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ABSTRACT 

The buildup of knowledge about microbial metabolism and the development of genome 

engineering techniques gave rise to the rational modification of microorganisms in order 

to use them to biosynthesize chemicals of industrial interest. Recently, the construction of 

genome-scale metabolic models (GSMMs) allowed the design of strain engineering 

strategies in silico. This thesis focused on the study and improvement of in silico strain 

engineering methodologies using Saccharomyces cerevisiae as a case study organism.  

Firstly, in order to investigate the accuracy of the GSMMs available for S. cerevisiae, 

their capacity to simulate the intracellular fluxes in central metabolism was tested. The 

results revealed that the simulations contained relevant errors in important areas of the 

central metabolism. A careful manual curation of the feasibility of all reactions producing 

or consuming NADH / NADPH resulted in the improvement of many fluxes in central 

metabolic pathways when compared to fluxes measured experimentally. 

The lack of a simulation method that could predict in quantitative terms the phenotype of 

strains with complex engineered genotypes, led to the development of a novel simulation 

method called turnover dependent phenotypic simulation (TDPS). This method was 

designed with the goal of simulating the majority of the genetic modifications usually 

implemented in engineered strains. The assumption that the production turnover of a 

metabolite can be used as an indication of its abundance was used in the formulation of 

TDPS in order to take into account the availability of resources when modelling genetic 

modifications. TDPS was validated using metabolically engineered S. cerevisiae strains 

available in the literature by comparing the production yields of the target metabolite.  

TDPS was then applied to the optimization of the availability of cytosolic acetyl-CoA in 

S. cerevisiae, by using an evolutionary algorithm to search for sets of genetic alterations 

that could improve the production yield of 3-hydroxypropionic acid (3-HP) derived from 

acetyl-CoA. Although the yields obtained experimentally were considerably lower than 

the simulations suggested, a positive effect on the 3-HP yield was observed for the down-

regulation of the pyruvate dehydrogenase complex and the deletion of ACH1 (succinyl-

CoA:acetate CoA-transferase).  
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SUMÁRIO 

O progresso que tem sido feito na área da fisiologia microbiana, juntamente com o 

desenvolvimento de técnicas de engenharia genética, permitiu a criação de estirpes 

microbianas modificadas racionalmente com o intuito de optimizar a produção de 

compostos de interesse industrial. Mais recentemente, a construção de modelos 

metabólicos à escala genómica (MMEG) proporcionou o desenho de estirpes modificadas 

in silico. Esta tese focou-se no estudo e melhoramento de metodologias de manipulação 

de estirpes in silico, usando Saccharomyces cerevisiae como caso de estudo. 

De forma a investigar a precisão dos MMEG disponíveis para S. cerevisiae, a sua 

capacidade para simular os fluxos intracelulares foi testada. Os resultados mostraram que 

os fluxos simulados continham erros em áreas importantes do metabolismo central e que 

a curação manual das reacções envolvidas no metabolismo de NADH e NADPH resulta 

em melhorias significativas nos fluxos metabólicos centrais. 

A ausência de um método de simulação que conseguisse prever quantitativamente o 

fenótipo de estirpes com genótipos complexos, levou ao desenvolvimento de um método 

novo designado por turnover dependent phenotypic simulation (TDPS). Este método foi 

concebido com o objectivo de simular a maior parte das modificações genéticas 

normalmente implementadas em estripes modificadas. A formulação do TDPS teve como 

base o uso do nível de produção de um metabolito como indicador da sua abundancia, de 

forma a modelar as modificações genéticas em função da disponibilidade de recursos. A 

validação deste método foi feita usando dados da literatura sobre estirpes geneticamente 

modificadas de S. cerevisiae, através da comparação dos rendimentos simulados e reais. 

O método de simulação TDPS foi posteriormente aplicado na optimização da produção de 

acetil-CoA no citosol de S. cerevisiae, usando um algoritmo evolucionário para procurar 

conjuntos de alterações genéticas que aumentassem a produção de ácido 3-

hidroxipropiónico derivado de acetil-CoA. Apesar dos rendimentos experimentais serem 

mais baixos que as simulações sugeriam, observou-se um efeito positivo da sub-regulação 

do complexo da piruvato desidrogenase e da eliminação do gene ACH1 (succinil-

CoA:acetato CoA-transferase). 
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CHAPTER 1  
Introduction  

 

The buildup of knowledge about microbial metabolism and the development of 

sophisticated genome engineering techniques gave rise to the rational modification of 

microorganisms in order to use them to biosynthesize chemicals of industrial interest. 

Recently, the possibility of easily sequencing whole genomes allowed the reconstruction 

of metabolic models at the genome scale, which can be applied to the design of strain 

engineering strategies in silico. 

This thesis focuses on the study and improvement of in silico strain engineering 

methodologies using S. cerevisiae as a case study organism. Firstly, the accuracy of the 

genome-scale models was examined in detail and their flux predictions were improved by 

manual curation. Secondly, a new simulation methodology was developed to allow the 

simulation of complex strain designs. Finally, the improved models and the novel 

simulation method were applied to a practical case study aimed at optimizing the 

production of acetyl-CoA availability in the cytosol of S. cerevisiae. 
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1.1 Context and Motivation 

The use of fermentation to alter the properties of certain foods has been part of our 

society for thousands of years. For example, the production of cheese, yogurt, bread, beer, 

wine and vinegar all have an underlying fermentation process. Although the consumption 

of fermented foods has a long history, it was only in the 19th century that Louis Pasteur 

described the role of microorganisms in the different fermentation processes. Advances in 

the understanding of microbial fermentation allowed several chemicals to be produced 

industrially, including citric acid from Aspergillus niger, penicillin from Penicillium 

chrysogenum and L-glutamic acid from Corynebacterium glutamicum. The discovery that 

the genetic information was encoded in the DNA of a living organism [1] followed by the 

development of recombinant DNA technology [2], were crucial steps for what would 

become modern biotechnology. Nowadays, there are several classes of industrial products 

synthesized using biological processes, including: organic acids (e.g., citric acid and 

lactic acid), alcohols (e.g., 1,3-propanediol and ethanol), hydrocarbons (e.g. farnesene), 

amino acids (e.g., L-glutamic acid and L-lysine), antibiotics (e.g., penicillins and 

cephalosporins) and biopharmaceuticals (e.g, insulin and interferon α) [3]. 

During the early days of biotechnology, the choice of an organism to produce a 

compound of interest started by screening naturally occurring species for a desired 

phenotype. For example, the industrial production of penicillin started by the discovery, 

by Alexander Fleming, that some species of Fungi secrete compounds that inhibit the 

proliferation of bacteria. Furthermore, the strain improvement processes were mostly 

based on random mutagenesis followed by screening of strains with enhanced production 

levels. These techniques were labor intensive but they were the best alternative for strain 

improving before advanced genetic engineering procedures were developed.  

The buildup of knowledge about microbial metabolism and the development of more 

sophisticated genome engineering techniques gave rise to the rational modification of 

microorganisms to improve their phenotypical properties towards a certain goal. This 

methodology is usually referred to as metabolic engineering [4, 5] and has been the 

subject of a vast number of publications over the past twenty years [6]. A few examples 

of rational strain designs that resulted in industrial processes include the production of 

artemisinin (anti-malarial) [7], farnesene (biofuel) and 1,3-propanediol (polymer) [8]. 
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More recently the possibility of sequencing whole genomes allowed the reconstruction of 

metabolic models at the genome scale. These models can be used to simulate the 

phenotype of an organism and analyze the change in behavior when genetic modifications 

are applied. The use of genome-scale models for searching for strain engineering 

strategies has been growing for the last fifteen years and a considerable amount of 

methodologies have been developed for this purpose. However, despite the large number 

of methodologies available for strain optimization purposes, their use is still quite 

uncommon, which is partly derived from the lack of accuracy of the simulations and 

unreliable results in quantitative terms. In order to increase the use and acceptance of in 

silico strain engineering methodologies in the metabolic engineering field, it is necessary 

to carefully analyze the existing methodologies and improve them to the point where 

researchers will trust simulations over their rationally derived hypothesis. 

Baker’s yeast, Saccharomyces cerevisiae, is a model organism with plenty of 

physiological information readily available (Saccharomyces Genome Database [9]) and it 

is the most used eukaryotic organism in metabolic engineering studies [6]. It is a 

microorganism easy to engineer and cultivate, for which there are plenty of genome 

engineering tools available [10]. The full genome of S. cerevisiae was the first to be made 

available for a eukaryotic organism [11] and the corresponding genome-scale metabolic 

model was also the first of its kind for a eukaryote [12]. The accumulated knowledge 

available for S. cerevisiae, in combination with the large amount of literature regarding 

rational strain engineering strategies, makes it one of the best choices for a case-study 

regarding in silico strain design methods. 

1.2 Research aims 

The main goal of this thesis was to improve the methodologies used for in silico strain 

engineering by using S. cerevisiae as the case study organism. To achieve that goal the 

accuracy of the genome-scale models was first examined in detail by comparing how well 

they could predict the metabolic flux distributions in central metabolic pathways. 

Afterwards, the models were curated manually in order to improve their flux predictions. 

Using that information, the focus was then the development of a simulation method that 

could replicate the results of experimental strain designs available from the literature. For 

that purpose, a new methodology was developed that allows the simulation of complex 
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strain designs composed of gene deletions and up-/down-regulations. The final goal was 

the application of the improved models and simulation method to a practical case study 

aimed at optimizing the production of acetyl-CoA availability in the cytosol of S. 

cerevisiae. 

1.3 Outline of the thesis 

This thesis is organized in six different chapters: a general introduction and 

contextualization of the subjects explored in this thesis is presented in the current chapter, 

the research aims stated above are explored in chapters 2-5 and the final conclusions and 

recommendations for further work are given in chapter 6. The four chapters covering the 

research aims were organized as follows: 

- In chapter 2, a comprehensive list of computational methods devoted to strain 

design was collected from the literature and a summary of their main features was 

compiled. Furthermore, the full list of genome-scale models for S. cerevisiae was 

assembled and an exhaustive search of their applications to engineer the 

metabolism of this microorganism was performed.  

- A comparison of the simulation accuracy of selected genome-scale models of S. 

cerevisiae was performed in chapter 3, in order to verify if faulty flux predictions 

could lead to erroneous predictions of gene knock-outs. Improvements were 

applied to selected models by curating the metabolic reactions involved in NADH 

and NADPH metabolism.  

- In chapter 4 a novel simulation method entitled turnover dependent phenotypic 

simulation is presented with the goal of simulating quantitatively the phenotype of 

strains with complex genotypes in a resource conscious manner. The developed 

method was validated using metabolically engineered S. cerevisiae strains 

available in the literature by comparing the production yields of the target 

metabolites between the simulations and experiments. 

- In chapter 5 the turnover dependent phenotypic simulation method (chapter 4) was 

used in combination with an evolutionary algorithm to search for sets of genetic 

alterations that would improve the production yield of 3-hydroxypropionic acid 

derived from acetyl-CoA. The in silico suggested modifications were 

implemented sequentially in S. cerevisiae, and the resulting strains were 
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physiologically characterized in batch fermentations to test the validity of the 

simulations. 
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CHAPTER 2  
Strain engineering using genome-scale metabolic models 

 

The advent of complete genomic sequences allowed the creation of models containing the 

full set of biochemical transformations present in an organism. These Genome-Scale 

Metabolic Models (GSMMs) can be used to simulate the flux distribution of an organism 

in different environmental and genetic conditions. Therefore, their use in metabolic 

engineering can be of great help to characterize modified strains and search for possible 

genetic targets that optimize a certain desirable trait. 

Here we explore the computational methodologies available to aid in the strain 

engineering process using GSMMs by dividing them in three categories according to their 

practical application. Furthermore, we show how GSMMs have been used to predict 

interesting genetic targets and create improved strains of S. cerevisiae. Although the 

experimental implementation of strain designs obtained in silico has shown good results, 

this type of strain engineering methodology is still not widespread in the metabolic 

engineering field.    
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2.1 Introduction 

The genome encodes the information necessary to synthesize all the enzymes present in a 

cell and consequently the diversity of chemical transformations therein. In 1995, 

Haemophilus influenza became the first free-living organism to have its genome 

completely sequenced [1], which enabled the reconstruction, a few years later, of the first 

model of metabolism at the genome scale [2]. With several sequencing projects finishing 

in the following years, additional genome-scale metabolic models (GSMMs) became 

available, including for Escherichia coli [3] and for Saccharomyces cerevisiae [4], with 

the latter being the first GSMM available for a eukaryotic organism. By 2004 a total of 

five GSMMs were already available [5] and that number grew to more than 100 as of 

2014 [6].  

The construction of a GSMM starts by assigning a metabolic function to each gene 

coding for an enzymatic reaction that is present in the genomic sequence. Furthermore, 

many additional curation steps are required until the finalized model is ready for 

simulation purposes. The full process of GSMM reconstruction has been described in 

detail in several publications [7–10] and software tools that can help in the reconstruction 

process are available [11–16]. These software tools can be of great help in the reduction 

of the total time necessary to reconstruct a GSMM and can prove extremely valuable for 

annotating genomes of less studied organisms. Besides the stoichiometry and reversibility 

for all chemical reactions that can occur in a certain organism, GSMMs can include 

additional details, such as the kinetic parameters for each enzymatic reaction [17]. 

