteristics of the beams are presented in Table  3-6. The C-R-II was a reference beam 

without any type of shear reinforcement and strengthening in the iL  shear span. The      

NSM-3L45-II was a beam without steel stirrups in the iL  span, and was strengthened 

according to the NSM technique with 3 inclined CFRP laminates ( 45   ) in each lateral 

face of iL  span, spaced at 275 mm ( fs ). The SP-II was a beam strengthened with SHCC 

plates to study the effectiveness of these plates for the shear strengthening of T cross section 

beams. Each plate had overall dimension and weigh of 800×300×20 mm3 and 8.6 kg, 

respectively. The SHCC plates were bonded to concrete substrate by using epoxy adhesive 

(S&P 220). By applying the SHCC plates to the lateral faces of the beam the weight and 

width of beam’s cross section became, respectively, 5% and 22%, larger than the 

corresponding ones of the control beam (C-R-II). 

Table  3-6: Shear strengthening/reinforcement in the monitored shear span of the tested beams 

Beam 
designation 

Shear 
strengthening/reinforcement 

configuration 
Quantity 

Connection 
of the 

SHCC/HCP 
to substrate 

Percentage 
of CFRP 
laminates 

(%) 

Spacing, 

fs , 

(mm) 

C-R-II - - - - - 

NSM-3L45-II 
NSM CFRP laminates of 
1.4×10mm2 cross section 

2×3 CFRP 
laminates 

- 0.08 275 

SP-II SHCC Plates 
20mm 

thickness 
of SHCC 

Adhesive - - 

SP-3L45-II HCPs (20 mm thickness of 
SHCC reinforced with CFRP 

laminates of 1.4×10 mm2 cross 
section) 

2×3 CFRP 
laminates 

Adhesive 
0.08 275 

SP-5L45-II 
2×5 CFRP 
laminates 

0.14 157 

SP-3L45-B-II 
HCPs (20 mm thickness of 

SHCC reinforced with CFRP 
laminates of 1.4×10 mm2 cross 

section) 

2×3CFRP 
laminates Adhesive and 

mechanical 
anchors 

0.08 275 

SP-5L45-B-II 
2×5 CFRP 
laminates 

0.14 157 

7S-R-II Steel stirrups 6  - - 

Based on the results of the beams tested in previous section (rectangular cross section), and 

considering the recommendations in the literature about the influence of the orientation of 

NSM CFRP systems on the shear strengthening effectiveness of RC beams (De Lorenzis and 

Nanni 2001, Dias and Barros 2010), the arrangement consisting of laminates at 45° was 

selected for this experimental program since it is expected as the most effective. The          

SP-3L45-II and SP-5L45-II beams were strengthened by applying HCPs in each lateral face 

of the iL  shear span using epoxy adhesive. As shown in Figure  3-16, the HCP is a 20 mm 

thick SHCC plate that was reinforced with three or five inclined CFRP laminates, spaced at 

275 mm (SP-3L45-II series) and 157 mm (SP-5L45-II series).  
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(a) SHCC plate with three inclined CFRP 
laminates ( 0.08%fw  ) 

(b) SHCC plate with five inclined CFRP 
laminates ( 0.14%fw  ) 

(c) A section of the strengthened beam 

Figure  3-16: Position of the CFRP laminates of the HCPs in: (a) SP-3L45-II beam,              
(b) SP-5L45-II beam, (c) a section of the strengthened beam with HCP (dimensions in mm) 

 
Based on the results of the tested beams in previous section, the shear strengthening 

contribution of the HCPs can be limited by the tensile strength of the concrete substrate. In 

order to full explore the shear strengthening potentialities of HCPs, in this program the HCPs 

applied in the SP-3L45-B-II and SP-5L45-B-II beams were not only bonded to lateral faces 

of these beams using epoxy adhesive, but also fixed to the beams with 12 bolts of 10 mm 

diameter, according to the configuration represented in Figure  3-17. The application of these 

mechanical anchors aims to prevent a premature debonding of the HCPs, and since the bolts 

were applied with a torque meter device, a certain concrete confinement can be introduced in 

the zone of the beam to be strengthened, resulting favorable effects in terms of shear 

strengthening.  

The load was applied by using a servo closed loop control equipment, taking the signal read 

in the displacement transducer (LVDT) of the servo-actuator to control the test at a deflection 

rate of 0.01 mm/s. The deflections of the beams at loaded section and at mid-span were 

measured by two LVDTs that were supported on an aluminum bar fixed at the alignments of 

the supports of the beams (Figure  3-18a). With the purpose of obtaining the strain variation in 
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the laminates, strain gages (SG) were bonded to the CFRP laminates according to the 

arrangement represented in Figure  3-18b.  

(a) SHCC plate with three inclined CFRP 
laminates ( 0.08%fw  ) and position of 

mechanical anchors 

(b) SHCC plate with five inclined CFRP 
laminates ( 0.14%fw  ) and position of 

mechanical anchors 

(c) A section of the strengthened beam and position of the bolts 

Figure  3-17: Position of the CFRP laminates and mechanical anchors (a) SP-3L45-B-II,      
(b) SP-5L45-B-II, (c) position of the bolts inside of the RC beams (dimensions in mm) 
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(a) Monitoring system 

 
(b) Position of the strain gages 

Figure  3-18: Monitoring system- position of the: (a) LVDTs, and (b) strain gages in CFRP 
laminates (dimensions in mm) 

 
Table  3-7 includes the average values obtained from the experimental programs for the 

assessment of the relevant properties of the concrete, steel bars, CFRP laminates, epoxy 

adhesive, and SHCC. 

Table  3-7: Values of the properties of intervening materials 

Concrete 
Compressive strength 

cmf =32.7 MPa (at 45 days) 

Steel bars 

Tensile strength 6 12 16 32 

symf (yield stress) 500 MPa 490 MPa 470 MPa 625 MPa 

sumf (tensile strength) 594 MPa 591 MPa 566 MPa 905 MPa 

CFRP laminate 
Tensile strength Elasticity modulus Maximum strain 

fumf =2617 MPa fmE =149 GPa fu =1.75% 

Epoxy adhesive 
Tensile strength Elasticity modulus Maximum strain 

fumf =18.00 MPa fmE =6.8 GPa fu =0.4% 

SHCC 
Tensile stress at 
crack initiation 

Tensile strength 
Tensile strain at 
tensile strength 

Compressive 
strength 

Young’s 
modulus 

2.7 MPa 3.5 MPa 1.3% 31.6 MPa 18.4 GPa 

3.4.2 Preparation of the beams 

The NSM CFRP laminates, SHCC plates, and HCPs were applied to the RC beams adopting 

the same procedures applied in the corresponding RC beams of the previous experimental 

program. However, in the SP-3L45-B-II and SP-5L45-B-II beams, twelve holes were drilled 
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through web of the beams with a diameter of 12 mm for the installation of mechanical 

anchors as illustrated in Figure  3-17. The HCPs were also fixed to the concrete substrate of 

these beams with 12 mechanical fasteners composed of bolts and nuts, by applying a torque 

of 20 N.m in the nuts on both sides of the beams. To guarantee a proper curing of the 

adhesive, one week passed between the beams’ strengthening operation and the beams’ test. 

To improve the anchorage conditions of the longitudinal reinforcement, and therefore avoid 

concrete spalling at the beam support section, a strengthening system based on the use of 

longitudinal NSM CFRP laminates of 1.4×20 mm2 cross section, and with a total length of 

400 mm, was applied on the bottom face of the beams, as illustrated in Figure  3-18a. 

3.4.3 Tests and results 

3.4.3.1 Global Analysis 

The relationships between force and deflection of the tested beams are presented in       

Figure 3-19:a. The SP-3L45-II, SP-3L45-B-II, and SP-5L45-B-II beams presented higher 

load carrying capacity compared to other beams, except 7S-R-II beam, which shows the 

effectiveness of HCPs for the shear strengthening. The loaded section deflection at peak load 

of the SP-5L45-B-II beam was around 1.1 and 1.3 times higher than the corresponding 

deflection of the NSM-3L45-II and SP-II beams, respectively.  

From the obtained results the max max max max max/ ( ) /SP II SP II SP IIF F F F F      ratio was evaluated, and 

the values are indicated in Table  3-8, where max
SP IIF   and maxF are the maximum load capacity 

of the beam strengthened with SHCC plates and of the other shear strengthened beams, 

respectively. For deflections greater than the corresponding to the formation of the first shear 

crack in the NSM-3L45-II and SP-II beams, it was calculated the 3 45 3 45/NSM L II NSM L IIF F   

and /SP II SP IIF F   ratios, where F  is the increase of the load provided by HCPs                  

( 3 45 3 45NSM L II NSM L IIF F F      , SP II SP IIF F F    ), being 3 45NSM L IIF  
 and SP IIF   the load 

capacity of the beam strengthened with NSM CFRP laminates and SHCC plates, respectively, 

and F  is the corresponding load capacity (for the same deflection) of the other strengthened 

beams with HCPs. These ratios were calculated up to 3 SP II
u

  of the SP-II beam, where SP II
u



is the deflection corresponding to the maximum load of the SP-II beam. The values of the 

7
max max/ S R IIF F    ratio are also presented in Table  3-8, where 7

max
S IIRF    is the maximum load 

carrying capacity of the 7S-R-II beam. 
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The results in Table  3-8 and Figure 3-19:b and Figure 3-19:c show that, for deflection higher 

than the one corresponding to the first shear crack in the NSM-3L45-II (1.8 mm) and SP-II 

(2.6 mm) beams, respectively, the adopted HCPs provided an increase in the beams load 

carrying capacity and deflection performance. The load of the SP-5L45-B-II and                

SP-3L45-B-II beams at deflection of about 15 mm is around 125% and 100% higher than the 

load of NSM-3L45-II and SP-II beams, respectively. These results show the effectiveness of 

the HCPs and also of the mechanical anchors in terms of post peak load carrying and 

deformability capacity. In fact, apart SP-5L45-II beam, the post-peak performance of the 

beams shear strengthened with HCPs was much higher than the performance of the        

NSM-3L45-II and SP-II beams. 

Table  3-8: Relevant results in terms of load and deflection capacity 

Beam 
designation 

maxF  

(kN) 

Deflection 
at loaded 
section

u (mm) 

Shear 
resistance 

(kN) 

3 45

max3 45
( )

NSM L II

NSM L II

F

F

 

 



(%)

max( )
SP II

SP II

F

F






 

(%) 

max

max
SP II

F

F 


 

(%) 

max
7

max
S R II

F

F  
 

(%) 

C-R-II 214 3.0 128 - -  - 
NSM-3L45-II 291 5.9 174 0 - 14 55 

SP-II 255 5.0 153 11 0 0 50 
SP-3L45-II 367 5.5 220 85 176 44 70 

SP-3L45-B-II 363 6.2 218 106 178 43 70 
SP-5L45-II 306 5.1 184 14 131 20 58 

SP-5L45-B-II 364 6.3 218 174 196 43 70 
7S-R-II 530 8.4 318 444 - 108 100 

 

 
(a)  
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(b) 

Figure  3-19: (a) Force vs. deflection at the loaded-section, (b) 3 45/ NSM L IIF F    vs. deflection 
at the loaded-section for the beams strengthened with SHCC/HCPs, and (c) / SP IIF F   vs. 

deflection at the loaded-section for the beams strengthened with HCPs  

 

 
(c) 

Figure 3-19: (Continued.) 
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By comparing the results of the strengthened beams with HCPs with those determined in the 

SP-II beam ( max max/ S IP IF F  ) it is verified that the CFRP laminates have contributed for the 

higher shear strengthening effectiveness of HCPs, as mentioned, the laminates have avoided 

the degeneration of the micro-cracks in the SHCC plates on macro-cracks, which had also a 

positive effect in terms of the stiffness preservation of the beam. 

The obtained experimental results show that, apart SP-5L45-II beam, the beams strengthened 

with HCPs had a maximum load of about 70% of the maximum load of the 7S-R-II reference 

beam ( 7
max

S IIRF   ). 

3.4.3.2 Detailed analysis 

C-R-II beam 

The C-R-II beam had no steel stirrups in monitored shear span. At a load of about 100 kN, 

two cracks became visible. One crack initiated at the support section (splitting crack), and the 

other one formed at the center of the shear span (Figure  3-20a). By increasing the load, the 

cracks widened and propagated up to load of 214 kN. At this load the beam failed at the 

support section before shear failure of the beam occurred (Figure  3-20b). This failure mode 

was not expected and was caused by a deficient execution of the anchorage length of the 

longitudinal reinforcement. As mentioned, the other beams were strengthened by three 

longitudinal CFRP laminates with length of 400 mm at support to avoid failure of the beams 

at supports (Figure  3-18a). 

(a) Crack pattern at the load level of 100kN (b) Crack pattern at failure load 
Figure  3-20: Crack patterns and failure modes of the C-R-II beam 

 
The C-R-II beam in this experimental had the same configuration and geometry to the C-R 

beam in the experimental program that was carried out by Dias and Barros (2010). They 

reported the C-R-II beam in their experimental program failed in shear at a load of 207 kN. 

As shown in Figure  3-20b by a red ellipse, at a load of 214 kN and deflection of 3.0 mm the 

critical shear crack formed, and it did not degenerate in a shear failure crack due to the 

unexpected splitting failure crack at the support of the beam due to the aforementioned 
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reasons. The results obtained in the numerical simulations of these tested beams (as it will be 

shown in chapter 4), the shear failure load of the C-R-II beam would be 215kN. 

7S-R-II beam 

As shown in Figure  3-15, the 7S-R-II beam has seven steel stirrups 6@112.5 mm                 

( 0.28%sw  ) in the monitored shear span. The first shear crack became visible at the center 

of the iL  span (160 kN), Figure  3-21a. As indicated in Mofidi and Chaallal (2011), in a RC 

beam with an adequate percentage of steel stirrups, the shear crack pattern tends to be 

distributed over a large width. In fact, another shear crack was formed at a load of 230 kN, 

almost parallel to the first shear crack, at around 500 mm from the support section         

(Figure  3-21a). By increasing the load these two cracks have widened and propagated up to 

failure load. This beam failed at a load level of 530 kN (Figure  3-21b) when the deflection 

was 8.4 mm. The beam presented a shear brittle behavior, with an abrupt load decay at peak 

load. 

As shown in Figure 3-19:a, after an abrupt load decay, the load was stabilized at a load level 

of about 100 kN (19% of maximum load).  

(a) Crack pattern at the load level of 230kN (b) Crack pattern at failure load 
Figure  3-21: Crack patterns and failure modes of the 7S-R-II beam 

 
NSM-3L45-II beam 

The NSM-3L45-II beam had no steel stirrups in the monitored shear span. This beam was 

strengthened with three inclined (45°) CFRP laminates in each lateral face of monitored shear 

span, spaced at 275 mm. The CFRP shear strengthening percentage of this beam was

0.08%fw  . The first shear crack became visible at around 350 mm from the support 

section (between laminates number 1 and 2, blue ellipse in Figure  3-22a), at a load level of 

about 173 kN.  

1  shear crackst

2  shear crack
nd
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(a) Crack pattern at the load level of 225kN (b) Final crack pattern 
Figure  3-22: Crack patterns and failure modes of the NSM-3L45-II beam 

 
As reported in Bianco et al. (2011), the failure mode of a NSM CFRP laminate subjected to 

an imposed end slip can be categorized into four groups: a) debonding, b) tensile rupture of 

laminate, c) concrete semi-pyramid tensile fracture, and d) a mixed shallow semi-pyramid 

plus debonding failure mode (Figure  3-23). These modes of failure are dependent on the 

relative mechanical and geometric properties of the materials involved. When principal 

tensile stresses transferred to the surrounding concrete attain its tensile strength, concrete 

fractures along a surface, envelope of the compression isostatics, whose shape can be 

assumed as a semi-cone (Bianco et al. 2010) or a semi-pyramid (Bianco et al. 2014). As 

shown in Figure  3-22a by a red circle, by increasing the load, some cracks were formed 

around the laminate number 2, and the aforementioned mixed failure mode has occurred in 

this laminate. Due to the quite low bond transfer length of the other two laminates, they did 

marginal contribution for the ultimate shear capacity of this beam. At a load and deflection of 

about 275 kN and 4.1 mm, respectively, the laminate number 2 failed and the load was 

decreased of about 7%. After that, the load started increasing due to propagation of the shear 

crack through the flange of the beam towards the load area. An ultimate load of 291 kN was 

achieved at a deflection of 5.2 mm. In this beam only one single shear crack formed due to 

the relatively low shear reinforcement. 

 

(a) Debonding (b) Strip tensile 
rupture 

(c) Concrete semi-
pyramidal fracture 

(d) Mixed shallow-
semi-pyramid plus 

debonding 
Figure  3-23: The mode of failure of an NSM CFRP laminate subjected to an imposed end slip 

(Bianco et al. 2010) 
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At the failure, the beam’s load carrying capacity decreased and was stabilized at a load level 

of about 32% of the maximum load. Due to the crack pattern formed at the failure of the 

NSM-3L45-II beam (Figure  3-22b), the highest longitudinal strain in the CFRP laminates 

was recorded in the SG2 (Figure  3-18b) positioned almost coinciding with the shear failure 

crack, and was approximately 1.04%, which corresponds to 63% of the ultimate strain of the 

CFRP laminate. Figure  3-24 represents the relationship between applied load and strain in the 

SGs where the maximum CFRP strain was registered in the strengthened beams. 

 
Figure  3-24: Force vs. strain in monitored laminates in SGs where the maximum strains were 

registered 

 
SP-II beam 

The SP-II beam was strengthened with two 800×300×20 mm3 SHCC plates that were bonded 

to each lateral face in iL  shear span using epoxy adhesive. The first shear crack became 

visible by spraying oil (WD-40) on the surface of the SHCC plate (Figure  3-25a). This shear 

crack formed at a load level of about 230 kN for a deflection of 2.6 mm. In this stage, the 

load was maintained almost constant up to deflection of around 3.5 mm, with the widening of 

this shear crack and the formation and propagation of some new cracks near the major shear 

crack. After that, the load started increasing due to the propagation of the shear failure crack 

through the flange of the beam towards the loaded area, and collapse has occurred at a load 

level of about 255 kN and a deflection of 5.0 mm (Figure  3-25b). This beam presented a 

brittle behavior, with an abrupt load decay in the post peak.  
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(a) Crack pattern at the load level of 230kN (b) Final crack pattern of the SP-II beam 
Figure  3-25: Crack patterns and failure modes of the SP-II beam 

SP-3L45-II beam 

The SP-3L45-II beam had no steel stirrups in iL  shear span, and was strengthened with HCPs 

bonded to each lateral face in the monitored shear span using epoxy adhesive. As shown in 

Figure  3-16a, the HCPs formed by SHCC plates reinforced with three inclined CFRP 

laminates, spaced at 275 mm. The inclined lines in Figure  3-26a show the position of the 

CFRP laminates. 

The first shear crack formed at a load level of about 220 kN between laminates number 1 and 

2, almost in the same location of the first shear crack in the NSM-3L45-II beam. By 

increasing the load, several micro-cracks formed on the surface of the HCPs Figure  3-26a 

shows the crack pattern of this beam at failure load. 

The beam failed at a load of about 367 kN and deflection of 5.5 mm. The failure of the beam 

was governed by the detachment of HCPs (Figure  3-26b). As mentioned, the effectiveness 

level of this technique was limited by the tensile strength of the concrete cover, as shown in 

Figure  3-26b by red ellipse, since at failure load, part of concrete cover was attached to the 

HCPs and local detachment has occurred. After local detachment, the load was stabilized at a 

level of 42% of the maximum load (155 kN). This load level was higher than the load of the 

previous beams (7S-R-II and NSM-3L45-II), since HCPs had connection in the other parts, 

Figure  3-26c shows the local detachment of HCPs. The HCPs caused an increase of the load 

carrying capacity (44%) and its corresponding deflection (10%), when compared to the effect 

of the SHCC plates in the SP-II beam. The highest longitudinal strain in the CFRP laminates 

was recorded by the SG1 (Figure  3-18b), and was approximately 0.41%, which corresponds 

to 25% of the ultimate strain of the CFRP laminate. The detachment of the HCPs justifies the 

relatively low collaboration of the CFRP laminates for the shear strengthening, demonstrated 

by the relatively small maximum strain registered (Figure  3-24).  

first crack
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(a) Crack pattern at the load level of 350kN 
of the SP-3L45-II beam 

(b) Final crack pattern of the SP-3L45-II 
beam when HCP was peeled off after the test 

Figure  3-26: Crack patterns and failure modes of the SP-3L45-II beam 

 

(c) Local detachment of HCPs at failure load 

Figure 3-26: (Continued.) 
 
SP-3L45-B-II beam 

The SP-3L45-B-II beam was identical to SP-3L45-II beam, except that the HCPs were 

bonded using epoxy adhesive and fixed by 12 through bolts and nuts. A torque of 20 N.m 

was applied to tighten the nuts on both sides of the beam. Figure  3-17a and Figure  3-17c 

show the position of the CFRP laminates and bolts, respectively. 

The first shear crack was detected at a load level of about 246 kN in the same position of the 

first crack in SP-3L45-II beam (between laminates number 1 and 2). By increasing the load, 

this crack has widened and propagated. Figure  3-27 shows the crack pattern of this beam at 

failure load. At the load of 363 kN the major shear crack was opened, with an abrupt load 

decay at peak load. After this abrupt load decay, the resisting load was almost maintained, at 

a load level of about 52% of maximum load (190 kN) up to the end of the test (a deflection of 

about 16 mm). The anchors have contributed for the higher shear strengthening effectiveness 

of the HCPs in the post peak stage of the beam, avoiding the detachment of the HCPs. The 

deflection at maximum load of this beam was 13% and 24% higher than the deflection at 

maximum load of SP-3L45-II and SP-II beams, respectively.  

As shown in Figure  3-27, the laminate number 1 was torn off. However, since the SG3 did 

not function properly during the test, the highest longitudinal strain was recorded in the SG1 
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(Figure  3-18b), and was approximately 0.69%, which corresponds to 42% of the ultimate 

strain of the CFRP laminate.  

Figure  3-27: Final crack pattern of the SP-3L45-B-II beam 

SP-5L45-II beam 

The SP-5L45-II beam was strengthened with HCPs reinforced with five CFRP laminates        

( 0.14%fw  ), spaced at 157 mm (Figure  3-16b). The first flexural-shear crack formed at a 

load level of 166 kN. By increasing the load, several micro-cracks formed on the surface of 

the HCPs. The crack pattern in this beam presents much more cracks than in the other two 

previous beams, which is assumed to be caused by the higher percentage of CFRP laminates. 

The failure of this beam was premature debonding of the HCPs at the load of 306 kN and 

deflection of 5.1 mm. After the abrupt load decay at peak load, the beam’s carrying capacity 

stabilized at a load level of about 30% of the maximum load (94 kN). The crack pattern of 

HCPs of this beam at failure load is shown in Figure  3-28. Due to the premature detachment 

of the HCPs, no shear failure crack is visible on the surface of the HCPs, which indicates that 

the NSM CFRP laminates were not mobilized effectively. In fact, the highest tensile strain 

was recorded by the SG1 (Figure  3-18b), and was approximately 0.33%, which corresponds 

to only 20% of the ultimate strain of the CFRP laminate. 

Figure  3-28: Final crack pattern of the SP-5L45-II beam 

 
SP-5L45-B-II beam 

In SP-5L45-B-II beam the HCPs were bonded to the lateral faces of the beam using epoxy 

adhesive and applying 12 mechanical anchors (Figure  3-17b), like the procedure adopted in 
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the SP-3L45-B-II beam. The first shear crack was detected at a load of about 220 kN, 

intersecting the laminate number 4 (Figure  3-29a). The crack pattern of the HCPs presents 

much more shear and flexural-shear cracks, whose energy in their formation, as well as the 

resistance of the HCPs to the propagation of the shear failure crack have contributed for the 

significant increase in terms of ductility registered in this beam. In SP-5L45-B-II beam, the 

reinforcement effectiveness of the CFRP laminates has avoided the degeneration of the micro 

cracks into macro-shear failure crack on the SHCC, and the mechanical anchors prevented 

the premature detachment and debonding of the HCPs, and the failure was localized at the 

web-flange zone of the beam (marked with a red ellipse in Figure  3-29b). Since a 

strengthening discontinuity exists in this web-flange transition zone, and considering that no 

internal stirrups are available to offer resistance to the propagation of this type failure crack, 

the beams strengthened with HCPs fixed with adhesive and anchors cannot exceed the 

maximum load attained by the SP-5L45-B-II beam, regardless the percentage of CFRP used 

and number of bolts. However, as it is visible in the post-peak stage of this beam, the load 

decay was much smoother, and the residual load carrying capacity of this beam (55% of the 

maximum load) was much higher than the one registered in previous beams, due to the larger 

fracture surface mobilized in the failure mode of the SP-5L45-B-II beam. 

