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ABSTRACT

The buildup of knowledge about microbial metabolism and the development of genome
engineering techniques gave rise to the rational modification of microorganisms in order
to use them to biosynthesize chemicals of industrial interest. Recently, the construction of
genome-scale metabolic models (GSMMs) allowed the design of strain engineering
strategies in silico. This thesis focused on the study and improvement of in silico strain

engineering methodologies using Saccharomyces cerevisiae as a case study organism.

Firstly, in order to investigate the accuracy of the GSMMs available for S. cerevisiae,
their capacity to simulate the intracellular fluxes in central metabolism was tested. The
results revealed that the simulations contained relevant errors in important areas of the
central metabolism. A careful manual curation of the feasibility of all reactions producing
or consuming NADH / NADPH resulted in the improvement of many fluxes in central

metabolic pathways when compared to fluxes measured experimentally.

The lack of a simulation method that could predict in quantitative terms the phenotype of
strains with complex engineered genotypes, led to the development of a novel simulation
method called turnover dependent phenotypic simulation (TDPS). This method was
designed with the goal of simulating the majority of the genetic modifications usually
implemented in engineered strains. The assumption that the production turnover of a
metabolite can be used as an indication of its abundance was used in the formulation of
TDPS in order to take into account the availability of resources when modelling genetic
modifications. TDPS was validated using metabolically engineered S. cerevisiae strains

available in the literature by comparing the production yields of the target metabolite.

TDPS was then applied to the optimization of the availability of cytosolic acetyl-CoA in
S. cerevisiae, by using an evolutionary algorithm to search for sets of genetic alterations
that could improve the production yield of 3-hydroxypropionic acid (3-HP) derived from
acetyl-CoA. Although the yields obtained experimentally were considerably lower than
the simulations suggested, a positive effect on the 3-HP yield was observed for the down-
regulation of the pyruvate dehydrogenase complex and the deletion of ACH! (succinyl-

CoA:acetate CoA-transferase).
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SUMARIO

O progresso que tem sido feito na area da fisiologia microbiana, juntamente com o
desenvolvimento de técnicas de engenharia genética, permitiu a criagdo de estirpes
microbianas modificadas racionalmente com o intuito de optimizar a produgdo de
compostos de interesse industrial. Mais recentemente, a construg¢do de modelos
metabolicos a escala gendomica (MMEG) proporcionou o desenho de estirpes modificadas
in silico. Esta tese focou-se no estudo e melhoramento de metodologias de manipulacdo

de estirpes in silico, usando Saccharomyces cerevisiae como caso de estudo.

De forma a investigar a precisdo dos MMEG disponiveis para S. cerevisiae, a sua
capacidade para simular os fluxos intracelulares foi testada. Os resultados mostraram que
os fluxos simulados continham erros em areas importantes do metabolismo central e que
a curagao manual das reacgoes envolvidas no metabolismo de NADH ¢ NADPH resulta

em melhorias significativas nos fluxos metabolicos centrais.

A auséncia de um método de simulagdo que conseguisse prever quantitativamente o
fendtipo de estirpes com gendtipos complexos, levou ao desenvolvimento de um método
novo designado por turnover dependent phenotypic simulation (TDPS). Este método foi
concebido com o objectivo de simular a maior parte das modificacdes genéticas
normalmente implementadas em estripes modificadas. A formulagdo do 7DPS teve como
base o uso do nivel de produgdo de um metabolito como indicador da sua abundancia, de
forma a modelar as modificagdes genéticas em fungdo da disponibilidade de recursos. A
validacao deste método foi feita usando dados da literatura sobre estirpes geneticamente

modificadas de S. cerevisiae, através da comparacao dos rendimentos simulados e reais.

O método de simulacdo TDPS foi posteriormente aplicado na optimizagdo da producao de
acetil-CoA no citosol de S. cerevisiae, usando um algoritmo evolucionario para procurar
conjuntos de alteragdes genéticas que aumentassem a produgdo de 4acido 3-
hidroxipropiénico derivado de acetil-CoA. Apesar dos rendimentos experimentais serem
mais baixos que as simulagdes sugeriam, observou-se um efeito positivo da sub-regulagdo
do complexo da piruvato desidrogenase e da eliminagdo do gene ACHI (succinil-

CoA:acetato CoA-transferase).
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CHAPTER 1

Introduction

The buildup of knowledge about microbial metabolism and the development of
sophisticated genome engineering techniques gave rise to the rational modification of
microorganisms in order to use them to biosynthesize chemicals of industrial interest.
Recently, the possibility of easily sequencing whole genomes allowed the reconstruction
of metabolic models at the genome scale, which can be applied to the design of strain

engineering strategies in silico.

This thesis focuses on the study and improvement of in silico strain engineering
methodologies using S. cerevisiae as a case study organism. Firstly, the accuracy of the
genome-scale models was examined in detail and their flux predictions were improved by
manual curation. Secondly, a new simulation methodology was developed to allow the
simulation of complex strain designs. Finally, the improved models and the novel
simulation method were applied to a practical case study aimed at optimizing the

production of acetyl-CoA availability in the cytosol of S. cerevisiae.
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1.1 Context and Motivation

The use of fermentation to alter the properties of certain foods has been part of our
society for thousands of years. For example, the production of cheese, yogurt, bread, beer,
wine and vinegar all have an underlying fermentation process. Although the consumption
of fermented foods has a long history, it was only in the 19" century that Louis Pasteur
described the role of microorganisms in the different fermentation processes. Advances in
the understanding of microbial fermentation allowed several chemicals to be produced
industrially, including citric acid from Aspergillus niger, penicillin from Penicillium
chrysogenum and L-glutamic acid from Corynebacterium glutamicum. The discovery that
the genetic information was encoded in the DNA of a living organism [1] followed by the
development of recombinant DNA technology [2], were crucial steps for what would
become modern biotechnology. Nowadays, there are several classes of industrial products
synthesized using biological processes, including: organic acids (e.g., citric acid and
lactic acid), alcohols (e.g., 1,3-propanediol and ethanol), hydrocarbons (e.g. farnesene),
amino acids (e.g., L-glutamic acid and L-lysine), antibiotics (e.g., penicillins and

cephalosporins) and biopharmaceuticals (e.g, insulin and interferon a) [3].

During the early days of biotechnology, the choice of an organism to produce a
compound of interest started by screening naturally occurring species for a desired
phenotype. For example, the industrial production of penicillin started by the discovery,
by Alexander Fleming, that some species of Fungi secrete compounds that inhibit the
proliferation of bacteria. Furthermore, the strain improvement processes were mostly
based on random mutagenesis followed by screening of strains with enhanced production
levels. These techniques were labor intensive but they were the best alternative for strain

improving before advanced genetic engineering procedures were developed.

The buildup of knowledge about microbial metabolism and the development of more
sophisticated genome engineering techniques gave rise to the rational modification of
microorganisms to improve their phenotypical properties towards a certain goal. This
methodology is usually referred to as metabolic engineering [4, 5] and has been the
subject of a vast number of publications over the past twenty years [6]. A few examples
of rational strain designs that resulted in industrial processes include the production of

artemisinin (anti-malarial) [7], farnesene (biofuel) and 1,3-propanediol (polymer) [8].