However, the availability of kinetic information is very scarce, which makes it very 

challenging to gather these data at the genome-scale. Furthermore, dynamical modelling 

is also computationally intensive, which makes it unpractical for simulating genome-scale 

networks. 

Since the biochemical information included in most GSMMs is limited to the 

stoichiometry and reversibility of all reactions, the application of these models is 

restricted to steady-state modelling of intracellular fluxes [18, 19]. The use of 

stoichiometric models to estimate the flux distribution in a biological network dates back 

as far as 1969 [20], but further experiments were not reported until the mid-1980’s [21, 

22] and the field only started to expand in the early 1990’s (reviewed in [23]). 

Stoichiometric modelling [19, 24, 25], also referred in the literature as constraint-based 
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modelling [18], of genome-scale metabolic networks is an expanding field and has been 

applied in different areas of the biological sciences, including: the contextualization of 

high-throughput data, strain engineering, study of host-symbiont relationships, 

metabolism of pathogenesis and the search for cancer drug targets (reviewed in [7, 18, 26, 

27]). A thorough review of the field of constraint-based modelling was published in 2014 

[18], which counted over 600 publications in this area of knowledge. 

The mathematical foundation for modeling stoichiometric networks is based on the 

assumption that the system is in a steady state, which allows mass balance constraints to 

be imposed on metabolite pools as shown in equation 2.1 [19, 22, 23]: 

 . 0S V =   Equation 2.1 
   

Where S is a matrix containing the stoichiometric coefficients for all metabolic reactions 

(one row for each metabolite and one column per reaction) and V is the flux vector. In 

other words, equation 2.1 can be converted into a set of linear mass balance equations that 

impose the production rate of each metabolite to be equal to its consumption rate. This 

steady-state assumption is based on the fast nature of metabolic changes when compared 

to growth or environmental changes [23]. Although most metabolites in the system must 

be completely balanced, an exception is made for selected metabolites that can be 

absorbed/excreted from/to the medium. In addition to equation 2.1, it is usually assumed 

that the flux values should be constrained within certain limits, which defines the 

reversibility of reactions and the magnitude of the input fluxes: 

 LB UBV V V≤ ≤   Equation 2.2  
   

Where LBV  is the vector of lower flux bounds and UBV  is the vector of upper flux bounds. 

Mass balance and flux constraints (equations 2.1 and 2.2) are usually not enough to obtain 

a singular flux distribution because the number of variables (fluxes) is often much larger 

than the number of mass balance equations (metabolites), which makes the system of 

equations underdetermined. Using metabolic flux analysis [28] additional flux constraints 

(such as measured metabolite consumption and excretion rates) can be imposed to try to 

find the flux distribution that better approximates the experimental values. Alternatively, 

linear programming can be used to optimize a certain cellular goal (e.g. biomass yield or 

ATP production), which is the principle of Flux Balance Analysis (FBA) [29]. One 
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common strategy to simulate the flux distribution of microbial cells with FBA is to 

maximize the flux through a pseudo-reaction describing the consumption of biosynthetic 

precursors and energy requirements for synthesizing a specific amount of cellular material 

[10, 30, 31]. Depending on the type of organism and the specific condition that needs to 

be simulated, other objective functions can be used [31, 32] and even deduced from 

experimental data [33]. 

The simulation of flux phenotypes with FBA or other constraint-based simulation 

methods provides an interesting alternative for testing the effects of genetic modifications 

on the phenotypic behavior of an organism [34]. These methods can be of great help in 

designing strains with desired phenotypic characteristics because the time required for a 

simulation is considerably faster than the corresponding experimental implementation 

(reviewed in [35–39]). This chapter provides a detailed analysis of the computational 

methods available in the literature that can help designing strain engineering strategies by 

modelling metabolism at the genome scale. Furthermore, the application of in silico strain 

design methods to Saccharomyces cerevisiae was explored in detail to provide a context 

of how GSMMs can help in practice the strain engineering process. 

2.2. Strain engineering with GSMMs 

Rational metabolic engineering [40] procedures are the result of accumulated biochemical 

information about a certain organism, which allows the formulation of hypotheses about 

the effects that a certain genetic modification will provoke on the phenotypical behavior 

of a cell. One big difficulty of rational strain designs is that metabolic networks are 

composed of hundreds of interconnected metabolic reactions, which can lead to 

unforeseeable results. To model the effect of genetic modifications at the system scale, 

the most suitable methodology is constraint-based modelling of genome-scale networks 

[18], which allows the calculation of flux distributions in steady state conditions for a 

certain genotype. 

As mentioned in the introduction, most of the GSMMs available are stoichiometric 

representations of metabolism and their foundation lies on the mass balances of 

metabolites. Although the core assumption is quite simple, several methods of variable 

complexity have been developed with the goal of helping to analyze and modify the 
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metabolic capabilities of the cell. Previously, some compilations of the available 

constraint-based methodologies have been made by classifying the methods 

phylogenetically [34], by the types of modifications they allow [38, 39], or by the 

underlying objective function [37]. The classification used here is based on the utility of 

each method for different strain engineering tasks. Figure 2.1 shows the three categories 

we used to group the different strain engineering constraint-based methods available in 

the literature: the first category gathers the methods that return a flux phenotype for a 

given set of genetic modifications (phenotype simulation), the second group of methods is 

composed of strain optimization methods that yield a set of strain engineering 

modifications that should optimize a certain metabolic engineering goal (target 

discovery), and the third category includes methods that can help in strain engineering but 

are not related with the search or analysis of genetic targets (auxiliary network analysis).  

Although the methods on each category should serve different practical purposes, some of 

them could conceptually belong to several categories simultaneously. For example, most 

target discovery methods have an underlying simulation routine that could also be placed 

in the phenotype simulation category. However, quite often the simulation part of the 

target discovery methods is just a version of FBA used to search for genetic targets that 

optimize the desired product. Therefore, each method was classified into a single category 

from Figure 2.1, according to its main purpose of application. 

 

Figure 2.1- Different categories adopted for classifying the computational methods used for strain 
engineering with genome-scale metabolic models. 
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2.2.1 Phenotype simulation methods 

One of the issues usually encountered when designing metabolically engineered strains 

with desired phenotypical traits is the appearance of unexpected effects. Given the 

complexity of metabolic pathways, it is often hard to understand what caused the 

undesired behavior, resulting in additional experiments to elucidate the underlying causes. 

The estimation of fluxes using labelled substrates (reviewed in [41, 42]) is one of the 

possibilities to characterize the fluxes of a mutant organism, but it is a troublesome and 

expensive procedure. Alternatively, the effects of a set of genetic modifications can be 

easily simulated using constraint-based computational methods, which can help pinpoint 

the reasons behind an undesirable phenotype. Furthermore, a careful analysis of the 

simulated fluxes might yield additional non-obvious genetic targets that can help 

achieving the desired goal. 

Table 2.1 shows a list of the available methods capable of simulating flux phenotypes 

using GSMMs and a short description of their main attributes. FBA was the first method 

developed for simulating stoichiometric models and its invention predates the appearance 

of GSMMs. Briefly, FBA finds a distribution of fluxes that meets a certain objective 

formulated with linear programming. The most common objective function used to 

simulate the fluxes of microbial GSMMs is the maximization of the biomass yield, which 

is based on the presumption that evolution has selected for phenotypes that use limited 

resources efficiently for growing and dividing [10, 30, 31]. One common drawback of the 

flux distributions obtained with FBA is that they are usually not unique, i.e., for the same 

value of the objective function there are several reactions for which the metabolic fluxes 

can vary. Parsimonious FBA (pFBA) was developed to further refine the flux distribution 

obtained with FBA by removing most futile loops from the network, which can be 

achieved by minimizing the total sum of fluxes in the network or the number of active 

reactions [43, 44]. These assumptions are based on the efficiency of metabolic networks, 

which are expected to perform a certain task with a minimal amount of resources 

expended. 
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Table 2.1- Phenotype simulation methods available for genome-scale metabolic models 

Method Brief description References 

FBA 

Linear programming simulation method that can estimate the flux distribution in 
a genome-scale network by assuming a certain cellular objective. Flux 
distributions of microorganisms are usually calculated by assuming maximal 
biomass formation. Can be used to predict wild-type phenotypes and the growth 
outcome of gene knock-outs and their associated flux distribution. 

[2, 21, 22, 29] 

pFBA Bi-level formulation intended to refine the flux distribution obtained with FBA 
by minimizing the number of active enzymes or the total sum of fluxes.  

[43, 44] 

MOMA 

MOMA assumes that the flux distribution of a deletion mutant should stay as 
similar as possible to the wild-type organism. Therefore, MOMA computes the 
flux distribution for a mutant metabolic network by minimizing the Euclidean 
distance between a reference set of fluxes (for the wild-type strain) and the 
mutant fluxes. 

[45] 

LMOMA 
Same as MOMA but the minimization in LMOMA is referent to the Manhattan 
distance instead of the Euclidean distance. [46] 

PSEUDO 

This formulation is similar to MOMA because it also minimizes the Euclidean 
distance between the mutant organism and the wild-type. However, instead of 
using a single flux distribution as the reference, PSEUDO uses a degenerate 
optimal region of the flux space delimited by a minimal threshold imposed on 
biomass production. 

[47] 

ROOM 
This formulation computes the flux phenotype of a deletion mutant by 
minimizing the number of reactions that are activated of inactivated in 
comparison to a reference flux distribution. 

[48] 

MiMBl 
This formulation assumes that a deletion mutant will attempt to minimize the 
changes in the turnover of all metabolites (sum of producing and consuming 
fluxes) in comparison to a reference flux distribution. 

[49] 

Under/ 
overexpression 

plugin for 
OptFlux 

This formulation emulates the over and under expression of genes by imposing 
flux constraints based on a reference flux distribution. The mutant’s flux 
distribution can be simulated by choosing any of the available objective functions 
in OptFlux (e.g. FBA, MOMA and LMOMA). 

[50, 51] 

 

Some of the uses given to FBA include the prediction of gene essentiality [2, 3, 52, 53], 

the growth rate of a knock-out mutant after directed evolution [54] and sets of knock-outs 

that couple the production of a certain product to growth [55, 56]. The use of an objective 

function in FBA that assumes maximum biomass formation usually results in initial 

growth levels of engineered strains lower than the simulations suggest. However, it has 

been shown that after directed evolution, the growth and production levels of engineered 

strains may converge to the values simulated with FBA [54–56]. Although FBA is mostly 

used on its own, some complementary methods have been developed to include 

regulatory information [57–60], transcriptomic data [61] and thermodynamic constraints 

[62, 63]. 

As discussed above for FBA, the assumption of optimality for biomass formation can lead 

to unrealistic predictions of the growth phenotype in knock-out mutants. In order to 

predict more accurately how a metabolic network reacts to perturbation, several more 
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objective functions have been developed (Table 2.1). Segrè et al. developed a formulation 

to simulate the effects of knock-outs on a metabolic network designated Minimization Of 

Metabolic Adjustment (MOMA) [45]. This methodology assumes that when an organism 

is faced with a gene deletion, it will try to minimize the adjustments of the flux values in 

comparison with a wild-type reference. MOMA formulates this objective function 

mathematically as the minimization of the Euclidean distance between the mutant set of 

fluxes compared to the reference wild-type fluxes (Figure 2.2). The growth predictions of 

gene knock-outs simulated with MOMA are more conservative than the results obtained 

with FBA and it has been shown that MOMA can predict more accurately gene 

essentiality in some cases [45, 64]. MOMA has also been used for prediction of metabolic 

engineering targets and many of them have been implemented experimentally with 

varying degrees of success [65–69]. 

 
Figure 2.2- Simplified representation of the differences between the objective functions used in FBA, MOMA, 
LMOMA and PSEUDO. V1 and V2 represent two arbitrary fluxes in a network and the green area delimits the feasible 
flux space for the wild-type organism, while the orange area is correspondent to the mutant feasible space. The FBA 
objective function is represented by a dashed brown line and the optimal value of V1 and V2 in an FBA simulation is 
shown as a blue dot. The different distance metrics (grey dashed lines) are shown in the 2D plot along with the optimal 
objective function values for each method (colored dots). The relaxed region of the flux space used in PSEUDO is 
represented as a dashed blue line. Adapted from Segrè et al. [45]. 

 

In addition to the normal MOMA formulation, two additional variations are available in 

the literature: linear MOMA (LMOMA) [46] and PSEUDO [47]. One common issue 

usually encountered in the flux distributions computed with MOMA is that this 

formulation favors a large number of small flux changes in detriment of a few large 

changes in the metabolic network. This is caused by the quadratic formulation used to 

calculate the flux distance in MOMA and can be solved by using LMOMA, which uses 

the Manhattan distance between the reference and perturbed network to find the flux 

Rui Pereira  Universidade do Minho, 2015 



16 | Chapter 2 
 

phenotype of the knock-out mutant (Figure 2.2). Another issue that might arise from 

using MOMA/LMOMA is the importance given to a reference flux distribution. Usually, 

the reference set of fluxes is calculated using FBA or pFBA [65–67] and any error in this 

flux distribution will be propagated to all the predictions. The methodology developed in 

PSEUDO can tackle this issue by not using a single flux distribution as a reference but a 

region of the flux space delimited by a minimum threshold imposed on the biomass yield 

(Figure 2.2) [47]. The authors of this methodology reported some improvements in 

comparison to MOMA and FBA flux predictions [47]. 