The maximum longitudinal strain measured in the CFRP laminates (SG3, Figure  3-18b) was 

1.12% (Figure  3-24), which corresponds to 68% of the ultimate strain of the CFRP, that is 

higher than the maximum strain recorded in the NSM-3L45-II beam. This result shows the 

effectiveness of the mechanical anchors to avoid premature detachment of the HCPs and to 

assure higher collaboration of the CFRP laminates for the shear strengthening.  

(a) Crack pattern at the load level of 355kN 
of the SP-5L45-B-II beam 

(b) Final crack pattern of the SP-5L45-B-II 
beam 

Figure  3-29: Crack patterns and failure modes of the SP-5L45-B-II beam 
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3.5 Series III: Repair of Existing RC beams 

3.5.1 Beams and test setup 

The experimental program of this series is formed by two series of the beams, composed of 

beams with a rectangular cross section (Figure  3-2) and T cross section (Figure  3-15). The 

characteristics of the beams are presented in Table  3-9.  

Table  3-9: Shear strengthening/reinforcement in the monitored shear span of the tested beams 

 Beam designation 
Shear 

strengthening/reinforcement 
configuration 

Quantity 

connector 
of the 
web -
flange 

Spacing, 

fs  

(mm) 

R
ec

ta
ng

ul
ar

 

R-SP-3L45-III 

HCPs (20 mm thickness of 
SHCC reinforced with 

CFRP laminates of 
1.4×10mm2 cross section) 

2×3CFRP 
laminates 

 150 

T
 SP-5L45-III 

HCPs (20 mm thickness of 
SHCC reinforced with 

CFRP laminates of 
1.4×10mm2 cross section) 

2×5CFRP 
laminates 

4 steel 
bars 10 

157 
R-SP-5L45-III 

In the first step the control beams in previous experimental programs (C-R-I and C-R-II) 

were loaded up to failure load and then fully unloaded. In next step they were repaired by 

applying HCPs to each lateral face of the monitored shear span using a combination of epoxy 

adhesive and mechanical anchors. The repaired beams, designated by R-SP-3L45-III    

(Figure  3-30a) and R-SP-5L45-III (Figure  3-30b), were subjected to the same test 

configuration adopted in their virgin state. To prevent the localization of failure in web-flange 

zone (as occurred in the SP-5L45-B-II beam of the previous experimental program) the     

SP-5L45-III and R-SP-5L45-III beams were strengthened with 4 steel bars connectors 

(Figure  3-30b and Figure  3-30c).  

With the purpose of obtaining the strain variation in the laminates, strain gages (SG) were 

bonded to the CFRP laminates according to the arrangement represented in Figure  3-30.  
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(a) R-SP-3L45-III 

 
(b) R-SP-5L45-III 

 

(c) SP-5L45-III 
Figure  3-30: Geometry of the repaired beams 

 

 
3.5.2 Test and results 

3.5.2.1 Global Analysis 

The relationship between load and deflection at loaded section of the beams are presented in 

Figure  3-31a and Figure  3-31b. The maximum load and its corresponding deflection of the 

tested beams and their failure modes are presented in Table  3-10. The values of the
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7
max max/ S RF F   ratio are also presented in Table  3-10, this ratio is the maximum load capacity of 

the beam strengthened with HCPs ( maxF ) to its corresponding beam with seven steel stirrups  

( 7
max

S RF  ) in previous sections. The results in Table  3-10 reveal that, in absence of the steel 

stirrups, the maximum load carrying capacity of the pre-damaged rectangular beam was 88% 

of the rectangular beam with seven steel stirrups. The failure mode of the R-SP-3L45-III 

beam was detachment of the HCPs. 

 
(a) Load-deflection at loaded section of rectangular cross section beams  

 
(b) Load-deflection at loaded section of T cross section beams 

Figure  3-31: Load-deflection at loaded section (a) rectangular cross section, and (b) T cross 
section beams 
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Table  3-10: Relevant results in terms of load and deflection capacity 

 
Beam designation maxF  

(kN) 

Deflection 
at loaded 
section 
(mm) 

Shear 
resistance 

(kN) 

max
7

max
S R

F

F 
 

(%) 

Failure mode 

R
ec

ta
ng

ul
ar

 C-R-I 81 3.3 51 45 Shear 

SP-3L45-I 166 12.5 105 91 Detachment 

R-SP-3L45-III 161 10.1 103 88 Detachment 

7S-R-I 182 19.9 116 100 Flexural 

T
 

C-R-II 214 3.0 128 40 
Concrete 
spalling 

SP-5L45-B-II 364 6.3 218 67 Web-flange 
SP-5L45-III 552 9.4 331 104 Shear 

R-SP-5L45-III 530 7.2 318 100 Shear 
7S-R-II 530 8.4 318 100 Shear 

The shear strength of the T cross section beam without steel shear connectors in the web-

flange zone (SP-5L45-B-II) was 70% of the corresponding beam with 7 steel stirrups. By 

adding steel shear connector bars, the shear strength of the beams increased significantly in 

both the virgin and pre-damaged beams, with a maximum load almost equal to the one of the 

7S-R-II beam. The SP-5L45-III and R-SP-5L45-III beams failed in shear.  

3.5.2.2 Detailed analysis 

R-SP-3L45-III 

After has been tested, the C-R-I beam was strengthened with two HCPs according to the 

arrangement indicated in Figure  3-30a. It should be noticed that no repairing material was 

used in an attempt of sealing the existing cracks. For assuring a better bond conditions, an 

emery was passed on the lateral faces of the beam, in the zones where the HCPs were planned 

to be installed, for removing the cement past on the concrete substrate. To prevent 

detachment of HCPs, they were bonded to substrate using an epoxy adhesive and fixed by 

eight through bolts of 10 mm diameter. A torque of 20 N.m was applied to the bolts in both 

sides of the beam that through the action of the corresponding nuts introduces a confinement 

pressure to the concrete between the HCPs. The position of the laminates and mechanical 

anchors were designed in order to provide an effective resistance to the propagation of the 

existing shear crack (Figure  3-30a). 

The first shear crack was detected at a load of about 50 kN at the position of the existing 

shear crack on the damaged beam. By increasing the load, the shear crack on the surface of 

the HCP was propagated and widened. At the load of about 80 kN, a new shear crack was 

formed at the same position of the first shear crack in the SP-3L45-I beam. Due to excellent 

bond conditions between SHCC and CFRP laminates, this reinforcement provided the 
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necessary tensile strength capacity to the HCP, while the high post-cracking tensile 

deformability and resistance of the SHCC avoided the occurrence of premature fracture 

failure of this cement composite in the stress transfer process between these two materials 

when HCP was crossed by the shear crack. Due to this effect, the failure crack was localized 

at the zone of the HCPs without any CFRP laminate. The failure occurred at a load level of 

161 kN and deflection of 10.1 mm (Figure  3-32). 

The maximum shear capacity of this beam was almost two times higher than the one of the 

C-R-I reference beam. The maximum load carrying capacity and deflection at maximum load 

of this beam were 97% and 81% of the SP-3L45-I beam, respectively. In spite of the intense 

state of damage of the C-R-I beam after it has been tested, the stiffness of the R-SP-3L45-III 

beam was even higher than the SP-3L45-I beam up to a load level of 150 kN, which means 

that the strengthening intervention adopted in the R-SP-3L45-III was capable of surpass the 

stiffness of the SP-3L45-I beam.  

The maximum longitudinal strain in the CFRP laminates was recorded in SG2 (Figure  3-30a), 

and was approximately 18% of the ultimate strain of the CFRP laminates.  

 
Figure  3-32: Final crack pattern of R-SP-3L45-III beam 

 
SP-5L45-III beam 

The SP-5L45-III beam was identical to SP-5L45-B-II beam, except that to offer resistance to 

the crack propagation through the web-flange zone (a type of failure observed in the          

SP-5L45-B-II beam), four 10 steel bars of 200 mm length (two per each face) were applied 

to the beam as shown in Figure  3-30c. For this purpose, holes of 12 mm were opened in the 

flange of the beam, in the alignment coinciding with the middle surface of the concrete cover 

thickness of the lateral faces of the beam. The holes were cleaned by compressed air.    

Sikadur 32 adhesive was prepared according to supplier recommendation, and the bars were 

introduced into the holes that were previously filled with this adhesive. A period of 7 days 

was dedicated to cure the adhesive prior to testing the beam. The first crack was detected 

between laminates number 2 and 3 at a load of 146 kN (Figure  3-33). The HCP presents a 
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more diffuse crack pattern than in the previous beam, with a preponderancy for flexural 

cracks, whose energy in its formation, as well as the resistance of the SHCC for the 

propagation of a shear failure crack have contributed for the significant increase in terms of 

load carrying capacity and deflection performance registered in this beam.  

The maximum load carrying capacity of this beam was 552 kN, which was 4% and 52% 

greater than the load carrying capacity of the 7S-R-II and SP-5L45-B-II beams, respectively. 

In terms of deflection, whose value at peak load was 9.4 mm, this comparative increase was 

12% and 50%, respectively. The failure of this beam was governed by shear failure, unlike 

the SP-5L45-B-II, this justifies the high strengthening contribution of the steel bars applied in 

the SP-5L45-III beam. 

The maximum tensile strain in CFRP laminate was recorded in the SG2 (Figure  3-30c), and 

was 1.8%, which correspond to the ultimate tensile strain of the CFRP laminates, which 

indicates that this laminate was almost in its rupture stage. This value is higher than values 

registered by Dias and Barros (2010), and the tested beams in previous series. The failure of 

the tested beams was governed by the detachment of the CFRP laminates and HCPs, 

respectively, which has avoided the mobilization of the shear strengthening potentialities of 

the CFRP laminates.  

 
Figure  3-33: Final crack pattern of the SP-5L45-III beam 

 
R-SP-5L45-III beam 

As mentioned in previous section, the C-R-II beam exhibited an incipient shear failure at the 

support cross section. The crack at the support was repaired by sealing it with epoxy-based 

adhesive (Sikadur 32). For closing this crack as much as possible, after it has been filled with 

the adhesive, a mechanical clamping system was applied for 48 hours. To improve the 

anchorage conditions of the longitudinal reinforcement, three longitudinal NSM CFRP 

laminates of 1.4×20 mm2 cross section were applied in the beam’s support zone with length 

of 400mm (Figure  3-30b). Like it was done in the SP-5L45-III beam, to avoid premature 

failure at the web-flange zone, four 10  steel bars were applied to the beam as shown in 
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Figure  3-30b. This repaired beam was shear strengthened with HCPs technique. In this 

respect it should be mentioned that the shear crack already existing in this beam was not 

submitted to any treatment. The HCPs of this beam had a same configuration of the HCPs of 

the SP-5L45-B-II and SP-5L45-III beams, however the arrangement of the bolts was 

different. In fact, as shown in Figure  3-30b, in the strengthened C-R-II beam, herein 

designated as R-SP-5L45-III, the numbers of bolts were also 12, but their disposition was 

designed in order to provide an effective resistance to the propagation of the existing shear 

crack. 

Two micro cracks were detected by sparing oil (WD-40) on the surface of the HCP at a load 

of about 141 kN, in the zone of the existing shear crack on the C-R-II damaged beam. By 

increasing the load, these cracks have propagated and widened followed by the formation of 

more micro cracks in that zone that were not degenerated in macro-cracks due to the 

reinforcement contribution of the CFRP laminates.  

The maximum load carrying capacity of this beam was 530 kN that was 96% and 100% of 

the maximum load carrying capacity of the SP-5L45-III and 7S-R-II beams, respectively. The 

final crack pattern of this beam is presented in Figure  3-34.  

The SG1 and SG3 did not function during the test. The maximum longitudinal strain recorded 

in the CFRP laminate was registered in the SG2 (Figure  3-30b), and was 0.45%, which 

correspond to 29% of the ultimate strain of the CFRP. 

Figure  3-34: Final crack pattern of the R-SP-5L45-III beam 

 

3.6 Conclusions 

The effectiveness of Hybrid Composite Plates (HCPs) for the shear strengthening of 

reinforced concrete (RC) beams was investigated by carrying out three experimental 

programs.  
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When the HCP was bonded with epoxy adhesive, the effectiveness of the HCP technique was 

limited by the tensile strength of the concrete substrate of the RC beams, since at failure, a 

concrete cover layer of an average thickness that varied between 5 and 10 mm was attached 

to the HCPs. The detachment of HCPs has avoided the mobilization of the shear 

strengthening potentialities of the CFRP laminates. In fact, the HCPs bonded with epoxy to 

the concrete substrate of the RC beams have detached prematurely, having been registered a 

maximum tensile strain in the CFRP laminates that did not exceed 25% of the ultimate strain 

of these laminates. However, when the HCPs were bonded with epoxy and fixed with 

mechanical anchors, this type of failure mode was avoided, and the tensile capacity of the 

CFRP laminates of the HCPs was effectively mobilized, since maximum tensile strains in the 

CFRP closely to its ultimate tensile strain were measured. The results have also shown that 

for deflections higher than the one corresponding to the formation of the first shear crack in 

the beam strengthened with NSM technique, the adopted HCPs have increased the beam’s 

load carrying capacity and deflection performance.  

The load carrying capacity of T cross section RC beams shear strengthened with HCPs was 

limited by the shear strengthening discontinuity at the web-flange of the beam, since in these 

strengthened beams the failure crack had propagated through this zone. By applying steel 

shear connectors in this zone, and adopting an optimized configuration for the bolts, it was 

demonstrated to be possible to attain an increase of 146% in the shear capacity of a damaged 

beam that had been previously loaded to its maximum load capacity. 

The HCPs were capable of increasing not only the load carrying and deflection capacity, but 

also the post-peak resisting load, with favorable effects in terms of energy absorption 

capacity. 

 

 

 

 

 

 



Chapter 4 

81 
 

Chapter 4  

Numerical Simulation and Parametric Study 

4.1 Introduction 

In the present work is described a multi-directional fixed smeared crack model capable of 

simulating with high accuracy the RC beams failing in shear. The main innovative aspect in 

this constitutive model is the treatment of the concrete fracture mode II by using a softening 

diagram to simulate the crack shear stress vs. crack shear sliding in the context of a smeared 

crack approach.  

Advanced numerical simulations are carried out to contribute for a better understanding of 

the effectiveness of the shear strengthening technique with HCPs. By using the properties 

obtained from the experimental program for the characterization of the relevant properties of 

the intervening materials, the data for defining the crack shear softening diagram of the 

adopted multi-directional fixed smeared crack constitutive model was derived from inverse 

analysis by simulating the beams tested experimentally. These simulations have fitted with 

high accuracy the deformational response and the crack pattern of the tested beams. Thus, an 

extensive parametric study is carried out for the evaluation of the influence on the load 

carrying capacity and failure mode of the following conditions: arrangement of CFRP 

laminates; shear strengthening ratio; the use of mechanical anchors for fixing the HCP to the 

RC beam; using mortar instead of SHCC; and different confinement of the concrete core. 

In the following section a brief description of the model is provided, since the detailed 

exposition can be found elsewhere (Ventura-Gouveia et al. 2008). 

4.2 Multi-Directional Fixed Smeared Crack Model 

When the material behavior is considered to be nonlinear, its constitutive matrix depends on 

the stress or strain levels. In this case, an incremental-iterative technique is normally used. 

The external load is applied incrementally and the relationship between incremental strain 

and stress is given by the following equation: 

D     (4.1)

where   represents the stress increment,   is the strain increment and D  is the tangent 

constitutive matrix.  



Chapter 4 

82 
 

In a smeared crack approach the total incremental strain of cracked material is decomposed 

into an incremental strain vector of the uncracked material, co , and the incremental strain 

vector of the cracked material, cr :  

co cr       (4.2)

For the three dimensional case, the incremental local crack strain vector, cr
l , is defined by : 

 
1 2

, ,
Tcr cr cr cr

l n t t         (4.3)

and, in global coordinate system: 

 1 2 3 23 31 12, , , , ,
Tcr cr cr cr cr cr cr               (4.4)

Eq. (4.5) represents the relation between global strain ( cr ) and local strain ( cr
l ): 

Tcr cr cr
lT       (4.5)

where crT  is the transformation matrix: 

2 2 2
11 12 13 12 13 11 13 11 12

11 21 12 22 13 23 12 23 13 22 11 23 13 21 11 22 12 21

11 31 12 32 13 33 13 32 12 33 13 31 11 33 12 31 11 32

2 2 2
cr

a a a a a a a a a

a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a

T

a

 
   


  
    

 (4.6)

The components 11a , 12a , and 13a  form a vector that follows the direction of the n  local axis; 

21a , 22a , and 23a form a vector that defines the 1t  local axis; and 31a , 32a , and 33a  form a 

vector that defines the 2t  local axis. All these vectors are defined in the global coordinate 

system (Figure  4-1).  

In the global coordinate system the incremental stress components are: 

 1 2 3 23 31 12, , , , ,
T               (4.7)

Eq. (4.8) represents the relation between   and cr
l : 

cr cr
l T     (4.8)

where cr
l  is the local incremental stress vector: 

 
1 2

, ,
Tcr cr cr cr

l n t t         (4.9)

where cr
n  is the mode I incremental crack normal stress, 

1

cr
t  and 

2

cr
t  are the sliding 

mode incremental crack shear stress in 1̂t  and 2̂t  direction, respectively.  
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Figure  4-1: Crack stress components (Ventura-Gouveia et al. 2008) 

 
According to the multi-directional fixed smeared crack concept, stress and strain are related 

by the following equation:  

crcoD     (4.10)

Due to the decomposition of the total strain into an elastic concrete part and a crack part, 

co cr      , in Eq. (4.10) the cracked concrete constitutive matrix, crcoD , is obtained 

with the following equation (Sena-Cruz 2004): 

  1
ˆ ˆˆˆ ˆcr

T T
crco co co cr co ccr cr cr oD D D D D DT T T T



          (4.11)

where coD  is the constitutive matrix of concrete, assuming a linear behavior: 
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 (4.12)

being cE  and cv  the Young’s modulus and the Poisson’s ratio of undamaged concrete, 

respectively. In Eq. (4.11) ˆcrT  is the matrix that transforms the stress components from the 

coordinate system of the finite element to the local crack coordinate system (a subscript is 

x
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x
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used to identify entities in the local crack coordinate system). If m  cracks occur at an 

Integration Point (IP): 

1
ˆ Tcr cr cr cr

i mT T T T      (4.13)

In Eq. (4.11) ˆ crD  is a matrix that includes the constitutive law of the m  cracks: 

1

2

00

00ˆ

00

cr

cr
cr

cr
m

D

D
D

D

 
 
 
 
 
 







 (4.14)

with cr
iD  being the crack constitutive matrix of the thi  crack: 

1

2

0 0

0 0

0 0

cr
n

cr cr
t

cr
t

D

D D

D

 
 

  
 
 

 (4.15)

where cr
nD , 

1

cr
tD  and 

2

cr
tD  represent the modulus correspondent to the fracture mode I 

(normal), the sliding mode stiffness modulus in the 1̂t  direction and the sliding mode stiffness 

modulus in the 2̂t  direction, respectively.  

The behavior of non-completely closed cracks formed at an IP is governed by the following 

relationship: 

cr cr cr
l lD     (4.16)

In this approach, a new crack is arisen in an IP when the angle formed between the new crack 

and the already existing cracks, cr
new , exceeds a certain threshold angle, th  (a parameter of 

the constitutive model that in general ranges between 30 and 60 degrees (Sena-Cruz 2004)). 

The crack opening propagation is simulated with the tri-linear diagram represented in    

Figure  4-2, which is defined by the normalized stress, i , and strain, i , parameters that 

define the transition points between the linear segments of this diagram. The ultimate crack 

strain, ,
cr
n u , is defined as a function of the parameters i  and i , fracture energy, I

fG , tensile 

strength, ,1
cr

ct nf  , and crack band width, bl , as follows (Sena-Cruz 2004): 

,
1 1 2 2 1 2

2
I
fcr

n u
ct b

G

f l


     


  
 (4.17)

being 1 ,2 ,1/cr cr
n n   , 2 ,3 ,1/cr cr

n n   , 1 ,2 ,/cr cr
n n u    and 2 ,3 ,/cr cr

n n u   . 
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Figure  4-2: Tri-linear stress-strain diagram to simulate the fracture mode I crack propagation 

(Barros et al. 2013) 

 
To simulate the fracture mode II modulus, a shear retention factor is used: 

1 2 1
cr cr
t t cD D G




 


 (4.18)

where cG  is the concrete elastic shear modulus and   is the shear retention factor. The 

parameter   is defined as a constant value or as a function of the current crack normal strain,

cr
n , and of the ultimate crack normal strain, ,

cr
n u , as follows: 

1

,

(1 )
cr

pn
cr
n u




   (4.19)

when 1 1P   a linear decrease of   with the increase of cr
n  is assumed. Larger values of the 

exponent 1P  correspond to a more pronounced decrease of the   parameter. 

In structures governed by flexural failure modes, this strategy leads to simulations with good 

accuracy (Barros et al. 2011). Exceptions occur in structures that fail by the formation of a 

critical shear crack. To simulate accurately the deformational response and the crack pattern 

up to the failure of this type of structures, the adoption of a softening crack shear stress vs. 

crack shear strain relationship was implemented to model the crack shear transfer in 1̂t  and 2̂t  

direction (Ventura-Gouveia et al. 2008). 

The implemented crack shear diagrams are represented in Figure  4-3. The crack shear stress 

increases linearly until the crack shear strength is reached, ,
cr
t p , (first branch of the shear 

crack diagram), followed by a decrease in the shear residual strength (softening branch). The 

diagram represented in Figure  4-3 is defined by the following equations:  

G
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,1 ,

,
, , , ,

, ,

,

0

0

cr cr cr
t t t t p

cr
t pcr cr cr cr cr cr cr cr

t t t p t t p t p t t ucr cr
t u t p

cr cr
t t u

D   


       

 

 

  



    


 

 (4.20)

 
Figure  4-3: Diagrams to simulate the relationship between the crack shear stress and crack 

shear strain component, and possible shear crack statuses (Barros et al. 2013) 

 

The initial shear fracture modulus, ,1
cr
tD , is defined by Eq. (4.18) (

1

cr
tD  is replaced by ,1

cr
tD ) by 

assuming for   a constant value in the range  0,1 . The peak crack shear strain, ,
cr
t p , is 

obtained using the crack shear strength (from the input data), ,
cr
t p  , and the crack shear 

modulus: 

1 2

,
, ,

,1

cr
t pcr cr

t p t p cr
tD


    (4.21)

The ultimate crack shear strain, ,
cr
t u , depends on the crack shear strength, ,

cr
t p , on the shear 

fracture energy (mode II fracture energy), ,f sG , and on the crack bandwidth, bl : 

1 2

,
, ,

,

2 f scr cr
t u t u cr

t p b

G

l
 


   (4.22)

In this approach it is assumed that the crack bandwidth, used to assure that the results are 

independent of the mesh refinement (Rots 1988), is the same for both fracture mode I and 

mode II processes. 

When the softening constitutive law represented in Figure  4-3 is used to evaluate the fracture 

mode II softening modulus 
1 2

cr cr
t tD D  of Eq. (4.15), its value depends on the branches 
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defining the diagram. For this reason five shear crack statuses are proposed and their meaning 

is schematically represented in Figure  4-3. 

The crack mode II modulus of the first linear branch of the diagram is defined by Eq. (4.18), 

the second linear softening branch is defined by: 

1 2

,
,2

, ,

cr
t pcr cr cr

t t t cr cr
t u t p

D D D


 
   


 (4.23)

and the crack shear modulus of the unloading and reloading branches is obtained from: 

1 2

,max
,3 4

,max

cr
tcr cr cr

t t t cr
t

D D D

    (4.24)

being ,max
cr
t  

and ,max
cr
t  the maximum crack shear strain already attained and the corresponding 

crack shear stress determined from the softening linear branch. Both components are stored to 

define the unloading/reloading branch (see Figure  4-3). 

In free - sliding status ( ,
cr cr
t t u  ) the crack mode II stiffness modulus, 

1 2 ,5
cr cr cr
t t tD D D  , is 

null. To avoid numerical instabilities in the calculation of the stiffness matrix and in the 

calculation of the internal forces, when the crack shear status is free - sliding, a residual value 

is assigned to this term. A free - sliding status is assigned to the shear crack status when 

,
cr cr
n n u 

 
(Barros et al. 2013).  