Rui Pereira Universidade do Minho, 2015



4 | Chapter 1

More recently the possibility of sequencing whole genomes allowed the reconstruction of
metabolic models at the genome scale. These models can be used to simulate the
phenotype of an organism and analyze the change in behavior when genetic modifications
are applied. The use of genome-scale models for searching for strain engineering
strategies has been growing for the last fifteen years and a considerable amount of
methodologies have been developed for this purpose. However, despite the large number
of methodologies available for strain optimization purposes, their use is still quite
uncommon, which is partly derived from the lack of accuracy of the simulations and
unreliable results in quantitative terms. In order to increase the use and acceptance of in
silico strain engineering methodologies in the metabolic engineering field, it is necessary
to carefully analyze the existing methodologies and improve them to the point where

researchers will trust simulations over their rationally derived hypothesis.

Baker’s yeast, Saccharomyces cerevisiae, is a model organism with plenty of
physiological information readily available (Saccharomyces Genome Database [9]) and it
is the most used eukaryotic organism in metabolic engineering studies [6]. It is a
microorganism easy to engineer and cultivate, for which there are plenty of genome
engineering tools available [10]. The full genome of S. cerevisiae was the first to be made
available for a eukaryotic organism [11] and the corresponding genome-scale metabolic
model was also the first of its kind for a eukaryote [12]. The accumulated knowledge
available for S. cerevisiae, in combination with the large amount of literature regarding
rational strain engineering strategies, makes it one of the best choices for a case-study

regarding in silico strain design methods.

1.2 Research aims

The main goal of this thesis was to improve the methodologies used for in silico strain
engineering by using S. cerevisiae as the case study organism. To achieve that goal the
accuracy of the genome-scale models was first examined in detail by comparing how well
they could predict the metabolic flux distributions in central metabolic pathways.
Afterwards, the models were curated manually in order to improve their flux predictions.
Using that information, the focus was then the development of a simulation method that
could replicate the results of experimental strain designs available from the literature. For

that purpose, a new methodology was developed that allows the simulation of complex
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strain designs composed of gene deletions and up-/down-regulations. The final goal was
the application of the improved models and simulation method to a practical case study
aimed at optimizing the production of acetyl-CoA availability in the cytosol of S.

cerevisiae.

1.3 Outline of the thesis

This thesis is organized in six different chapters: a general introduction and
contextualization of the subjects explored in this thesis is presented in the current chapter,
the research aims stated above are explored in chapters 2-5 and the final conclusions and
recommendations for further work are given in chapter 6. The four chapters covering the

research aims were organized as follows:

- In chapter 2, a comprehensive list of computational methods devoted to strain
design was collected from the literature and a summary of their main features was
compiled. Furthermore, the full list of genome-scale models for S. cerevisiae was
assembled and an exhaustive search of their applications to engineer the
metabolism of this microorganism was performed.

- A comparison of the simulation accuracy of selected genome-scale models of S.
cerevisiae was performed in chapter 3, in order to verify if faulty flux predictions
could lead to erroneous predictions of gene knock-outs. Improvements were
applied to selected models by curating the metabolic reactions involved in NADH
and NADPH metabolism.

- In chapter 4 a novel simulation method entitled turnover dependent phenotypic
simulation is presented with the goal of simulating quantitatively the phenotype of
strains with complex genotypes in a resource conscious manner. The developed
method was validated using metabolically engineered S. cerevisiae strains
available in the literature by comparing the production yields of the target
metabolites between the simulations and experiments.

- In chapter 5 the turnover dependent phenotypic simulation method (chapter 4) was
used in combination with an evolutionary algorithm to search for sets of genetic
alterations that would improve the production yield of 3-hydroxypropionic acid
derived from acetyl-CoA. The in silico suggested modifications were

implemented sequentially in S. cerevisiae, and the resulting strains were
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physiologically characterized in batch fermentations to test the validity of the

simulations.
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CHAPTER 2

Strain engineering using genome-scale metabolic models

The advent of complete genomic sequences allowed the creation of models containing the
full set of biochemical transformations present in an organism. These Genome-Scale
Metabolic Models (GSMMs) can be used to simulate the flux distribution of an organism
in different environmental and genetic conditions. Therefore, their use in metabolic
engineering can be of great help to characterize modified strains and search for possible

genetic targets that optimize a certain desirable trait.

Here we explore the computational methodologies available to aid in the strain
engineering process using GSMMs by dividing them in three categories according to their
practical application. Furthermore, we show how GSMMs have been used to predict
interesting genetic targets and create improved strains of S. cerevisiae. Although the
experimental implementation of strain designs obtained in silico has shown good results,
this type of strain engineering methodology is still not widespread in the metabolic

engineering field.
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2.1 Introduction

The genome encodes the information necessary to synthesize all the enzymes present in a
cell and consequently the diversity of chemical transformations therein. In 1995,
Haemophilus influenza became the first free-living organism to have its genome
completely sequenced [1], which enabled the reconstruction, a few years later, of the first
model of metabolism at the genome scale [2]. With several sequencing projects finishing
in the following years, additional genome-scale metabolic models (GSMMs) became
available, including for Escherichia coli [3] and for Saccharomyces cerevisiae [4], with
the latter being the first GSMM available for a eukaryotic organism. By 2004 a total of
five GSMMs were already available [5] and that number grew to more than 100 as of

2014 [6].

The construction of a GSMM starts by assigning a metabolic function to each gene
coding for an enzymatic reaction that is present in the genomic sequence. Furthermore,
many additional curation steps are required until the finalized model is ready for
simulation purposes. The full process of GSMM reconstruction has been described in
detail in several publications [7-10] and software tools that can help in the reconstruction
process are available [11-16]. These software tools can be of great help in the reduction
of the total time necessary to reconstruct a GSMM and can prove extremely valuable for
annotating genomes of less studied organisms. Besides the stoichiometry and reversibility
for all chemical reactions that can occur in a certain organism, GSMMs can include
additional details, such as the kinetic parameters for each enzymatic reaction [17].
However, the availability of kinetic information is very scarce, which makes it very
challenging to gather these data at the genome-scale. Furthermore, dynamical modelling
is also computationally intensive, which makes it unpractical for simulating genome-scale

networks.

Since the biochemical information included in most GSMMs is limited to the
stoichiometry and reversibility of all reactions, the application of these models is
restricted to steady-state modelling of intracellular fluxes [18, 19]. The use of
stoichiometric models to estimate the flux distribution in a biological network dates back
as far as 1969 [20], but further experiments were not reported until the mid-1980°s [21,
22] and the field only started to expand in the early 1990’s (reviewed in [23]).

Stoichiometric modelling [19, 24, 25], also referred in the literature as constraint-based
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modelling [18], of genome-scale metabolic networks is an expanding field and has been
applied in different areas of the biological sciences, including: the contextualization of
high-throughput data, strain engineering, study of host-symbiont relationships,
metabolism of pathogenesis and the search for cancer drug targets (reviewed in [7, 18, 26,
27]). A thorough review of the field of constraint-based modelling was published in 2014

[18], which counted over 600 publications in this area of knowledge.

The mathematical foundation for modeling stoichiometric networks is based on the
assumption that the system is in a steady state, which allows mass balance constraints to

be imposed on metabolite pools as shown in equation 2.1 [19, 22, 23]:

SV =0 Equation 2.1

Where S is a matrix containing the stoichiometric coefficients for all metabolic reactions
(one row for each metabolite and one column per reaction) and V is the flux vector. In
other words, equation 2.1 can be converted into a set of linear mass balance equations that
impose the production rate of each metabolite to be equal to its consumption rate. This
steady-state assumption is based on the fast nature of metabolic changes when compared
to growth or environmental changes [23]. Although most metabolites in the system must
be completely balanced, an exception is made for selected metabolites that can be
absorbed/excreted from/to the medium. In addition to equation 2.1, it is usually assumed
that the flux values should be constrained within certain limits, which defines the

reversibility of reactions and the magnitude of the input fluxes:
v <y <y Equation 2.2
Where V** is the vector of lower flux bounds and V'** is the vector of upper flux bounds.