Shlomi et al. pursued the same concept of minimal metabolic adjustment but in a different 

perspective [48]. Instead of minimizing the flux differences between the mutant and the 

wild-type organism, the methodology entitled ROOM (Regulatory On/Off Minimization) 

minimizes the number of reactions that are activated or deactivated in a mutant in 

comparison to a reference flux distribution (Table 2.1). The assumption behind ROOM is 

that, when faced with a set of knock-outs, a cell will adjust its internal fluxes by making 

the minimum amount of regulatory changes, i.e., the magnitude of the fluxes can change, 

but the set of active enzymes should be similar to the wild-type organism. The predictions 

obtained for ROOM were closer to FBA than MOMA and revealed that MOMA is better 

at estimating transient metabolic adaptations, while FBA and ROOM can better predict 

the phenotype of an evolved knock-out mutant [48]. 

Another issue encountered in the formulation of MOMA and LMOMA was the 

dependence of the mutant phenotype on the scale of the stoichiometry of the metabolic 

reactions [49]. By using different stoichiometric representations of a metabolic network 

that are biochemically equivalent, Brochado et al. showed that the simulation outcome of 

MOMA/LMOMA was sensitive to the stoichiometric representation chosen for the 

network [49]. Since biochemically equivalent networks should produce the same results, 

the authors propose a new methodology entitled Minimization of Metabolites Balance 

(MiMBl). The formulation underlying MiMBl solves the stoichiometry dependence of 

other algorithms by using the metabolite turnovers as the variables in the objective 

function. Instead of minimizing the changes in the fluxes in comparison to a reference 

network, MiMBl minimizes the changes in the turnovers of all metabolites in the 

network. As a consequence, MiMBl provides more robust results, which are not 

dependent on the numerical stoichiometric representation chosen to describe a metabolic 

network. 
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The final method shown in Table 2.1 was included as a representative of how other 

genetic modifications can be incorporated in the simulation methods discussed. The 

under/ overexpression plugin [50, 51] can be used in combination with the simulation 

methods described in Table 2.1 to predict the effect of up- or down-regulating certain 

fluxes in the network. This methodology uses a wild-type flux distribution as a reference 

to estimate how over or underexpressing a certain gene will affect the corresponding 

fluxes. After applying constraints to the modified fluxes, this method calculates the flux 

distribution of the mutant by using one of the objective functions available in OptFlux.  

2.2.2 Target discovery methods 

While the simulation of phenotypes in silico can be of great help for analyzing the 

internal fluxes of a few rationally designed strains, it would take too long to manually 

discover combinations of genetic modifications that meet a certain metabolic engineering 

objective. In order to search for interesting genetic targets, several methods have been 

developed to search among the large number of different strain engineering strategies for 

the ones that result in the desired phenotype. A compilation of the methods available in 

the literature for discovering potential metabolic engineering targets using GSMMs is 

shown in Table 2.2. 

Table 2.2- Computational methods available for target discovery using genome-scale metabolic models 

Method Brief description References 

OptKnock 

Bi-level optimization method that has an FBA inner problem that optimizes the 
biomass yield and an outer problem that maximizes the production of a target 
compound. Given a maximum number of allowed knock-outs, this method returns a 
single optimal strain design.  

[70] 

Robustknock 

FBA simulations can suffer from alternative optimal solutions and, as a consequence, 
the inner problem of OptKnock might return a strain design with variable production 
levels of the target metabolite. In RobustKnock the strain designs returned are 
guaranteed to be robust.  

[71] 

ReacKnock 
Similar formulation to OptKnock but the Karush-Kuhn-Tucker method was used to 
reformulate the bi-level optimization problem to a single level one.  

[72] 

Objective 
tilting 

FBA simulations can suffer from alternative optimal solutions and, as a consequence, 
OptKnock and OptGene strain designs might suffer from variable production levels. 
This method applied modifications to OptGene and OptKnock to guarantee a robust 
production level. 

[73] 

OptORF 

Bi-level optimization method that has an FBA inner problem that optimizes the 
biomass yield and an outer problem that maximizes the production of a target 
compound. Transcription regulation further constraints the search for strain designs 
composed of gene deletions and over-expressions. 

[74] 

OptSwap 

Bi-level optimization method that has an FBA inner problem that optimizes the 
biomass yield and an outer problem that maximizes the production of a target 
compound. This method returns an optimal strain design composed of reactions with 
changed cofactor specificity and knock-outs. 

[75] 
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Table 2.2- Computational methods available for target discovery using genome-scale metabolic models 
(continuation) 

Method Brief description References 

FaceCon/ 
ShadowCon 

These modules can be added to optimizations methods such as OptKnock and 
OptORF to increase the diversity of strain designs obtained. Possible applications 
include designing strains with by-product inhibition, variable coupling constraints and 
co-production of two metabolites. 

[76] 

FastPros 

This method uses the shadow prices to find strain designs composed of knock-outs 
that result in the overproduction of a target metabolite under biomass maximization. 
The optimal combination of knock-outs can be found with other methodologies (e.g. 
OptKnock) by restricting the search space to the best knock-out candidates obtained 
with FastPros. 

[77] 

BiMOMA 

Bi-level optimization method that has a MOMA inner problem that minimizes the 
distance to a wild-type reference and an outer problem that maximizes the production 
of a target compound. Given a maximum number of allowed knock-outs, this method 
returns a single optimal strain design.  

[78] 

OptGene 

Optimization based on evolutionary algorithms that was designed to find sets of 
knock-outs using one of the available simulation methods for the inner problem 
(authors tested FBA and MOMA). OptGene returns several near optimal strain 
designs that maximize a target compound. 

[51, 79] 

SA/SEA 
Evolutionary and simulated annealing algorithms were designed to search for near 
optimal sets of gene deletions that maximize the production of a target compound. 
Similar to OptGene, but sets were used to represent genetic alterations to allow strain 
designs with flexible size. 

[51, 80] 

CiED 

Optimization based on evolutionary algorithms that was designed to find sets of 
knock-outs using FBA. Adopts a different heuristic from OptGene that is capable of 
retaining beneficial mutations and performs an assessment of the frequency that each 
modification appears in the optimal designs. 

[81] 

GDMO 

Multi-objective optimization algorithm that searches for gene deletions/nutrient 
availability that maximize the production of a target metabolite in addition to other 
objectives (e.g. biomass formation). GDMO returns a pareto front with the best 
tradeoff between the objectives and uses FBA as the underlying flux calculation 
method. 

[82] 

GDLS 
Optimization method based on local search that offers a much faster alternative to 
global search methods (e.g. OptKnock). Can be used for finding sets of gene deletions 
of larger sizes in feasible computation times.  

[83] 

GDBB 

This method uses a truncated branch and bound algorithm that can replace the bi-level 
formulation present in similar strain design methods (e.g. OptKnock and GDLS). 
GDBB can find near-optimal solutions (knock-outs or others) in comparatively much 
shorter times. 

[84] 

OptReg 

Bi-level optimization method that has an FBA inner problem that optimizes the 
biomass yield and an outer problem that maximizes the production of a target 
compound. OptReg finds the optimal strain design composed of reaction deletions 
and up/down-regulations. 

[85] 

EMILiO 

This method uses successive linear programing to find flux constraints (upper and 
lower bounds) that maximize the production of a target compound (while maximizing 
biomass with FBA). Genetic modifications are modelled by constraining fluxes to 
specific optimal levels instead of pre-calculated levels like in OptReg. 

[86] 

Redirector 
This method manipulates the objective function of FBA to model genetic up- and 
down-regulations. It is used to optimize the production of a target metabolite by using 
GDLS to find near-optimal strain designs composed of up- and down-regulations. 

[87] 

OptStrain 

Optimization method that first searches for heterologous reactions which need to be 
added to a certain host in order to allow the production of the target product. 
Subsequently, OptKnock is used to find reaction deletions that optimize the product 
formation.  

[88] 

SimOptStrain 
Similar to OptStrain, but the addition of heterologous reactions and search for 
reaction knock-outs is done simultaneously instead of sequentially. 

[78] 
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Table 2.2- Computational methods available for target discovery using genome-scale metabolic models 
(continuation) 

Method Brief description References 

OptForce 

Unlike most strain optimization methods, OptForce does not maximize biomass 
formation to find the flux distribution of the mutant strain. In this case, OptForce 
finds the minimal set of fluxes that must be forced (up/down-regulated and knocked-
out) to make sure the target metabolite is produced at optimal levels. 

[89] 

CosMos Similar to OptForce, but the fluxes can be forced to any value instead of 
predetermined intervals. 

[90] 

k-OptForce 

Similar to OptForce but kinetic information is added to the network where available. 
k-OptForce finds the minimal set of fluxes that must be forced (up/down-regulated 
and knocked-out) as well as the minimal set of enzyme parameters that must be 
changed to optimize the target metabolite. 

[91] 

OP-Synthetic 

This method searches for changes on the flux limits calculated with FVA [92] by 
increasing step-by-step the production of a target metabolite. When a flux bound 
violates the wild-type flux limits it is assumed that this reaction is a possible target for 
up/down-regulation or deletion depending on the direction of change compared to the 
reference interval. 

[93] 

FSEOF 

Methodology that scans the changes in the fluxes that are predicted by FBA when the 
production of the target metabolite is forced to increase step-by-step. The fluxes that 
increase with the enforced production of the target are assumed as possible up-
regulation candidates. 

[94] 

FVSEOF 
While FSEOF searches for changes in the fluxes predicted by FBA, FVSEOF searches 
for changes in the flux bounds calculated with FVA. This methodology also returns 
possible candidates for up-regulation. 

[95] 

SIMUP 
Bi-level optimization method with an FBA inner problem that optimizes the biomass 
yield and an outer problem that promotes the co-utilization of two sugars by searching 
for knock-out combinations that are lethal when only one substrate is available. 

[96] 

FOCAL 
Bi-level method that finds media conditions and knock-out combinations that make a 
target flux coupled to another (e.g. growth). Can also be applied to strain engineering 
for substrate co-utilization or other strategies that require flux coupling. 

[97] 

DySScO 
First the GDLS method is used to find strain designs composed of knock-outs that 
optimize a target product. Then, each strain is tested with dFBA [98] to estimate their 
titer and productivity in batch cultures.  

[99] 

 

Among the methods shown in Table 2.2, the first method developed for target discovery 

was OptKnock and its formulation consisted in the search for combinations of knock-outs 

that result in an increased production of a target metabolite [70]. OptKnock is a bi-level 

optimization method that uses FBA to calculate the phenotype of a certain combination of 

knock-outs by assuming maximum biomass formation. The result returned by OptKnock 

is the best combination of knock-outs that maximize the engineering goal, while taking 

into account a maximum number of knock-outs and a minimum biomass formation rate. 

Some of the results obtained with this optimization algorithm have been used to find 

knock-out targets that resulted in the construction of strains with improved production 

levels of lactic acid, 1,4-butanediol and 2,3-butanediol [55, 100, 101]. 
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One of the problems encountered in OptKnock was the possibility that the combination of 

knock-outs returned would result in a strain with variable production rates in silico [71, 

73]. This variability is caused by the non-uniqueness of the flux distribution obtained 

from the FBA simulation layer, which can result in a non-robust production flux for the 

target metabolite. The mutants suffering from non-robustness usually can produce 

alternative byproducts instead of the target metabolite without impacting the maximum 

value of the biomass yield simulated with FBA. This robustness issue was addressed in 

the formulation of RobustKnock [71] and in the utilization of objective function tilting 

[73], which resulted in improved optimization methods that returned strain designs with 

guaranteed production levels in silico. An additional issue has also been reported 

regarding the transformation method used to convert the bi-level problem of OptKnock 

into a single level optimization problem [72]. Xu et al. tried to solve this issue by using 

the Karush-Kuhn-Tucker method to reformulate the bi-level optimization problem into a 

single level one, which resulted in a new method designated ReacKnock [72]. 

In addition to the above-mentioned optimization methods, there are additional variations 

of the OptKnock formulation that include special features that can be of great help in the 

design of metabolically engineered strains. Besides searching for metabolic gene knock-

outs, OptORF can also use regulatory information available for the metabolic network in 

order to find modifications at the regulatory level that improve the production of a target 

metabolite [74]. Furthermore, there is an optimization method (OptSwap) that maximizes 

the production of a metabolite of interest by suggesting changes in cofactor (NADH and 

NADPH) specificity of oxidoreductase enzymes in addition to knocking out sets of 

reactions [75].  

Table 2.2 also includes software modules, such as FaceCon/ ShadowCon, that can be 

added to optimization methods that search for the globally optimal strain design (e.g. 

OptKnock and OptORF) in order to introduce variability and include additional desirable 

traits in the strain designs obtained [76]. Furthermore, to shorten the computational time 

needed to find globally optimal solutions, the number of possible knock-out targets can be 

reduced beforehand with FastPros [77].  