4.3 Modeling Beam Shear Strengthened with NSM Technique 

To assess the predictive performance of the model for RC beams failing in shear, in the 

context of structural strengthening, it was used on the simulation of the experimental tests 

carried out by Dias and Barros (2010), where a series of RC beams were shear strengthened 

with NSM CFRP laminates. The general information about the beams of the experimental 

program and finite element adopted for these beams are presented in Figure  4-4 and      

Figure  4-5, respectively. More information about the experimental program can be found in 

Dias and Barros (2010). 
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Beams ID Shear strengthening system Shear strengthening arrangements 

2S-R Reference beam without CFRP 

 

2S-4LV 
NSM CFRP laminates at 90° 

(2 × 4 laminates: fw = 0.08%) 

 

2S-7LV 
NSM CFRP laminates at 90° 

(2 × 7 laminates: fw = 0.13%) 

 

2S-10LV 
NSM CFRP laminates at 90° 

(2 × 10 laminates: fw = 0.18%)

 

2S-4LI45 
NSM CFRP laminates at 45° 

(2 × 4 laminates: fw = 0.08%) 

 

2S-7LI45 
NSM CFRP laminates at 45° 

(2 × 7 laminates: fw = 0.13%) 

 

2S-10LI45 
NSM CFRP laminates at 45° 

(2 × 10 laminates: fw = 0.19%)

 

2S-4LI60 
NSM CFRP laminates at 60° 

(2 × 4 laminates: fw = 0.07%) 

 

2S-6LI60 
NSM CFRP laminates at 60° 

(2 × 6 laminates: fw = 0.11%) 

 

2S-9LI60 
NSM CFRP laminates at 60° 

(2 × 9 laminates: fw = 0.16%) 

 
Figure  4-4: General information about the beams of the experimental program      

(dimensions in mm) (Barros et al. 2013)  

F

3x300 18x75

230180130 180 180 1350

F

58 6x114 158 1350

F

40 9x80 140 1350

F

275138 212275 1350

F

79 5x157 36 1350

F

55 7x110 75 1350

F

243243243122 49 1350

F

5x16281 9 1350

F

3x300

54 8x108

100

1332

18x75

2S-9LI60

100



Chapter 4 

89 
 

Figure  4-5: Finite element mesh of the beam 2S-4LI45 (dimensions in mm)                  
(Barros et al. 2013) 

 
To simulate the crack initiation and the fracture mode I propagation of reinforced concrete, 

the tri-linear tension-softening diagram represented in Figure  4-2 was adopted. The values 

that define this diagram are indicated in Table  4-1, and were obtained from the experimental 

program for the characterization of the relevant properties of the intervening materials. In this 

table is also included the data necessary to define the shear-softening diagram represented in 

Figure  4-3, adopted to simulate the degradation of crack shear stress transfer after crack 

initiation. Since no available experimental results exist to characterize the crack shear 

softening diagram, the adopted values were obtained by inverse analysis by fitting the 

experimental results as best as possible. 

Table  4-1: Values of the parameters of the constitutive model for the concrete 
Property Value 
Poisson’s ratio 0.15 
Compressive strength 39.7 N/mm2

Initial Young’s Strength 33271 N/mm2

Tri-linear tension softening diagram of concrete 
ctf =2.2 N/mm2, ξ1=0.005, ξ2=0.1, α1=0.30, α2=0.30 , 

fnG =0.086 N/mm 

Parameter defining the mode I fracture energy 
available to the new crack 

P2=3 

Softening crack shear stress-strain diagram ,
cr
t p =1.1 N/mm2, fsG =0.05 N/mm , β=0.40 

Crack band width  Square root of the area of Gauss integration point 

Threshold angle th =30˚ 

Maximum number of cracks per integration point 2 

The numerical simulations of this section it was used the 2D version of the multi-directional 

smeared crack model described in previous section. A detailed description of this model can 

be found in Sena-Cruz (2004). The beams are modeled with a mesh of 4-noded serendipity 

plane stress finite elements. The longitudinal steel bars, stirrups and the NSM CFRP 

F

1350900
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laminates are modeled with 2-noded perfect bonded embedded cables (one degree-of-

freedom per each node).  

For modeling the behavior of the longitudinal and transversal steel bars, the stress-strain 

relationship represented in Figure  4-6 was adopted. The curve (under compressive or tensile 

loading) is defined by the points PT1= ( , )sy sy  , PT2= ( , )sh sh  , and PT3= ( , )su su  , and a 

parameter P that defines the shape of the last branch of the curve. Unloading and reloading 

linear branches with slope ( / )s sy syE    are assumed in the present approach. The values of 

the parameters of the constitutive model for the steel are indicated in Table  4-2. 

 
Figure  4-6: Uniaxial constitutive model for the steel bars (Barros et al. 2013) 

 
Table  4-2: Values of the parameters of the steel constitutive model (Barros et al. 2013) 

Property 6  12  16  32  

symf  (N/mm2) 500 490 470 625 

sumf  (N/mm2) 594 591 566 905 

sy  (‰) 2.3 2.5 2.6 3 

sy (N/mm2) 500 490 470 625 

sh (‰) 20 30 30 10 

sh (N/mm2) 537 490 470 845 

su  (‰) 45 215 220 50 

su  (N/mm2) 594 591 566 905 

Third branch 
exponent 

1 1 1 1 

For modeling the NSM CFRP laminates, a linear elastic stress-strain relationship was 

adopted. Table  4-3 present the values obtained in experimental tests with CFRP laminates 

specimens. 

 

 

s

s

Es

PT1
(sy sy

PT2
(sh sh

PT3

(su su

Es



Chapter 4 

91 
 

Table  4-3: Properties of CFRP laminates 
properties Value 

Maximum tensile strength 2741.7 MPa 
Young's Modulus 170.9 GPa 
Maximum strain 1.60% 

The experimental and the numerical relationships between the applied load and the deflection 

at the loaded section for the tested beams are compared in Figure  4-7. The crack patterns of 

these beams at the end of the analysis (at the end of the last converged load increment) are 

compared with the obtained experimental crack patterns in Figure  4-8. These two figures 

show that the numerical model is able to capture with good accuracy the deformational 

response of the beams and captured with good precision the localization and profile of the 

shear failure crack.  

 

(a) 2S-R (b) 2S-4LV 

(c) 2S-7LV (d) 2S-10LV 
Figure  4-7: Comparison between experimental and numerical force vs. deflection at the 

loaded section relationships 
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(e) 2S-4LI45 (f) 2S-7LI45 

(g) 2S-10LI45 (h) 2S-4LI60 

(i) 2S-6LI60 (j) 2S-9LI60 
Figure 4.7: (Continued.) 
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ID Experimental Program Numerical Simulation 

2S
-R
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2S
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L
V
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0L
V
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2S
-7

L
I4

5 

  

2S
-1

0L
I4

5 

  

Figure  4-8: Crack patterns of the beams (in pink color: crack completely open; in red color: 
crack in the opening process; in cyan color: crack in the reopening process; in green color: 

crack in the closing process; in blue color: closed crack) 
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Figure 4-8: (Continued.) 

 

4.4 Modeling of the Beams of Series I 

The three dimensional multi-directional fixed smeared crack model described in section 4.2 

was used in the numerical simulations of the beams of series I, II and III, whose tests and 

results were presented in Section 3.3, 3.4, 3.5, respectively. To simulate the crack initiation 

and the fracture mode I propagation of plain concrete and SHCC, the tri-linear tension-

softening diagram represented in Figure  4-2 was used. The values of this diagram are 

indicated in Table  4-4 and Table  4-5 for plain concrete and SHCC, respectively. These tables 

also include the data necessary to define the shear-softening diagram (Figure  4-3). The data 

for the shear softening diagram of plain concrete was determined by fitting as best as possible 

the force-deflection relationship registered in the control beam tested experimentally (C-R-I), 

while for the SHCC this data was obtained by simulating the SP-I beam and considering the 

results obtained by Iosipescu shear tests (as it will be explained in Chapter 5). For the 

analysis of the remaining beams of the experimental program the values of the constitutive 

model applied to each intervening material were preserved constant. 

Figure  4-9 represents the finite element mesh adopted for the RC beam. In the numerical 

simulations, this finite element mesh was only altered in order to take into account the 

strengthening provided by NSM laminates (NSM-4L90-I beam), the SHCC plate              

(SP-I beam), HCPs (SP-4L90-I and SP-3L45-I beams), and the use of more steel stirrups  

(7S-R-I beam). 
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Table  4-4: Values of the parameters of the constitutive model for the concrete 
Property Value 
Poisson’s ratio 0.19 
Compressive strength 32.67 N/mm2

Initial Young’s Strength 31381 N/mm2

Tri-linear tension softening diagram of concrete 
ctf =2.1 N/mm2, ξ1=0.005, ξ2=0.1, α1=0.30, α2=0.30 , 

fnG =0.08 N/mm 

Parameter defining the mode I fracture energy 
available to the new crack 

P2=3 

Softening crack shear stress-strain diagram ,
cr
t p =1.1 N/mm2, fsG =0.045 N/mm , β=0.6 

Crack band width Cube root of the volume of the integration point 

Threshold angle th =30˚ 

Maximum number of cracks per integration point 2 
 

Table  4-5: Values of the parameters of the constitutive model for the SHCC 
Property Value 
Poisson’s ratio 0.32 
Compressive strength 31.60 N/mm2

Initial Young’s Strength 18420 N/mm2

Tri-linear tension softening diagram of concrete 
ctf =2.7 N/mm2, ξ1=0.98, ξ2=0.99, α1=1.16, α2=1.0, 

fnG =0.46 N/mm 

Parameter defining the mode I fracture energy 
available to the new crack 

P2=3 

Softening crack shear stress-strain diagram ,
cr
t p  =0.9 N/mm2, fsG =1.7 N/mm , β=0.50 

Crack band width Cube root of the volume of the integration point 

Threshold angle th =30˚ 

Maximum number of cracks per integration point 2 
 
Only half of the full size beam was modeled, taking advantage of the symmetry of the beams 

in order to reduce the computational time of the numerical simulations. Serendipity 8 nodes 

solid elements with 2×2×2 Gauss-Legendre integration scheme were used for both the 

concrete and SHCC (three degrees-of-freedom per node). The steel stirrups, longitudinal steel 

bars and CFRP laminates were modeled with 3D embedded cables of 2 nodes (one degree-of-

freedom per node), by using a 2 Gauss-Legendre integration scheme, and perfect bond to the 

surrounding medium was assumed. The tested beams showed that no slip occurred between 

concrete substrate and SHCC plates, thus the assumption of perfect bond between substrate 

and SHCC plates was assumed. 
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Section A-A

Section B-B 
Figure  4-9: Geometry, mesh and support condition of C-R-I beam (dimensions in mm) 

 
The values of the parameters of the constitutive model for the steel bars are indicated in  

Table  4-6. For modeling the NSM CFRP laminates, a linear elastic stress-strain relationship 

was adopted.  

Table  4-6: Values of the parameters of the steel constitutive model 
Property 8  10  20  

symf  (N/mm2) 546 529 576 

sumf  (N/mm2) 610 625 640 

sy  (‰) 2.4 2.5 2.6 

sy (N/mm2) 546 529 576 

sh (‰) 35 30 35 

sh (N/mm2) 558 529 579 

su  (‰) 100 150 100 

su  (N/mm2) 610 625 640 

Third branch 
exponent 

1 1 1 

The experimental and the numerical relationships between the applied load and the deflection 

at the loaded section for the tested beams are compared in Figure  4-10. The crack pattern of 

these beams at the end of the analysis is represented in Figure  4-11. For the beams 
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strengthened with SHCC/HCP, the crack pattern is represented for the concrete substrate of 

the lateral surface, as well as for the SHCC/HCP. In Figure  4-11j a section view of the crack 

pattern of the SP-3L45-I beam is also represented in order to demonstrate the capability of 

the model to reproduce the localization of failure cracks at the concrete region close to the 

HCP/beam interface. 

(a) C-R-I (b) 7S-R-I 

 
(c) NSM-4L90-I (d) SP-I 

(e) SP-4L90-I (f) SP-3L45-I 
Figure  4-10: Comparison between experimental and numerical force vs. deflection at the 

loaded section relationships 



Chapter 4 

98 
 

(a) C-R-I (b) 7S-R-I 

(c) NSM-4L90-I 

(d) SP-I (concrete substrate) (e) SP-I (SHCC plate) 

(f) SP-4L90-I (concrete substrate) (g) SP-4L90-I (HCP) 

(h) SP-3L45-I (concrete substrate) (i) SP-3L45-I (HCP) 

(j) SP-3L45- I (section B-B in Figure  4-9) 
Figure  4-11: Crack patterns of the beams  
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4.5 Modeling of the Beams of Series II 

The values of the tri-linear tension-softening and the shear-softening diagrams are indicated 

in Table  4-7 and Table  4-8 for plain concrete and SHCC, respectively. The data for the shear 

softening diagram of plain concrete was determined by fitting as best as possible the force-

deflection relationship registered in the control beam tested experimentally (C-R-II), while 

for the SHCC this data was obtained by simulating the SP-II beam and considering the results 

obtained by Iosipescu shear tests. For the analysis of the remaining beams of the 

experimental program the values of the constitutive model applied to each intervening 

material were preserved constant.  

Table  4-7: Values of the parameters of the constitutive model for the concrete 
Property Value 
Poisson’s ratio 0.19 
Compressive strength 32.67 N/mm2

Initial Young’s Strength 31381 N/mm2

Tri-linear tension softening diagram of concrete 
ctf =2.1 N/mm2, ξ1=0.005, ξ2=0.1, α1=0.30, α2=0.30 , 

fnG =0.08 N/mm 

Parameter defining the mode I fracture energy 
available to the new crack 

P2=3 

Softening crack shear stress-strain diagram ,
cr
t p =1.1 N/mm2 , fsG =0.045 N/mm , β=0.60 

Crack band width  Cube root of the volume of the integration point 

Threshold angle th =30˚ 

Maximum number of cracks per integration point 2 
 

Table  4-8: Values of the parameters of the constitutive model for the SHCC 
Property Value 
Poisson’s ratio 0.32 
Compressive strength 31.60 N/mm2

Initial Young’s Strength 18420 N/mm2

Tri-linear tension softening diagram of concrete 
ctf =2.7 N/mm2, ξ1=0.98, ξ2=0.99, α1=1.18, α2=1.0, 

fnG =0.46 N/mm 

Parameter defining the mode I fracture energy 
available to the new crack 

P2=3 

Softening crack shear stress-strain diagram ,
cr
t p  =0.8 N/mm2 , fsG =1.7 N/mm , β=0.50 

Crack band width  Cube root of the volume of the integration point 

Threshold angle th =30˚ 

Maximum number of cracks per integration point 2 
 

Figure  4-12 represents the finite element mesh adopted for the T cross section RC beam. In 

the simulations, this finite element mesh was altered in order to take into account the 
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strengthening provided by NSM laminates (NSM-3L45-II beam), the SHCC plate (SP-II 

beam), HCPs, and the use of more steel stirrups (7S-R-II beam). 

Figure  4-12: Finite element mesh of the C-R-II beam (dimensions in mm) 

 
Only half of the full size beam was modeled. Serendipity 8 nodes solid elements with 2×2×2 

Gauss-Legendre integration scheme were used for both the concrete and SHCC (three 

degrees-of-freedom per node). The steel stirrups, longitudinal steel bars and CFRP laminates 

were modeled with 3D embedded cables of 2 nodes (one degree-of-freedom per node), by 

using a 2 Gauss-Legendre integration scheme, and perfect bond to the surrounding medium 

was assumed. The bolts were modeled with 3D two-node truss elements, and torque was 

simulated by applying a temperature decrease of -25.5°C in these elements, evaluated 

according to the following equation: 
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where   is torque (N.m), and r, A, and E are the radius, cross sectional area, and elasticity 

modulus of the bolt (5 mm, 78.5 mm2, 200 GPa), respectively. In these equations T and   

are the temperature variation and the coefficient of thermal expansion, respectively.  

The values of the parameters of the constitutive model for the steel bars are indicated in  

Table  4-9.  

Table  4-9: Values of the parameters of the steel constitutive model 
Property 6  12  16  32  

symf  (N/mm2) 500 490 470 625 

sumf  (N/mm2) 594 591 566 905 

sy  (‰) 2.3 2.5 2.6 3 

sy (N/mm2) 500 490 470 625 

sh (‰) 20 30 30 10 

sh (N/mm2) 537 490 470 845 

su  (‰) 45 215 220 50 

su  (N/mm2) 594 591 566 905 

Third branch 
exponent 

1 1 1 1 

The experimental and the numerical relationships between the applied load and the deflection 

at the loaded section for the tested beams are compared in Figure  4-13. The crack pattern of 

these beams at the end of the analysis is represented in Figure  4-14. These two figures show 

that the numerical model is able of predicting with high accuracy the load vs. deformational 

response of the beams, and to capture with a good precision the localization and profile of the 

failure cracks. For the beams strengthened with SHCC/HCP, the crack pattern is represented 

for the lateral surface of the concrete substrate, as well as for the SHCC/HCP. The higher 

load predicted for the SP-5L45-II indicates that the assumed perfect bond conditions between 

HCPs and concrete substrate was not assured in this beam. As mentioned in previous chapter 

(Chapter 3), the crack pattern of the beams strengthened with HCP shows the tendency of the 

failure crack to propagate at the web-flange interface due to the discontinuity of beam’s cross 

section stiffness and shear strengthening contribution of the HCP. Figure  4-14 shows that the 

numerical model is able to capture with high accuracy this crack pattern. 
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C-R-II NSM-3L45-II 

SP-II SP-3L45-II 

SP-3L45-B-II SP-5L45-II 
Figure  4-13: Comparison between experimental and numerical force vs. deflection at the loaded 

section relationships 
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SP-5L45-B-II 7S-R-II 
Figure 4-13: (Continued.)  

 

C-R-II NSM-3L45-II 

SP-II (concrete substrate) SP-II (SHCC plate) 

SP-3L45-II (concrete substrate) SP-3L45-II (HCP) 

SP-3L45-B-II (concrete substrate) SP-3L45-B-II (HCP) 
Figure  4-14: Crack patterns of the beams  
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SP-5L45-II (concrete substrate) SP-5L45-II (HCP) 

SP-5L45-B-II (concrete substrate) SP-5L45-B-II (HCP) 

7S-R-II 
Figure 4-14: (Continued.) 

 

4.6 Modeling of the Beams of Series III 

In order to introduce the main shear crack in the model for simulating, as better as possible, 

the level of damages already existing in the R-SP-3L45-III and R-SP-5L45-III beams before 

have been strengthened, for the elements crossing this shear crack a much lower tensile 

strength and mode I fracture energy was assumed (0.1 N/mm2 and 0.0007 N/mm, 

respectively) in order these elements behave in a very brittle nature, forcing the occurrence of 

the observed shear crack almost from the beginning of the loading process of these beams. 

For the other parameters of the constitutive model, values equal to the remaining concrete 

elements were adopted. 

The experimental and numerical relationships between the applied load and the deflection at 

the loaded section for the tested beams are compared in Figure  4-15. The crack pattern of 

these beams at the end of the analysis is represented in Figure  4-16. These figures show that 

the numerical model is able of predicting with high accuracy the relationship between load 

and deflection and failure cracks of the repaired beams.  
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R-SP-3L45-III 

SP-5L45-III R-SP-5L45-III 
Figure  4-15: Comparison between experimental and numerical force vs. deflection at the 

loaded section relationships 
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R-SP-3L45-III (concrete substrate) R-SP-3L45-III (HCP) 

SP-5L45-III (concrete substrate) SP-5L45-III (HCP) 

R-SP-5L45-III (concrete substrate) R-SP-5L45-III (HCP) 
Figure  4-16: Crack patterns of the beams  

 
4.7 Parametric Study for Assessing the Potentialities of the Developed Strengthening 

Technique 

The computer program, whose good predictive performance for the simulation of the 

behavior of the structures under consideration was confirmed in the previous section, was 

adopted to execute a parametric study for the evaluation of the influence on the load carrying 

capacity and failure mode of the following parameters: arrangement of CFRP laminates and 

its shear strengthening ratio; the influence of mechanical anchors for fixing the HCP to the 

RC beam and concrete confinement; advantages of using SHCC instead of mortar.  

The rectangular cross section beams simulated in the parametric study are shown in 

Figure  4-17. The T cross section beams that simulated in this section have the same mesh of 

the SP-5L45-III beam. The arrangement of the steel reinforcement, the material properties of 

concrete, SHCC and CFRP laminates, the support and load conditions, and the finite element 

mesh were the same of the ones adopted in the numerical simulations of the previous 

sections. 
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Figure  4-17: Strengthening scheme of the specimens (dimensions in mm) 

 

Two shear strengthening ratios ( 0.10%fw   and 0.20%fw  ) and four arrangements of 

CFRP laminates (30°, 45°, 60°, 90°) were studied. To prevent premature debonding of the 

HCPs and also to provide some confinement to the concrete core, the efficiency of using 
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mechanical anchors for fixing the HCP to the rectangular beam was also evaluated. A hybrid 

strengthening configuration composed of HCP for the shear reinforcement and longitudinal 

NSM CFRP laminates for the flexural reinforcement was also investigated for assuring a 

relatively high increase of load carrying capacity of RC beams. It was assumed that the 

longitudinal CFRP laminates had the same material properties of CFRP laminates for the 

shear strengthening. The designation of the beams composing this parametric study is 

indicated in Figure  4-17. 

The mortar was considered as having material properties equal to the plain concrete of the 

beam to be strengthened (Table  4-7). The concrete confinement level was taken by simulating 

different torque applied to the mechanical anchors. Two different level of torque were 

chosen: 10 N.m and 40 N.m.  

4.7.1 Influence of strengthening configuration and percentage of CFRP laminates 

Figure  4-18 compares the relationship between the load and deflection curves at loaded 

section obtained for two different values of the shear strengthening ratio ( 0.10%fw   and

0.20%fw  ) and four types of shear strengthening arrangements of the CFRP laminates 

(30°, 45°, 60°, 90°). The HCPs of SP-3L30, SP-3L45, SP-4L60, and SP-4L90 beams were 

strengthened with 0.10%fw  , while the HCPs of SP-5L30, SP-5L45, SP-7L60, and         

SP-7L90 beams were strengthened with 0.20%fw  . Figure  4-19 also compares the crack 

patterns of these beams (at the end of the last converged load increment). The crack patterns 

revealed that by increasing the CFRP percentage the failure mode shifted to detachment of 

the HCPs.  
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SP-3L30 and SP-5L30 SP-3L45 and SP-5L45 

SP-4L60 and SP-7L60 SP-4L90 and SP-7L90 
Figure  4-18: Influence of inclination and percentage of the CFRP laminates on the 

relationship between the force and the deflection at loaded section 

 

SP-3L30 (concrete substrate) SP-3L30 (HCP) 

SP-5L30 (concrete substrate) SP-5L30 (HCP) 
Figure  4-19: Influence of inclination and percentage of the CFRP laminates on the crack 

patterns 
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Detachment of HCP in SP-5L30 beam 

SP-3L45 (concrete substrate) SP-3L45(HCP) 

SP-5L45 (concrete substrate) SP-5L45 (HCP) 

SP-4L60 (concrete substrate) SP-4L60 (HCP) 

SP-7L60 (concrete substrate) SP-7L60 (HCP) 

SP-4L90 (concrete substrate) SP-4L90 (HCP) 

SP-7L90 (concrete substrate) SP-7L90 (HCP) 
Figure 4-19: (Continued.) 
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4.7.2 Influence of mechanical anchors 

Figure  4-20 compares the load-deflection curves obtained for two different procedures 

adopted to apply the HCPs to the concrete substrate of the lateral faces of the beam. In the 

first case, it is assumed the HCPs have been attached using an adhesive epoxy (full bond), 

while in the second case the HCPs are bonded using epoxy adhesive and fixed with 12 

mechanical anchors. Figure  4-17 shows the position of the bolts. The diameter of the bolts is 

assumed 12 mm and a torque of 30 N.m is applied to tighten the bolts on both sides of the 

beam. The bolts are modeled with 3D two-node truss elements, and the torque was simulated 

by applying a temperature decrease of -23°C in these elements (based on the Eq. (4.25)). 

By applying the mechanical anchors, the load carrying capacity of the beams increased and 

the failure mode was changed from premature detachment of the HCPs to flexural failure 

(Figure  4-21). 