Mass balance and flux constraints (equations 2.1 and 2.2) are usually not enough to obtain
a singular flux distribution because the number of variables (fluxes) is often much larger
than the number of mass balance equations (metabolites), which makes the system of
equations underdetermined. Using metabolic flux analysis [28] additional flux constraints
(such as measured metabolite consumption and excretion rates) can be imposed to try to
find the flux distribution that better approximates the experimental values. Alternatively,
linear programming can be used to optimize a certain cellular goal (e.g. biomass yield or

ATP production), which is the principle of Flux Balance Analysis (FBA) [29]. One
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common strategy to simulate the flux distribution of microbial cells with FBA is to
maximize the flux through a pseudo-reaction describing the consumption of biosynthetic
precursors and energy requirements for synthesizing a specific amount of cellular material
[10, 30, 31]. Depending on the type of organism and the specific condition that needs to
be simulated, other objective functions can be used [31, 32] and even deduced from

experimental data [33].

The simulation of flux phenotypes with FBA or other constraint-based simulation
methods provides an interesting alternative for testing the effects of genetic modifications
on the phenotypic behavior of an organism [34]. These methods can be of great help in
designing strains with desired phenotypic characteristics because the time required for a
simulation is considerably faster than the corresponding experimental implementation
(reviewed in [35-39]). This chapter provides a detailed analysis of the computational
methods available in the literature that can help designing strain engineering strategies by
modelling metabolism at the genome scale. Furthermore, the application of in silico strain
design methods to Saccharomyces cerevisiae was explored in detail to provide a context

of how GSMMs can help in practice the strain engineering process.

2.2. Strain engineering with GSMMs

Rational metabolic engineering [40] procedures are the result of accumulated biochemical
information about a certain organism, which allows the formulation of hypotheses about
the effects that a certain genetic modification will provoke on the phenotypical behavior
of a cell. One big difficulty of rational strain designs is that metabolic networks are
composed of hundreds of interconnected metabolic reactions, which can lead to
unforeseeable results. To model the effect of genetic modifications at the system scale,
the most suitable methodology is constraint-based modelling of genome-scale networks
[18], which allows the calculation of flux distributions in steady state conditions for a

certain genotype.

As mentioned in the introduction, most of the GSMMs available are stoichiometric
representations of metabolism and their foundation lies on the mass balances of
metabolites. Although the core assumption is quite simple, several methods of variable

complexity have been developed with the goal of helping to analyze and modify the
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metabolic capabilities of the cell. Previously, some compilations of the available
constraint-based methodologies have been made by classifying the methods
phylogenetically [34], by the types of modifications they allow [38, 39], or by the
underlying objective function [37]. The classification used here is based on the utility of
each method for different strain engineering tasks. Figure 2.1 shows the three categories
we used to group the different strain engineering constraint-based methods available in
the literature: the first category gathers the methods that return a flux phenotype for a
given set of genetic modifications (phenotype simulation), the second group of methods is
composed of strain optimization methods that yield a set of strain engineering
modifications that should optimize a certain metabolic engineering goal (target
discovery), and the third category includes methods that can help in strain engineering but

are not related with the search or analysis of genetic targets (auxiliary network analysis).

Although the methods on each category should serve different practical purposes, some of
them could conceptually belong to several categories simultaneously. For example, most
target discovery methods have an underlying simulation routine that could also be placed
in the phenotype simulation category. However, quite often the simulation part of the
target discovery methods is just a version of FBA used to search for genetic targets that
optimize the desired product. Therefore, each method was classified into a single category

from Figure 2.1, according to its main purpose of application.

A A
[0): H
I&se7 T

zc1 zcov

Figure 2.1- Different categories adopted for classifying the computational methods used for strain
engineering with genome-scale metabolic models.
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2.2.1 Phenotype simulation methods

One of the issues usually encountered when designing metabolically engineered strains
with desired phenotypical traits is the appearance of unexpected effects. Given the
complexity of metabolic pathways, it is often hard to understand what caused the
undesired behavior, resulting in additional experiments to elucidate the underlying causes.
The estimation of fluxes using labelled substrates (reviewed in [41, 42]) is one of the
possibilities to characterize the fluxes of a mutant organism, but it is a troublesome and
expensive procedure. Alternatively, the effects of a set of genetic modifications can be
easily simulated using constraint-based computational methods, which can help pinpoint
the reasons behind an undesirable phenotype. Furthermore, a careful analysis of the
simulated fluxes might yield additional non-obvious genetic targets that can help

achieving the desired goal.

Table 2.1 shows a list of the available methods capable of simulating flux phenotypes
using GSMMs and a short description of their main attributes. FBA was the first method
developed for simulating stoichiometric models and its invention predates the appearance
of GSMMs. Briefly, FBA finds a distribution of fluxes that meets a certain objective
formulated with linear programming. The most common objective function used to
simulate the fluxes of microbial GSMMs is the maximization of the biomass yield, which
is based on the presumption that evolution has selected for phenotypes that use limited
resources efficiently for growing and dividing [10, 30, 31]. One common drawback of the
flux distributions obtained with FBA is that they are usually not unique, i.e., for the same
value of the objective function there are several reactions for which the metabolic fluxes
can vary. Parsimonious FBA (pFBA) was developed to further refine the flux distribution
obtained with FBA by removing most futile loops from the network, which can be
achieved by minimizing the total sum of fluxes in the network or the number of active
reactions [43, 44]. These assumptions are based on the efficiency of metabolic networks,
which are expected to perform a certain task with a minimal amount of resources

expended.
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Table 2.1- Phenotype simulation methods available for genome-scale metabolic models

Method Brief description References

Linear programming simulation method that can estimate the flux distribution in
a genome-scale network by assuming a certain cellular objective. Flux

FBA distributions of microorganisms are usually calculated by assuming maximal [2,21,22,29]
biomass formation. Can be used to predict wild-type phenotypes and the growth
outcome of gene knock-outs and their associated flux distribution.

Bi-level formulation intended to refine the flux distribution obtained with FBA

FBA . .
P by minimizing the number of active enzymes or the total sum of fluxes.

[43, 44]

MOMA assumes that the flux distribution of a deletion mutant should stay as
similar as possible to the wild-type organism. Therefore, MOMA computes the
MOMA flux distribution for a mutant metabolic network by minimizing the Euclidean [45]
distance between a reference set of fluxes (for the wild-type strain) and the
mutant fluxes.

LMOMA S.ame as MOMA but the mi.nimizat.ion in LMOMA is referent to the Manhattan [46]
distance instead of the Euclidean distance.

This formulation is similar to MOMA because it also minimizes the Euclidean
distance between the mutant organism and the wild-type. However, instead of
PSEUDO using a single flux distribution as the reference, PSEUDO uses a degenerate [47]
optimal region of the flux space delimited by a minimal threshold imposed on
biomass production.

This formulation computes the flux phenotype of a deletion mutant by
ROOM minimizing the number of reactions that are activated of inactivated in [48]
comparison to a reference flux distribution.

This formulation assumes that a deletion mutant will attempt to minimize the
MiMBI changes in the turnover of all metabolites (sum of producing and consuming [49]
fluxes) in comparison to a reference flux distribution.

Under/ This formulation emulates the over and under expression of genes by imposing
overexpression | flux constraints based on a reference flux distribution. The mutant’s flux
. N . . . Lo . [50, 51]
plugin for distribution can be simulated by choosing any of the available objective functions

OptFlux in OptFlux (e.g. FBA, MOMA and LMOMA).