All optimization methods discussed so far have FBA at the center of their bi-level 

formulation. However, there is also a version of OptKnock that has the MOMA 

simulation method included in the inner simulation layer [78]. The method, designated by 
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the authors as BiMOMA searches for knock-outs that maximize a certain metabolic 

engineer goal, but instead of maximizing biomass formation, it simulates the mutant 

phenotypes by minimizing the distance to a wild-type flux distribution. 

One important drawback of the target discovery methods that search for a global optimum 

solution like OptKnock is that, as the number of allowed genetic modifications increases, 

the total searchable space of strain designs grows exponentially, which makes the 

computation time required to solve the problem impractical. This severely limits the 

maximum number of genetic modification that can be included in the strain designs 

computed with OptKnock and similar methods. One of the possibilities to solve this 

limitation is to use evolutionary algorithms or other nature-inspired heuristics to find 

strain designs with desired phenotypes. The first evolutionary optimization method 

published was OptGene [79] and since then many other became available (SEA [51, 80], 

CiED [81], GDMO [82]). Evolutionary algorithms can search for strain designs with 

larger sets of genetic modifications, can be used in combination with multiple simulations 

methods (such as FBA, MOMA or LMOMA) and require less computation time to reach 

near-optimal design solutions. Further advantages of evolutionary algorithms include the 

possibility of optimizing non-linear objective functions (e.g. resembling productivity) and 

the fact that several near-optimal strain designs are suggested by the algorithm, instead of 

a single global optimum like in OptKnock-based methods. One possible drawback of this 

type of optimization is that the near-optimal strain designs found by the evolutionary 

algorithm might be distant from the global optimum. In parallel with OptKnock, the use 

of evolutionary algorithms to find interesting genetic targets has also resulted in the 

construction of several strains with improved production levels of metabolites of interest 

[56, 69, 81, 102]. 

In addition to evolutionary algorithms, there are also other methods that have been 

developed to help in the search for strain designs of larger sizes. Genetic Design through 

Local Search (GDLS) was developed as an alternative methodology to find near-optimal 

sets of knock-outs using a local search methodology [83]. When compared to 

evolutionary algorithms, the GDLS heuristic was able to achieve higher in silico yields 

for certain case-studies [83]. Also developed as an alternative for exact algorithms that 

search for globally optimal solutions, the Genetic Design through Branch and Bound 

(GDBB) uses a truncated branch and bound algorithm that outperforms such methods in 

terms of computational time required [84].  
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Although most computational methods that search for interesting genetic targets were 

initially focused on knock-outs, many of them have included in their formulation 

additional types of genetic modifications. OptReg was the first method to allow the 

optimization of strains composed of up- and down-regulations in addition to knock-outs 

[85]. Similarly to OptKnock, the formulation of OptReg originates a bi-level problem 

with FBA as the inner simulation layer. The methodology used by OptReg to model 

up/down-regulation is based on restraining the fluxes of the target reactions to values over 

or below the levels calculated beforehand. These flux constraints are applied to the FBA 

simulation layer and biomass formation is maximized to obtain a flux distribution for the 

mutant strain. OptReg returns a single optimal strain design, which represents the 

combination of genetic modifications that results in the best production yield of the target 

metabolite. 

Strain designs consisting of knock-outs and up/down-regulations can also be obtained 

with an optimization method developed by Yang et al. [86]. This target discovery method, 

designated EMILiO, models up/down-regulations using a formulation that allows a more 

flexible manipulation of the flux values when compared to OptReg [86]. In contrast to 

OptReg and EMILiO, Rockwell et al. developed an optimization method named 

Redirector that does not manipulate flux values to model up- and down-regulations [87]. 

Instead, this novel method manipulates the objective function of the FBA simulation to 

model how up- and down-regulations affect the cellular phenotype. Redirector uses 

GDLS as the optimization layer in order to find near-optimal combinations of genetic 

modifications that increase the production of the target metabolite. 

Some experimental strains designs include in their list of genetic modifications the 

addition of heterologous genes, which can enable the synthesis of non-native metabolites 

of interest. OptStrain [88] and SimOptStrain [78] are able to search for the minimal 

amount of gene additions necessary to synthesize non-native compound of interest. 

Furthermore, these methods can optimize the production of the target compounds by 

searching for sets of knock-outs that result in an improved phenotype.   

Most of the target discovery methods discussed above use FBA to simulate the phenotype 

of the mutant strains being optimized. These methods search for sets of genetic 

modifications that make the production of a target metabolite coupled to growth, which 

should force the mutated organism to excrete the desired target as a byproduct of growth. 
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However, there are some methods that search for sets of genetic modifications that 

“force” the production of a target metabolite independently of the growth levels. 

OptForce is an optimization method that finds the minimal set of fluxes that must be 

constrained (up/down-regulated and knocked-out) to make sure the target metabolite is 

produced at optimal levels [89]. In biological terms, the flux modulations suggested by 

OptForce must be met quantitatively in order to guarantee that the phenotype will be as 

the simulations predict. Optimization methods similar to OptForce have been developed 

with an increased flexibility in the flux modulations (CosMos) [90] or the inclusion of 

optimized sets of enzymatic parameters (k-OptForce) [91]. The application of the 

OptForce algorithm has resulted in the construction of an E. coli strain with improved 

malonyl-CoA levels and increased naringenin production [103]. 

Another class of optimization methods that does not use biomass maximization as the 

objective function is composed of the methods OP-Synthetic [93], FSEOF [94] and 

FVSEOF [95]. All these methods use similar strategies to find genetic targets of interest 

by analyzing the flux changes in the network when the production of the target metabolite 

is progressively enforced. The FSEOF and FVSEOF optimization methods return a set of 

up-regulation targets suggested by the flux analysis, while the OP-Synthetic algorithm 

recommends up/down-regulations and knock-outs that should result in an increased 

production of the metabolite of interest. FSEOF has been used to search for up-regulation 

targets that resulted in the construction of an E. coli strain with improved lycopene 

production [94]. 

The application of target discovery algorithms is not limited to the increase in production 

of metabolites of interest. In fact, there are also some methods that can predict genetic 

alterations that promote the co-utilization of two substrates simultaneously (SIMUP [96], 

FOCAL [97]). These methods can be helpful in the optimization of industrial strains that 

will be grown on complex feedstocks, such as lignocellulosic biomass. Another 

optimization method, DySScO, can be used to find knock-out strains that have important 

industrial characteristics such as high productivity and titer of a metabolite of interest 

[99].  
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2.2.3 Auxiliary network analysis methods 

In addition to the two categories of computational methods described above (phenotype 

simulation and target discovery), we also considered a third group that includes additional 

methodologies which can also help in the design of engineered strains. One of the 

methods we included in this category is the analysis of flux variability (FVA) [92, 104], 

which returns the interval of values that each flux in the metabolic network can assume. 

After a set of genetic modifications is obtained from a target discovery method, the 

resulting mutant strain can be analyzed with FVA to test the robustness of the fluxes of 

interest. FVA is usually employed by forcing the value of the objective function of the 

FBA simulation (e.g. biomass) to be equal to its optimal value, and then the objective 

function becomes the minimization or maximization of each individual flux. FVA can 

also be used to create a graph that relates the maximum yield of the product of interest for 

different levels of biomass formation. The analysis of the results can reveal the best 

tradeoff between biomass formation and target production. 

The relationship between two fluxes can also be studied by using phenotype phase planes 

[105, 106] and the flux coupling finder (FCF) methods [107]. One of the applications of a 

phenotype phase plane is to verify how the ratio of availability of two nutrients can affect 

biomass growth. This type of analysis can lead to the optimization of culture conditions 

based solely on the stoichiometry of the metabolic network. Regarding FCF, this method 

can be used to study how two fluxes in the network depend on each other. One possible 

use for this method is to search for equivalent reaction knock-outs, which can prove 

helpful when one of the required knock-outs from a strain design is difficult to implement 

experimentally.  

Another helpful computational method for optimizing the culture conditions of a 

microorganism was developed by Suthers et al. [108], which consists in the search for the 

minimal set of metabolites necessary to sustain growth. This methodology can prove 

helpful in the design of culture media for less studied microorganisms or for determining 

auxotrophies of mutant strains.  

Dynamic FBA (dFBA) allows testing the behavior of a strain in non-steady state 

environmental conditions, such as batch of fed-batch [98]. This method can help choosing 

between different strain designs to conclude about which one would be the most suited 

for an industrial bioprocess.  
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Additional analysis can be carried on the sensitivity of a flux distribution to changes in 

the turnover of a metabolite (flux-sum [109]), on the minimal set of genes necessary to 

sustain a certain growth level [110] or for pathway design (e.g., BNICE [111], SimPheny 

Biopathway Predictor[100], GEM-Path [112], DESHARKY [113] and retrosynthesis 

algorithm [114]). The resulting pathways obtained from pathway design algorithms can 

then be included in GSMMs in order to test them and optimize the production of the 

heterologous target. 

Many of the methods described for simulating phenotypes, discovering metabolic 

engineering targets and analyzing GSMMs can be found compiled within software 

packages, such as the COBRA toolbox [115], OptFlux [51] and the BioMet toolbox 

[116]. This kind of software packages can be of great help for users that are giving their 

first steps in this field, especially for people with an experimental background that want 

to try some of the algorithms available for analyzing and designing strains. 

 

2.3. Strain Engineering of S. cerevisiae using GSMMs 

Baker’s yeast, S. cerevisiae, is a model organism with plenty of physiological information 

readily available (Saccharomyces Genome Database [117]) and it is the most used 

eukaryotic organism in metabolic engineering studies [118]. It is a microorganism easy to 

engineer and cultivate, for which there are plenty of genome engineering tools available 

[119]. The full genome of S. cerevisiae was the first to be made available for an 

eukaryotic organism [120] and the corresponding genome-scale metabolic model was also 

the first of its kind for a eukaryote [4]. 

Most strain engineering studies in S. cerevisiae still rely on the use of rational approaches 

to optimize the production of compounds of interest [118, 121, 122]. However, with the 

development of a vast number of computational methods for in silico strain design 

(section 2.2) the number of metabolic engineering studies based on modelling approaches 

will tend to increase.  
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2.3.1 Genome scale models of S. cerevisiae 

Since the first GSMM of S. cerevisiae was published in 2003 [4], several authors have 

been trying to expand and/or improve the metabolic reconstruction of this microorganism 

(as reviewed in [123, 124]). A list of the genome-scale models available in the literature 

for S. cerevisiae is given in Table 2.3, focusing on model size and other relevant 

parameters. The numbers show that over the years there was a tendency to include more 

Open Reading Frames (ORFs) and metabolic reactions in the models. Furthermore, new 

compartments were added and the elemental balance of the reactions was implemented in 

some models. The high number of models available for S. cerevisiae also points out to the 

relevance of this microorganism for the metabolic engineering community. 

Table 2.3- List of the available genome-scale models for S. cerevisiae 

Model Year ORFs included Reactions included Other information 
iFF708 [4] 2003 708 1175 3 compartments (2 metabolic) 

iND750 [125] 2004 750 1489 8 compartments (7 metabolic) 
Elementally balanced 

iLL672 [126] 2005 672 1038 3 compartments (2 metabolic) 

iMH805 [127] 2006 
805 

(55 regulatory genes) 
1489 

8 compartments (7 metabolic) 
Elementally balanced 

iIN800 [128] 2008 800 1446 3 compartments (2 metabolic) 

Yeast 1 [129] 2008 832 1857 
15 compartments (7 metabolic) 

Elementally balanced 

iMM904 [52] 2009 904 1412 8 compartments (7 metabolic) 
Elementally balanced 

Yeast 4 [130] 2010 924 2576 
15 compartments (7 metabolic) 

Elementally balanced 

Kinetic model [17] 2010 832 956 2 compartments (1 metabolic) 

Yeast 5 [131] 2012 918 2110 15 compartments (7 metabolic) 
Elementally balanced 

iTO977 [132] 2013 977 1566 4 compartments (3 metabolic) 

Yeast 6 [133] 2013 900 1888 15 compartments (7 metabolic) 
Elementally balanced 

Yeast 7 [134] 2013 916 3493 
16 compartments (7 metabolic) 

Elementally balanced 

 

Most of the available genome-scale models for S. cerevisiae are purely stoichiometric, but 

there are two exceptions. The iMH805 [127] model is derived from the iND750 [125], but 

it contains 55 genes that code for transcription factors, which can be used for studying 

regulation at the genome-scale. Furthermore, there is one kinetic model at genome-scale 

for yeast that was derived from Yeast 1 [129] using a strategy described in [17, 135]. 

More recently, a new generation of genome-scale models that include gene expression 
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values in their formulation, named ME-models, have become available for some 

microorganism, but none is yet available for S. cerevisiae [136]. 

2.3.2 Examples of application 

As stated above, the use of strain engineering strategies derived from GSMMs is still the 

exception and not the rule in metabolic engineering. Table 2.4 shows the full extent of the 

application of the tools described in this chapter to engineer S. cerevisiae. Nevertheless, 

the results show some promising implementations, and some of them resulted in the 

increase of production of high value compounds such as cubebol, vanillin and 

amorphadiene. 