SP-5L30 and SP-5L30-B SP-5L45 and SP-5L45-B 

SP-7L60 and SP-7L60-B SP-7L90 and SP-7L90-B 
Figure  4-20: Influence of through bolts on the relationship between the force and the 

deflection at loaded section 
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SP-7L60 (concrete substrate) SP-7L60 (HCP) 

Detachment of HCP in SP-7L60 beam 

SP-7L60-B (concrete substrate) SP-7L60-B (HCP) 

Flexural failure in SP-7L60-B beam 
Figure  4-21: Influence of through bolts on the failure of the beams 

 

4.7.3 Flexural strengthening of the beams 

Based on the results in the previous section, by fixing with bolts the HCPs reinforced with the 

higher percentage of CFRP laminates, the beams have failed in bending, which avoided to 

exploit the full strengthening potential of these HCPs. Thus, to assess the shear strengthening 

effectiveness of these HCPs, it is essential to increase the flexural capacity of the beams. For 
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this purpose, the beams were also strengthened in bending by using two longitudinal CFRP 

laminates (Figure  4-17) of 20×1.4 mm2 cross sectional area and material properties equal to 

those used in the HCPs. Figure  4-22 and Figure  4-23 compare the relationship between load 

and deflection at the loaded section, as well as the crack patterns of the simulated beams (at 

the end of the last converged load increment). As the results show, this hybrid strengthening 

arrangement has provided a significant increase of the beam’s load carrying capacity, with 

the highest increase registered in the beam shear strengthened with HCPs reinforced with 

laminates at 45°. The laminates at 60° are more effective than laminates at 90°.  

 

SP-5L30-B and SP-5L30-BF SP-5L45-B and SP-5L45-BF 

SP-7L60-B and SP-7L60-BF SP-7L90-B and SP-7L90-BF 
Figure  4-22: Influence of Shear and Flexural strengthening of the RC beams on the 

relationship between load and deflection 
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SP-5L30-B (concrete substrate) SP-5L30-B (HCP) 

SP-5L30BF (concrete substrate) SP-5L30-BF (HCP) 

SP-5L45-B (concrete substrate) SP-5L45-B (HCP) 

SP-5L45-BF (concrete substrate) SP-5L45-BF (HCP) 

SP-7L60-B (concrete substrate) SP-7L60-B (HCP) 

SP-7L60-BF (concrete substrate) SP-7L60-BF (HCP) 

SP-7L90-B (concrete substrate) SP-7L90-B (HCP) 

SP-7L90-BF (concrete substrate) SP-7L90-BF (HCP) 
Figure  4-23: Influence of Shear and Flexural strengthening of the RC beams on the crack 

patterns 
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4.7.4 Influence of SHCC instead of Mortar  

Figure  4-24 compares the relationship between the load and the deflection at loaded section 

obtained for the beam strengthened with HCPs (SP-5L45-III) and mortar plates (MP-5L45). 

It is assumed the mortar plate has the same dimensions (800×300×20 mm3) and CFRP 

reinforcement of the HCPs, and also it has the same material properties of the concrete 

substrate. As expected, the beam consisting of mortar failed at a lower load than of the beam 

strengthened with HCPs. This beam failed at a load of 474kN for a deflection of 7.3 mm. 

Figure  4-25 also compares the crack patterns of these beams at maximum load of the        

MP-5L45 beam. The crack pattern of the mortar plate includes more fully open cracks than 

HCPs due to the much more brittle nature of the mortar.  

 
Figure  4-24: Influence of SHCC instead of mortar on the relationship between the force and 

the deflection at loaded section 

 

SP-5L45-III (concrete substrate) SP-5L45-III (HCP) 

 
MP-5L45 (concrete substrate) MP-5L45 (Mortar Plate) 

Figure  4-25: Influence of mortar instead of SHCC on the crack patterns at ultimate load of the 
strengthened beam with mortar plates 
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4.7.5 Influence of the torque level applied to the mechanical anchors 

As aforementioned, the mechanical anchors can prevent the premature debonding of the 

HCPs, and increase the confinement of concrete core, with consequent benefits in terms of 

shear resistance. As explained in the previous section, torque was simulated by applying a 

temperature decrease of -12.75°C, -23°C, and -51°C (10N.m, 20N.m, and 40N.m, 

respectively) in these elements, by following Eq. (4.25). Figure  4-26 compares the load-

deflection curves obtained for three different torque levels applied to the mechanical anchors. 

As expected, the load carrying capacity of the beam and its ultimate deflection have increased 

with the torque level. Figure  4-27 shows the crack patterns of the beams at the ultimate load 

of the beam with the lowest torque level (SP-5L45-T10). Based on this figure by increasing 

the torque the crack opening is decreased in a same load and SP-5L45-T40 beam has the 

minimum full opening crack than other beams. 

 

Figure  4-26: Influence of concrete confinement on the relationship between the force and the 
deflection at loaded section 
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SP-5L45-T10 (concrete substrate) SP-5L45-T10 (HCP) 

SP-5L45-III (concrete substrate) SP-5L45-III (HCP) 

SP-5L45-T40 (concrete substrate) SP-5L45-T40 (HCP) 
Figure  4-27: Influence of the torque level applied on the mechanical bolts on the crack 
patterns at the ultimate load of the beam with the lowest torque level (SP-5L45-T10) 

 

4.8 Conclusions 

The capability of a FEM-based computer program to predict with high accuracy the behavior 

of the beams strengthen in shear with hybrid composite plates (HCPs) up to its collapse was 

demonstrated. The shear crack softening diagram available in the multi-directional fixed 

smeared crack model allowed a good prediction of the load carrying capacity, crack patterns 

and failure modes of the tested beams. Due to the lack of specific experimental tests, the data 

to define the shear crack softening diagram was obtained by inverse analysis. It can be 

concluded that by adopting the shear softening diagram in the multi-directional fixed smeared 

crack model available in the FEMIX computer program has assured the prediction with high 

accuracy the behavior of structures failing in shear or in flexural/shear. 

To simulate the existing shear crack of the beams to be strengthened (series III), a very small 

tensile strength and mode I fracture energy was attributed to the finite elements crossing this 

shear crack. 

To evaluate the influence on the beam’s load carrying capacity of the shear strengthening 

arrangement and ratio of CFRP laminates, the effectiveness of mechanical anchors, and 
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advantages of SHCC instead of mortar to produce HCP an extensive parametric study was 

carried.  

By increasing the shear strengthening ratio of CFRP laminates, and fixing the HCPs to the 

beam’s concrete substrate by mechanical anchors, failure mode can be shifted from shear 

failure and detachment of the HCPs to flexural failure. It was also verified that HCP’s with 

laminates at 45° was the most effective arrangement in terms of shear strengthening with the 

proposed technique. The hybrid technique composed of HCPs for the shear strengthening and 

NSM CFRP laminates for the flexural strengthening was capable of increasing significantly 

the load carrying capacity of RC rectangular beams by highly mobilizing the potentialities of 

these reinforcement systems. 

When mortar was used instead of SHCC, the beam has failed at a lower load, since the strain 

hardening character of the SHCC assured a much more diffuse crack pattern in the HCP, with 

a consequent better mobilization of the high tensile capacity of the CFRP laminates.  

The load carrying capacity and deformability performance of this type of strengthened beams 

have increased with the torque level applied to the mechanical bolts due to the higher 

concrete confinement. 
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Chapter 5  

Shear Behavior of SHCC Material 

5.1 Introduction 

The assessment of the shear behavior of SHCC is a challenging task due to lack of accurate 

test methods. The great difficulty lies in developing a test setup capable of introducing a pure 

shear stress field. There are several shear tests proposed by various researchers in an attempt 

of capturing the shear behavior of materials (Ohno 1957, Iosipescu 1967, Banks-Sills and 

Arcan 1983, Reinhardt et al. 1997, Boulifa et al. 2013). Iosipescu test was proposed for 

determining shear properties of metal and welded joints (Iosipescu 1967). This test method 

was considered appropriate for composite materials, and it was adopted by ASTM standard 

D-5379 (1993). The Iosipescu specimens are loaded in antisymmetric four points bending 

with a double notch in a region with high shear and low bending moment. The Iosipescu 

specimens consist of a small beam height ( 0h ), angle of notch root ( ), and tip radius at 

notches ( r ) (Figure  5-1). This geometry of the specimen can assure a uniform shear 

distribution in the notched plane. 

 

Figure  5-1: Concept of Iosipescu Shear Test 

 
In this chapter, the shear behavior of the SHCC is investigated by Iosipescu shear test 

method. For this purpose, an experimental program of V-double edge notched was carried 

out. The experimental program is detailed and the obtained results are presented and 

discussed. 
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Advanced numerical simulation was carried out to contribute for a better understanding of the 

shear behavior of the SHCC. These simulations have fitted the average shear stress-sliding 

relationship of the tested specimens.  

A parametric study was carried out by executing a nonlinear analysis with FEM-based 

computer program, FEMIX, to study influence of shear retention factor defining the first 

branch of shear softening diagram, to illustrate the advantages of SHCC vs. mortar and also 

effect of notch tip radius.  

 

5.2 Review of Mode II Testing Methods 

Pure shear panel test method was developed to measure the relationship between principal 

stresses and corresponding principal strains (Collins and Mitchell 1991). In this method 

several loads are applied in two directions to transfer a vertical load to a pure shear force 

directly on specimen (Figure  5-2a). In this test shear stress distribution on panel is not 

uniform, shear stress has a maximum value at each surface and decreases along the diagonal, 

and has a minimum value at the center of the specimen. This method was used for plain 

concrete, lightweight aggregate concrete, and FRC. 

Double edge notched compression test has been proposed for materials made by high 

compressive strength ( '
cf 85 MPa and tf  5 MPa) (Reinhardt et al. 1997). As shown in 

Figure  5-2b, one side of the specimen is loaded in compression and the other side is free. 

After mode II crack initiation at the tip of the notch, diagonal shear bonds form that cause 

failure of concrete in compression before the mode II crack extended to its full size. Hence, 

this technique is not able to measure fracture energy of mode II. 

Axisymmetric punch shear test has been used for mortar and concrete due to easy handling 

(Figure  5-2c) (Tada et al. 1985). However, numerical simulation showed that large tensile 

stresses occur at the crack tips. A recent study has shown that increasing the number and 

depth of the notches can decrease the tensile stress at the crack tips (Reinhardt et al. 1997).  

Short beam shear test is one of the simplest tests (Figure  5-2d) and is widely used for 

composites materials (ASTM 2000). However, the short beam shear test cannot give 

acceptable results due to non-uniform shear stress distribution and the presence of normal 

flexural stress. 

 



Chapter 5 

121 
 

 

 

(a) Pure shear test 
(b) Double edge notched 

compression 
(c) Axisymmetric shear test  

(d) short beam shear test 
Figure  5-2: Different mode II test setups: (a) Pure shear panel test (Collins and Mitchell 
1991); (b) Double-Edge Notched compression (Reinhardt et al. 1997); (c) Axisymmetric 
shear specimen according to Tada et al. (1985); (d) short beam shear test (ASTM 2000) 

 
Ohno shear beam test was developed to create a pure shear zone (Ohno 1957). The concept of 

the Ohno shear beam test is shown in Figure  5-3a. Based on the shear force (Figure  5-3b) and 

bending moment diagrams (Figure  5-3c), a state of pure shear exists at the center of the beam 

where the bending moment is zero. Bending moment varies along the beam with the 

maximum ( . / 2p a ) and minimum values (0) at the two inner loading points (Figure  5-3c). 

Thus, the failure of the specimen becomes uncertain. Shear failure, flexural failure or a 

combination of the shear and flexural failure may occur during this test (Shang and Zijl 

2007). In an improvement on the Ohno shear test, a notched specimen was proposed by 

Iosipescu (1967), whereby a uniform shear stress distribution in the pure shear zone is 

possible to assure. 

 
(a) concept of Ohno shear 

beam test 
(b) shear force diagram (c) bending moment diagram 

Figure  5-3: Shear force and moment diagram for Ohno shear beam test 
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5.3 Iosipescu Shear Test 

This test method was proposed by the ASTM D-5379 (1993) standard for composite 

materials. The Iosipescu test method has been also used for fiber plastic materials (Morton   

et al. 1992) and wood (Xavier et al. 2004). As shown in the Figure  5-4 the concept and 

mechanism of the Iosipescu shear test is similar to Ohno shear beam test. However, the 

Iosipescu specimens consist of a double V-edge notched with small beam height (h0), angle 

of notch root (a), and tip radius (r) at the pure shear section (Figure  5-1), whose values are 

defined in an attempt of assuring a uniform shear distribution in the notched plane. Based on 

the Figure  5-4 a state of pure shear exists at the center of the specimen, where the bending 

moment is zero. 

(a) Iosipescu specimen

(b) shear force diagram

(c) bending moment diagram
Figure  5-4: Internal force and bending moment in Iosipescu specimen 

 
A notable amount of experimental research and numerical analysis dedicated to the Iosipescu 

shear test have been performed either with a single notch (Figure  5-5) or double notch 

(Figure  5-4) (Swartz et al. 1987, Ballatore et al. 1990, Barr and Derradj 1990, Ho et al. 1993, 

Derradj and Kaci 2008). The results of the single notch specimens have shown that cracks 

initiate in mode II but quickly change to a mixed mode, although finite element simulation 

has shown the mode I is the dominant crack propagation mode, and single notched specimen 

is not suitable for the determination of mode II fracture parameters (Swartz et al. 1987). 

L

b

P.b
L-b

P.L
L-b

P.L
L-b

P.b
L-b

P.b
L-b

P

P.b
2

P.b
2



Chapter 5 

123 
 

 

Figure  5-5: Single notch specimen 

 
Krishnan et al. (2009) performed a numerical study to measure the variation of the shear 

stress along the center of Iosipescu and full specimen (Ohno shear beam test). Both 

specimens had the same sectional area at the pure shear section. As shown in Figure  5-6, the 

variation of shear stress for Ohno shear test beam is parabolic, while in Iosipescu specimen is 

almost constant at the critical section (notched plane). 

(a) Ohno shear beam test (b) Iosipescu shear test 
Figure  5-6: Comparison between (a) Ohno shear beam test and (b) Iosipescu shear test 

(Krishnan et al. 2009) 

 
A modified Iosipescu shear SHCC specimen has been investigated by linear finite element 

analysis by considering the material properties of SHCC (Shang and Zijl 2007). Notch radius 

(r), height of the specimen at notched section ( 0h ), and angle of notch roots ( ) have been 

studied to find a uniform shear stress distribution along the critical section.  

5.4 Experimental Program 

5.4.1 Development of fixture and specimen 

Two versions of the Iosipescu shear fixture and specimen have been developed for composite 

materials (Ho et al. 1993) (Figure  5-7a and Figure  5-7b). The original fixture and specimen 

(Figure  5-7a) produced a very small region of uniform shear stress due to small depth of 
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notched section and significant normal strains in the specimen test section. To overcome 

these deficiencies a modified fixture and specimen were developed (Figure  5-7b). The 

modified fixture could produce a larger test section, larger fixture-to-specimen contact 

regions and the innermost fixture-to-specimen contact points were moved farther away from 

the test section. The uniform shear stress region increased but normal strains still exist in the 

test section. 

 

(a) Original Iosipescu Fixture and 
specimen 

(b) Modified Iosipescu Fixture and 
specimen  

Figure  5-7: Developed Iosipescu fixtures and specimens (Ho et al. 1993) 

 
The device developed in the scope of the research carried out in this PhD thesis is identical to 

the modified Iosipescu fixture (Figure  5-8a), and its details are provided in Annex A. This 

fixture covers the entire contact regions of the specimen.  
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(a) Fixture 

(b) Iosipescu specimen 
Figure  5-8: Developed Iosipescu fixture and specimen at university of Minho 

 
The tests to carry out aim, mainly, to study the shear strength and shear stress evaluation with 

the crack sliding of SHCC material and also fracture energy of mode II, 
sf

G . The dimensions 

of the specimens were 380×140×14.5 mm3 with depth of the notch roots ( 0h ) 25 mm, angle 

of notch root ( ) 90°, and tip radius at notches ( r ) 2.5 mm (Figure  5-8b). The specimen was 

designed by considering the results obtained by Shang and Zijl (2007) due to their study to 

modify the geometry of Iosipescu specimen for SHCC material.  

The specimens were casted as the same time with the panels of the beams in Chapter 3. The 

average tensile stress at crack initiation and average tensile strength of the SHCC were 2.7 

and 3.5 MPa, respectively. Table  5-1 presents the SHCC material properties. 

Table  5-1: Values of the properties of SHCC materials 
Tensile stress 

at crack 
initiation 

Tensile 
strength 

Tensile strain 
at tensile 
strength 

Compressive 
strength 

Young’s 
modulus 

2.7 MPa 3.5 MPa 1.3% 31.6 MPa 18.4 GPa 

25

90°

R=2.5 mm

380

140
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5.4.2 Test setup and monitoring system 

The load was applied (10 kN load cell) by using a servo closed loop control equipment, 

taking the signal read in the displacement transducer (LVDT) of the servo-actuator to control 

the test at a deflection rate of 0.005 mm/s. The value registered in the load cell was calibrated 

by taking into account the weight and slight friction of the movable portion of fixture. For 

this purpose, in the first step, the servo-actuator registered the weight and slight friction of 

movable portion with no specimen installed inside. Then, the value showed by the load cell in 

this case was used to rectify the value of load cell during the test. Thus, the final value 

recorded from the load cell during the tests was considered as shear force in the notched 

section of the specimens. One LDVT was installed at the loaded section to measure the 

displacement of the specimens (Figure 5-8a), and another one was installed at notched section 

(as shown in Figure  5-9) to measure the sliding of the crack. 

 

 
Figure  5-9: The position of the LVDT to measure sliding of the shear crack at notched section 

 

5.4.3 Test results and discussion 

Eight coupon specimens were tested. The average shear stress is determined by dividing the 

total applied load (P) (measured by the load cell) by the area of the cross section between two 

notches: 

avg

P

A
   (5.1)

The envelope and the average curve corresponding to the average shear stress vs. sliding 

relationship of the specimens are plotted in Figure  5-10. Figure  5-11 shows the typical crack 

patterns of these specimens. 
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Figure  5-10: The envelope and average stress vs. crack sliding 

 

Figure  5-11: Typical crack patterns Iosipescu specimens tested 

 
Iosipescu specimens had similar failure mode and their shear stress-sliding curves introduce 

three phases. The first phase corresponds to the linear behavior up to a shear stress of about 

0.7 MPa (0.08 mm) and formation of initial vertical cracks (Figure  5-12a). These cracks were 

detected by spraying oil (WD-40) on the surface of the specimens. In the second phase more 

micro cracks were formed up to peak load (Figure  5-12b). When specimens reached their 

maximum load, the micro cracks connected to each other and the load started decreasing 

(softening stage) (Figure  5-12c) up to end of the test (Figure  5-11). Based on Figure  5-10, for 

an average slip 2 times the average slip at peak load the SHCC was still capable of supporting 

50% of the average shear strength, which denotes the ductility of this composite material 

when subjected to shear deformations. 
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(a) Crack pattern at first phase (Linear pre-peak up to sliding of around 0.08 mm) 

 
(b) Crack pattern at second phase (nonlinear pre-peak) 

 
(c) Crack pattern at shear softening (nonlinear pre-peak) 

Figure  5-12: Crack pattern of one specimen at different phase  

 
By calculating the area under the curve of average shear stress versus sliding (shown in 

Figure 5-10), the fracture energy mode II of SHCC material was estimated about 1.4 N/mm, 

which corresponds to 40% of its mode I fracture energy. 
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5.5 Numerical Simulation 

A numerical simulation based on the finite element method (FEM) of the Iosipescu beams 

test was carried out to define the fracture mode II of the constitutive model described in 

chapter 4. To simulate the crack initiation and fracture mode I propagation of SHCC, the tri-

linear tension-softening diagram presented in Figure  4-2 was adopted. The values to define 

this diagram are indicated in Table  5-2. This table also includes the data necessary to define 

the shear-softening diagram in Figure  4-3. The crack shear strength corresponds to formation 

of initial vertical cracks and equal to 0.7 MPa (Figure  5-10 and Figure  5-12a). Also, fracture 

energy mode II was taken as 1.4 N/mm as it mentioned in the previous section, while the 

shear retention factor was assumed be equal of 0.5 as it will be discussed in the next section. 

Table  5-2: Values of the parameters of the SHCC constitutive model 
Property Value 
Poisson’s ratio 0.32 
Compressive strength 31.60 N/mm2

Initial Young’s Strength 18420 N/mm2

Tri-linear tension softening diagram of concrete 
ctf =2.7 N/mm2, ξ1=0.11, ξ2=0.54, α1=1.27, α2=0.11, 

fnG =3.5N/mm 

Parameter defining the mode I fracture energy 
available to the new crack 

P2=3 

Softening crack shear stress-strain diagram ,
cr
t p =0.7 N/mm2 , fsG =1.4 N/mm, β=0.5 

Crack band width Square root of the area of Gauss integration point 

Threshold angle th =30˚ 

Figure  5-13 represents the finite element mesh used for the simulation of the specimen. The 

FE mesh was composed of 2015 nodes and 1920 serendipity 4 nodes plain stress elements 

with 2×2 Gauss-Legendre integration scheme. The adopted mesh refinement was adopted 

after some preliminary simulations in terms of assuring mesh objectivity of the results. This 

figure also shows the support and load conditions. The SHCC specimens can be considered 

as isotropic material in its plane due to random orientation nature of the short fibers (Shang 

and Zijl 2007). In fact, due to the relatively small thickness of the specimens from which the 

Iosipescu beam specimens were extracted, it is assumed fibers are oriented primarily in the 

plane. The force P is the sum of all vertical forces in each node in contact with the movable 

part of the fixture. This force represents the uniform load imposed on specimens and 

measured by the load cell in the experimental tests.  

The experimental and the numerical relationship between average shear stress and the sliding 

of the crack at the notched plane for the tested specimens are compared in Figure  5-14. The 
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crack pattern of this specimen at the end of the analysis is represented in Figure  5-15. The 

first crack appeared experimentally and numerically at a load of about 0.31kN and 0.4kN, 

respectively. And softening stage started at a load of 1.3kN and 1.35kN for experimental and 

numerical, respectively. As it shown, the numerical model is able to capture with an 

acceptable accuracy the shear behavior of the tested specimens for a set of relevant material 

properties. 

 
Figure  5-13: Finite element mesh of the Iosipescu specimen 

 

 
Figure  5-14: Comparison between experimental and numerical average shear stress vs. 

sliding relationship 

Figure  5-15: Crack patterns of the specimens 
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5.6 Parametric Study 

Linear and nonlinear analyses were carried out by using FEMIX computer program to 

investigate the influence of  parameter that define the first branch of the shear softening 

diagram, cr cr
t t  , as well as advantages of SHCC vs. plain cementitious material (PCM), and 

also effect of notch tip radius on shear stress distribution at critical section. 

The finite element mesh, support, and load conditions were as the same adopted for the 

numerical simulation of the specimen in previous section. 

5.6.1 Influence   parameter defining the first branch of the cr cr
t t   diagram 

In Figure  5-16 the influence of   parameter on the average shear stress versus sliding 

response of the specimens is represented by adopting the following three values for this 

parameter: 0.1, 0.5, and 0.9 (all the remaining parameters were maintained the same). The 

first one is lower and the last one is higher than the value considered in the analysis of the 

specimen.  

The results show that, from 0.08 mm sliding (that corresponds to the formation of first shear 

crack at the notched plane) up to sliding of about 0.18mm the average shear stress capacity of 

the specimens increases with   (Figure  5-16a), while for larger sliding (when the influence 

of softening branch of the cr cr
t t   diagram becomes relevant) when   reduces ,

cr
t p  

increases and consequently the crack enters in its shear softening stage at larger crack shear 

strain, leading to higher shear capacity to the specimen (Figure  5-17). 
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(a) Sliding between 0.06mm up to 0.18mm (b) Influence of shear retention factor 
Figure  5-16: Influence of shear retention factor on average shear stress 

 

 

Figure  5-17: Representation of the crack shear stress-crack shear strain diagram for the   
equal to 0.1, 0.5 and 0.9 

 

5.6.2 Shear retention factor versus softening diagram for modeling the crack shear 

behavior 

The relationship between the average shear stress and sliding for specimen when using the 

concept of shear retention factor,  , (Eq. (4.19) with P1=3) and adopting the 
cr cr
t t  diagram 

is presented in Figure  5-18. Up to a sliding of about 0.10 mm (that corresponds to the 

formation of first shear crack at the notched plane) the responses are similar, but above this 

sliding limit the two approaches start diverging significantly. By using   obtained according 

to Eq. (4.19), the load carrying capacity was much higher than the one predicted by using the 
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cr cr
t t   diagram. Then, the concept of the shear retention factor is not capable of simulating 

the decrease of the crack shear stress transfer ( cr
t ) with the increase of the crack shear strain        

( cr
t ). Figure  5-19 compares the crack patterns of the specimen with   factor and cr cr

t t 

diagram. As expected, shear retention factor approach has incorrectly predicted failure mode 

and crack pattern. 