Some of the uses given to FBA include the prediction of gene essentiality [2, 3, 52, 53],
the growth rate of a knock-out mutant after directed evolution [54] and sets of knock-outs
that couple the production of a certain product to growth [55, 56]. The use of an objective
function in FBA that assumes maximum biomass formation usually results in initial
growth levels of engineered strains lower than the simulations suggest. However, it has
been shown that after directed evolution, the growth and production levels of engineered
strains may converge to the values simulated with FBA [54-56]. Although FBA is mostly
used on its own, some complementary methods have been developed to include
regulatory information [57—60], transcriptomic data [61] and thermodynamic constraints

[62, 63].

As discussed above for FBA, the assumption of optimality for biomass formation can lead
to unrealistic predictions of the growth phenotype in knock-out mutants. In order to

predict more accurately how a metabolic network reacts to perturbation, several more
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objective functions have been developed (Table 2.1). Segre et al. developed a formulation
to simulate the effects of knock-outs on a metabolic network designated Minimization Of
Metabolic Adjustment (MOMA) [45]. This methodology assumes that when an organism
is faced with a gene deletion, it will try to minimize the adjustments of the flux values in
comparison with a wild-type reference. MOMA formulates this objective function
mathematically as the minimization of the Euclidean distance between the mutant set of
fluxes compared to the reference wild-type fluxes (Figure 2.2). The growth predictions of
gene knock-outs simulated with MOMA are more conservative than the results obtained
with FBA and it has been shown that MOMA can predict more accurately gene
essentiality in some cases [45, 64]. MOMA has also been used for prediction of metabolic
engineering targets and many of them have been implemented experimentally with

varying degrees of success [65—69].

----- FBA objective function

- -~ Pseudo relaxed objective
Feasible space of wild-type
Feasible space of mutant
FBA optimum
MOMA optimum
LMOMA optimum

® PSEUDO optimum

Figure 2.2- Simplified representation of the differences between the objective functions used in FBA, MOMA,
LMOMA and PSEUDO. V, and V, represent two arbitrary fluxes in a network and the green area delimits the feasible
flux space for the wild-type organism, while the orange area is correspondent to the mutant feasible space. The FBA
objective function is represented by a dashed brown line and the optimal value of V; and V, in an FBA simulation is
shown as a blue dot. The different distance metrics (grey dashed lines) are shown in the 2D plot along with the optimal
objective function values for each method (colored dots). The relaxed region of the flux space used in PSEUDO is
represented as a dashed blue line. Adapted from Segrée et al. [45].

In addition to the normal MOMA formulation, two additional variations are available in
the literature: linear MOMA (LMOMA) [46] and PSEUDO [47]. One common issue
usually encountered in the flux distributions computed with MOMA is that this
formulation favors a large number of small flux changes in detriment of a few large
changes in the metabolic network. This is caused by the quadratic formulation used to
calculate the flux distance in MOMA and can be solved by using LMOMA, which uses

the Manhattan distance between the reference and perturbed network to find the flux
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phenotype of the knock-out mutant (Figure 2.2). Another issue that might arise from
using MOMA/LMOMA is the importance given to a reference flux distribution. Usually,
the reference set of fluxes is calculated using FBA or pFBA [65—67] and any error in this
flux distribution will be propagated to all the predictions. The methodology developed in
PSEUDO can tackle this issue by not using a single flux distribution as a reference but a
region of the flux space delimited by a minimum threshold imposed on the biomass yield
(Figure 2.2) [47]. The authors of this methodology reported some improvements in
comparison to MOMA and FBA flux predictions [47].

Shlomi et al. pursued the same concept of minimal metabolic adjustment but in a different
perspective [48]. Instead of minimizing the flux differences between the mutant and the
wild-type organism, the methodology entitled ROOM (Regulatory On/Off Minimization)
minimizes the number of reactions that are activated or deactivated in a mutant in
comparison to a reference flux distribution (Table 2.1). The assumption behind ROOM is
that, when faced with a set of knock-outs, a cell will adjust its internal fluxes by making
the minimum amount of regulatory changes, i.e., the magnitude of the fluxes can change,
but the set of active enzymes should be similar to the wild-type organism. The predictions
obtained for ROOM were closer to FBA than MOMA and revealed that MOMA is better
at estimating transient metabolic adaptations, while FBA and ROOM can better predict

the phenotype of an evolved knock-out mutant [48].

Another issue encountered in the formulation of MOMA and LMOMA was the
dependence of the mutant phenotype on the scale of the stoichiometry of the metabolic
reactions [49]. By using different stoichiometric representations of a metabolic network
that are biochemically equivalent, Brochado et al. showed that the simulation outcome of
MOMA/LMOMA was sensitive to the stoichiometric representation chosen for the
network [49]. Since biochemically equivalent networks should produce the same results,
the authors propose a new methodology entitled Minimization of Metabolites Balance
(MiMBI). The formulation underlying MiMBI solves the stoichiometry dependence of
other algorithms by using the metabolite turnovers as the variables in the objective
function. Instead of minimizing the changes in the fluxes in comparison to a reference
network, MiMBI minimizes the changes in the turnovers of all metabolites in the
network. As a consequence, MiMBI provides more robust results, which are not
dependent on the numerical stoichiometric representation chosen to describe a metabolic

network.
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The final method shown in Table 2.1 was included as a representative of how other
genetic modifications can be incorporated in the simulation methods discussed. The
under/ overexpression plugin [50, 51] can be used in combination with the simulation
methods described in Table 2.1 to predict the effect of up- or down-regulating certain
fluxes in the network. This methodology uses a wild-type flux distribution as a reference
to estimate how over or underexpressing a certain gene will affect the corresponding
fluxes. After applying constraints to the modified fluxes, this method calculates the flux

distribution of the mutant by using one of the objective functions available in OptFlux.
2.2.2 Target discovery methods

While the simulation of phenotypes in silico can be of great help for analyzing the
internal fluxes of a few rationally designed strains, it would take too long to manually
discover combinations of genetic modifications that meet a certain metabolic engineering
objective. In order to search for interesting genetic targets, several methods have been
developed to search among the large number of different strain engineering strategies for
the ones that result in the desired phenotype. A compilation of the methods available in
the literature for discovering potential metabolic engineering targets using GSMMs is

shown in Table 2.2.

Table 2.2- Computational methods available for target discovery using genome-scale metabolic models

Method Brief description References

Bi-level optimization method that has an FBA inner problem that optimizes the

biomass yield and an outer problem that maximizes the production of a target

OptKnock [70]

compound. Given a maximum number of allowed knock-outs, this method returns a
single optimal strain design.

FBA simulations can suffer from alternative optimal solutions and, as a consequence,
the inner problem of OptKnock might return a strain design with variable production
levels of the target metabolite. In RobustKnock the strain designs returned are
guaranteed to be robust.

Robustknock [71]

ReacKnock Similar formulation to OptKnock but the Karush-Kuhn-Tucker method was used to (72]

reformulate the bi-level optimization problem to a single level one.

FBA simulations can suffer from alternative optimal solutions and, as a consequence,
Objective OptKnock and OptGene strain designs might suffer from variable production levels.

tilting This method applied modifications to OptGene and OptKnock to guarantee a robust
production level.

[73]

Bi-level optimization method that has an FBA inner problem that optimizes the
ObtORF biomass yield and an outer problem that maximizes the production of a target
P compound. Transcription regulation further constraints the search for strain designs

composed of gene deletions and over-expressions.