Regarding the use of GSMMs for strain engineering, five out of the nine reports shown in 

Table 2.4 used iFF708, which reveals a tendency to use models that suffered more 

validation rather than the most recent models. Three of the metabolic engineering 

strategies shown were obtained with OptGene, showing a clear preference of this 

algorithm over OptKnock and recent optimization strategies. Table 2.4 also shows an 

example of the use of FBA to calculate the maximum yields of two pathways, which 

proved to be helpful in choosing the strategy less dependent on oxygen availability (3-

hydroxypropionic acid case-study). This kind of data might seem irrelevant at the lab 

scale, but for industrial processes the costs involved in aerating bioreactors might be 

crucial in determining if a biotechnological process is lucrative.  

Another interesting observation from the results shown in Table 2.4 is the number of 

experimental implementations that include the engineering of cofactor abundance. Three 

of the nine strain designs have attempted to increase the availability of NADPH by 

deleting one of the main consumers of this metabolite [69, 102, 137]. In the first case this 

resulted in a reduced accumulation of an unwanted byproduct, glycerol, while in the other 

two the increase of NADPH availability was important to improve the flux to the target 

metabolites. 
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Table 2.4- Experimental implementation of strain engineering strategies obtained using genome-scale 
metabolic models 

Target Brief description Reference 

Ethanol 

iFF708 was used to test some strategies aimed at reducing glycerol formation 
and increasing the ethanol yield in anaerobic conditions. The best strategy 
consisted in the expression of a NADP+-dependent glyceraldehyde-3-phosphate 
dehydrogenase, which resulted in a decrease of 40 % in glycerol accumulation 
and an increase of 3 % on the ethanol yield when growing on glucose. The 
ethanol yield increased 25% when S. cerevisiae was grown on xylose and 
glucose. 

[137] 

Cubebol 
OptGene was used to find gene knock-outs that increased the production of 
cubebol using MOMA in the iFF708 model. As a result, the deletion of GDH1 
increased by 85 % the cubebol titer. 

[102] 

Formic acid 

FBA was used with iND750 to simulate the best combination of three gene 
deletions that would increase the production of formic acid on a formate 
dehydrogenase negative basal strain. The deletion of ALT2, ZWF1 and FUM1 
resulted in a 16.5-fold increase in formic acid yield. 

[138] 

Vanillin 

OptGene was used to find gene knock-outs that increased the production of 
vanillin using MOMA in the model iFF708. The deletion of PDC1 and GDH1 
resulted in up to 2-fold improvement in the vanillin yield on glucose limited 
chemostats. 

[69] 

2,3-Butanediol 
OptKnock was used to find gene knock-outs that increased the production of 2,3-
Butanediol using the model iMM904. The deletion of ADH1, ADH3 and ADH5 
resulted in an increase of 55-fold in the 2,3-Butanediol production yield. 

[101] 

Succinate 

A strategy composed of three gene deletions (SDH3, SER3 and SER33) was 
taken from a previous study that used OptGene to optimize succinate formation 
using FBA and the model iFF708. The triple deletion strain showed a 13-fold 
improvement in the succinate yield. 

[56, 79] 

Succinate 

iFF708 was used to test all the single and double gene deletions that would 
improve succinate production using FBA as the simulation method. The best 
result obtained was for the single deletion of DIC1, which increased the 
succinate yield to 0.02 C-mol/C-mol. This yield was very similar to the in silico 
prediction of 0.03 C-mol/C-mol glucose. 

[139] 

Amorphadiene 

iMM904 was used in MOMA simulations in order to find single gene knock-outs 
with improved production of amorphadiene. Up to 10-fold increase in the 
production yield was observed for some of the single gene knock-outs 
implemented experimentally. 

[140] 

3-hydroxypropionic 
acid 

Two different metabolic routes were evaluated for the production of 3-
hydroxypropionic acid using the model iTO977. The β-alanine dependent 
pathway was found to be able to achieve higher theoretical yields and was less 
dependent on oxygen availability. 

[141] 

 

2.4. Conclusions 

In the last fifteen years we have witnessed an explosion in the availability of GSMMs and 

in several types of computational methods to analyze them. FBA paved the way for the 

prediction of flux phenotypes using stoichiometric models and more complex 

methodologies with improved characteristics have been developed ever since. The 
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application of these constraint-based methodologies to metabolic engineering opened a 

new field of in silico strain design, which will certainly grow fueled by successful case-

studies (Table 2.4) and with the improvement of the simulation accuracy. 

The number of experimental implementations of strain engineering strategies obtained 

using genome-scale metabolic models is still a small percentage of the total amount, but 

this can change if more attention is paid to quality instead of the quantity of methods 

published each year. As shown in section 2.2, there is a huge number of different 

computational methods available to choose from and to pick the appropriate method for 

certain metabolic engineering task can prove challenging even to an experienced user. 

Another relevant issue is that most of the computational methods discussed in this chapter 

are not available in a user friendly format. Some of these issues are solved by using 

software packages that compile many of the strain engineering methods into a single 

location ( e.g., COBRA toolbox [115], OptFlux [51] and the BioMet toolbox [116]). With 

available manuals and installation guides this type of software can deliver complex strain 

design methods to a target audience that might lack the technical skills to use them 

unaided. 
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CHAPTER 3  
Improving the flux distributions simulated with genome-scale metabolic 

models of S. cerevisiae 
 

A genome-scale metabolic model is a comprehensive description of cellular metabolism 

and can be used to evaluate genotype-phenotype relationships. There is therefore much 

interest in using these models for evaluating gene knock-outs that optimize the production 

of specific metabolites that may have industrial interest. However, to obtain a good 

correlation between simulations and in vivo results, a thorough validation of the flux 

predictions should be made.   

In order to investigate the accuracy of simulated intracellular fluxes, Saccharomyces 

cerevisiae was chosen as the case-study because of its industrial relevance. The results 

revealed that steady-state simulations of the models available contained mistakes in 

important areas of central metabolism, such as the pentose phosphate pathway. Using 

cofactor abundance in aerobic conditions as guidance, constraints were applied to all the 

metabolic reactions including NADH of NADPH, resulting in several improvements in 

the pentose phosphate pathway and other areas related to NADPH metabolism. Those 

improvements were shown to have a positive impact on the simulation of gene knock-

outs obtained for the production of acetate and mevalonate.  

When genome-scale metabolic models are used for the simulation of gene knock-out 

phenotypes, erroneous flux predictions might compromise the accuracy of the results. 

Therefore, a careful curation of the wild-type network can improve dramatically the 

simulations, resulting in a better correlation with experimental evidence.  
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3.1 Introduction 

In metabolic engineering, Genome-Scale Metabolic Models (GSMMs) can be used to 

predict the effect of different environmental conditions and genetic modifications on the 

metabolism of microorganisms of industrial interest [1–6]. If used together with 

optimization algorithms, it is possible to find an optimal set of genetic modifications 

leading to a desired phenotype [7–9]. Frequently the validation of these models is done by 

comparing the predictions obtained solely with physiological data (e.g., growth rates and 

gene essentiality) and rarely with in vivo flux distributions. This is mainly because of the 

lack of data available on fluxomics and due to the existence of several alternative 

simulation methods that may provide different solutions in terms of the fluxes. 

Another pertinent problem appears when the algorithms used to simulate phenotypes 

require a reference (wild-type) flux distribution, such as MOMA [10], ROOM [11] or 

MiMBL [12]. The easiest way of calculating the reference flux distribution for a GSMM 

is to use the fluxes obtained from Flux Balanced Analysis (FBA) [13, 14] or Parsimonius 

Flux Balanced Analysis (pFBA) [15] simulations [16–18]. However, little is known about 

the accuracy of the internal flux distribution calculated with these methods. Segrè et al. 

[10] have reported that even small deviations in the wild-type flux distribution used for 

MOMA simulations can have an impact on the simulation outcome. Furthermore, 

Brochado et al. [12] also noted that the reference flux distribution had a significant impact 

when MiMBL was used to simulate single gene deletion mutants. 

Several cases of in vivo implementation of MOMA results are reported in the literature 

with varying degrees of success [16–19, 1]. One of the possible reasons for the 

inconsistent predictions might be the use of a reference flux distribution with severe 

deviations from in vivo fluxes. This may be solved by using experimental fluxes to 

constrain the reference network, as described by Kuepfer et al. [20], but only when data is 

available for that particular condition. In cases where experimental data are absent, the 

only alternative would be to curate the wild-type flux distribution using the available 

knowledge. In fact, it has been shown before that significant improvements in the internal 

fluxes predicted by FBA could be achieved for a GSMM of Arabidopsis thaliana. Briefly, 

the problems encountered in the oxidative part of the pentose phosphate pathway were 

solved by the authors by accounting for maintenance NADPH and ATP costs [21, 22]. 

Rui Pereira  Universidade do Minho, 2015 



44 | Chapter 3 
 

Saccharomyces cerevisiae is one of the most studied microorganisms and a considerable 

amount of information about its metabolism is available. It has proven to be quite 

versatile in terms of industrial applications, making it very attractive for metabolic 

engineering. Several GSMMs have been published for S. cerevisiae over the last ten years 

[20, 23–28] and their prediction of growth rate and exchange fluxes using FBA is 

generally quite good. These facts make S. cerevisiae very attractive for investigating in 

detail the capacity of GSMMs and simulation methods to predict the intracellular flux 

distribution of the central carbon metabolism. 

In this work we aim at analyzing the reliability of the flux distributions predictions 

obtained with S. cerevisiae GSMMs. We begin by comparing the performance of several 

models available in the literature for S. cerevisiae and propose modifications to improve 

their internal flux prediction under fully aerobic conditions. Furthermore, the improved 

models are compared to in vivo flux estimations for validations, and used to find 

metabolic engineering strategies unattainable with the original versions. 

3.2 Methods 

3.2.1 Model retrieval and pre-processing 

The models iFF708 [23] and iTO977 [25] were obtained in the SBML format from the 

authors’ website (http://129.16.106.142/models.php?c=S.cerevisiae/). The model 

iMM904 [24] was downloaded and converted to SBML using the script provided by the 

authors in the supplementary material. Yeast 6.06 [29] was downloaded in SBML from 

the project’s website: http://sourceforge.net/projects/yeast/files/. 

Each model was imported into OptFlux 3.07 [30] and the in silico environmental 

conditions were set to mimic minimal growth medium supplemented with glucose under 

fully aerobic conditions (ammonia: unconstrained uptake, phosphate: unconstrained 

uptake, sulfate: unconstrained uptake, oxygen: unconstrained uptake, glucose: 1.15 

mmol/gCDW·h). 
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3.2.2 Simulations 

All simulations were run within OptFlux 3.07 using IBM ILOG CPLEX optimization 

studio (academic) as the linear and quadratic programming solver. For the calculation of 

the internal flux distributions Parsimonius Flux Balanced Analysis (pFBA) [15] was the 

chosen method, while the maximization of biomass production was the objective 

function.  

In genome-scale metabolic models it is common to find duplicated reactions and other 

stoichiometrically equivalent pathways that catalyze the same chemical transformation. 

The phosphorylation of glucose, for example, can be carried by hexokinases or 

glucokinases. To simplify the visualization of the fluxes through the central metabolism 

of S. cerevisiae, the fluxes through equivalent reactions were summed into a single value. 

Using the example above, all the reactions phosphorylating glucose to glucose-6-

phosphate present in each model were treated as a single entity. Each model was 

inspected manually to create an equivalence map between the reactions in the central 

metabolism and the reactions in the model. 

3.2.3 Flux variability analysis 

To verify the uniqueness of the flux distributions calculated by FBA, each reaction’s 

variability was tested by following the methodology reported in [31, 32]. Briefly, the 

value of the objective function (biomass growth) was fixed at its maximum and each flux 

was minimized or maximized. However, since the models tested contained many 

reactions in the central metabolism that are duplicated, if one of them is minimized the 

flux could go through the other. Furthermore, if the duplicated reactions are reversible, 

futile cycles can arise. To avoid these irrelevant glitches in this analysis, when one 

reaction’s variability was tested, all the other “equivalent partners” were disabled. 

3.2.4 Optimizations of metabolic engineering targets 

In order to find possible knock-out targets, the evolutionary optimization algorithm 

included in OptFlux was used [7, 33]. A linear version [34] of the MOMA algorithm [10], 

where the Euclidian distance of the fluxes is replaced by the Manhattan distance, was the 

chosen method to simulate the mutant phenotypes. The number of possible knock-out 

targets was reduced by removing: essential reactions, dead ends and other reactions that 
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cannot be active under growth on glucose. Two different objective functions were used in 

the evolutionary algorithm: the Biomass Product Coupled Yield (BPCY) [7] or the 

maximization of the target flux assuming a minimum biomass growth threshold (yield). 

The evolutionary algorithm was run at least three times for each target, setting the number 

of solution evaluations to 50,000 and the maximum number of knock-outs allowed to 5. 

3.3 Results and discussion 

3.3.1 Genome-scale metabolic model comparison 

Since the first GSMM of S. cerevisiae was published in 2003 [23], several authors have 

expanded and improved the metabolic reconstruction of this microorganism (as reviewed 

in [35, 36]). A summary of the GSMMs available in the literature is given in Table 3.1, 

focusing on model size and other relevant parameters. The numbers show that over the 

years more ORFs and metabolic reactions have been included in the models. Furthermore, 

compartments were added and elemental balance of the reactions was implemented in 

some models. 