 
Figure  5-18: Influence of using the crack shear softening diagram vs. shear retention factor 

with P1 = 3 

 
(a) shear retention factor P1=3 (b) shear softening ( 0.5  ) 

Figure  5-19: Influence of using the crack shear softening diagram vs. shear retention factor 
with P1 = 3 on crack pattern 

 
5.6.3 Plain cementitious material 

Figure  5-20 compares the shear stress vs. sliding relationship obtained for plain cementitious 

material (PCM) and SHCC specimen. The material properties of the PCM are presented in 

Table  4-7. As mentioned, all the remaining parameters were the same adopted in the 

numerical simulations of the previous section. As expected, the specimen consisting of PCM 
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failed at a lower shear stress than of the specimen with SHCC. The specimen with PCM has a 

brittle behavior, with an abrupt load decay at peak load, while the SHCC specimen followed 

a softening behavior after peak load. The typical failure mode of PCM that reported by Shang 

and Zijl (2007) is presented in Figure  5-21a and compared with the result of the numerical 

simulation. First cracks are formed near the notch tips (red circle in Figure  5-21b), and 

cracking has propagated to flexural zone with 45° inclination to the axial horizontal axial of 

the specimen.  

 
Figure  5-20: A comparison between SHCC and Plain Cementitious Material (PCM) on shear 

stress 

 

 
(a) final crack pattern of PCM             

(Shang and Zijl 2007) 
(b) crack pattern of the PCM 

Figure  5-21: Influence of PCM instead of SHCC on the crack patterns 
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5.6.4 Influence of notch tip radius 

As aforementioned, the notches contribute for the localization of the shear failure in the 

aimed zone, and alter the shear stress distribution from parabolic to a more uniform 

distribution in the notched section (Figure  5-6) (Krishnan and Xu 2009). However, a sharp 

notch favors the development of a shear stress gradient at notch tips. 

In this study three different notch tip radius were simulated: r=0.0 mm, r=2.5 mm, and    

r=4.0 mm. The Linear and nonlinear analyses were carried out to study the shear stress 

distribution along the yellow line (Figure  5-23) and shear stress-sliding of the specimens, 

respectively. 

The normalized shear stress (shear stress/average shear stress) distribution along the yellow 

line and shear stress distribution for different notch tip radius are presented in Figure  5-22 

and Figure  5-23, respectively, when performing linear analysis. It can be seen from the        

Figure  5-23, the shear stress concentration at the roots is reduced (light blue) by increasing tip 

radius and since the specimen with r=4.0 mm has the minimum shear stress concentration at 

the notch tip. However, shear stress distribution of the r=2.5 mm along the yellow line   

(Figure  5-23) is more uniform than the one of the r=4.0mm (Figure  5-22).  

The average shear stress-sliding relationships of the specimens are presented in Figure  5-24. 

The specimen with sharp notch (r=0 mm) shows an abrupt load decay at peak load due to all 

the cracks at notched section suddenly opened. Figure  5-25 shows the shear stress distribution 

at crack initiation, peak load, and softening stage (80% of the maximum load) for the three 

radius values. The crack patterns for these last two situations are compared also in         

Figure  5-25. Based on this figure r=2.5 mm has a better shear stress distribution than other 

specimens before and after crack initiation and also peak load.  

The softening stage of the specimen with r=2.5 mm was more ductile than the specimen of 

r=4.0 mm due to shear stress distribution of r=2.5 mm at notched section was more uniform 

than one of the r=4.0 mm. 
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Figure  5-22: Normalized shear stress variation along pure shear section for different notch tip 

radius 

  
r=0.0 mm r=2.5 mm r=4.0 mm 

Figure  5-23: Shear stress distribution for different notch tip radius (dark blue: maximum 
shear stress, and light blue minimum shear stress) 

 
Figure  5-24: Influence of notch tip radius on shear stress-sliding relationship 
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Shear stress 

distribution at crack 
initiation 

Shear stress distribution at peak 
load and corresponding crack 

pattern 

Shear stress distribution at 
softening stage (80% of the 

maximum load) 
r=0.0mm 

   
Shear stress 

distribution at crack 
initiation 

Shear stress distribution at peak 
load and corresponding crack 

pattern 

Shear stress distribution at 
softening stage (80% of the 

maximum load) 
r=2.5 mm 

Figure  5-25: Shear stress distribution and crack pattern of specimens with different radius at 
different stages (in pink color: crack completely open; in red color: crack in the opening 

process; in cyan color: crack in the reopening process; in green color: crack in the closing 
process; in blue color: closed crack) 
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Shear stress 

distribution at crack 
initiation 

Shear stress distribution at peak 
load and corresponding crack 

pattern 

Shear stress distribution at 
softening stage (80% of the 

maximum load) 
r=4.0 mm 

Figure 5-25: (Continued.) 

 

5.7 Conclusion 

This chapter presented the experimental and numerical simulation of the Iosipescu shear test 

to study shear behavior of the SHCC. Based on the boundary condition and applied load in 

Iosipescu shear test a stat of pure shear exists at the center of the specimen where the bending 

moment is zero. The Iosipescu specimens consisted of a double V-edge notched with small 

beam height, angle of notch, and tip radius at center of the specimen that can make sure a 

uniform shear distribution.  

After formation of the first shear crack at notched section, by increasing the load more micro 

cracks were formed, and at the maximum load, the micro cracks connected to each other and 

the load start decreasing by following a softening branch.  

The capability of a FEM-based computer program to predict the behavior of this type of 

structures up to its failure was studied. The shear crack softening diagram available in the 

multi-directional fixed smeared crack model implemented in the FEMIX computer program, 

allowed to simulate the shear behavior of the Iosipescu specimen. 

A parametric study was carried: i) to study influence of shear retention factor defining the 

first branch of shear softening diagram, ii) to illustrate the advantages of SHCC versus 

mortar, iii) and also effect of notch tip radius.  
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It was verified that the shear stress of the specimens decrease by increasing the shear 

retention factor,  , due to the higher crack shear stress transfer. by using the concept of shear 

retention factor,  , for modeling the crack shear stress transfer, an abnormal high load 

carrying capacity is estimated, with an incorrectly predicted failure mode, while adopting 

softening diagram, not only the response of the specimen, but also the failure mode and the 

crack pattern were correctly estimated. 

The specimen consisting of plain cementitious material (PCM) failed at a lower shear stress 

than of the specimen with SHCC. The specimen with PCM had a brittle behavior, with an 

abrupt load decay at peak load. 

The results have shown the shear stress concentration at the roots is reduced by increasing the 

tip radius. And crack in specimen with sharp root (r=0.0 mm) formed at a lower load than the 

other specimen.  
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Chapter 6  

Analytical Model to Predict Shear Capacity of Reinforced 

Concrete Beams Strengthened with NSM and HCPs 

6.1 Introduction 

There are two prominent models that are used to predict the shear capacity of concrete 

beams: Truss Model (TM) and Modified Compression Field Theory (MCFT). This chapter is 

focused on the MCFT; however, a short description of the TM is also herein given.  

Two available analytical models to predict the contribution of NSM CFRP laminates/rods for 

the shear strengthening of RC beams (Nanni et al. and Bianco et al. formulations) are also 

explained and combined with Simplified MCFT to predict the shear capacity of RC beams 

strengthened with NSM technique. Then, the new formulations are described and developed 

to predict the shear capacity of the RC beams strengthened with Hybrid Composite Plates 

(HCPs), whose tests and results are presented in Chapter 3. 

6.2 Truss Model 

The Truss model is physically based on the interpretation of the crack patterns formed during 

the loading process of a RC beam.  

In the TM the tensile reinforcement is regarded as a tension chord, the uncracked concrete 

compression zone in the beam is assumed to be the top chord, the diagonal compressive stress 

fields are intended to be the diagonal compression struts, and the vertical stirrups transfer the 

tensile forces from the flexural reinforcement to the uncracked concrete compression zone 

like tensile ties (Figure  6-1) (Blanksvärd 2009). 

This model was explained by Ritter (1899) and Mörsch (1908). They assumed 45 degrees for 

the diagonal compression struts before and after cracking of the cross section. They also 

neglected the concrete tensile strength (Blanksvärd 2009). 
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Figure  6-1: Truss models (Brown et al. 2005) 

 
The equilibrium configuration for the 45 degrees of diagonal shear crack model is shown in 

Figure  6-2. The shear stresses are distributed over the width, wb , and effective depth of the 

cross section, z. As shown in Figure  6-2, the total diagonal compressive force ( 2F ) is 

2 / 2wf b z , and 22 / 2V F : 

2

2

w

V
f

b z
  (6.1)

 
Figure  6-2: Equilibrium conditions for a truss of 45° angle (Collins and Mitchell 1991) 
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In Figure  6-2 s  and z  are the horizontal distance between stirrups and vertical distance 

between longitudinal reinforcements, respectively. The horizontal component of the diagonal 

compression is equilibrated by tension in the longitudinal reinforcement: 

cotVN V   (6.2)

As shown in Figure  6-2, the vertical component of the diagonal compressive force is taken by 

stirrups. By projecting the force in the compression strut in vertical direction, and considering 

that shear force is 2 / 2wf b s  it is obtained: 

sy syA f
V z

s
  (6.3)

The truss model become the basis for many codes such as: ACI Committee 440 (2000), 

British Standards Institution (2001), ASSHTO (1998), and Swedish code BBK 94 (1994). 

6.3 Compression Field Theory (CFT) 

In truss model was assumed that the shear in cracked concrete beams is resisted by diagonal 

compression struts, and these struts are inclined at an angle of 45 degrees to the longitudinal 

axis of the concrete member. This approach ignores any contribution of the concrete tensile 

ties, thus the results of truss model can give conservative estimates of shear strength for RC 

concrete members (Bentz et al. 2006).  

In 1929, Wanger developed the Tension Field Theory (TFT) in analogy to the post-buckling 

shear resistance of thin-webbed metal girder. He assumed that after buckling the thin-webbed 

girder, it has no resistance to compression and the shear is carried out by diagonal tension, 

and it was assumed that the inclination of the diagonal tensile stresses coincides with the 

inclination of principal tensile strains (Sang-Yeol 1999).  

Vecchio and Collins (1986) applied the TFT to reinforced concrete. They assumed that after 

cracking, the concrete carries no tension, and the shear is carried out by a field of diagonal 

compressive stresses. The Compression Field Theory (CFT) considers the following 

assumptions: 

 For each strain state there is only one corresponding stress state; 

 Stresses and strains can be considered in terms of average values, when taken over 

areas or distance large enough to include several cracks; 

 The concrete and bars are perfectly bonded together; 

 The longitudinal and transverse reinforcement bars are uniformly distributed over the 

concrete elements. 



Chapter 6 

144 
 

By considering these assumptions, and assuming that the three strain components x , y  and 

xy  ( x  is the longitudinal strain, y  is the transverse strain and xy  is shear strain, in case of 

plane stress state) are known, then the strain in any other direction can be obtained by 

applying the Mohr’s circle, Figure  6-3. 

 
Figure  6-3: Mohr's circle for average strain 

 
From the Mohr’s circle the following equations can be derived: 

1 2x y       (6.4)

   1 22 cot 2 cotxy y x           (6.5)

   1 22 tan 2 tanxy x y           (6.6)

where 1  is the diagonal tensile strain and 2  is the diagonal compressive strain. Tensile 

strains are positive, while compressive strains are negative. By dividing Eq. (6.5) and         

Eq. (6.6) the following noticeable relation is obtained: 

12 2

1 2

tan y x

x y

   
   
 

 
 

 (6.7)

that provides the inclination of the diagonal compressive stress, . 

6.4 Modified Compression Field Theory (MCFT) 

Because the CFT neglects the resisting contribution of cracked concrete in tension, 

conservative estimates of shear strength are predicted. The Modified Compression Field 

Theory (MCFT) is an enhancement of the CFT, since it takes into account the resisting 

contribution of cracked concrete in tension (Vecchio and Collins 1986). The equilibrium 

condition is considered at a cross section in a RC beam where bending moment is zero (pure 

shear). 
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The key simplifying assumption of the MCFT is that the principal strains and principal 

stresses are coaxial, i.e. they have the same orientation. This was justified by an experimental 

program. Figure  6-4a and Figure  6-4b show the test setup and one specimen of this 

experimental program, respectively. Figure  6-5 presents experimental results in terms of the 

inclination of principal strain ( ) vs. inclination of principal stress ( c ), where it is verified 

that c  ±10°. 

(a) (b) 
Figure  6-4: (a) test setup used to apply shear and normal stress (Vecchio and Collins 1986), 

(b) one specimen under loading (ACI-ASCE Committee 445 1999) 
 

 
Figure  6-5: Comparison principal stress and principal strain (Vecchio and Collins 1986) 
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Vecchio and Collins (1986) studied the relationship between diagonal compressive stress, 2f , 

and diagonal compressive strain, 2 . They found that principal compressive stress is not only 

function of the principal compressive strain but also of the coexisting principal tensile strain, 

1 . The uniaxial compressive stress-strain relationship is approximated by a parabola 

according to (Figure  6-6): 

2

2 2
2 2max' '

2
c c

f f
 
 

    
     
     

 (6.8)

where '
c  is the strain at the peak compressive strength (that varies between 0.002 and 

0.0035, depending on the concrete strength class), and: 

'
'

2max
10.8 170

c
c

f
f f


 


 (6.9)

where '
cf  represents the concrete compressive strength. 

Eq. (6.8) describes the typical strain softening behavior of concrete in uniaxial compression 

as shown in Figure  6-6: 

Uniaxial compression 
Stress-strain relationship for 

cracked concrete in 
compression 

Compressive strength 
reduction with orthogonal 

tensile strain evolution 
Figure  6-6: Stress- strain relationship for cracked concrete 

 
As shown in Figure  6-7, the relationship between the average tensile stress and the average 

tensile strain in the concrete before cracking is linear, thus the tensile stress before cracking 

can be determined as follows: 

1 1cf E   (6.10)

where cE  is the modulus of elasticity of the concrete. After cracking, the average principal 

tensile stress in concrete is function of the average principal tensile strain as follows (Collins 

and Mitchell 1991): 
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1 2
1

11 500
crf

f
 





 (6.11)

where crf  is the cracking stress that can be taken as '0.33 cf , while 1  and 2  are factors 

related to bond characteristics of the reinforcement and the type of loading, whose proposed 

values are: 

1 1   for rough surface reinforcing bars 

1 0.7  for plain surface bars, wire or 

bonded strands 

1 0   for unbonded reinforcement 

2 1   for short-term monotonic loading 

2 0.7   for sustained and/or repeated loads 

 

The third phase of the tensile stress-strain response will be discussed later. 

 
Figure  6-7: Average stress-strain relationship for cracked concrete in tension            

(Collinset al. 1996) 

 

6.4.1 Equilibrium between cracks 

As mentioned previously, a RC beam concrete resists to shear due to the formation of 

diagonal compressive struts delimited by diagonal shear cracks (Figure  6-8b). As shown in 

this figure, the tensile stresses vary from zero at the cracks to a maximum between cracks. 

From the Mohr circle (Figure  6-8c): 
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 1 2 1 2 tan cotf f A A v        (6.12)

where 
w

V
v

b z
 . 

The vertical components of compressive and tensile forces in the concrete struts have to be 

supported by the stirrup. The equilibrium can be expressed as (Figure  6-8d): 

 2 2
2 1sin cossy sy wA f f f b s    (6.13)

From Eq. (6.12): 

1 2

tan cot tan cot

f f
v

   
 

 
 

and from Eq. (6.13): 

2
1

2 2

cos

sin

sy sy

w

A f
f

b s
f





 
 

   

From above equations: 

2
1

1
2

cos
1

tan cot tan cot sin

sy sy

w

A f
f

b sf
v



    

 
 

   
 

 

 
2

211 cot
1 cot
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sy sy
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A f f
v

b s

 
   


   
 

 

 
2

211 cot
1 cot

tan cot tan cot
sy sy

w w w
w

A f f
V vb z b z b z

b s

 
   


    
 

 

1cot cotsy sy
w

A f
V z b zf

s
      (6.14a)

steel concreteV V V   (6.14b)

Similarly, as shown in Figure  6-8d, the longitudinal imbalance 1f  between the diagonal 

tensile and compression in the concrete must be carried out by the longitudinal steel 

reinforcement. 

 2 2
2 1cos sinsx sx wA f f f b z    (6.15)

where sxA  is the cross sectional area of the longitudinal reinforcement, and sxf  is the average 

stress in the longitudinal reinforcement. Introducing Eq. (6.12) into Eq. (6.15) gives the force 

in the longitudinal reinforcement as: 

1cotsx sx wA f V f b z   (6.16)
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Figure  6-8: Principal stresses in concrete and variation of tensile stresses in the compressive 

struts 
 

6.4.2 Equilibrium across cracks 

Failure of the RC element may not be governed by average stresses, but it can occur at a 

crack due to local stress gradient. At low shear values, tension is transmitted across cracks by 

local increase of stresses in the reinforcement bridging the cracks. At a certain shear force, 

the stress in the web reinforcement just reaches yield at crack locations. Above this shear 

force, the shear resistance is only assured by aggregate interlock, herein designated as local 

stress, civ . The ‘crack check’ in MCFT represents an explicit check to ensure that the average 

stress levels can be resisted locally at a crack location. ‘Crack check’ is done by looking at 

the stress state in the cracks and between the cracks (Figure  6-9). It limits the average 
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principal tensile stress in concrete to a maximum allowable value, determined by considering 

the steel stress at the crack and the ability of crack surface to resist shear stress (Bentz 2000). 

 
Figure  6-9: Force transmission a) across the crack, b) between the cracks (Collins et al. 1996) 

 

In Figure  6-9, sycrf
 

and sxcrf  represent the stress in the transverse and longitudinal 

reinforcement at a crack surface, respectively. Vecchio and Collins (1986) proposed an 

equation for shear stress at crack, civ , based on the compressive strength of concrete, 

maximum diameter of aggregates and crack width: 

'0.18
24
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16

c
ci

g

f
v

w
a






 
(6.17)

where w  is the crack width and ga  is the maximum aggregate size in mm. 

The two sets of stresses, at cracks and between cracks, must be statically equivalent. 

Equivalence of vertical forces at crack and between cracks (Figure  6-9) requires: 

1

/ sin / sin
cos sin

/ cos sin / cos sinsy sy w sy sycr ci wA f f b A f v b
z z z z

s s

  
   
    

1 cot
tan tansy sy w sy sycr ci w

z z
A f f b z A f v b z

s s


 
    (6.18)

In the concrete elements is assumed that the transverse steel reinforcement yields at the crack,

sycr y yieldf f . To maintain this equality, the average tensile stress, 1f , must be: 
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1 cot cot )(sy
w sy ciy yi ld we

A
f b f f v b

s
    

 1 tan sy
ci y yield sy

w

A
f v f f

b s
    (6.19)

If the stirrups reach to their yield stress and the crack begins to slip (Collins et al. 1996): 

1 tancif v   (6.20)

The use of Eq. (6.17) requires an estimate of the crack width, w . It can be taken as the 

product of the principal tensile strain 1  and average spacing of the diagonal cracks, s  

(Figure  6-10):  

1w s  (6.21)

where:  

1
sin cos

mx my

s

ss

  


 
(6.22)

As shown in Figure  6-10, mxs  and mys
 
are the longitudinal and the transverse crack spacing, 

respectively. 

 
Figure  6-10: Crack spacing in reinforced concrete (Duthinh and Carino 1996) 

 
Finally, imposing the equilibrium of the horizontal forces at a crack and between cracks 

(Figure  6-9), a limit of the magnitude of the concrete tension can be obtained in order to take 

into account the yield initiation of longitudinal steel at the crack surface ( sxcr x yieldf f ): 
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From Eq. (6.19): 
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  2
1 1 cotsz

sx x yield sx sx w y yield sy w
w

A
A f A f f b z f f f b z

b s


 
     

 
 (6.23)

Figure  6-11 gives 15 equations used in MCFT. 
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Figure  6-11: Equations of modified compression field theory 
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6.4.3 Solution technique for MCFT 

Vecchio and Collins (1986) and Sang-Yeol (1999) gave a solution to calculate the shear 

resistance based on MCFT: 

Step 1: Estimate  . 

Step 2: Choose a value for 1 . It is recommended 1  can be less than 3
1 0.05 10    

(Vecchio and Collins 1986) 

Step 2: Estimate  . 

Step 3: Calculate w  from Eq. (6.21) and Eq. (6.22), the crack spacing is estimated from 

suggestion of CEB-FIP (1993): 

2 0.25
10

x x
mx x

x

s d
s c k


    
 

 (6.39)

2 0.25
10

y
my y

y

ds
s c k


    
 

 
(6.40)

where: 

xd  and yd
 
are longitudinal and transverse bars diameters, respectively.  

xc  and yc  are the clear distance to the longitudinal and transverse 

reinforcement, respectively. 

xs  and s  = bar spacing. 

sy
y

w

A

b s
   and sx

x
c

A

A
   

cA  = area of concrete cross section. 

0.4k   for deformed bars and 0.8 for plain bars. 

Figure  6-12 defines the parameters related to crack spacing. 
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Figure  6-12: Parameters influencing crack (Collins and Mitchell 1991, Kuchma et al. 2008) 

 

Step 4: Estimate average stress in transverse reinforcement, syf . 

Step 5: Calculate the average tension in the concrete, 1f , using Eq. (6.10) and Eq. (6.11); 

Take the smallest value. 
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Step 6: Calculate V from Eq. (6.14a). 

Step 7: Calculate 2f  from Eq. (6.12). 

Step 8: Calculate the 2maxf  from Eq. (6.9). 

Step 9: Check if 2

2 max

1
f

f
 ; if 2f  is higher than 2maxf , return to step 1 and choose a  closer to 

45°. 

Step 10: Calculate 2 : 
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Collins suggested to take the smaller value (Collins and Mitchell 1991): 

' 2
2

2max

1 1c

f

f
 

 
    

 
 (6.41)

Step 11: Calculate y  
and x : 

1 2 1 2y yx x               

2 2
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y
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1 2 2 12

2 2
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y y

     


   
   

 
 

 

2 2
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1 2

2
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1 tany

  






 (6.42)

2
2 1

2

tan

1 tanx

  






 (6.43)

Step 12: Calculate the stress in the transverse reinforcement: 

ysy sy y yieldf E f   (6.44)

Check the syf  calculated can be agreed with syf  estimated in Step 4. If not, revise estimate and 

return to Step 5. 

Step 13: Calculate 

sx sx x x yieldf E f   (6.45)

Step 14: Calculate the axial force on the concrete member (it is derived from Eq. (6.16) – 

axial force out of the web): 

 1cotsx sx w c c wN A f V f b z f A b z      (6.46)

where cf  is the axial compression stress, it acts on the concrete areas outside the web. If x  is 

tensile then 0cf  , otherwise: 

2

'
' '

2 x x
c c

c c

f f
 
 

    
          

 (6.47)

Step15: Check if the axial load equals to the desired value (usually zero). If not, a new 

estimate value for   should be assumed and return to Step 2. 

Step16: Check longitudinal reinforcement can satisfy Eq. (6.23). If not, return to Step 1. 
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The flowchart of this model is presented in Annex B. 

6.4.4 MCFT vs. Truss Model 

In the truss model concrete contribution of a beam with shear reinforcement is consider equal 

to the concrete contribution of a similar beam without shear reinforcement, and it is also 

assumed that concrete contribution does not vary with the amount of transverse 

reinforcement. However, in the MCFT concrete contribution depends on the crack width. The 

more shear reinforcement decreases the crack width, hence, increases the concrete 

contribution. 

6.5 Simplified Modified Compression Field Theory 

Solving the equations of the MCFT is complicated if done by hand (Bentz and Collins 2001). 