Bi-level optimization method that has an FBA inner problem that optimizes the

ObtSwa biomass yield and an outer problem that maximizes the production of a target [75]
V& . . . . . .
P P compound. This method returns an optimal strain design composed of reactions with

changed cofactor specificity and knock-outs.
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Table 2.2- Computational methods available for target discovery using genome-scale metabolic models

(continuation)

Method

Brief description

References

FaceCon/
ShadowCon

These modules can be added to optimizations methods such as OptKnock and
OptORF to increase the diversity of strain designs obtained. Possible applications
include designing strains with by-product inhibition, variable coupling constraints and
co-production of two metabolites.

[76]

FastPros

This method uses the shadow prices to find strain designs composed of knock-outs
that result in the overproduction of a target metabolite under biomass maximization.
The optimal combination of knock-outs can be found with other methodologies (e.g.
OptKnock) by restricting the search space to the best knock-out candidates obtained
with FastPros.

[77]

BiIMOMA

Bi-level optimization method that has a MOMA inner problem that minimizes the
distance to a wild-type reference and an outer problem that maximizes the production
of a target compound. Given a maximum number of allowed knock-outs, this method
returns a single optimal strain design.

[78]

OptGene

Optimization based on evolutionary algorithms that was designed to find sets of
knock-outs using one of the available simulation methods for the inner problem
(authors tested FBA and MOMA). OptGene returns several near optimal strain
designs that maximize a target compound.

[51, 79]

SA/SEA

Evolutionary and simulated annealing algorithms were designed to search for near
optimal sets of gene deletions that maximize the production of a target compound.
Similar to OptGene, but sets were used to represent genetic alterations to allow strain
designs with flexible size.

[51, 80]

CiED

Optimization based on evolutionary algorithms that was designed to find sets of
knock-outs using FBA. Adopts a different heuristic from OptGene that is capable of
retaining beneficial mutations and performs an assessment of the frequency that each
modification appears in the optimal designs.

[81]

GDMO

Multi-objective optimization algorithm that searches for gene deletions/nutrient
availability that maximize the production of a target metabolite in addition to other
objectives (e.g. biomass formation). GDMO returns a pareto front with the best
tradeoff between the objectives and uses FBA as the underlying flux calculation
method.

[82]

GDLS

Optimization method based on local search that offers a much faster alternative to
global search methods (e.g. OptKnock). Can be used for finding sets of gene deletions
of larger sizes in feasible computation times.

[83]

GDBB

This method uses a truncated branch and bound algorithm that can replace the bi-level
formulation present in similar strain design methods (e.g. OptKnock and GDLS).
GDBB can find near-optimal solutions (knock-outs or others) in comparatively much
shorter times.

OptReg

Bi-level optimization method that has an FBA inner problem that optimizes the
biomass yield and an outer problem that maximizes the production of a target
compound. OptReg finds the optimal strain design composed of reaction deletions
and up/down-regulations.

[85]

EMILiO

This method uses successive linear programing to find flux constraints (upper and
lower bounds) that maximize the production of a target compound (while maximizing
biomass with FBA). Genetic modifications are modelled by constraining fluxes to
specific optimal levels instead of pre-calculated levels like in OptReg.

[86]

Redirector

This method manipulates the objective function of FBA to model genetic up- and
down-regulations. It is used to optimize the production of a target metabolite by using
GDLS to find near-optimal strain designs composed of up- and down-regulations.

(87]

OptStrain

Optimization method that first searches for heterologous reactions which need to be
added to a certain host in order to allow the production of the target product.
Subsequently, OptKnock is used to find reaction deletions that optimize the product
formation.

SimOptStrain

Similar to OptStrain, but the addition of heterologous reactions and search for
reaction knock-outs is done simultaneously instead of sequentially.
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Table 2.2- Computational methods available for target discovery using genome-scale metabolic models

(continuation)

Method Brief description References

Unlike most strain optimization methods, OptForce does not maximize biomass
formation to find the flux distribution of the mutant strain. In this case, OptForce

OptF .. 89
prrorce finds the minimal set of fluxes that must be forced (up/down-regulated and knocked- [89]
out) to make sure the target metabolite is produced at optimal levels.
CosMos Similar to .OptF.orce, but the fluxes can be forced to any value instead of [90]
predetermined intervals.
Similar to OptForce but kinetic information is added to the network where available.
k-OptForce k-OptForce finds the minimal set of fluxes that must be forced (up/down-regulated [91]

and knocked-out) as well as the minimal set of enzyme parameters that must be
changed to optimize the target metabolite.

This method searches for changes on the flux limits calculated with FVA [92] by
increasing step-by-step the production of a target metabolite. When a flux bound
OP-Synthetic | violates the wild-type flux limits it is assumed that this reaction is a possible target for [93]
up/down-regulation or deletion depending on the direction of change compared to the
reference interval.

Methodology that scans the changes in the fluxes that are predicted by FBA when the
production of the target metabolite is forced to increase step-by-step. The fluxes that
increase with the enforced production of the target are assumed as possible up-
regulation candidates.

FSEOF [94]

While FSEOF searches for changes in the fluxes predicted by FBA, FVSEOF searches
FVSEOF for changes in the flux bounds calculated with FVA. This methodology also returns [95]
possible candidates for up-regulation.

Bi-level optimization method with an FBA inner problem that optimizes the biomass
SIMUP yield and an outer problem that promotes the co-utilization of two sugars by searching [96]
for knock-out combinations that are lethal when only one substrate is available.

Bi-level method that finds media conditions and knock-out combinations that make a
FOCAL target flux coupled to another (e.g. growth). Can also be applied to strain engineering [97]
for substrate co-utilization or other strategies that require flux coupling.

First the GDLS method is used to find strain designs composed of knock-outs that
DySScO optimize a target product. Then, each strain is tested with dFBA [98] to estimate their [99]
titer and productivity in batch cultures.

Among the methods shown in Table 2.2, the first method developed for target discovery
was OptKnock and its formulation consisted in the search for combinations of knock-outs
that result in an increased production of a target metabolite [70]. OptKnock is a bi-level
optimization method that uses FBA to calculate the phenotype of a certain combination of
knock-outs by assuming maximum biomass formation. The result returned by OptKnock
is the best combination of knock-outs that maximize the engineering goal, while taking
into account a maximum number of knock-outs and a minimum biomass formation rate.
Some of the results obtained with this optimization algorithm have been used to find
knock-out targets that resulted in the construction of strains with improved production

levels of lactic acid, 1,4-butanediol and 2,3-butanediol [55, 100, 101].
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One of the problems encountered in OptKnock was the possibility that the combination of
knock-outs returned would result in a strain with variable production rates in silico [71,
73]. This variability is caused by the non-uniqueness of the flux distribution obtained
from the FBA simulation layer, which can result in a non-robust production flux for the
target metabolite. The mutants suffering from non-robustness usually can produce
alternative byproducts instead of the target metabolite without impacting the maximum
value of the biomass yield simulated with FBA. This robustness issue was addressed in
the formulation of RobustKnock [71] and in the utilization of objective function tilting
[73], which resulted in improved optimization methods that returned strain designs with
guaranteed production levels in silico. An additional issue has also been reported
regarding the transformation method used to convert the bi-level problem of OptKnock
into a single level optimization problem [72]. Xu et al. tried to solve this issue by using
the Karush-Kuhn-Tucker method to reformulate the bi-level optimization problem into a

single level one, which resulted in a new method designated ReacKnock [72].