Table 3.1- List of selected GSMM available for S.cerevisiae 

Model Year ORFs included Reactions included Other information 

iFF708 [23] 2003 708 1175 3 compartments (2 metabolic) 

iND750 [28] 2004 750 1489 
8 compartments (7 metabolic) 

Elementally balanced 

iLL672 [20] 2005 672 1038 3 compartments (2 metabolic) 

iIN800 [27] 2008 800 1446 3 compartments (2 metabolic) 

iMM904 [24] 2009 904 1412 
8 compartments (7 metabolic) 

Elementally balanced 
iTO977 [25] 2013 977 1566 4 compartments (3 metabolic) 

Yeast 6 [29] 2013 900 1888 
15 compartments (7 metabolic) 

Elementally balanced 

 

To validate GSMMs, their authors usually use large scale essentiality data (lethal/viable) 

and extracellular flux predictions. However, not too much attention is paid to the 

intracellular flux distribution simulated with FBA [13, 37, 38].  

Selected models from Table 3.1 were simulated under the same environmental conditions, 

and their intracellular flux distribution around the central metabolism was compared and 
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evaluated. We chose iFF708 for this analysis because it is still widely used for phenotype 

simulation [1, 4–6]. Furthermore, the three most recent models from Table 3.1 were also 

included to verify how the models evolved on the flux prediction side. 

 

 

Figure 3.1- Distribution of fluxes in the central metabolism predicted by pFBA for the models: iFF708 
(green), iMM904 (blue), iTO977 (orange), Yeast 6 (black). Reactions: ACONT- aconitase, ACS- acetyl-
CoA synthetase, ADH- alcohol dehydrogenase, AKGD- alpha-ketoglutarate dehydrogenase, ALD- 
aldehyde dehydrogenase, CSm- citrate synthase, FBA- fructose 1,6-bisphosphate aldolase, FUM- fumarase, 
G3PD1ir- glycerol-3-phosphate dehydrogenase, G3PT- glycerol-1-phosphatase, GAPD- glyceraldehyde-3-
phosphate dehydrogenase, GHMT2r- serine hydroxymethyltransferase, GND- 6-phosphogluconate 
dehydrogenase, HEX- hexokinase, ICD- mitochondrial isocitrate dehydrogenase, MDH- mitochondrial 
malate dehydrogenase, ME- mitochondrial malic enzyme, PDC- pyruvate decarboxylase, PDH- pyruvate 
dehydrogenase, PFK- phosphofructokinase, PGI- phosphoglucose isomerase, PGK- 3-phosphoglycerate 
kinase, PGMT- phosphoglucomutase, PP3- sum of the non-oxidative reactions of the pentose phosphate 
pathway producing glyceraldehyde-3-phosphate, PP6- sum of the non-oxidative reactions of the pentose 
phosphate pathway producing fructose-6-phosphate, PSP- phosphoserine phosphatase, PYC- pyruvate 
carboxylase, PYK- pyruvate kinase, SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase, 
THRS- threonine synthase, TPI- triose phosphate isomerase. Metabolites: 13dPG- 1,3-diphosphoglycerate, 
3PG- 3-phosphoglycerate, AcCoA- acetyl-CoA, Akg- 2-oxoglutarate, Cit- citrate, DHAP- 
dihydroxyacetone-phosphate, Fum- fumarate, G3P- glyceraldehyde-3-phosphate, Icit- isocitrate, Mal - L-
malate, Oaa- oxaloacetate, Ser- L-serine, Succ- succinate, SucCoa- succinyl-CoA. 
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The first step in the analysis was a simple comparison of the maximum growth rate 

achievable under the same environmental conditions. With a fixed glucose uptake rate of 

1.15 mmol/(gCDW·h) (0.207 g/gCDW.h) and assuming a biomass yield on Glucose of 

0.5 gCDW/g glucose [39], the maximum growth rate expected should be 0.10 h-1. Three 

of the models predicted a maximum growth rate close to 0.11 h-1, but the simulations 

performed with Yeast 6 could achieve 0.16 h-1. Taking a closer look at this issue revealed 

an unreasonably high flux through the oxidative phosphorylation reactions that was 

culminating in the production of large amounts of ATP. The reason behind this odd 

behavior was a cycle of proton export from the mitochondria, originated by the 

aspartate:proton symporter (reaction r_1117 in the model). Using several transporters and 

metabolic reactions, Yeast 6 was capable of creating a proton gradient across the 

mitochondrial membrane without energy input. The solution to this problem was to 

disable the transporter activity in the direction from the mitochondria to the cytosol. After 

this simple modification, the growth dropped to reasonable levels. The authors of Yeast 6 

actually reported that this model was capable of using ATP Synthase in anaerobic 

conditions [29], which can be explained by the same cycle reported here.  

In Figure 3.1 the fluxes through the central metabolic pathways are shown for the 

corrected Yeast 6 and the other selected models. One of the most noticeable differences 

that can be observed is the absence of flux in the oxidative Pentose Phosphate Pathway 

(PPP) in the most recent models (iMM904, iTO977 and Yeast 6). No flux through the 

oxidative PPP suggests problems in the reactions producing and/or consuming NADPH 

present in the most recent models. An analysis of the fluxes revealed that in iTO977 and 

iMM904 all the NADPH required for anabolism was coming from the cytosolic NADP-

specific isocitrate dehydrogenase, which explained the lack of flux in the PPP in these 

models. In the case of Yeast 6, more inconsistencies were found around the NADPH 

metabolism. In this model, the main reaction fixing ammonia was the NADH-dependent 

glutamate dehydrogenase instead of the NADPH dependent variant. Furthermore, the 

NADPH required for most anabolic processes was being produced by the cytosolic 

aldehyde dehydrogenase and the cytosolic C1-tetrahydrofolate synthase. It was thus 

evident that any improvement in the internal flux distributions simulated with the 

GSMMs of S. cerevisiae would involve changes in the reactions producing and 

consuming NADPH. 
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3.3.2 Emulation of cofactor concentrations through reaction constraints 

Given all the indications pointing towards problems with the metabolism of NADPH we 

decided to analyze in detail all the metabolic reactions that include this cofactor. Since 

NADH can replace NADPH as the electron donor in many reactions of S. cerevisiae, it 

was decided to also include it in the analysis.  

One of the issues encountered in the model comparison was that the cytosolic isocitrate 

dehydrogenase was acting as the main source of NADPH in the cytosol for two of the 

models, iMM904 and iTO977. Although the gene coding for this enzyme is described as 

repressed by glucose [40], under glucose limiting conditions it is not likely that it will be 

fully repressed. However, it was shown by Satrustegui et al. [41] that the ratio of 

NADPH/NADP+ can act as an inhibitor of the NADP+-dependent isocitrate 

dehydrogenase. Furthermore, under growth on glucose this ratio is high enough to inhibit 

this enzyme. Additionally, the concentration of these cofactors can also affect the change 

in Gibbs free energy of this reaction, which should also favor the direction of NADPH 

consumption.  

Since under fully aerobic glucose limited conditions the ratio of NADPH/NADP+ is 

usually very high, in order to drive anabolic reactions, and the ratio of NADH/NAD+ is 

usually very low, in order to promote fast metabolic oxidation of the substrate [41–44], an 

attempt was made to generalize the findings of Satrustegui et al. [41] for other reactions 

in the network. With these ratios in mind, all cytosolic reactions that could produce 

NADPH or consume NADH were checked manually to evaluate their feasibility. The 

curation process is documented in Appendix A (tables A1-A4) and the final list of 

modified reactions is shown in Table 3.2. 

During the manual curation there were some modifications applied to reinforce cofactor 

availability constraints that resulted in a lethal phenotype. In each case the reason for the 

lack of growth was analyzed using information available in the literature and the other 

models as comparison. 

One of the lethal candidate reactions for inactivation in the model iFF708 was the 

squalene epoxidase (model ID: ERG1), which was capable of producing NADPH in this 

model. However, this reaction is described to consume NADPH [45], supported by the 

fact that the other models all had the correct stoichiometry. Therefore, this reaction was 
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corrected in the model iFF708 and removed from the list of reactions to be inactivated. 

Another problem was found when the cytosolic isocitrate dehydrogenase (model ID: 

IDP2_1) was inactivated. Again, the inactivation of this enzyme resulted in a lethal 

phenotype, which was traced back to the lack of mitochondrial transporters for 2-

oxoglutarate. Using literature information and Yeast 6 model as an example, two 

transporters for this metabolite were added to the model: citrate/2-oxoglutarate antiporter 

(YHM2) and malate/2-oxoglutarate antiporter (ODC1, ODC2) [46, 47]. 

Table 3.2- List of modified reactions in each model (reactions are identified by their IDs on the model). 

Model 
Reversibility constrained Inactivated 

NADH NADPH NADH NADPH 

iFF708 

MDH3, MDH2, ADH2, 
ADH1, ADH5, ADH4, 

BIO2, SFA1_2, 
SFA1_1, LYS1, TDH1, 

TDH2, TDH3 

HMG2, HMG1, ECM17, 
MET10, LYS9 

U45_, PRO3_3, 
FAS1_4, FOX2, 

PRO2_1, LYS2_2, 
HOM6_1 

TYR1, IDP3_1, 
ARA1_2, ALD6, 

IDP2_1 

iMM904 
BTDD-RR, FALDH, 

2HBO, ALCD2x, 
SACCD2, MDH, GAPD 

HMGCOAR, SACCD1, 
SULR 

AASAD2, G5SD2, 
HPROa, ALCD25xi, 

ALCD2ir, ALCD26xi, 
ALCD22xi, FMNRx, 

ALCD23xi, C22STDSx, 
LNS14DMx, HSDxi, 

ALCD24xi 

LSERDHr, 
ATHRDHr, 

PPND2, GLYCDy, 
ARAB1D2, 

ICDHy, 
ALDD20y, 
ALDD2y 

iTO977 BIO2, LYS1, r275, 
ADH1, SFA1_1, MDH2 

HMG1, FAS2_1_2, 
FAS2_2_2, FAS2_3_2, 
FAS2_4_2, FAS2_5_2, 
FAS2_6_2, FAS2_7_2, 
FAS2_8_2, FAS1_1_2, 
FAS1_2_2, FAS1_3_2, 
FAS1_4_2, FAS1_5_2, 
FAS1_6_2, FAS1_7_2, 

FAS1_8_2, LYS9, ECM17 

LYS2_2, PRO2_1, 
U45_, PRO3_3, 
HOM6_1, PGA3 

ARA1_2, r581, 
r572, r671, 

IDP2_1, r253, 
r833, ALD6, TYR1 

Yeast 6.06 r_0714, r_0486, r_0470, 
r_0003 - 

r_0169, r_0166, r_0179, 
r_0182, r_0186, r_0441, 

r_1010, r_2115 

r_0173, r_0177, 
r_0234, r_0659, 
r_0676, r_0690, 
r_0321, r_0939 

 

In the model iMM904 a similar issue was encountered when the cytosolic isocitrate 

dehydrogenase (model ID: R_ICDHy) was inactivated. As before, the addition of the 2-

oxoglutarate transporters solved this issue and restored normal growth. However, 

following the addition of these transporters there was an abnormal increase in biomass 

formation caused by an artificial cycle of proton export from the mitochondria, similar to 

the one observed for the original Yeast 6 and discussed in section 3.3.1. It was solved by 

changing the reversibility of three mitochondrial transporters: aspartate:proton symporter 

(model ID: R_ASPt2m) was allowed only to transport into the mitochondria; 

oxaloacetate:proton symporter (model ID: R_OAAt2m) was allowed only to transport 
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into the mitochondria; and mitochondrial dicarboxylate carrier (model ID: R_MALtm) 

was allowed only to transport L-malate into the mitochondria. These changes restored 

normal growth levels and no further issues were detected in the network. 

Regarding Yeast 6, the list of reactions to inactivate also included two candidates that 

were essential for growth: sterol dehydrogenase (model ID: r_0234) and prephenate 

dehydrogenase (model ID: r_0939). Regarding the first reaction, iMM904 included an 

alternative reaction that used NAD+ instead of NADP+. According to Baudry et al. [48] 

this enzyme should use NAD+ as a cofactor, so a NAD+ dependent reaction was added to 

Yeast 6. For prephenate dehydrogenase, all the other models included a NAD+ dependent 

variant for this enzyme, and the only reference found for this enzyme in S. cerevisiae 

actually refers to a possible NAD+ dependent enzyme [49]. Thus, a NAD+ dependent 

variant for this reaction was also added to Yeast 6. 

The corrected models containing the restrictions from Table 3.2 were used for simulations 

and the resulting flux distributions are shown in Figure 3.2. In addition, we also included 

experimentally determined flux values obtained from labeled glucose chemostats [50, 51]. 

An overall analysis of Figure 3.2 revealed a dramatic improvement in the flux through the 

oxidative PPP in the models iMM904, iTO977 and Yeast 6. 