A simplified approach was suggested by Bentz et al. (2006). There are some assumptions in 

this model:i) crushing of the concrete is approximately to 0.002, and ii) yield strain of the 

stirrups at failure is greater  than 0.002. If  x  is also equal to 0.002 at failure, Eq. (6.26), 

(6.29), (6.30), (6.36), and Eq. (6.37) in Figure  6-11 predict that the maximum shear stress is 

approximately '0.28 cf . For very low values of x  the shear stress at failure is approximately 

'0.32 cf  (Annex C). 

1. As a conservative simplification the shear stress ( v ) before yielding of transverse 

reinforcement is '0.25 cf . 

2. If failure occurs at a shear stress level below '0.25 cf , then it is assumed that at failure 

the stresses in transverse reinforcement in between cracks ( syf ) and stresses at cracks 

( sycrf ) equal the yield stress of the transverse reinforcement (Bentz et al. 2006).  

The shear strength of a section is a function of two parameters   and  .   is a factor for 

the tensile stresses in the cracked concrete and   is the inclination of the diagonal 

compressive stresses in the web of the section.  

In Simplified MCFT the shear strength of an element is modeled in the flexural region of the 

beam and it is assumed that the clamping stress, yf , is negligible small. The clamping 

stresses, yf , are regions with high vertical compressive stresses near the point loads and 

supports, and they cause stirrup strains in these locations to be close to zero. Eq. (6.28) given 



Chapter 6 

157 
 

in Figure  6-11 can be derived by summing the forces in y-direction for the free force body 

diagram as shown in Figure  6-13 and assuming 0yf 
 

and stresses in transverse 

reinforcement between cracks and at the cracks will be equal to yield stresses ( sycr y yieldf f

and sy y yieldf f ). 

1 cot coty y yieldv f f     (6.48)

cotci y yieldyv v f    (6.49)

Both of the above equation can be expressed as:  

' cotc c y y yieldsv v v f f       (6.50)

 

Figure  6-13: Transmission of forces across cracks 

 

From the Eq. (6.36) in Figure  6-11 and Eq. (6.48) and Eq. (6.50) and assuming '0.33cr cf f

the value of   can be determined as: 
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 (6.51)

Similarly, from Eq. (6.38) in Figure  6-11, Eq. (6.49) and Eq. (6.50) the value of   must 

satisfy:  

0.18
24

0.31
16g

w
a

 




 
(6.52)

The crack width, w , is calculated as multiple of crack spacing, s , to principal tensile strain,

1  (Eq. (6.21)). The crack spacing depends on the crack control characteristics of the            
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x-direction reinforcement, and crack control characteristics of the y-direction reinforcement. 

As a simplification, crack spacing of longitudinal bars ( mxs ) can be taken as the vertical 

distance between bars in the x-direction ( xs ), and mys
 
can be taken as the horizontal distance 

between bars in the vertical direction ( s ) (Figure  6-12). For elements with no transverse 

reinforcement ( mys   ) s  will equal to 
sin

xs

  
and: 

1 1 sin
xs

w s 


   

1

0.18

24
sin

0.31
16

x

g

s

a







 
 
 



 

1

0.18

0.31 0.686 / sinxes


 



 (6.53)

where 

35
0.85

16
x

xe x
g

s
s s

a
 


 (6.54)

For concrete member containing only longitudinal reinforcement xs  can be assumed max 

[0.9 ,0.72 ]wd h  (Kuchma et al. 2008), where d  is the effective depth of the concrete member 

and wh  is height of the concrete member. 

For member without transverse reinforcement, the highest values of  , hence, maximum 

post-cracking shear capacity occurs when Eq. (6.53) and Eq. (6.51) are equal: 

1

1

0.5686 1.258 / sin
tan

1 500
xes  






 (6.55)

The relation between   and 1  for different crack spacing is shown in Figure  6-14. 
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Figure  6-14: Determination of   and   values for element without transverse reinforcement 
(Bentz et al. 2006) 

To relate longitudinal strain x  to 1 , Eq. (6.29) and Eq. (6.30) can be rearranged: 

2 2
1 2(1 cot ) cotx        (6.56)

The principal compressive strain, 2 , depends on compressive stress. For a member without 

transverse reinforcement Eq. (6.25) and Eq. (6.26) can be rearranged: 

2
2 1 cotf f   (6.57)

The principal compressive strain equals 2 / cf E , where '4950c cE f . Then Eq. (6.56) 

becomes: 

4
2

1

1

cot
(1 cot )

15000(1 500 )
x

  


  


 (6.58)

The relation between 1  and   for different values of x  is shown in Figure  6-14. The 

intersection points of the lines x  and xes  define the values of   and 1 , which solve both  

Eq. (6.55) and Eq. (6.58). The corresponding values of   are shown also in Figure  6-14. It 

can be seen from this figure, as the crack spacing increases the values of   and, hence, shear 

strengths, decrease.   
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Based on these results the   value in MCFT for elements without transverse reinforcement 

depends on x  and xes , longitudinal strain and crack spacing parameter, respectively.     

Bentz et al. (2006) suggested that these two factors affect the shear strength   and crack 

inclination   as “strain effect factor” and “size effect factor” and these parameters can be 

multiplied by each other.  

 =“strain effect factor” × “size effect factor” 

 =“strain effect factor” × “size effect factor” 

These two factors are not really independent, but for the simplified calculation of the MCFT 

this interdependence is ignored. 

Bentz et al. (2006) suggested Eq. (6.59) to calculate the inclination of diagonal compressive 

stress of the beam with and without transverse reinforcement. As shown in Figure  6-15 the 

suggested equation for diagonal compressive stress gives a conservative value than MCFT. 

Strain effect factor Size effect factor 

 
With transverse reinforcement Without transverse reinforcement 

29 7000 x    0.88
2500

xes
SE

   
 

 

Figure  6-15: Comparison of values for  given by simple equations with values determined 
from MCFT for elements with and without transverse reinforcement (Bentz et al. 2006) 

 

  xe
x

s
θ 29 7000ε . 0.88 75°

2500
     
 

 (6.59)

To calculate  , Eq. (6.60) is suggested for concrete members with and without transverse 

reinforcement. The   values given by this equation are compared to the   values from 

MCFT in Figure  6-16. 
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.

1 1500 1000x xes





 
 (6.60)

If the longitudinal reinforcement is not yield Eq. (6.61) can be used to calculate the x . 

.cot / cotsx c
x

s s sx

f v v

E E

 



   (6.61)
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Figure  6-16: Comparison of values for   given by simple equations with values determined 
from MCFT for elements with and without transverse reinforcement (Bentz et al. 2006) 

 

6.5.1 Solution technique for simplified MCFT 

Step 1: Estimate a value for x . 

Step 2: Calculate the crack spacing, using Eq. (6.54). 

Step 3: Calculate   and   using Eq. (6.59) and Eq. (6.60), respectively. 

Step 4: Calculate the shear stress based on Eq. (6.50). 

Step 5: Calculate the longitudinal strain, x , according to Eq. (6.61) and compare to x  that 

was estimated in step 1. Return to Step 2 with x  that was calculated in Step 5 until 

convergence is obtained. 

6.6 ACI Building Code 

ACI Committee (2011) design code for reinforced concrete beams in shear is based on 45° 

truss model. The shear strength is an average shear stress on the full effective cross section 
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wb d . In a member without steel stirrups, shear is assumed to be carried by concrete web, 

while in the beams with shear reinforcement the shear strength is assured by concrete web     

( cV ) and steel stirrups ( sV ) as follows: 

c sV V V   (6.62)

where: 

0.17c c wV f b d  (6.63)

is actually the sum of the three separated components: a) concrete in compression, b) 

aggregate interlock, and c) dowel resistance provided by the longitudinal reinforcement.  

The 45° truss model is used to calculate contribution of steel stirrups: 

sy sy
s

A f
V d

s
  (6.64)

To avoid diagonal crushing of the compression chords and limit diagonal cracking at service 

loads the steel contribution is limited to: 

0.66s c wV f b d  (6.65)

6.7 Eurocode  

6.7.1 Concrete members without shear reinforcement 

The shear force that can be carried without shear reinforcement is calculated from:  

   1 3

, , 1 1100Rd c Rd c l ck cp w min cp wV C k f k b d v k b d         (6.66)

where  

 
200

1 2.0k
d

   , d in mm 

 sx
x

w

A

b d
  ≤ 0.02 

cp  is the compressive stress due to pre-stress force applied to the member: 

cp = 0.2Ed c cdN A f , in MPa 

The factor 1 0.15k   and values of ,Rd cC  and minv  are determined as: 

 ,

0.18
Rd c

c

C


  

 3/2 1/2
min 0.035 ckv k f  
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Even if no transverse reinforcement is necessary, a minimum percentage is required: 

sinsw
w w

A
b

s
     (6.67)

.

0.08 ck
w min

yk

f

f
   

(6.68)

6.7.2 Concrete members with shear reinforcement 

Eurocode (2001) is based on truss model, where the inclined compression struts are aligned at 

an angle  . The inclination of the compression chords should be limited: 

 1 cot 2.5   

The design shear resistance provided by stirrups is the smallest of: 

, ,cotsw
Rd s ywd Rd max

A
V z f V

s
      (6.69)

 , 1 cot tanRd max cw w cdV b z f      (6.70)

where z is internal arm (Figure  6-8a). cwa  is 1 for non-pre-stress member. 1v  is a reduction 

factor for concrete cracked in shear: 

1

0.6 60 MPa

0.9 200 0.5 60 MPa
ck

ck ck

f

f f



    

 

6.8 Formulation of NSM Technique 

6.8.1 Nanni approach 

The approach used to calculate nominal shear capacity of a concrete member strengthened 

with NSM technique is similar to that used in ACI Committee 440 (2000) for the case of 

externally bonded FRP laminates. The total transverse force V can be calculated as follows: 

c s fV V V V    (6.71)

where fV
 
is the shear resistance of the FRP laminates.  

Shear resistance of the FRP laminates based on Nanni et al. approach is computed using the 

following assumption (De Lorenzis and Nanni 2001): 

 

1. The inclination angle of the shear crack is constant and equal to 45°; 
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2. The bond stresses are uniformly distributed along the effective length of the FRP 

laminates at ultimate state conditions; 

3. The average bond strength is reached in all the laminates intersected by the crack at 

ultimate state conditions; 

The contribution for the shear resistance provided by the FRP laminates is determined from 

the following equation: 

min[4( ) ]sinf f f b tot fV a b L    (6.72)

where fa
 
and fb  represent the cross section of rectangular FRP laminate, b  is the average 

bond stress developed at laminate-concrete substrate interface, f  
is inclination of FRP 

laminates, and totminL  can be obtained as follows: 

totmin i
i

L L  (6.73)

where iL  represents the effective bond length of each single NSM laminate intercepted by the 

critical shear crack. totminL  corresponds to the minimum possible value assumed by the sum of 

the effective bond length of each laminate: 

max

max

min( i; ) 1 / 2
cos sin

min( - i; ) / 2 1
cos sin

f

f f

i
f

net
f f

s
l i N

L
s

l l i N N

 

 


  

   




 (6.74)

where fs
 
is the horizontal spacing between laminates and netl  can be determined from 

(Figure  6-17): 

2

sinnet b
f

c
l l


   (6.75)

which represents the net length of FRP laminates to account for cracking of the concrete 

cover and installation tolerances. bl  is the actual length of the FRP laminate while c  is the 

concrete clear cover. In Eq. (6.74) N  is the number of the FRP laminates crossing the shear 

crack that can be determined as follows: 

 1 coteff f

f

l
N

s


  (6.76)

by rounding off N  to the lowest integer, and effl  represents the length of the vertical 

projection of netl :  
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sin 2eff b fl l c   (6.77)

In Eq. (6.74) iL  is limited to maxl  that is obtained from the force equilibrium condition, taking 

an upper bound value for the effective strain, fe , (refer to Figure  6-18): 

max 2
fe f f f

f f b

a b E
l

a b







 (6.78)

where fE  is the modulus of elasticity of FRP. Bond is a mechanism through which stresses 

are transferred to the surrounding concrete. Barros and Dias (2006) suggested b =16.1 MPa 

and fe =0.59% for rectangular cross section laminates, while Nanni et al. (2004) 

recommended b =6.9 MPa and fe =0.4% for the CFRP rods.  

 
Figure  6-17: Definition of netl , bl , maxl  (Nanni et al. 2004) 

 

 
Figure  6-18: Representation of maxl  (Nanni et al. 2004) 

 

6.8.2 Bianco approach 

Bianco et al. (2011) proposed a 3D mechanical model to predict the shear strength 

contribution of NSM CFRP laminates. Recently the same authors proposed a simplified 

CFRP Laminate

c

s cf

Shear Crack

l
netl

l
max

b

45°
f


l

lmax

F=A 
l fe f

b
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version of this model (Bianco et al. 2014) by introducing the following simplifications 

(Figure  6-19): 

1. The local bond stress-slip relationship     can be modeled by a bi-linear curve 

instead of a multi linear curve.  

2. Concrete fracture surface is assumed a semi-pyramid instead of a semi-cone. 

3. The mode of failure of an NSM FRP laminate subjected to an imposed end slip can be 

categorized into four groups: debonding, tensile rupture of laminate, concrete semi-

pyramid tensile fracture, and a mixed shallow semi-pyramid plus debonding failure 

mode. These modes of failure are dependent on the relative mechanical and 

geometrical properties of the materials involved. 

4. Determining the constitutive law of the average available bond length of the NSM 

FRP laminates. 

During the loading process of a RC beam, when the concrete average tensile strength is 

overcome at the web intrados, some shear cracks originate, and successively progress towards 

the web of the beam. These cracks can generate a single crack, Critical Diagonal Crack 

(CDC), with inclination of   with respect to the beam longitudinal axis (Figure  6-19a). At 

load step 1t , the two web parts become separated by the CDC and they start moving apart by 

rotating around the crack tip (point E in Figure  6-19a). From that step, by increasing the 

applied load, the CDC opening angle  nt  progressively widens. The laminates that bridge 

the CDC offer resistance to its widening. The load imposed to the laminate, in consequence 

of the loaded end slip ( Li ) evolution, is transferred by bond to the concrete surrounding the 

laminate along its effective bond length, fiL which is the shorter length between the two parts 

into which the crack divides its actual length fL . 
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Figure  6-19: Schematic representation of the Bianco et al. (2014) model 

 
There are two other assumptions that simplify the original formulation proposed by      

Bianco et al. (2011) and Bianco et al. (2014): 
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1) The concrete fracture can be accounted to determine the equivalent value of the 

average resisting bond length eq
RfiL . The equivalent value of the average resisting bond 

length is the portion of the available average resisting bond length, eq
Rfi RfiL L . 

2) The post peak behavior of the bond based constitutive law ( ; )bd eq
fi Rfi LiV L 

 
of the 

equivalent value of the average resisting bond length can be ignored.  

The following paragraphs resume the formulation of this approach: 

Step 1: Input parameters data includes: beam cross section ( ),w wh b , Inclination of CDC and 

NSM FRP laminates ( , )f  , Horizontal spacing of NSM FRP laminates fs , angle   

between axis and principal generatrices of the semi-pyramidal fracture surface (this angle is 

assumed equal to 28.5° for all the experimental programs (Bianco et al. 2011)), Young’s 

modulus and tensile strength of FRP ( ),f fuE f , concrete average compressive strength '( )cf , 

thickness and width of the NSM FRP laminates ( ),f fa b , the value of the bond stress and slip 

0 1( , )   (these values are assumed 20.1MPa and 7.12mm, respectively (Bianco et al. 2011)).  

Step 2: Determining the average available resisting bond length and the minimum integer 

number of FRP strips that crossing the CDC: 

.sin .(cot cot )

4.sin( )
w f

Rfi
f

h
L

  
 





 (6.79)

,int

cot cot
. fl

f w
f

N round h
s

  
  

  
 

(6.80)

Step 3: Evaluation of various constants: 

There are three types of constants: 

1) Geometrical constants: 

Perimeter of CFRP cross section, cross sectional area of the relevant prism 

surrounding concrete, and CDC length: 

2p f fL b a  ; 
2
w

c f

b
A s ; 

sin
w

d

h
L


  (6.81)

2) Mechanical constants: 

The laminate tensile strength, concrete tensile strength, and concrete Young's 

modulus: 

. .tr
f f f fuV a b f  (6.82a)
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2/38
1.4( )

10
c

ctm

f
f


  (6.82b)

4 1/32.15 10 ( )
10

c
c

f
E


   (6.82c)

3) Bond-Modeling constants encompass: 

Bond modeling constant ( 1J ), integration constant for the softening friction phase       

( 3C ), constant entering the governing differential equation for elastic phase ( ), 

effective resisting bond length ( RfeL ), and maximum value of force transferable 

through bond by the given CFRP NSM system ( 1
bd
fV ): 

1

1p f

f f c c

L A
J

A E A E

 
  

  
 ; 1

3

.

.

tr
f

p

V J
C

L 
  ; 1

2
1

1

b J


 

  ; 
2RfeL



  ; 1
1

1

pbd
f

L
V

J


  (6.83)

Step 4: Reduction factor of the initial average available resisting bond length ( ), and 

equivalent value of the average resisting bond length ( eq
RfiL ): 

The average resistance bond length is determined from: 

.eq
Rfi RfiL L  (6.84)

where: 

*
*

*1

ctm
ctm ctm

ctm

ctm ctm

f
if f f

f

if f f


  
 

 (6.85)

with: 

 
1*

1

sin( . )

.min( . tan , / 2).min .sin ,2 .tan
p Rfi

ctm

Rfi w f f Rfi

L L
f

J L b s L

 
  

  (6.86)

representing the concrete average tensile strength for values larger than which 

concrete fracture does not occur, where: 

Rfi Rfi Rfe
Rfi

Rfe Rfi Rfe

L if L L
L

L if L L

   
 (6.87)

Step 5: Determine the value of imposed slip in correspondence of which the comprehensive 

peak force transmissible by eq
RfiL  is attained (  ;eq

fi Rfi LiV L  ): 

 
   

1 1

1 1min ;

eq db tr
L Rfi f f

Lu eq tr db tr
L Rfi Li f f f

L if V V

L V if V V




 

  
    

 (6.88)
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where  1
eq

L RfiL  is the value of imposed end slip in correspondence of which the 

bond-based constitutive law  ;bd eq
fi Rfi LiV L   attains the peak value: 

   1

1

1

[1 cos ]eq eq
Rfi Rfi Rfeeq

L Rfi eq
Rfi Rfe

L if L L
L

if L L

 




   


 (6.89)

and  tr
Li fV  is the imposed end slip in correspondence of which the strip tensile 

strength is attained ( tr
f f f fuV a b f   ): 

  3
1

1

1 cos arcsintr
Li f

C
V 


       
   

 (6.90)

Step 6: Maximum effective capacity max
,fi effV

 
of the NSM CFRP laminate with equivalent 

average resisting bond length eq
RfiL : 

The max
,fi effV  is evaluated by neglecting the post behavior of the constitutive law: 

max 21 2
,

3 max

arcsin 1
2 2fi eff

d

A
V

L A

    


      
 (6.91)

where: 

2
1

pL
A

J


  ; 

 
3

1

sin

2
f

A
 



  ;  max

2

sin
Lu

d fL


 




 ; 

3 max1 . . dA L    

(6.92)

Step 7: Shear strength contribution provided by a system of NSM CFRP laminates: 

max
,int ,2. . .sinl

fd f fi eff fV N V   (6.93)

6.9 New Approach to Determine Shear Capacity of RC Beams Strengthened with 

NSM Technique 

As previously mentioned, based on ACI 440, shear strength of concrete member strengthened 

with CFRP can be determined by Eq. (6.71). In the present work, two new shear design 

approaches are presented based on simplified MCFT adapted to NSM technique. The results 

of 80 beams with and without shear reinforcement and with and without CFRP laminates are 

summarized, and the new design proposal approaches are compared to other design 

approaches, namely, ACI Committee (2011) and Eurocode (2001). Nanni et al. approach and 
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Bianco et al. approach combined with ACI and Eurocode to predict shear capacity of RC 

beams strengthened with NSM technique. 

6.9.1 Nanni simplified MCFT (NSMCFT) 

Adapting the simplified MCFT to the NSM technique is performed by adding formulation of 

NSM technique, suggested by Nanni et al. (2004) to SMCFT. 

The simplified MCFT is a linear analysis and the FRP materials behavior is linear elastic up 

to the failure too. Thus, the values describing the tensile behavior of concrete ( ) , 

inclination of the diagonal compressive stress ( ), and effective crack spacing ( )xes  are 

assumed do not change when a linear elastic material such as FRP is adopted for the shear 

strengthening of a RC element (Blanksvärd 2009). 

Therefore, the shear stress of a concrete member strengthened with NSM technique can be 

expressed as: 

v  Eq. (6.50) + Eq. (6.72)/ wb d   

 ' sin
cot 4 . f

c s f c yield f f b to n
w

y tmiv v v v f f a b L
b d


             (6.94)

where the expressions for   and   are provided by Eq. (6.59) and Eq. (6.60), respectively, 

while the longitudinal strain is calculated from (Eq. (6.61)): 

.cot / cotc
x

s sx

v v

E

 



  (6.95)

6.9.2 Bianco simplified MCFT (BSMCFT) 

One of the parameters in Bianco approach is inclination estimation of the CDC respect to the 

longitudinal axial of the beam. This problem can be solved by combining the Bianco and 

SMCFT approaches. Inclination of the CDC can be predicted by Eq. (6.59). 

The new formulation for shear stress based on SMCFT combined with Bianco approach can 

be expressed as: 

v  Eq. (6.50) + Eq. (6.93)/ wb d   

' max
,int ,

sin
cot 2. . . fl

c s fd c y yield f fi eff
w

v v v v f f N V
b d


         (6.96)

The solution procedure to calculate the shear strength of concrete beams according to the 

simplified MCFT adapted to NSM technique is obtained applying the following procedures: 
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Step 1: Estimate a value for x . 

Step 2: Calculate the crack spacing using Eq. (6.54). 

Step 3: Calculate  and   using Eq. (6.59) and Eq. (6.60), respectively. 

Step 4: Calculate the shear stress based on Eq. (6.94) for NSMCFT and Eq. (6.96) for 

BSMCFT. 

Step 5: Calculate the longitudinal strain, x , according to Eq. (6.95) and compare to x  that 

was estimated in step 1. Return to Step 2 with x  that was calculated in Step 5 until 

convergence is obtained. 

The solution procedures based on NSMCFT and BSMCFT are available in Annex D. 

6.10 Estimate of Shear Capacity of Concrete Beams 

Table  6-1 summarizes the available experimental results for the NSM shear strengthening of 

RC beams (De Lorenzis and Nanni 2001, Dias et al. 2007, Dias 2008, Dias and Barros 2008, 

Islam 2009, Rizzo and De Lorenzis 2009, Dias and Barros 2010, Chaallal et al. 2011, Dias 

and Barros 2013). These experimental programs include beams of different size, with 

different amount of longitudinal and transverse reinforcement, and different NSM CFRP type 

and strengthening ratio.  

The beams tested by (Dias et al. 2007, Dias and Barros 2008, 2010, 2013) were of type T 

cross section with the same ratio between shear span and effective depth (2.5), CFRP 

laminates and epoxy, and they differed on the amount of existing still stirrups ( sw  0.1% 

and 0.17%), percentage of longitudinal reinforcement ( sx  2.8% and 3.2%), and concrete 

compressive strength ( '
cf 39.7, 18.6, and 31.1 MPa). These series presented different 

configurations of NSM strips, in term of both inclination f  and spacing fs . However, the 

series V and VI of these authors (Dias 2008) are formed by beams of a higher shear aspect 

ratio (3.3) and concrete average compressive strength ( '
cf 59.4 MPa).  

Those beams are characterized by the following common geometrical and mechanical 

parameters: wb 180 mm; wh  300 mm; fuf  2952 MPa (for the series I, II, III, IV) and      

fuf =2848 MPa (for the series V and VI); fE  166.6 GPa (for the series IV), fE  174.3GPa 

(for the series III, V, and VI), and fE  170.9 GPa (for series I and II); fa 1.4 mm;            

fb 9.5 mm (for the series I, II, III, V and IV) and fa 1.4 mm; fb 10 mm (for series IV). 
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The beams tested by Chaallal et al. (2011) are of T cross section type, and were strengthened 

in shear by CFRP rods and tested under three point bending. These beams were characterized 

by cross-section dimensions of wb 152 mm and wh  304 mm. Concrete had average 

compressive strength of 25 MPa and 35 MPa. CFRP rods of 9.5 mm diameter, with tensile 

strength of fuf  1270 MPa and modulus of elasticity of fE  148 GPa were used.  