In addition to the above-mentioned optimization methods, there are additional variations
of the OptKnock formulation that include special features that can be of great help in the
design of metabolically engineered strains. Besides searching for metabolic gene knock-
outs, OptORF can also use regulatory information available for the metabolic network in
order to find modifications at the regulatory level that improve the production of a target
metabolite [74]. Furthermore, there is an optimization method (OptSwap) that maximizes
the production of a metabolite of interest by suggesting changes in cofactor (NADH and
NADPH) specificity of oxidoreductase enzymes in addition to knocking out sets of

reactions [75].

Table 2.2 also includes software modules, such as FaceCon/ ShadowCon, that can be
added to optimization methods that search for the globally optimal strain design (e.g.
OptKnock and OptORF) in order to introduce variability and include additional desirable
traits in the strain designs obtained [76]. Furthermore, to shorten the computational time
needed to find globally optimal solutions, the number of possible knock-out targets can be

reduced beforehand with FastPros [77].

All optimization methods discussed so far have FBA at the center of their bi-level
formulation. However, there is also a version of OptKnock that has the MOMA

simulation method included in the inner simulation layer [78]. The method, designated by
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the authors as BIMOMA searches for knock-outs that maximize a certain metabolic
engineer goal, but instead of maximizing biomass formation, it simulates the mutant

phenotypes by minimizing the distance to a wild-type flux distribution.

One important drawback of the target discovery methods that search for a global optimum
solution like OptKnock is that, as the number of allowed genetic modifications increases,
the total searchable space of strain designs grows exponentially, which makes the
computation time required to solve the problem impractical. This severely limits the
maximum number of genetic modification that can be included in the strain designs
computed with OptKnock and similar methods. One of the possibilities to solve this
limitation is to use evolutionary algorithms or other nature-inspired heuristics to find
strain designs with desired phenotypes. The first evolutionary optimization method
published was OptGene [79] and since then many other became available (SEA [51, 80],
CiED [81], GDMO [82]). Evolutionary algorithms can search for strain designs with
larger sets of genetic modifications, can be used in combination with multiple simulations
methods (such as FBA, MOMA or LMOMA) and require less computation time to reach
near-optimal design solutions. Further advantages of evolutionary algorithms include the
possibility of optimizing non-linear objective functions (e.g. resembling productivity) and
the fact that several near-optimal strain designs are suggested by the algorithm, instead of
a single global optimum like in OptKnock-based methods. One possible drawback of this
type of optimization is that the near-optimal strain designs found by the evolutionary
algorithm might be distant from the global optimum. In parallel with OptKnock, the use
of evolutionary algorithms to find interesting genetic targets has also resulted in the
construction of several strains with improved production levels of metabolites of interest

[56, 69, 81, 102].

In addition to evolutionary algorithms, there are also other methods that have been
developed to help in the search for strain designs of larger sizes. Genetic Design through
Local Search (GDLS) was developed as an alternative methodology to find near-optimal
sets of knock-outs using a local search methodology [83]. When compared to
evolutionary algorithms, the GDLS heuristic was able to achieve higher in silico yields
for certain case-studies [83]. Also developed as an alternative for exact algorithms that
search for globally optimal solutions, the Genetic Design through Branch and Bound
(GDBB) uses a truncated branch and bound algorithm that outperforms such methods in

terms of computational time required [84].
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Although most computational methods that search for interesting genetic targets were
initially focused on knock-outs, many of them have included in their formulation
additional types of genetic modifications. OptReg was the first method to allow the
optimization of strains composed of up- and down-regulations in addition to knock-outs
[85]. Similarly to OptKnock, the formulation of OptReg originates a bi-level problem
with FBA as the inner simulation layer. The methodology used by OptReg to model
up/down-regulation is based on restraining the fluxes of the target reactions to values over
or below the levels calculated beforehand. These flux constraints are applied to the FBA
simulation layer and biomass formation is maximized to obtain a flux distribution for the
mutant strain. OptReg returns a single optimal strain design, which represents the
combination of genetic modifications that results in the best production yield of the target

metabolite.

Strain designs consisting of knock-outs and up/down-regulations can also be obtained
with an optimization method developed by Yang et al. [86]. This target discovery method,
designated EMILiO, models up/down-regulations using a formulation that allows a more
flexible manipulation of the flux values when compared to OptReg [86]. In contrast to
OptReg and EMILiO, Rockwell et al. developed an optimization method named
Redirector that does not manipulate flux values to model up- and down-regulations [87].
Instead, this novel method manipulates the objective function of the FBA simulation to
model how up- and down-regulations affect the cellular phenotype. Redirector uses
GDLS as the optimization layer in order to find near-optimal combinations of genetic

modifications that increase the production of the target metabolite.

Some experimental strains designs include in their list of genetic modifications the
addition of heterologous genes, which can enable the synthesis of non-native metabolites
of interest. OptStrain [88] and SimOptStrain [78] are able to search for the minimal
amount of gene additions necessary to synthesize non-native compound of interest.
Furthermore, these methods can optimize the production of the target compounds by

searching for sets of knock-outs that result in an improved phenotype.

Most of the target discovery methods discussed above use FBA to simulate the phenotype
of the mutant strains being optimized. These methods search for sets of genetic
modifications that make the production of a target metabolite coupled to growth, which

should force the mutated organism to excrete the desired target as a byproduct of growth.
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However, there are some methods that search for sets of genetic modifications that
“force” the production of a target metabolite independently of the growth levels.
OptForce is an optimization method that finds the minimal set of fluxes that must be
constrained (up/down-regulated and knocked-out) to make sure the target metabolite is
produced at optimal levels [89]. In biological terms, the flux modulations suggested by
OptForce must be met quantitatively in order to guarantee that the phenotype will be as
the simulations predict. Optimization methods similar to OptForce have been developed
with an increased flexibility in the flux modulations (CosMos) [90] or the inclusion of
optimized sets of enzymatic parameters (k-OptForce) [91]. The application of the
OptForce algorithm has resulted in the construction of an E. coli strain with improved

malonyl-CoA levels and increased naringenin production [103].

Another class of optimization methods that does not use biomass maximization as the
objective function is composed of the methods OP-Synthetic [93], FSEOF [94] and
FVSEOF [95]. All these methods use similar strategies to find genetic targets of interest
by analyzing the flux changes in the network when the production of the target metabolite
is progressively enforced. The FSEOF and FVSEOF optimization methods return a set of
up-regulation targets suggested by the flux analysis, while the OP-Synthetic algorithm
recommends up/down-regulations and knock-outs that should result in an increased
production of the metabolite of interest. FSEOF has been used to search for up-regulation
targets that resulted in the construction of an E. coli strain with improved lycopene

production [94].

The application of target discovery algorithms is not limited to the increase in production
of metabolites of interest. In fact, there are also some methods that can predict genetic
alterations that promote the co-utilization of two substrates simultaneously (SIMUP [96],
FOCAL [97]). These methods can be helpful in the optimization of industrial strains that
will be grown on complex feedstocks, such as lignocellulosic biomass. Another
optimization method, DySScO, can be used to find knock-out strains that have important
industrial characteristics such as high productivity and titer of a metabolite of interest

[99].
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2.2.3 Auxiliary network analysis methods

In addition to the two categories of computational methods described above (phenotype
simulation and target discovery), we also considered a third group that includes additional
methodologies which can also help in the design of engineered strains. One of the
methods we included in this category is the analysis of flux variability (FVA) [92, 104],
which returns the interval of values that each flux in the metabolic network can assume.
After a set of genetic modifications is obtained from a target discovery method, the
resulting mutant strain can be analyzed with FVA to test the robustness of the fluxes of
interest. FVA is usually employed by forcing the value of the objective function of the
FBA simulation (e.g. biomass) to be equal to its optimal value, and then the objective
function becomes the minimization or maximization of each individual flux. FVA can
also be used to create a graph that relates the maximum yield of the product of interest for
different levels of biomass formation. The analysis of the results can reveal the best

tradeoff between biomass formation and target production.