Focusing on iFF708 (Figure 3.2), there was also an increase in the flux though the 

oxidative PPP to levels closer to the experimental fluxes. Since many anabolic reactions 

from the original model were capable of consuming either NADH or NADPH, when the 

NADH consuming equivalent was inactivated (Table 3.2), the requirements for NADPH 

increased. As a consequence, the flux through the PPP had to compensate for the 

increased requirements for this cofactor. Another visible difference is the increased 

transport of oxaloacetate into to the mitochondria, which can be explained by the 

inactivation of the cytosolic isocitrate dehydrogenase (model ID: IDP2_1) and the 

addition of the mitochondrial 2-oxoglutarate transporters. These modifications shifted 2-

oxoglutarate production from the cytosol to the mitochondria, resulting in extra drainage 

of citric acid cycle intermediaries. Therefore, the anaplerotic flux of oxaloacetate into the 

mitochondria had to increase. 
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Figure 3.2- Comparison between experimentally determined fluxes and the predictions of pFBA for the 
modified models. iFF708 (green), iMM904 (blue), iTO977 (yellow), Yeast 6 (black), 13C-MFA fully 
aerobic chemostat at a dilution rate of 0.1 h-1 (red)[50] , 13C-MFA fully aerobic chemostat at a dilution rate 
of 0.1 h-1 (grey)[51] . Reactions: ACONT- aconitase, ACS- acetyl-CoA synthetase, ADH- alcohol 
dehydrogenase, AKGD- alpha-ketoglutarate dehydrogenase, ALD- aldehyde dehydrogenase, CSm- citrate 
synthase, FBA- fructose 1,6-bisphosphate aldolase, FUM- fumarase, G3PD1ir- glycerol-3-phosphate 
dehydrogenase, G3PT- glycerol-1-phosphatase, GAPD- glyceraldehyde-3-phosphate dehydrogenase, 
GHMT2r- serine hydroxymethyltransferase, GND- 6-phosphogluconate dehydrogenase, HEX- hexokinase, 
ICD- mitochondrial isocitrate dehydrogenase, MDH- mitochondrial malate dehydrogenase, ME- 
mitochondrial malic enzyme, PDC- pyruvate decarboxylase, PDH- pyruvate dehydrogenase, PFK- 
phosphofructokinase, PGI- phosphoglucose isomerase, PGK- 3-phosphoglycerate kinase, PGMT- 
phosphoglucomutase, PP3- sum of the non-oxidative reactions of the pentose phosphate pathway producing 
glyceraldehyde-3-phosphate, PP6- sum of the non-oxidative reactions of the pentose phosphate pathway 
producing fructose-6-phosphate, PSP- phosphoserine phosphatase, PYC- pyruvate carboxylase, PYK- 
pyruvate kinase, SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase, THRS- threonine 
synthase, TPI- triose phosphate isomerase. Metabolites: 13dPG- 1,3-diphosphoglycerate, 3PG- 3-
phosphoglycerate, AcCoA- acetyl-CoA, Akg- 2-oxoglutarate, Cit- citrate, DHAP- dihydroxyacetone-
phosphate, Fum- fumarate, G3P- glyceraldehyde-3-phosphate, Icit- isocitrate, Mal - L-malate, Oaa- 
oxaloacetate, Ser- L-serine, Succ- succinate, SucCoa- succinyl-CoA. 

 

Regarding iMM904, there was a significant improvement in all of the PPP fluxes, allied 

to enhancements in the citric acid cycle. The reasons for such an improvement in the flux 

distribution of the PPP can be attributed to two separated factors: an increase in the 

anabolic requirement for NADPH and a decrease in the production of NADPH in 

alternative pathways. The modifications shown in Table 3.2 addressed both of these 

issues and resulted in a flux distribution that is quite similar to experimentally estimated 

fluxes. Furthermore, the fluxes in the non-oxidative PPP changed direction when 

compared to Figure 3.1. Because in the original model there was no flux in the oxidative 
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PPP, the intermediates of this pathway needed for biomass production were being 

produced from fructose-6-phosphate and glyceraldehyde-3-phosphate formed in 

glycolysis, which resulted in inverted fluxes in the non-oxidative PPP. Concerning the 

improvements in the citric acid cycle, the original iMM904 predicted that a considerable 

part of the flux through aconitase and isocitrate dehydrogenase was taking place in the 

cytosol (fluxes not shown). This flux detour was abolished when the cytosolic isocitrate 

dehydrogenase (model ID: R_ICDHy) was inactivated and the 2-oxoglutarate transporters 

were added, resulting in a standard operation of the citric acid cycle inside the 

mitochondria. 

Similarly to iMM904, iTO977 also showed improvements in PPP and citric acid cycle. In 

this case, the reason for the zero flux through the PPP was solely the activity of the 

cytosolic isocitrate dehydrogenase (model ID: IDP2_1), which was supplying all NADPH 

required for growth. Furthermore, this issue was also responsible for the low flux through 

mitochondrial isocitrate dehydrogenase. Consequently, the cofactor constrains applied to 

the model solved both of these problems. 

Finally, Yeast 6 also benefited from the restrictions applied. Although the most prominent 

change was the flux in the oxidative PPP, there were also improvements in the citric acid 

cycle, L-serine biosynthesis and oxaloacetate transport. Furthermore, the nitrogen 

metabolism (not shown in Figure 3.2) also exhibited large improvements. The ammonium 

assimilation pathway switched from NADH dependent to NADPH dependent, which is 

consistent with the importance of NADPH-dependent glutamate dehydrogenase for 

growth on glucose [52, 53]. Despite not being related with the modifications applied, 

Yeast 6 was the only model that could predict flux through the malic enzyme. 

After the manual curation process, some of the fluxes in the central carbon metabolism 

were still incorrectly simulated by pFBA. One of those cases was the absence of flux 

through the canonical pathway for L-threonine production in the model iTO977 (THRS in 

Figure 3.2). The reason for the absence of flux in this reaction is the presence of a 

threonine aldolase (model ID: GLY1) in iTO977 with incorrect reversibility constraints, 

causing L-threonine to be synthesized from glycine and acetaldehyde. In the case of Yeast 

6, no flux is predicted in acetyl-CoA synthetase (ACS in Figure 3.2), which seems strange 

given the essentiality of acetyl-CoA synthesis in the cytosol. Again, an erroneous 

reversibility was responsible for this glitch. In this model, a cytosolic acetyl-CoA 
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hydrolase (model ID: r_0110) was able to catalyze the reverse reaction, joining acetate 

and coenzyme A with no energy input.   

The qualitative improvements observed in Figure 3.2 could also be seen when the 

correlation between the experimental and simulated fluxes was analyzed (Figure 3.3). In 

the model iFF708 all the parameters analyzed improved slightly with the exception of 

Pearson coefficient. The modest improvements observed are consistent with the fact that 

iFF708 was the model with the best initial flux distribution. However, for the other three 

models the improvements are much more pronounced, and in all cases the correlation 

coefficients show a much better prediction of the central carbon fluxes.  

 
Figure 3.3 - Comparison between the experimentally determined fluxes (x-axis) and pFBA simulation of 
each model (y-axis). For each graph it is shown: the linear regression equation, the correlation coefficient 
(R2), the Spearman correlation coefficient, the Pearson correlation coefficient and the sum of differences. 
The experimental fluxes used in the correlations were obtained by averaging both sets of data [46, 47]. 
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3.3.3 Flux variability analysis 

When FBA is used to simulate flux distributions in large-scale models, part of the 

network can be underdetermined. This means that a subset of reactions can vary without 

having an impact on the objective function (growth rate in the case). To avoid random 

variability between simulations and reduce the formation of futile cycles in the network, 

pFBA [15] is normally used after an FBA simulation. In summary, first the value of the 

objective function is fixed at its optimum and then the sum of all fluxes is minimized. 

Biologically, this minimization assumes that the cell will try to conserve resources by 

controlling the total amount of enzymes available. 

Although pFBA solves some of the problems regarding the uniqueness of the fluxes, it is 

still important to verify if a particular flux can be variable or not, i.e., if there are 

alternative flux distributions for the same FBA optimum. In order to test if the fluxes 

calculated are unique, each of the reactions represented in Figure 3.1 and Figure 3.2 was 

tested. The reactions that showed more than 10% variation in comparison to the value 

obtained with pFBA are listed in Table 3.3. 

Table 3.3- List of variable fluxes obtained using flux variability analysis (reactions are identified by the 
same IDs from Figure 3.1 and Figure 3.2). 

Variability 
iFF708 iMM904 iTO977 Yeast 6 

Original Modified Original Modified Original Modified Original Modified 

Variable 
minimum 

G3PD1ir, 
GHMT2r, 

OAAt, 
FUM 

G3PD1ir, 
GHMT2r, 

FUM 

G3PD1ir, 
OAAt, 

ACONT, 
ICD, 
MDH 

G3PD1ir, 
PDC, 
OAAt, 

ACONT 

PSP, 
GHMT2r, 

ALD, 
OAAt, 
ICD, 

AKGD, 
FUM, 
MDH 

G3PD1ir, 
GHMT2r, 

ALD, 
OAAt, 
AKGD, 
FUM, 
MDH 

PYC, 
OAAt, 
ICD, 

AKGD, 
SUCOAS, 

FUM 

G3PD1ir, 
GHMT2r 

Variable 
maximum 

G3PD1ir, 
GHMT2r, 

OAAt, 
SUCD, 
FUM 

G3PD1ir, 
GHMT2r, 

OAAt, 
SUCD, 
FUM 

G3PD1ir, 
OAAt, 

ACONT, 
SUCD, 
FUM, 
MDH 

G3PD1ir, 
ACONT, 

SUCD 

G3PD1ir, 
GHMT2r, 

OAAt, 
AKGD, 
SUCD, 
FUM, 
MDH 

G3PD1ir, 
GHMT2r, 

OAAt, 
AKGD, 
SUCD, 
FUM 

PDC, 
ALD, 
MDH 

G3PD1ir, 
SUCD 

Abbreviations: ACONT- aconitase, AKGD- alpha-ketoglutarate dehydrogenase, ALD- aldehyde dehydrogenase, FUM- 
fumarase, G3PD1ir- glycerol-3-phosphate dehydrogenase, GHMT2r- serine hydroxymethyltransferase, ICD- 
mitochondrial isocitrate dehydrogenase, MDH- mitochondrial malate dehydrogenase, OAAt- mitochondrial 
oxaloacetate transport, PDC- pyruvate decarboxylase, PSP- phosphoserine phosphatase, PYC- pyruvate carboxylase, 
SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase. 
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The list of variable fluxes from Table 3.3 revealed that one of the reactions that showed 

the most variability was glycerol-3-phosphate dehydrogenase (G3PD1ir). The cause for 

this variability was found to be related to NADH oxidation in the mitochondria. When 

this reaction is maximized it can be used to transport NADH into the mitochondria using 

the glycerol phosphate shuttle. However, the easiest and shortest way to oxidize the 

NADH should be the external NADH dehydrogenase. Nevertheless, both alternatives are 

stoichiometrically equivalent and either of them can be used without affecting the 

maximum in silico growth rate.  

Many of the reactions from the citric acid cycle are also present in Table 3.3. The reason 

for such variation is either the presence of equivalent reactions in the cytosol or the 

existence of a reverse reaction. In the case of malate dehydrogenase (MDH), similar 

enzymes exist in the mitochondria and cytosol, which together can form a futile cycle. 

Inside the mitochondria, fumarate reductase and succinate dehydrogenase can also form a 

futile cycle, resulting in variability for these fluxes. The variability for the other reactions 

in Table 3.3 was also investigated, but all and all of them could be explained by one of 

the examples discussed above. Therefore, we can assume that the changes between the 

original and modified models (Figure 3.1 and Figure 3.2) were the result of the 

restrictions applied. 

 

3.3.4 Mutant phenotype prediction 

Many methods used for phenotype simulation of gene knock-outs rely on the 

minimization of the adjustment required after a perturbation. Using a distribution of 

fluxes for the wild-type organism as a reference, knock-out simulation methods try to 

minimize the magnitude of changes in flux distributions (MOMA) [10], the number of 

activated/deactivated reactions (ROOM) [11] or changes in metabolite turnovers 

(MiMBL) [12]. The reference fluxes used for the calculations are usually obtained from 

an FBA or pFBA simulation of the wild-type model, with growth maximization used as 

the objective function [16–18]. However, as shown in Figure 3.1, the accuracy of this 

reference is dependent on the model used, and erroneous values can lead to large 

differences on the simulation outcome.  
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Using the model Yeast 6 as an example we tried to verify the impact of the improved flux 

distribution shown in Figure 3.2 on knock-out simulations using linear MOMA as the 

simulation method. Two organic acids (mevalonate and acetate) were used as case studies 

in order to compare the effect of using the original or the curated flux distribution on the 

production levels of these metabolites. Table 3.4 shows two examples of mutant strains 

obtained using an evolutionary algorithm included in OptFlux, which searched for sets of 

knock-outs that increase the production levels of the target metabolites. Since some of the 

knock-outs implemented during the optimization process could alter the abundance of 

NADPH or NADH, the constraints derived from the curation process (Table 3.2) might 

not be applicable to the mutant strains simulated. Therefore, we used the improved flux 

distribution (Figure 3.2) in the mutant simulations performed, but did not applied the 

cofactor constraints (Table 3.2) to the mutant strains being optimized. In other words, 

because the mutant strains being tested might need to adapt to changes in cofactor 

metabolism, it would not be appropriate to continue assuming the same high 

NADPH/NADP+ and low NADH/NAD+. 

Table 3.4. Description of the strain designs obtained with OptFlux for mevalonate and acetate production 
using the improved reference flux distribution (the standard names of the deleted genes are shown). 