The beams tested by De Lorenzis and Nanni (2001) were T cross section type and were shear 

strengthened with CFRP rods, and tested under four point bending. These beams were 

characterized by cross-section dimensions of wb 150 mm and wh  305 mm. The concrete 

had an average compressive strength of 31 MPa. CFRP rods of nominal diameter around 9.5 

mm, with tensile strength fuf   1875 MPa and modulus of elasticity fE  104.8 GPa were 

adopted. Two different percentages of steel stirrups were used ( sw  0.0% and 0.26%).  

The beams tested by Rizzo and De Lorenzis (2009) were of rectangular cross-section type, 

strengthened in shear by either bars (NB) or strips (NS), and tested under four point bending. 

These beams were characterized by cross-section dimensions of wb 200 mm and            

wh  210 mm. The concrete had an average compressive strength of 29.3MPa. Round CFRP 

bars of 8mm diameter, with tensile strength fuf  2210 MPa and modulus of elasticity       

fE  145.7GPa were used. The strips have cross-section dimensions fa 2.0 mm and fb 

16.0 mm, and mechanical properties of fuf  2070 MPa and fE  121.5 GPa.  

The beams tested by Islam (2009) were of rectangular cross-section type, strengthened in 

shear with CFRP round bars and tested under four point bending. These beams were 

characterized by cross-section dimensions of wb 254 mm and wh  305 mm. The concrete 

had an average compressive strength of 49.75 MPa. Round CFRP bars of 9 mm diameter, 

with tensile strength fuf  2070 MPa and modulus of elasticity fE  124 GPa were used.  

The angle   for BSMCFT was assumed equal to 28.5° for all the experimental programs 

(Bianco et al. 2014). The average bond stress and effective tensile strain of CFRP laminate 

and rods (Figure  6-18) are assumed b  16.1 and 6.9 MPa and fe  0.59% and 0.4%, 

respectively. The parameters characterizing the adopted local bond stress-slip relationship 

(Figure  6-19a) are assumed 0  20.1 MPa and 1  7.12 mm (Bianco et al. 2014).  
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When CFRP rods are employed instead of laminates, the equivalent square cross-section is 

employed in the calculations. The same values of the equivalent square cross section 

dimensions are adopted to evaluate the effective perimeter 2p f fL b a   . 

The size aggregates ( ga ) were assumed 20 mm for all the experimental programs. 
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Table  6-1: Summary of experimental and analytical results 

Beam Label 
'

cf  

(MPa) 

Reinforcement 

expF
(kN) 

exp / predictionF F  

sx  f  
'

y yiey

c

ldf

f


 

'

f yf

c

f

f


 NSMCFT BSMCFT 

Eurocode 
45    

Eurocode  
21.8    

ACI 

Dias and Barros (2010, 2013) 
C-R 39.7 0.028 - 0 0 207 1.11 1.11 1.90 1.90 1.78 

2S-R-I 39.7 0.028 - 0.0143 0 303.8 1.18 1.18 1.83 0.98 1.78 

7S-R 39.7 0.028 - 0.038 0 467.5 1.25 1.25 1.85 1.23 1.78 

2S-4LV-I 39.7 0.028 90° 0.0143 0.056 337.4 1.14 1.09 1.72 1.03 1.66 

2S-7LV-I 39.7 0.028 90° 0.0143 0.09 374.1 1.17 0.99 1.70 0.97 1.65 

2S-10LV-I 39.7 0.028 90° 0.0143 0.12 397.5 1.14 1.03 1.64 0.90 1.60 

2S-4LI45-I 39.7 0.028 45° 0.0143 0.055 392.8 1.3 1.18 1.87 1.21 2.02 

2S-7LI45-I 39.7 0.028 45° 0.0143 0.9 421.7 1.11 1.05 1.45 0.90 1.80 

2S-10LI45-I 39.7 0.028 45° 0.0143 0.13 446.5 1.03 1.09 1.29 0.79 1.70 

2S-4LI60-I 39.7 0.028 60° 0.0143 0.49 386.4 1.28 1.22 1.86 1.16 1.94 

2S-6LI60-I 39.7 0.028 60° 0.0143 0.076 394.4 1.14 1.13 1.57 0.94 1.74 

2S-9LI60-I 39.7 0.028 60° 0.0143 0.11 412.7 1.06 1.01 1.39 0.82 1.62 

4S-4LV-II 39.7 0.028 90° 0.0237 0.055 424.5 1.24 1.19 1.82 1.01 1.77 

4S-7LV-II 39.7 0.028 90° 0.0237 0.09 427.4 1.16 1.12 1.66 0.89 1.62 

4S-4LI45-II 39.7 0.028 45° 0.0237 0.055 442.5 1.27 1.17 1.79 1.06 1.92 

4S-7LI45-II 39.7 0.028 45° 0.0237 0.09 478.1 1.12 1.07 1.46 0.86 1.76 

4S-4LI60-II 39.7 0.028 60° 0.0237 0.048 443.9 1.27 1.22 1.81 1.04 1.88 

4S-6LI60-II 39.7 0.028 60° 0.0237 0.076 457.6 1.16 1.16 1.58 0.90 1.73 

Dias et al. (2007) 

C-R-III 18.6 0.028 - 0 0 147 1.08 1.08 1.75 1.75 1.86 

2S-R-III 18.6 0.028 - 0.0304 0 226.5 1.08 1.08 1.63 1.02 1.69 

4S-R-III 18.6 0.028 - 0.0508 0 303.8 1.17 1.17 1.73 0.97 1.78 

2S-7LV-III 18.6 0.028 90° 0.0304 0.199 273.7 0.98 1.04 1.39 0.75 1.46 
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Table 6-1: (Continued.) 

Beam Label 
'

cf  

(MPa) 

Reinforcement 

expF
(kN) 

exp / predictionF F  

sx  f  
'

y yiey

c

ldf

f


 

'

f yf

c

f

f


 NSMCFT BSMCFT 

Eurocode 
45    

Eurocode  
21.8    

ACI 

2S-4LI45-III 18.6 0.028 45° 0.0304 0.122 283 1.11 1.14 1.51 0.93 1.85 

2S-7LI45-III 18.6 0.028 45° 0.0304 0.199 306.5 0.91 1.08 1.14 0.69 1.58 

2S-4LI60-III 18.6 0.028 60° 0.0304 0.107 281.6 1.09 1.17 1.52 0.91 1.74 

2S-6LI60-III 18.6 0.028 60° 0.0304 0.168 297.7 0.98 1.16 1.29 0.75 1.56 

4S-7LV-III 18.6 0.028 90° 0.0508 0.199 315.2 0.96 1.05 1.35 0.69 1.38 

4S-4LI45-III 18.6 0.028 45° 0.0508 0.122 347.2 1.13 1.17 1.55 0.87 1.79 

4S-7LI45-III 18.6 0.028 45° 0.0508 0.199 356.4 0.92 1.07 1.17 0.66 1.52 

4S-4LI60-III 18.6 0.028 60° 0.0508 0.107 345.6 1.13 1.19 1.56 0.86 1.73 

4S-6LI60-III 18.6 0.028 60° 0.0508 0.168 362.3 1.02 1.19 1.36 0.74 1.59 

Dias and Barros (2008) 

C-R-IV 31.1 0.032 - 0 0 243 1.47 1.47 2.41 2.41 2.41 

2S-R-IV 31.1 0.032 - 0.0182 0 315 1.35 1.35 2.05 1.34 2.03 

6S-R-IV 31.1 0.032 - 0.0303 0 410 1.27 1.27 1.82 1.00 1.82 

2S-3LV-IV 31.1 0.032 90° 0.0182 0.057 316 1.33 1.24 2.03 1.32 2.01 

2S-5LV-IV 31.1 0.032 90° 0.0182 0.095 357 1.29 1.29 1.89 1.11 1.88 

2S-8LV-IV 31.1 0.032 90° 0.0182 0.152 396 1.25 1.25 1.78 0.98 1.78 

2S-3LI45-IV 31.1 0.032 45° 0.0182 0.057 328 1.16 1.11 1.62 1.02 1.82 

2S-5LI45-IV 31.1 0.032 45° 0.0182 0.095 384 1.16 1.18 1.54 0.95 1.88 

2S-8LI45-IV 31.1 0.032 45° 0.0182 0.152 382 1.01 1.05 1.29 0.79 1.68 

2S-3LI60-IV 31.1 0.032 60° 0.0182 0.057 374 1.32 1.45 1.89 1.14 2.01 

2S-5LI60-IV 31.1 0.032 60° 0.0182 0.085 392 1.32 1.28 1.84 1.12 2.03 

2S-7LI60-IV 31.1 0.032 60° 0.0182 0.123 406 1.22 1.22 1.64 0.98 1.90 

Dias (2008) 

C-R-V 59.4 0.031 - 0 0 207 0.79 0.79 1.34 1.34 1.22 
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Table 6-1: (Continued.) 

Beam Label 
'

cf  

(MPa) 

Reinforcement 

expF
(kN) 

exp / predictionF F  

sx  f  
'

y yiey

c

ldf

f


 

'

f yf

c

f

f


 NSMCFT BSMCFT 

Eurocode 
45    

Eurocode  
21.8    

ACI 

3S-R-V 59.4 0.031 - 0.0095 0 359.9 1.05 1.05 1.64 1.14 1.53 

3S-6LV-V 59.4 0.031 90° 0.0095 0.025 387 0.97 0.91 1.49 0.92 1.40 

3S-10LV-V 59.4 0.031 90° 0.0095 0.041 491.7 1.14 0.91 1.71 1.00 1.62 

3S-5LI45-V 59.4 0.031 45° 0.0095 0.025 492.1 1.21 1.07 2.73 1.18 1.86 

 

3S-9LI45-V 59.4 0.031 45° 0.0095 0.041 563.6 1.12 0.99 1.51 0.96 1.80 

3S-5LI60-V 59.4 0.031 60° 0.0095 0.022 497.9 1.22 1.14 1.82 1.17 1.84 

3S-8LI60-V 59.4 0.031 60° 0.0095 0.035 584.5 1.27 1.20 1.78 1.10 1.92 

5S-R-VI 59.4 0.031 - 0.0143 0 409.7 1.05 1.05 1.63 1.03 1.53 

5S-5LI45-VI 59.4 0.031 45° 0.0143 0.025 559.5 1.25 1.12 1.79 1.12 1.88 

5S-9LI45-VI 59.4 0.031 45° 0.0143 0.041 627.5 1.16 1.03 1.55 0.94 1.82 

5S-5LI60-VI 59.4 0.031 60° 0.0143 0.022 556.4 1.23 1.16 1.81 1.10 1.84 

5S-8LI60-VI 59.4 0.031 60° 0.0143 0.035 654.6 1.3 1.24 1.81 1.07 1.94 

Chaallal et al. (2011) 

S0-CON 25 0.038 - 0 0 180.6 0.99 0.99 1.59 1.59 1.80 

S1-CON 25 0.038 - 0.0812 0 230.4 1.07 1.07 1.57 0.79 1.63 

S3-CON 35 0.038 - 0.0386 0 255.3 0.98 0.98 1.44 0.77 1.48 

S0-NSM 25 0.038 90° 0 0.54 331 1.01 1.13 1.47 0.89 1.57 

S1-NSM 25 0.038 90° 0.0812 0.54 355.9 0.92 0.98 1.29 0.62 1.34 

S3-NSM 35 0.038 90° 0.0386 0.39 306.5 1.02 1.04 1.45 0.72 1.48 

De Lorenzis and Nanni (2001) 

BV 31 0.024 - 0 0 180.6 1.09 1.09 1.90 1.90 1.77 

B90-7 31 0.024 90° 0 0.31 230.4 1.04 1.08 1.60 1.05 1.53 

B90-5 31 0.024 90° 0 0.44 255.3 1 1.07 1.46 0.87 1.40 
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Table 6-1: (Continued.) 

Beam Label 
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Reinforcement 
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 NSMCFT BSMCFT 

Eurocode 
45    

Eurocode  
21.8    

ACI 

B45-7 31 0.024 45° 0 0.45 331 0.92 1.07 1.11 0.73 1.62 

B45-5 31 0.024 45° 0 0.63 355.9 0.81 1.02 0.93 0.59 1.45 

BSV 31 0.024 - 0.029 0 306.5 1.11 1.12 1.67 0.97 1.61 

BS90-7A 31 0.024 90° 0.029 0.31 413.7 1.24 1.27 1.78 0.92 1.73 

Rizzo and De Lorenzis (2009) 

C 29.3 0.044 - 0.0401 0 244.3 1.04 1.04 1.56 0.91 1.78 

NB90-73-b 29.3 0.044 90° 0.0401 0.5191 297 1 1.04 1.44 0.77 1.61 

NB90-45-b 29.3 0.044 90° 0.0401 0.8421 301.5 0.89 0.99 1.27 0.65 1.39 

NB45-146-a 29.3 0.044 45° 0.0401 0.3671 322.6 0.96 1.11 1.67 0.98 2.08 

NB45-73-a 29.3 0.044 45° 0.0401 0.7341 300.3 0.68 0.94 1.03 0.76 1.74 

NS90-73-a 29.3 0.044 90° 0.0401 0.3097 345.3 0.93 1.20 1.31 0.65 1.42 

NS45-146-a 29.3 0.044 45° 0.0401 0.219 309.7 0.74 1.06 1.23 0.72 1.68 

Islam (2009) 

Beam1 49.75 0.017 - 0.0338 0 365 0.86 0.86 1.17 0.62 1.07 

Beam2 49.75 0.017 90° 0.0338 0.1404 454 0.94 0.93 1.22 0.62 1.14 

Beam3 49.75 0.017 90° 0.0169 0.1404 427 1.12 1.09 1.53 0.85 1.39 

Beam4 49.75 0.017 90° 0.0008 0.1404 436 1.32 1.28 1.86 1.12 1.66 
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Figure  6-20 shows the results of different design approaches. This figure shows the ratio 

between experimental and analytical approach for NSMCFT, BSMCFT, ACI, Eurocode 

45   and Eurocode 21.8   . As shown in Table  6-2 and Figure  6-20, the ACI approach 

predicts the highest exp / predictionF F
 
values, with an average of 1.70 and with a Standard 

Deviation (SD) of 0.22. 

Table  6-2: Average and Standard Deviation of exp / predictionF F
 
for different approaches 

 NSMCFT BSMCFT 
Eurocode 

45    
Eurocode 

21.8    
ACI 

Average 1.10 1.12 1.60 0.99 1.70 
SD 0.15 0.10 0.29 0.30 0.22 

COV 13.6% 8.9% 18% 30% 13% 

 

 

 
Figure  6-20: Ratio between experimental and predicted shear resistance 

 
As already indicated, for the inclination of compression strut Eurocode (2001) recommends 

to be in the interval 1 cot 2.5  . Choosing the lower limit of   overestimates the shear 

resistance observed experimentally. In fact, for 21.8    the average ratio between 

experiments and predictions is 0.99, with the highest SD (0.30). By choosing the upper limit 

for   the average exp / predictionF F  was relatively high (1.60), as well as the SD (29%). 

The NSMCFT gives fairly safe estimations with a few overestimations (refer to Figure  6-20 

and Table  6-2). For this approach the average ratio between experiments and predictions is 

1.10 with SD of 15%.  
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A systematic trend in the error can be highlighted if the results are plotted in non-dimensional 

form, as is shown in Figure  6-21, where the shear resistance is normalized by the force 

dimensional parameter '
w cb df . It is verified that the scatter of the predicted values versus the 

experimental ones increases linearly with the non-dimensional shear. In the figure, two lines 

limiting to 20%  the deviation of the predicted values from the experimental values are also 

represented, and it is verified that almost all of the results of BSCMFT and NBSCMFT are 

inside of these bounds. 

 
Figure  6-21: Predicted non-dimensional failure shear force of the beams, in compression with 

experimental values 

 

The BSMCFT estimates average value for the exp / predictionF F  similar (1.12) to NSMCFT, but 

with smaller SD and COV (0.10 and 8.9%). While in the Nanni approach a constant 45    

is assumed, in the Bianco formulation the inclination of CDC can vary.  

Based on the data presented in Table  6-2 and Figure  6-20 it can be concluded that the two 

new approaches predict with good accuracy the experimental results.  

6.11 Assessment of the Applicability of Analytical Formulations for Predicting the 

Shear Capacity of RC Beams Strengthened with Hybrid Composite Plate  

The analytical formulations described in previous section are adopted to predict the shear 

capacity of the RC beams strengthened with HCPs described in Chapter 3. 
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6.11.1 Shear resistance of the SHCC plate 

In a rectangular non-cracked section the maximum shear stress in the cross section is: 

max

3

2

VQ V

It A
    (6.97)

where V is the total shear force, Q and I are the first and second moment of area, respectively, 

and t is total thickness. Blanksvärd (2007) has suggested a member does not need shear 

reinforcement if the principal stress is less than 0.5 ctf , hence, shear resistance of the SHCC 

plate by assuming perfect bond between SHCC plate and concrete substrate can be expressed 

as:  

12( )3SHCC SHCC SHCC ctV t h f  (6.98)

Note that the factor 2 originates from that the SHCC plates are applied on both sides of the 

beam. The shear stress of a strengthened concrete beam with HCP can be expressed as: 

SHCc f Csv v v v v     (6.99)

6.11.2 Assessment of the predictive performance of the considered formulations 

In RC beams strengthened with NSM CFRP laminates, NSM-4L90-I and NSM-4L45-II 

beams, the width of the base of the concrete semi-pyramidal tensile fracture ( *
wb ) is limited 

by the half width of the beams’ cross section ( * / 2w wb b ). Due to the detachment of HCPs 

that included a concrete cover of a thickness that varied between 5 mm and 10 mm        

(Figure  3-12a and Figure  3-13b), the dimension of this limit should vary between                

*
wb = HCPt +5 mm and *

wb = HCPt +10 mm, where HCPt  is the thickness of the HCP (20 mm). In 

the present work an average value of 27.5 mm was considered for *
wb  in the beams shear 

strengthened with HCPs and bonded with epoxy adhesive without mechanical anchors. 

Therefore, in the formulation herein presented wb  should be regarded the cross section width, 

and *2w wb b  =55 mm in the case of the beams strengthened with HCPs without mechanical 

anchors. 

The Eq. (6.82c) was proposed by CEB-FIP Model Code (1993) for conventional concretes, 

was used in the present formulation because parametric studies carried out demonstrated that 

the Young’s modulus has small influence on the shear contribution of CFRP laminates 

(Bianco et al. 2012). 
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In the NSMCFT formulation the values b =16.1 MPa and fe =0.59% suggested in Barros and 

Dias (2006) were adopted since in the present research program rectangular laminates similar 

to the ones used in that work were applied. Since in the beams shear strengthened with HCPs 

the final failure has mainly progressed through the concrete substrate, for the  , 0  and 1

the values of 28.5°, 20.1 MPa and 7.12 mm were adopted, following the recommendations of 

Bianco et al. ( 2011 and 2014). 

Table  6-3 summarized all the results of the tested beams, whose experimental programs are 

described in Chapter 3. These programs are composed of control beams, beams reinforced 

with steel stirrups, and beams strengthened with NSM technique, SHCC plates, and HCPs. A 

previously damaged beam, shear strengthened with HCPs is also considered in this analysis. 

Table  6-3: Analytical vs. experimental results of the strengthened and repaired beams with 
HCPs 

Beam Label 
'

cf
(MPa) 

Reinforcement 

expF
(kN) 

exp / predictionF F  

sx  f  
'

y yiey

c

ldf

f


 

'

f yf

c

f

f


 NSMCFT BSMCFT 

Rectangular cross section (Series I) 
0S-R-I 32.7 0.016 - - - 81 0.90 0.90 

NSM-4L90-I 32.7 0.016 90° - 0.08 143 1.17 1.11 
SP-I 32.7 0.016 - - - 130 1.15 1.15 

SP-4L90-I 32.7 0.016 90° - 0.08 151 1.03 1.07 
SP-3L45-I 32.7 0.016 45° - 0.08 166 1.00 0.97 

7S-R-I 32.7 0.016 - 0.11 - 182 0.62 0.62 
T cross section beam (Series II) 

C-R-II 32.7 0.029 - - - 214 1.15 1.15 
NSM-3L45-II 32.7 0.029 45° - 0.064 291 1.27 1.16 

SP-II 32.7 0.029 - - - 255 1.20 1.20 
SP-3L45-II 32.7 0.029 45° - 0.064 367 1.43 1.50 

SP-3L45-B-II 32.7 0.029 45° - 0.064 363 1.42 1.29 
SP-5L45-II 32.7 0.029 45° - 0.11 306 0.89 1.02 

SP-5L45-B-II 32.7 0.029 45° - 0.11 364 1.06 1.07 
7S-R-II 32.7 0.029 - 0.056 - 530 1.34 1.34 

Repaired beams (Series III) 
R-SP-3L45-III 32.7 0.016 45° - 0.14 161 0.70 0.98 
4S-SP-5L45-III 32.7 0.029 45° - 0.11 552 1.03 1.04 
R- SP-5L45-III 32.7 0.029 45° - 0.11 530 0.99 1.00 

 

Table  6-4: Average, Standard Deviation, and coefficient of variation of all the tested beams 

 NSMCFT BSMCFT 

Average 1.11 1.12 
SD 0.20 0.15 

COV 18% 13% 
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Table  6-5: Average, Standard Deviation, and coefficient of variation of the strengthened 
beams with HCPs 

 NSMCFT BSMCFT 

Average 1.08 1.11 
SD 22% 16% 

COV 20% 14% 

  

 
Figure  6-22: Ratio between experimental and predicted results of the beams strengthened 

with HCPs 

 
The results in Figure  6-22, Table  6-4, and Table  6-5 show the capability of BSMCFT and 

NSMCFT formulation to predict with good accuracy the ultimate shear capacity of RC beams 

strengthened or repaired with HCPs. The average ratio between experimental to predicted 

shear resistance for the strengthened beams with HCPs and SHCC plates are 1.11 and 1.12 

for NSMCFT and BSMCFT techniques, respectively, while the corresponding COV was 

smaller for BSMCFT. This might be justified on the capability of BSMCFT capturing the 

detachment of the HCPs by changing the width of the base of the concrete semi-pyramidal 

tensile fracture ( wb =55 mm for the beams without mechanical anchors with detachment 

failure, and wb = width of the beams for those with mechanical anchors). 

Furthermore, specific investigation in this domain needs to be executed in order to obtain 

these values for the SHCC for attending the situations where fracture propagates through this 

material. Future improvements in the model should also be implemented in order to 

contemplate the possibility of the semi-pyramid be formed by planes crossing different types 

of materials (SHCC and concrete substrate). 
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6.12 Conclusion 

Understanding the shear behavior of concrete beam is a complicated approach, due to several 

parameters that are involved in shear mechanism. There are two prominent models that are 

used to predict the shear capacity of concrete beams: truss model and modified compression 

field theory. In Truss model is assumed the contribution of the tensile stress of concrete is 

neglected, therefore conservative values are estimated.  

The results of the experimental tests indicated the diagonal compressive stress is not only a 

function of the diagonal compressive strain but also of the coexisting principal tensile strain 

too. The modified compression field theory takes into account the resisting contribution of 

cracked concrete in tension. However, this model is tedious if done by hand due to huge 

amount of parameters and assumptions.  

Simplified MCFT (SMCFT) takes into account the tensile stress in cracked concrete (  ), and 

inclination of diagonal compressive stress ( ), while smaller number of parameters and 

assumptions are considered in its formulation.  

A new model was proposed by combining of SMCFT with Nanni et al. and Bianco et al. 

formulation (NSMCFT and BSMCFT, respectively) to predict shear capacity of reinforced 

concrete beams strengthened with CFRP laminates/rods. The experimental results of 80 

beams with different strengthening configurations and percentage of CFRP laminates/rods 

were used to access the predictive performance of these new approaches. The results 

provided satisfactory estimates of the experimental recordings. An average value of 1.10 and 

1.12 for the exp / predictionF F , with standard deviation of 15% and 10% were obtained by using 

the NSMCFT and BSMCFT, respectively. 

By applying the models of NSMCFT and BSMCFT to the beams strengthened with HCPs it 

was verified that the last one has predicted with more accuracy the shear capacity of the 

strengthened beams due to its capability of capturing the detachment of the HCPs by 

changing the width of the base of the concrete semi-pyramidal tensile fracture. 
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Chapter 7  

Conclusions and Recommendations for Future Research 

7.1 Experimental research 

Due to the demand for strengthening intervention on relatively large stock of existing 

reinforced concrete (RC) structures, in order to carry higher ultimate loads, satisfy certain 

new functionalities, or to restore the load carrying capacity affected by materials damage, 

accidents or extreme events, new retrofitting and strengthening materials and techniques are 

being proposed. Fiber reinforced polymer (FRP) materials has been proposed for this 

purpose, and have been extensively studied during the last two decades. However, surface 

preparation, premature debonding of the FRP and lack of protection against vandalism and 

fire are some disadvantages of the techniques based on the FRP, such is the case of externally 

bonded reinforcement (EBR) and Near Surface Mounted (NSM).  