The relationship between two fluxes can also be studied by using phenotype phase planes
[105, 106] and the flux coupling finder (FCF) methods [107]. One of the applications of a
phenotype phase plane is to verify how the ratio of availability of two nutrients can affect
biomass growth. This type of analysis can lead to the optimization of culture conditions
based solely on the stoichiometry of the metabolic network. Regarding FCF, this method
can be used to study how two fluxes in the network depend on each other. One possible
use for this method is to search for equivalent reaction knock-outs, which can prove
helpful when one of the required knock-outs from a strain design is difficult to implement

experimentally.

Another helpful computational method for optimizing the culture conditions of a
microorganism was developed by Suthers et al. [108], which consists in the search for the
minimal set of metabolites necessary to sustain growth. This methodology can prove
helpful in the design of culture media for less studied microorganisms or for determining

auxotrophies of mutant strains.

Dynamic FBA (dFBA) allows testing the behavior of a strain in non-steady state
environmental conditions, such as batch of fed-batch [98]. This method can help choosing
between different strain designs to conclude about which one would be the most suited

for an industrial bioprocess.
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Additional analysis can be carried on the sensitivity of a flux distribution to changes in
the turnover of a metabolite (flux-sum [109]), on the minimal set of genes necessary to
sustain a certain growth level [110] or for pathway design (e.g., BNICE [111], SimPheny
Biopathway Predictor[100], GEM-Path [112], DESHARKY [113] and retrosynthesis
algorithm [114]). The resulting pathways obtained from pathway design algorithms can
then be included in GSMMs in order to test them and optimize the production of the

heterologous target.

Many of the methods described for simulating phenotypes, discovering metabolic
engineering targets and analyzing GSMMs can be found compiled within software
packages, such as the COBRA toolbox [115], OptFlux [51] and the BioMet toolbox
[116]. This kind of software packages can be of great help for users that are giving their
first steps in this field, especially for people with an experimental background that want

to try some of the algorithms available for analyzing and designing strains.

2.3. Strain Engineering of S. cerevisiae using GSMMs

Baker’s yeast, S. cerevisiae, is a model organism with plenty of physiological information
readily available (Saccharomyces Genome Database [117]) and it is the most used
eukaryotic organism in metabolic engineering studies [118]. It is a microorganism easy to
engineer and cultivate, for which there are plenty of genome engineering tools available
[119]. The full genome of S. cerevisiae was the first to be made available for an
eukaryotic organism [120] and the corresponding genome-scale metabolic model was also

the first of its kind for a eukaryote [4].

Most strain engineering studies in S. cerevisiae still rely on the use of rational approaches
to optimize the production of compounds of interest [118, 121, 122]. However, with the
development of a vast number of computational methods for in silico strain design
(section 2.2) the number of metabolic engineering studies based on modelling approaches

will tend to increase.
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2.3.1 Genome scale models of S. cerevisiae

Since the first GSMM of S. cerevisiae was published in 2003 [4], several authors have
been trying to expand and/or improve the metabolic reconstruction of this microorganism
(as reviewed in [123, 124]). A list of the genome-scale models available in the literature
for S. cerevisiae is given in Table 2.3, focusing on model size and other relevant
parameters. The numbers show that over the years there was a tendency to include more
Open Reading Frames (ORFs) and metabolic reactions in the models. Furthermore, new
compartments were added and the elemental balance of the reactions was implemented in
some models. The high number of models available for S. cerevisiae also points out to the

relevance of this microorganism for the metabolic engineering community.

Table 2.3- List of the available genome-scale models for S. cerevisiae

Model Year ORFs included Reactions included Other information

iFF708 [4] 2003 708 1175 3 compartments (2 metabolic)

IND750 [125] 2004 750 1489 8 compartments (7 metabolic)
Elementally balanced

iLL672 [126] 2005 672 1038 3 compartments (2 metabolic)

IMHS05 [127] 2006 805 1489 8 compartments (7 metabolic)
(55 regulatory genes) Elementally balanced

iIN800 [128] 2008 800 1446 3 compartments (2 metabolic)

15 rt ts (7 metaboli

Yeast 1 [129] 2008 832 1857 compartments (7 metabolic)
Elementally balanced

IMMO04 [52] 2009 904 1412 8 compartments (7 metabolic)
Elementally balanced

Yeast 4 [130] 2010 924 2576 15 compartments (7 metabolic)
Elementally balanced

Kinetic model [17] 2010 832 956 2 compartments (1 metabolic)

15 compartments (7 metabolic)
Yeast 5 [131] 2012 918 2110 Elementally balanced

iTO977 [132] 2013 977 1566 4 compartments (3 metabolic)

Yeast 6 [133] 2013 900 1388 15 compartments (7 metabolic)
Elementally balanced

16 rtments (7 metaboli

Yeast 7 [134] 2013 916 3493 compartments (7 metabolic)

Elementally balanced

Most of the available genome-scale models for S. cerevisiae are purely stoichiometric, but
there are two exceptions. The iMH805 [127] model is derived from the IND750 [125], but
it contains 55 genes that code for transcription factors, which can be used for studying
regulation at the genome-scale. Furthermore, there is one kinetic model at genome-scale
for yeast that was derived from Yeast 1 [129] using a strategy described in [17, 135].

More recently, a new generation of genome-scale models that include gene expression
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values in their formulation, named ME-models, have become available for some

microorganism, but none is yet available for S. cerevisiae [136].
2.3.2 Examples of application

As stated above, the use of strain engineering strategies derived from GSMMs is still the
exception and not the rule in metabolic engineering. Table 2.4 shows the full extent of the
application of the tools described in this chapter to engineer S. cerevisiae. Nevertheless,
the results show some promising implementations, and some of them resulted in the
increase of production of high value compounds such as cubebol, vanillin and

amorphadiene.

Regarding the use of GSMMs for strain engineering, five out of the nine reports shown in
Table 2.4 used iFF708, which reveals a tendency to use models that suffered more
validation rather than the most recent models. Three of the metabolic engineering
strategies shown were obtained with OptGene, showing a clear preference of this
algorithm over OptKnock and recent optimization strategies. Table 2.4 also shows an
example of the use of FBA to calculate the maximum yields of two pathways, which
proved to be helpful in choosing the strategy less dependent on oxygen availability (3-
hydroxypropionic acid case-study). This kind of data might seem irrelevant at the lab
scale, but for industrial processes the costs involved in aerating bioreactors might be

crucial in determining if a biotechnological process is lucrative.

Another interesting observation from the results shown in Table 2.4 is the number of
experimental implementations that include the engineering of cofactor abundance. Three
of the nine strain designs have attempted to increase the availability of NADPH by
deleting one of the main consumers of this metabolite [69, 102, 137]. In the first case this
resulted in a reduced accumulation of an unwanted byproduct, glycerol, while in the other
two the increase of NADPH availability was important to improve the flux to the target

metabolites.
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Table 2.4- Experimental implementation of strain engineering strategies obtained using genome-scale
metabolic models

Target Brief description Reference

iFF708 was used to test some strategies aimed at reducing glycerol formation
and increasing the ethanol yield in anaerobic conditions. The best strategy
consisted in the expression of a NADP'-dependent glyceraldehyde-3-phosphate
Ethanol dehydrogenase, which resulted in a decrease of 40 % in glycerol accumulation [137]
and an increase of 3 % on the ethanol yield when growing on glucose. The
ethanol yield increased 25% when S. cerevisiae was grown on xylose and
glucose.