This PhD thesis was dedicated to the assessment of the effectiveness of a new technique for 

the shear strengthening of RC beams. This technique is based on the application of Hybrid 

Composite Plates (HCPs) on the lateral faces of the RC beams to be strengthened, and its 

effectiveness was investigated by carrying out three experimental programs. HCP is a thin 

plate of Strain Hardening Cementitious Composite (SHCC) reinforced with CFRP laminates. 

The SHCC surrounding the CFRP laminates in the HCP has offered effective resistance to the 

degeneration of micro-cracks on macro-cracks, which has avoided the occurrence of mixed 

shallow fracture-plus-debonding failure modes registered when used the NSM-CFRP 

technique. 

These experimental programs have also investigated the influence that the following 

parameters have on effectiveness of HCPs for the shear strengthening of RC beams: 

 Orientation of the CFRP laminates that reinforce the SHCC plate; 

 CFRP shear strengthening ratio; 

 Using mechanical anchors to install the HCPs; 

The effectiveness of this technique was also explored for the repairing RC beams that have 

previously failed in shear. 

From the experimental programs it was observed that the effectiveness level of the HCP 

technique was limited by the tensile strength of the concrete substrate of the RC beams, since 
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at failure, a concrete cover layer of an average thickness that varied between 5 to 10 mm was 

attached to the HCPs. The detachment of HCPs has avoided the mobilization of the shear 

strengthening potentialities of the CFRP laminates. However, when the HCPs were bonded 

with epoxy and fixed with mechanical anchors, the tensile capacity of the CFRP laminates of 

the HCPs was effectively mobilized, since maximum tensile strains in the CFRP closely to its 

ultimate tensile strain were measured. Furthermore, by controlling the torque to apply the 

mechanical anchors, a certain post-tension is introduced, which installs a favorable 

confinement into the concrete of the beam to be strengthened, with high shear strengthening 

effectiveness of the HCPs. 

The results of the tested beams have also shown that for deflections higher than the one 

corresponding to the formation of the first shear crack in the beam strengthened with NSM 

technique, the technique based on the application of HCPs have assured higher load carrying 

capacity and deflection performance that the NSM technique. It was also observed that when 

HCPs are applied with epoxy adhesive and mechanical bolts, the load carrying capacity of 

RC beams failed in shear can be fully restored. 

The shear behavior of the SHCC was investigated by Iosipescu shear test method. The shear 

stress-sliding curves obtained in these tests were characterized by three phases: 1) a first 

phase where the SHCC developed linear behavior, that ends at an average shear stress of  

0.07 MPa and sliding of 0.08 mm; second phase corresponding to the development of micro 

cracks with a continuous decrease of shear stiffness up to peak load (at an average shear 

strength of 3.9 MPa and sliding of 0.5 mm); the third phase corresponds to the shear 

softening stage where micro cracks start degenerating in a macro-crack in the shear critical 

region, but for an average slip 2 times the average slip at peak load the SHCC was still 

capable of supporting 50% of the average shear strength, which denotes the ductility of this 

composite material when subjected to shear deformations. By calculating the area under the 

curve of average shear stress versus sliding, the fracture energy mode II of SHCC material 

was estimated about 1.4 N/mm, which corresponds to 40% of its mode I fracture energy. 

7.2 Numerical research 

Advanced material nonlinear numerical simulations based on the finite element method 

(FEM) were carried for contributing for a better understanding of the shear strengthening 

mechanisms provided by the developed technique, as well as to explore its potentialities by 

executing parametric numerical studies. In this regard, the capability of a FEM-based 
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computer program to predict with high accuracy the behavior of the beams strengthen in 

shear with hybrid composite plates (HCPs) up to its collapse was demonstrated. The shear 

crack softening diagram of the multi-directional fixed smeared crack model available in the 

FEMIX computer program allowed to a good prediction of the load carrying capacity, crack 

patterns and failure modes of the tested beams. Due to the lack of specific experimental tests, 

the data to define the shear crack softening diagram for plain concrete was obtained by 

inverse analysis, while the data for SHCC was determined from Iosipescu shear tests.  

In the perspective of providing valuable information for the optimization of the proposed 

shear strengthening technique, and by using the aforementioned FEM-based constitutive 

model, a parametric study was carried out to investigating the influence of: the arrangement 

of CFRP laminates and its shear strengthening ratio; the use of mechanical anchors for fixing 

the HCP to the RC beam; the post-tension level applied to the mechanical anchors for 

installing different favorable level of concrete confinement in the beam to be shear 

strengthened; the advantages of using SHCC instead of mortar.  

When SHCC was used instead of mortar, a higher ultimate load is predicted, since the strain 

hardening character of the SHCC assured a much more diffuse crack pattern in the HCP, with 

a consequent better mobilization of the high tensile capacity of the CFRP laminates. It was 

also demonstrated that the load carrying capacity and deformability performance of beams 

strengthened with HCPs increase with the torque level applied to the mechanical bolts due to 

the higher confinement introduced in the concrete of the beam to strengthen. 

A parametric numerical study was also carried out for Iosipescu shear test to analyze the 

influence of the shear retention factor (  ) that defines the crack shear stiffness of the first 

branch of crack shear softening diagram. It was verified that by increasing the   value the 

specimen fails at a lower average shear strength due to the higher crack shear stress transfer.  

It was observed that by using the concept of shear retention factor for modeling the crack 

shear stress transfer, an abnormal high load carrying capacity is estimated with an incorrect 

failure mode and crack pattern. However, by adopting a crack shear softening diagram, the 

smeared crack approach has correctly predicted the response and failure mode of the 

specimens. 

7.3 Analytical work 

For predicting the contribution of the HCPs for the shear resistance of RC beams, two 

analytical approaches were developed, and their predictive performance was assessed by 
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considering the results obtained on the experimental programs and those available in the 

specialized bibliography.  

Both approaches are based on simplified modified compression field theory (SMCFT), which 

takes into account the tensile resistance of the cracked concrete (  ), and inclination of 

diagonal compressive strut ( ). For estimating the contribution of the CFRP laminates that 

reinforce an HCP, two formulations were selected, one proposed by Nanni et al. and the other 

by Bianco et al. The designations of NSMCFT and BSMCFT were attributed to the 

approaches that combine SMCFT with, respectively, the Nanni et al. and the Bianco et al. 

formulation. The experimental results of 80 beams with different configurations and 

percentage of CFRP laminates/rods were used to appraise the predictive performance of the 

developed approaches. By evaluating the ratio between the experimental results and the 

analytical predictions, an average value of 1.10 and 1.12 was obtained for the NSMCFT and 

BSMCFT approaches, respectively, with a standard deviation of 0.15 and 0.10. 

By applying the models of NSMCFT and BSMCFT to the beams strengthened with HCPs it 

was verified that the last one has better predicted the shear capacity of the strengthened 

beams due to its capability of capturing the detachment of the HCPs. 

 

7.4 Suggestions for Future Research 

In the following, some recommendations are proposed for future research: 

 Evaluate the effectiveness of other kinds of SHCC materials with higher tensile 

strength and deformability; 

 Evaluate the effectiveness of HCPs for shear strengthening of continuous RC beams 

by experimental and numerical research; 

 Evaluate the influence of concrete confinement provided by mechanical anchors used 

to install HCPs, when this strengthening technique is applied in real scale RC beams; 

 Evaluate the influence of the percentage of existing steel stirrups on the effectiveness 

of the proposed strengthening technique; 

 Apply the digital image correlation technique in the Iosipescu shear test to better 

determine the shear behavior of SHCC, with the final aim of determining the crack 

shear stress versus sliding, as well as the strain field in the critical shear region. This 

information can be of paramount relevance in the development of more reliable crack 
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constitutive mode in the framework of FEM material nonlinear analysis of fiber 

reinforced cement composites; 

 Explore the applicability of HCPs for the shear strengthening of deep RC beams and 

walls, mainly for those walls pertaining to buildings that need to be strengthened 

against to lateral loads like those typical of seismic events; 

 Evaluate experimentally the cyclic behavior of SHCC in tension and compression, 

and implementation of the obtained laws in a FEM-based constitutive model in order 

to be possible the simulation of the behavior of RC structures strengthened with HCPs 

when submitted to cyclic loadings. 

 Extend the use of the proposed technique for the increase of the load carrying capacity 

and ductility performance of masonry type structures. 
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List of Symbols: 

fa
 

= CFRP width 

ga
 = Aggregate size 

cA
 

= Area of concrete cross section 

fA
 = Area of the strip’s cross section 

sxA
 

= Area of longitudinal steel reinforcement 

szA
 

= Area of transverse steel reinforcement 

2A
 

= Integration constant entering the expressions to evaluate the max
,fi effV  

3A
 

= Integration constant entering the expressions to evaluate the max
,fi effV  

bf = CFRP thickness 

wb  = beam web width 

c  = Clear concrete cover 

xc  = Maximum distance from the longitudinal reinforcement 

zc  = Maximum distance from the transverse reinforcement 

3C  = Integration constant for the softening friction phase 

d = effective depth of the longitudinal steel bars 

xd  = Longitudinal bar diameter 

yd
 = Transverse bar diameter 

cr
IiD  = 

opening fracture mode stiffness modulus of the ith branch of the stress-strain 
diagram to simulate the fracture mode I crack propagation 

,
cr
I iD  = 

crack constitutive matrix component relative to the ith crack normal opening mode 
(mode I) 

,
cr
I kD  = 

crack constitutive matrix component relative to the crack normal opening mode 
(mode I) for the k iteration 

,
cr
II iD  = crack constitutive matrix component relative to the ith crack sliding mode (mode II) 

,
cr
II kD  = 

crack constitutive matrix component relative to the crack sliding mode (mode II) 
for the k iteration 

coD  = elastic constitutive matrix 
crD  = crack constitutive matrix 

crcoD  = constitutive matrix for the cracked concrete 

crD  = 
constitutive matrix that takes into account the assembly of several (m) cracks with 
distinct directions 

cr
iD  = crack constitutive matrix of the ith crack 

cE  = concrete elasticity modulus 

fE  = modulus of elasticity of CFRP laminates and strips 

sE  = Young’s modulus of the longitudinal tensile steel bars 

smE  = modulus of elasticity of steel 

1f  = Principal tensile stress 

2f  = Diagonal Compressive stress 

2maxf  = Maximum diagonal Compressive stress 
'

cf  
= Cylinder compressive strength of concrete 
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cf  = Axial compressive stress outside the web 

crf
 

= Compressive strength for concrete at cracking 

*
ctmf

 
= 

Value of concrete average tensile strength for values larger than which concrete 
fracture does not occur 

ctmf
 = Concrete average tensile strength 

cmf  = average compressive strength 

ctf  = tensile strength 

fuf  = tensile strength of the FRP 

sumf  = steel tensile strength 

sxf  = Longitudinal stress in steel 

syf
 = Transverse stress in steel 

xf  = Longitudinal stress 

x yieldf  = Yield stress in longitudinal steel reinforcement 

yieldf
 

= Yield stress in reinforcement 

symf  = steel yield strength 

y yieldf  = Yield stress in transverse steel reinforcement 

yf  = Transverse stress 

maxF  = maximum experimental load 

CG  = concrete elastic shear modulus 
I
fG  = mode I fracture energy 

IP = integration point 

1J  = Bond modeling constant 

bl  = crack band width 

effl
 = Vertical length of FRP NSM bar used as shear reinforcement 

dL  = CDC length 

iL  = Length of each FRP bar crossed by a 45 degrees shear crack 

maxl = Length of FRP bar to maintain shear integrity of concrete 

netl
 = Net length of a FRP NSM bar used as shear reinforcement 

pL  = Effective perimeter of the strip cross section 

RfeL  = Effective resisting bond length 

RfiL  = thi  strip resisting bond length 
eq
RfiL  = Equivalent average resisting bond length 

RfiL  = Average available resisting bond length 

totL  = Sum of effective lengths of rods crossed by crack 

totminL  = Minimum value of totL  

Li = span length i 
M  = Moment 

NSM = near surface mounted 

,maxcrN  = Maximum number of cracks per each integration point 
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,int
l
fN  = Equivalent average resisting bond length 

VN  = Tensile force due to shear 

p = parameter that defines the shape of the last branch of the steel stress-strain curve 
p1 = shear degradation factor
p2 = parameter defining the fracture energy available to the new crack 
s = Stirrup distance 

mxs  = Average spacing of cracks perpendicular to the x-reinforcement 

mys  = Average spacing of cracks perpendicular to the y-reinforcement 

fs  = distance between CFRP laminates 

xs = Distance between longitudinal reinforcement 

xes = Effective longitudinal crack spacing 

s = Distance between diagonal cracks 

ft  = thickness of FRP 

crT  = 
transformation matrix that takes into account the assembly of several (m) cracks 
with distinct directions 

cr
kT  

= 
transformation matrix that takes into account the assembly of several (m) cracks 
with distinct directions for the k iteration 

cr
iT  = transformation matrix of the ith crack 

v  = Shear stress 
V = Shear force 

aV  = Internal friction 

cv
 = Shear stress in concrete 

cV  = Shear force in Concrete 

civ
 

= Shear stress at crack 

dV  = Dowel force in longitudinal bars 

fV  = Shear resistance contribution of fibers 
tr
fV  = Strip tensile rupture capacity 

fdV  = Design value of the NSM shear strengthening contribution 
max
,fi effV  = Maximum effective capacity 

1
bd
fV  = Maximum value of force transferable through bond by the given FRP NSM system 

sV  = Shear resistance contribution of steel reinforcement 

yv
 = Shear stress in transverse reinforcement 

w = Crack width 
 = Angle defining the concrete fracture surface 

1  = Factor accounting for the bond characteristics of reinforcement 

2  = Factor accounting for the sustained or repeated loading 

i  = fracture parameters used to define the trilinear stress-strain softening diagram 

  = shear retention factor and 

  = Factor accounting for the tensile stress in the cracked concrete 
cr
nt  = crack shear strain 

,
cr
nt i  = incremental crack shear strain of the ith crack 

,
cr
n i  = incremental crack normal strain of the ith crack 
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  = vector containing the strain incremental components 

co  = 
vector containing the incremental strain of the uncracked concrete between the 
cracks 

cr  = vector containing the incremental strain of the crack 

cr   
= vector of the incremental crack strain components in the crack coordinate system 

,
cr
n i  = incremental crack normal stress of the ith crack 

  = vector containing the stress incremental components 
cr
nt

 
= incremental crack shear stress 

,
cr
nt i  = incremental crack shear stress of the ith crack 

1  
= Slip corresponding to the end of softening friction 

Li
 = Imposed slip at the loaded extremity of the 

thi  strip 

Lu
 

= 
Imposed slip in correspondence of which the comprehensive peak force 

transmissible by eq
RfiL is attained 

1L  
= Value of Li  defining the end of the first phase of the bond-based constitutive law 

1  = Principal tensile strain 

2  = Principal compressive strain 
'
c  = Strain at the peak compressive strength 

cr  = Tensile cracking strain for concrete 

f  = Effective tensile strain in FRP reinforcement 

cr
n  = crack normal strain 

,
cr
n i

 = 
crack normal strain used to define point i in the trilinear stress-strain softening 
diagram 

,
cr
n u  = ultimate crack normal strain 

sh  = strain corresponding to point 2 (PT2) of the steel stress-strain relationship 

su  = strain corresponding to point 3 (PT3) of the steel stress-strain relationship 

x  = Longitudinal strain 

y  = Transverse strain 

sy  = strain corresponding to point 1 (PT1) of the steel stress-strain relationship 

max  = CDC opening angle for which the maximum effective capacity is attained 

xy  = Shear strain 

 = Direction of the principal stress/strain 

i  = angle between the  x1 axis and the vector orthogonal to the plane of the ith crack 
cr
new  = orientation between the new crack and the already existing cracks 

th  = threshold angle 

f  = inclination of CFRP 

c  = poisson’s ratio 

i  = fracture parameters used to define the trilinear stress-strain softening diagram 

x  = Longitudinal steel reinforcement ratio 

y  = Transverse steel reinforcement ratio 
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f  = strengthening ratio of the NSM laminates 

,l eq
 = equivalent flexural reinforcement ratio 

sl
 

= reinforcement ratio of the bottom longitudinal steel bars 

I
 = maximum principal tensile stress 

1k   = normal stress for the k-1 iteration 
cr
n  = crack normal stress 

,
cr
n i  = 

crack normal stress used to define point i in the trilinear stress-train softening 
diagram 

sh  = stress corresponding to point 2 (PT2) of the steel stress-strain relationship 

su  = stress corresponding to point 3 (PT3) of the steel stress-strain relationship 

sy  = stress corresponding to point 1 (PT1) of the steel stress-strain relationship 

0  = adhesive-cohesive initial bond strength 

b  = Average bond stress of laminates crossed by a shear crack 
cr
nt

 
= crack shear stress 

  = Reduction factor of the initial average available resisting bond length 
 = Constant entering the governing differential equation for elastic phase 

  = 
Constant necessary to evaluate the maximum effective capacity provided by the 
equivalent average resisting bond length 
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Annex A 

Iosipescu shear test fixture: 

 

Figure 1A: Iosipescu shear test device (Front view) 
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Figure 2A: Iosipescu shear test (rear view) 
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Figure 3A: Details of Iosipescu Fixture (dimensions in mm) 
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Annex B 

Modified Compression Field Theory: 

 

Figure 1B: Flowchart of MCFT 
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Annex C 

Simplified Modified Compression Field Theory: 

Assumptions: 

Crushing of the concrete ( '
c ) is limited to 0.002, yield strain of the stirrup ( y ) is greater 

than 0.002. 

When x is equal to 0.002 at failure: 

1 2 x y      => 1 =0.006 Eq. (6.30) 

2 2

2

tan x

y

 
 





=1   =>  =45° Eq. (6.29) 

'

1

1

0.33

2.731 500
ccr

ff
f


 


 Eq. (6.36) 

2' ' '
2 2

2 ' '
1

2
0.8 170 0.8 170 0.00 16 .82

c c c

c c

f f f
f

 
  

    
               

 Eq. (6.37) 

' '

1 2

0.33

1.82
tan co

2
t

.
2

73
c c

f f
f f

v
 


 


 

Eq. (6.26) 

 

Table 1C 

'
cf  

' '

2.73

0.33

1.82
2

c c
f f

v


  
'0.28 cv f  

20 MPa 5.6 MPa 5.7 MPa 
30 MPa 8.5 MPa 8.4 MPa 
40 MPa 11.3 MPa 11.2 MPa 
50 MPa 14 MPa 14 MPa 
60 MPa 17 MPa 16.8 MPa 
70 MPa 19.7 MPa 19.6 MPa 
80 MPa 22.5 MPa 22.4 MPa 
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When x is equal to 0.00001 at failure: 

1 2 x y      => 1 =0.00401 Eq. (6.30) 

2 2

2

tan x

y

 
 





=0.5025   =>  =35° Eq. (6.29) 

'

1

1

0.33

2.41 500
ccr

ff
f


 


 Eq. (6.36) 

2' ' '
2 2

2 ' '
1

2
0.8 170 0.8 170 0.0 1.480401

c c c

c c

f f f
f

 
  

    
               

 Eq. (6.37) 

' '

1 2

0.33

1.48
tan cot 2.1

.4
8

2
c c

f f
f f

v
 


 


 

Eq. (6.26) 

 
Table 2C 

'
cf  

' '

2.4

0.33

1.48
2.18

c c
f f

v


  
'0.32 cv f  

20 MPa 6.4 MPa 6.4 MPa 
30 MPa 9.6 MPa 9.6 MPa
40 MPa 12.8 MPa 12.8 MPa 
50 MPa 16 MPa 16 MPa 
60 MPa 19.1 MPa 19.2 MPa 
70 MPa 22.2 MPa 22.4 MPa 
80 MPa 25.4 MPa 25.6 MPa 
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Annex D 

Example of NSMCFT and BSMCFT 

The procedure solution for one beam strengthened with NSM CFRP laminate (2S-4LI45 

(Dias and Barros 2010)) is herein explained. The geometry and material properties of the 

beam are presented in Figure D1 and Table D1, respectively. 

 
Figure 1D: geometry of the beam 2S-4LI45 (Dias and Barros 2010) 

 
Table 1D: Material properties 

Concrete 
Concrete strength at age of beam test 

39.7 (MPa)

Steel 

Tensile 
strength 

∅6 ∅12 ∅16 ∅32 

Yield 
strength 

500 
(MPa) 

490 
(MPa) 

470 
(MPa) 

625 
(MPa) 

CFRP laminates 

Maximum tensile 
strength 

Young’s 
Modulus 

Maximum strain 

2741.7 MPa 170.9 GPa fu = 1.60% 

Step 1: Estimate a value for x . 

Step 2: Calculate the crack spacing:  

35
0.85

16
mx

xe x
g

s
S s

a
 


 

Step 3: Calculate   and : 

 29 7000 . 0.88 75
2500

xe
x

S        
 

 

0.4 1300
.

1 1500 1000x xeS





 
 

Step 4: Calculate the shear stress: 

 

 

10018x75

1350

2S-4LI45

275

100

138

3x300

212275

F

232+116

450

612

180

300

100

6//150 in L ri and 6//75 in L

6//75 in L
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NSMCFT: 

 ' sin
cot 4 . f

c s f c yield f f b to n
w

y tmiv v v v f f a b L
b d


             

BSMCFT: 

' max
,int ,

sin
cot 2. . . fl

c s fd c y yield f fi eff
w

v v v v f f N V
b d


       

 

Step 5: Calculate the longitudinal strain, x , and compare to x  that was estimated in step1. 

Return to Step1 until convergence is obtained: 

.cot / cotc
x

s sx

v v

E

 



  

Table 2D: Nanni SMCFT approach 

Iteration 
A=  

Estimated xeS      cv  sv  fv  v  B= x  

Eq. 
A-B 

1 0.001 276.58 0.1629 35.66 1.03 0.79 0.50 2.32 4.31e-4 5.67e-4 
2 4.31e-4 276.58 0.2475 31.72 1.56 0.92 0.55 3.03 6.79e-4 -2.48e-4 
3 6.79e-4 276.58 0.2018 33.43 1.27 0.86 0.53 2.66 5.50e-4 1.29e-4 
4 5.50e-4 276.58 0.2232 32.54 1.41 0.89 0.54 2.84 6.11e-4 -6.1e-5 
5 6.11e-4 276.58 0.2125 32.97 1.34 0.87 0.54 2.75 5.81e-4 3e-5 
6 5.81e-4 276.58 0.2177 32.75 1.37 0.88 0.54 2.79 5.95e-4 -1.4e-5 
7 5.95e-4 276.58 0.2151 32.86 1.36 0.88 0.54 2.78 5.88e-4 7e-6 
8 5.88e-4 276.58 0.2164 32.81 1.36 0.88 0.54 2.74 5.88e-4 0 

Table 3D: Bianco SMCFT approach 

Iteration 
A=  

Estimated xeS      cv  sv  fv  v  B= x  

Eq. 
A-B 

1 0.001 276.58 0.1629 35.66 1.03 0.79 0.84 2.66 4.55e-4 5.45e-4 
2 5.11e-4 276.58 0.2307 32.27 1.45 0.90 0.95 3.30 7.43e-4 -2.32e-4 
3 7.43e-4 276.58 0.1926 33.88 1.21 0.84 0.90 2.95 6.17e-4 1.26e-4 
4 6.17e-4 276.58 0.2115 33.01 1.33 0.87 0.93 3.13 6.81e-4 -6.40e-5 
5 6.81e-4 276.58 0.2015 33.45 1.27 0.86 0.91 3.04 6.48e-4 3.30e-5 
6 6.48e-4 276.58 0.2066 33.22 1.30 0.87 0.92 3.09 6.65e-4 -1.70e-5 
7 6.65e-4 276.58 0.2039 33.34 1.28 0.86 0.91 3.06 6.55e-4 1.00e-5 
8 6.55e-4 276.58 0.2053 33.28 1.29 0.86 0.92 3.07 6.61e-4 -6.00e-6 
9 6.61e-4 276.58 0.2046 33.31 1.29 0.86 0.92 3.07 6.61e-4 0 

 

 

 

  

 