OptGene was used to find gene knock-outs that increased the production of
Cubebol cubebol using MOMA in the /FF708 model. As a result, the deletion of GDH1 [102]
increased by 85 % the cubebol titer.

FBA was used with IND750 to simulate the best combination of three gene
deletions that would increase the production of formic acid on a formate

Formic acid dehydrogenase negative basal strain. The deletion of ALT2, ZWFI and FUM1I [138]
resulted in a 16.5-fold increase in formic acid yield.
OptGene was used to find gene knock-outs that increased the production of
Vanillin vanillin using MOMA in the model ;FF708. The deletion of PDC/ and GDH1 [69]

resulted in up to 2-fold improvement in the vanillin yield on glucose limited
chemostats.

OptKnock was used to find gene knock-outs that increased the production of 2,3-
2,3-Butanediol Butanediol using the model iMM904. The deletion of ADH1, ADH3 and ADHS [101]
resulted in an increase of 55-fold in the 2,3-Butanediol production yield.

A strategy composed of three gene deletions (SDH3, SER3 and SER33) was
taken from a previous study that used OptGene to optimize succinate formation
using FBA and the model ;FF708. The triple deletion strain showed a 13-fold
improvement in the succinate yield.

Succinate [56, 79]

iFF708 was used to test all the single and double gene deletions that would
improve succinate production using FBA as the simulation method. The best
Succinate result obtained was for the single deletion of DICI, which increased the [139]
succinate yield to 0.02 C-mol/C-mol. This yield was very similar to the in silico
prediction of 0.03 C-mol/C-mol glucose.

iMM904 was used in MOMA simulations in order to find single gene knock-outs
with improved production of amorphadiene. Up to 10-fold increase in the
production yield was observed for some of the single gene knock-outs
implemented experimentally.

Amorphadiene [140]

Two different metabolic routes were evaluated for the production of 3-
3-hydroxypropionic | hydroxypropionic acid using the model iTO977. The B-alanine dependent

acid pathway was found to be able to achieve higher theoretical yields and was less
dependent on oxygen availability.

[141]

2.4. Conclusions

In the last fifteen years we have witnessed an explosion in the availability of GSMMs and
in several types of computational methods to analyze them. FBA paved the way for the
prediction of flux phenotypes using stoichiometric models and more complex

methodologies with improved characteristics have been developed ever since. The
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application of these constraint-based methodologies to metabolic engineering opened a
new field of in silico strain design, which will certainly grow fueled by successful case-

studies (Table 2.4) and with the improvement of the simulation accuracy.

The number of experimental implementations of strain engineering strategies obtained
using genome-scale metabolic models is still a small percentage of the total amount, but
this can change if more attention is paid to quality instead of the quantity of methods
published each year. As shown in section 2.2, there is a huge number of different
computational methods available to choose from and to pick the appropriate method for
certain metabolic engineering task can prove challenging even to an experienced user.
Another relevant issue is that most of the computational methods discussed in this chapter
are not available in a user friendly format. Some of these issues are solved by using
software packages that compile many of the strain engineering methods into a single
location ( e.g., COBRA toolbox [115], OptFlux [51] and the BioMet toolbox [116]). With
available manuals and installation guides this type of software can deliver complex strain
design methods to a target audience that might lack the technical skills to use them

unaided.
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CHAPTER 3
Improving the flux distributions simulated with genome-scale metabolic

models of S. cerevisiae

A genome-scale metabolic model is a comprehensive description of cellular metabolism
and can be used to evaluate genotype-phenotype relationships. There is therefore much
interest in using these models for evaluating gene knock-outs that optimize the production
of specific metabolites that may have industrial interest. However, to obtain a good
correlation between simulations and in vivo results, a thorough validation of the flux

predictions should be made.

In order to investigate the accuracy of simulated intracellular fluxes, Saccharomyces
cerevisiae was chosen as the case-study because of its industrial relevance. The results
revealed that steady-state simulations of the models available contained mistakes in
important areas of central metabolism, such as the pentose phosphate pathway. Using
cofactor abundance in aerobic conditions as guidance, constraints were applied to all the
metabolic reactions including NADH of NADPH, resulting in several improvements in
the pentose phosphate pathway and other areas related to NADPH metabolism. Those
improvements were shown to have a positive impact on the simulation of gene knock-

outs obtained for the production of acetate and mevalonate.

When genome-scale metabolic models are used for the simulation of gene knock-out
phenotypes, erroneous flux predictions might compromise the accuracy of the results.
Therefore, a careful curation of the wild-type network can improve dramatically the

simulations, resulting in a better correlation with experimental evidence.
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3.1 Introduction

In metabolic engineering, Genome-Scale Metabolic Models (GSMMs) can be used to
predict the effect of different environmental conditions and genetic modifications on the
metabolism of microorganisms of industrial interest [1-6]. If used together with
optimization algorithms, it is possible to find an optimal set of genetic modifications
leading to a desired phenotype [7-9]. Frequently the validation of these models is done by
comparing the predictions obtained solely with physiological data (e.g., growth rates and
gene essentiality) and rarely with in vivo flux distributions. This is mainly because of the
lack of data available on fluxomics and due to the existence of several alternative

simulation methods that may provide different solutions in terms of the fluxes.

Another pertinent problem appears when the algorithms used to simulate phenotypes
require a reference (wild-type) flux distribution, such as MOMA [10], ROOM [11] or
MiMBL [12]. The easiest way of calculating the reference flux distribution for a GSMM
is to use the fluxes obtained from Flux Balanced Analysis (FBA) [13, 14] or Parsimonius
Flux Balanced Analysis (pFBA) [15] simulations [16—18]. However, little is known about
the accuracy of the internal flux distribution calculated with these methods. Segre et al.
[10] have reported that even small deviations in the wild-type flux distribution used for
MOMA simulations can have an impact on the simulation outcome. Furthermore,
Brochado et al. [12] also noted that the reference flux distribution had a significant impact

when MiMBL was used to simulate single gene deletion mutants.

Several cases of in vivo implementation of MOMA results are reported in the literature
with varying degrees of success [16—-19, 1]. One of the possible reasons for the
inconsistent predictions might be the use of a reference flux distribution with severe
deviations from in vivo fluxes. This may be solved by using experimental fluxes to
constrain the reference network, as described by Kuepfer et al. [20], but only when data is
available for that particular condition. In cases where experimental data are absent, the
only alternative would be to curate the wild-type flux distribution using the available
knowledge. In fact, it has been shown before that significant improvements in the internal
fluxes predicted by FBA could be achieved for a GSMM of Arabidopsis thaliana. Briefly,
the problems encountered in the oxidative part of the pentose phosphate pathway were

solved by the authors by accounting for maintenance NADPH and ATP costs [21, 22].
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Saccharomyces cerevisiae is one of the most studied microorganisms and a considerable
amount of information about its metabolism is available. It has proven to be quite
versatile in terms of industrial applications, making it very attractive for metabolic
engineering. Several GSMMs have been published for S. cerevisiae over the last ten years
[20, 23-28] and their prediction of growth rate and exchange fluxes using FBA is
generally quite good. These facts make S. cerevisiae very attractive for investigating in
detail the capacity of GSMMs and simulation methods to predict the intracellular flux

distribution of the central carbon metabolism.

In this work we aim at analyzing the reliability of the flux distributions predictions
obtained with S. cerevisiae GSMMs. We begin by comparing the performance of several
models available in the literature for S. cerevisiae and propose modifications to improve
their internal flux prediction under fully aerobic conditions. Furthermore, the impro