Target Inactivated reactions Product Yield  
(g/g glucose) 

Mevalonate 

MTD1: NAD+ + 5,10-methylene-THF ->  NADH + 5,10-methenyl-THF 
LSC1 or LSC2: ADP(m) +  HPO4

2-(m)  + Succinyl-CoA(m) -> CoA(m) + 
Succinate(m) + ATP(m) 
GDH1 and GDH3: H+ + NH4 + NADPH + 2-oxoglutarate -> H2O + 
 L-glutamate + NADP+ 

Corrected reference: 0.056 

Original reference: 0.0075 

Acetate 

ZWF1: D-glucose-6-phosphate + NADP+ -> H+ + NADPH + 6-
phosphogluconolactone  
IDP2: NADP+ + Isocitrate -> CO2 + NADPH + 2-oxoglutarate 
GDH2: NAD+ + H2O + L-glutamate <-> H+ + NADH + NH4 + 2-
oxoglutarate 
AAT2: L-aspartate + 2-oxoglutarate <-> L-glutamate + Oxaloacetate 

Corrected reference: 0.045 

Original reference: 0.0 

 

Table 3.4 shows a selection of the strain designs obtained with OptFlux for the 

optimization of mevalonate and acetate production by using the improved flux 

distribution during the strain optimization process. One strain design for each case study 

was included in Table 3.4, with detailed information about the gene knock-outs necessary 

to achieve the corresponding production yields. The results shown for the original 

reference were obtained by simulating the same strain designs with the flux distribution 

for Yeast 6 show in Figure 3.1. 
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For the mevalonate producing mutant three different metabolic reactions needed to be 

inactivated (corresponding to four genes) to achieve a yield of 0.056 g/g glucose. A 

detailed inspection of the changes in the flux distribution (Figure 3.4) revealed that the 

deletion of the NADPH-dependent glutamate dehydrogenase (GDH1/GDH3) causes a 

surplus in the availability of NADPH. The deletion of the NAD+-dependent 5,10-

methylenetetrahydrafolate dehydrogenase (MTD1) avoids the transfer of electrons from 

NADPH to NAD+, forcing the NADPH to be used somewhere else. With the inactivation 

of the succinyl-CoA synthetase (gene name - LSC1, ID in Figure 3.4 - SUCOAS) the 

citric acid cycle is broken and part of the flux is redirected through pyruvate 

decarboxylase (PDC). Most of this flux returns to central metabolism using the enzymes 

from glyoxylate cycle. Nevertheless, this deletion causes an excess of acetyl-CoA in the 

mitochondria, which can be condensed into hydroxymethylglutaryl-CoA and transported 

to the cytosol. In that compartment, this metabolite can be converted to mevalonate while 

consuming NADPH, which alleviates the excess of this cofactor. In summary, two 

deletions are required to increase the amount of NADPH available in the cytosol, while 

the other increases the flux to hydroxymethylglutaryl-CoA (precursor of mevalonate). If 

the original reference flux distribution would be used, the amount of mevalonate excreted 

by this mutant would be around seven times lower (Table 3.4), which shows the 

importance of an accurate distribution of fluxes for phenotype simulation. 

Experimental evidence is available to support part of this strategy presented here for 

mevalonate production. The inactivation of GDH1 was followed by Nissen et al. to alter 

cofactor abundance in anaerobic conditions and decrease glycerol accumulation [54]. 

Furthermore, Scalcinati et al. also used the GDH1 deletion to increase the flux through 

the mevalonate pathway as part of a metabolic engineering strategy to increase α-

santalene production [19]. The production of vanillin and cubebol also benefited from the 

increased NADPH pool resulting from GDH1 deletion [1, 5]. Given the experimental 

evidences supporting the in silico predictions, it seems that the improved reference led to 

better phonotypical predictions in the central carbon metabolism. 

Regarding the acetate producing mutant (Table 3.4), there is also a large difference in the 

acetate yield depending on which reference flux distribution is used. A quick analysis of 

the deletions required revealed that, similarly to the mevalonate producing mutant, 

NADPH metabolism is involved. However, in this case, the key to produce acetate is 
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forcing the cytosolic NADP+-dependent aldehyde dehydrogenase (gene name – ALD6, ID 

in Figure 3.4 - ALD) to be the source of cytosolic NADPH (Figure 3.4).  

 

Figure 3.4.- Flux distributions simulated with linear MOMA for the mevalonate mutant (A) and the acetate 
mutant (B) using the improved flux distribution as the reference. The wild-type flux values are shown in 
green, the mutant values are shown in red and the knock-outs are signaled by a red cross. Reactions: 
ACONT- aconitase, ADE3- cytosolic C1-tetrahydrofolate synthase, AKGD- alpha-ketoglutarate 
dehydrogenase, ALD- aldehyde dehydrogenase, CSm- citrate synthase, FBA- fructose 1,6-bisphosphate 
aldolase, FUM- fumarase, GAPD- glyceraldehyde-3-phosphate dehydrogenase, GDH1/3- NADP+-
dependent glutamate dehydrogenase, GDH2- NAD+-dependent glutamate dehydrogenase, GND- 6-
phosphogluconate dehydrogenase, HEX- hexokinase, HMG1- HMG-CoA reductase, ICD- mitochondrial 
isocitrate dehydrogenase, ICL- isocitrate lyase, IDP2- cytosolic NADP-specific isocitrate dehydrogenase, 
MALS- malate synthase, MDH- mitochondrial malate dehydrogenase, ME- mitochondrial malic enzyme, 
MTD1- NAD-dependent 5,10-methylenetetrahydrafolate dehydrogenase, PDC- pyruvate decarboxylase, 
PDH- pyruvate dehydrogenase, PFK- phosphofructokinase, PGI- phosphoglucose isomerase, PGK- 3-
phosphoglycerate kinase, PGMT- phosphoglucomutase, PP3- sum of the non-oxidative reactions of the 
pentose phosphate pathway producing glyceraldehyde-3-phosphate, PP6- sum of the non-oxidative 
reactions of the pentose phosphate pathway producing fructose-6-phosphate, PYC- pyruvate carboxylase, 
PYK- pyruvate kinase, SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase, THRS- threonine 
synthase, TPI- triose phosphate isomerase; Metabolites: 13dPG- 1,3-diphosphoglycerate, 3PG- 3-
phosphoglycerate, AcCoA- acetyl-CoA, Akg- 2-oxoglutarate, Cit- citrate, DHAP- dihydroxyacetone-
phosphate, Fum- fumarate, G3P- glyceraldehyde-3-phosphate, Glx- glyoxylate, Icit- isocitrate, HMGCoa- 
3-hydroxy-3-methylglutaryl-CoA, Mal - L-malate, Oaa- oxaloacetate, Succ- succinate, SucCoa- succinyl-
CoA. 

 

To reach the acetate producing phenotype, glucose-6-phosphate dehydrogenase (gene 

name – ZWF1, ID in Figure 3.4 - GND) must be deleted so that the oxidative PPP is 

inactivated. Since this pathway is the main source of NADPH in the cytosol, the level of 
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this cofactor becomes severally reduced. Because the cytosolic NADP+-specific isocitrate 

dehydrogenase (IDP2) could be a possible source of NADPH it was also inactivated in 

this mutant. The final two deletions act on the other side of NADPH metabolism, i.e., on 

its consumption. The deletion of the NADH-dependent glutamate dehydrogenase (GDH2) 

is necessary to “force” the use of the NADPH dependent enzyme (GDH1/GDH3). With 

the same goal, deleting the cytosolic aspartate aminotransferase (AAT2) also increases the 

flux through the NADPH dependent glutamate dehydrogenase. All four deletions trigger 

rearrangements on the NADPH metabolism that culminate in an increased flux through 

the cytosolic NADP+-dependent aldehyde dehydrogenase (gene name – ALD6, ID in 

Figure 3.4 - ALD). Since this reaction becomes the main source of NADPH in the 

cytosol, the extra flux results in acetate accumulation. 

Experimental evidences support that the inactivation of Glucose-6-phosphate 

dehydrogenase (ZWF1) in S.cerevisiae can decrease the availability of cytosolic NADPH, 

resulting in reduced growth on glucose minimal medium [55], methionine auxotrophy 

[56] and increased sensitivity to oxidizing agents [57]. The overexpression of the 

cytosolic NADP+-dependent aldehyde dehydrogenase (ALD6) has been shown to solve 

the methionine auxotrophy by increasing the availability of cytosolic NAPDH [58]. 

Furthermore, even in the absence of these two genes there is evidence that the cytosolic 

NADP+-specific isocitrate dehydrogenase (IDP2) can also fulfill this role [59]. The 

compensation between these enzymes as the cytosolic NADPH source supports the 

behavior of the acetate producing mutant in Table 3.4 and indicates that the model was 

predicting accurately the NADPH metabolism. 

 

3.4 Conclusion 

An analysis of some of the S. cerevisiae GSMMs available in the literature revealed that 

the internal flux distributions predicted by FBA under fully aerobic conditions included 

some inconsistencies in central areas of the metabolism. The oxidative pentose phosphate 

pathway, for example, did not carry any flux in three out of the four models tested. Since 

the differences observed were originating from reactions containing NADH and NADPH, 

a strategy was implemented to improve the flux prediction of FBA simulations.  
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The results showed that many improvements could be achieved by applying constraints 

on reactions involved in the metabolism of NADPH and NADH. Although the flux 

distributions obtained are only valid under fully aerobic growth on glucose we showed 

that considerable improvements were possible, especially in the pentose phosphate 

pathway and in the metabolism of NADPH. Furthermore, the cofactor restrictions led to 

the discovery of structural errors in many of the models, leading to considerable 

improvements in central metabolic pathways. 

When GSMMs are used for phenotype simulation in metabolic engineering, the internal 

flux distribution can be of vital importance. Here we showed that a careful curation of the 

network under fully aerobic conditions produced knock-out suggestions that are 

biological meaningful. Furthermore, the same knock-outs would result in quite distinct 

results if the original flux distribution is used, which shows the importance of the wild-

type flux distribution for phenotype simulation methods. 

Moreover, as many metabolic engineering strategies rely on unbalancing cofactor 

abundance, either NADH or NADPH, the results presented here demonstrate that, in 

order to have good predictions and a better design of improved mutants, it is of vital 

importance to have a good baseline prediction of flux distributions for the wild-type 

organism. Moreover, it is important to start considering to include comparisons of model 

predictions with in vivo flux distributions in the model construction and validation 

pipeline. 

One of the surprising facts found was that the oldest of the models analyzed showed the 

best prediction of central carbon fluxes. This might be explained by the increased effort 

of manual curation spent on its construction [23]. iFF708 is still preferred by many 

authors in metabolic engineering projects over the more recent GSMMs because of its 

better description of central metabolism [1, 4–6]. Since the modifications proposed here 

revealed that similar flux distributions can be obtained with more recent models, it is now 

possible to take advantage of better compartmentalization, elementally balance reactions 

and increased genome coverage, without sacrificing the quality of central metabolism 

fluxes. 
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CHAPTER 4  

TDPS - Turnover dependent phenotypic simulation: a 

quantitative constraint-based simulation method that 

accommodates all main strain design strategies 

 

The uncertain relation between genotype and phenotype makes strain engineering a 

laborious trial and error procedure. Constraint-based modelling methodologies can 

expedite the strain engineering process by helping in the search for interesting genetic 

modification targets. Although the search for gene knock-outs is fairly established with in 

silico methodologies, most strain design methods still model gene up/down-regulations 

by forcing the corresponding flux values to pre-calculated levels without having in 

consideration the availability of resources. 

The method described in this chapter, Turnover Dependent Phenotypic Simulation 

(TDPS), was designed with the goal of simulating quantitatively the phenotype of strains 

with complex genotypes in a resource conscious manner. In TDPS the flux values are 

never forced to pre-calculated levels because the modelling methodology used takes into 

account the availability of resources in the network by assuming that the production 

turnover of a metabolite can be used as an indication of its abundance. TDPS was 

validated using metabolically engineered S. cerevisiae strains available in the literature by 

comparing the simulated and experimental production yields of the target metabolite.  
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The information presented in this Chapter is being prepared for submission to a peer 

reviewed journal: 

Pereira R., Vilaça P., Nielsen J., Rocha I. TDPS - Turnover dependent phenotypic 
simulation: a quantitative constraint-based simulation method that accommodates all 
main strain design strategies. 
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4.1 Introduction  

In strain engineering, the relation between a genetic alteration and its effects on the 

phenotypical behavior of an organism is rarely straightforward, which usually results in a 

trial and error engineering procedure. Constraint-base modeling of metabolic fluxes is a 

fast alternative to test the effect of genetic alterations at the genome-scale level and 

several methods have been developed for this purpose (reviewed in chapter 2 and 

reference [1]). When compared with other modeling approaches, constraint-based 

modelling can offer a genome-scale representation of metabolism without the need for 

kinetic information [2]. However, even with all the advances in constraint-based 

modelling, the simulation of common strain engineering designs involving up and down-

regulation of a few genes can still be challenging. 

The list of strain design methodologies gathered in Table 4.1 represent a selection of the 

most complete in terms of the variety of genetic modifications included in their 

formulation. Although there are plenty of additional computational methods devoted to 

strain design (reviewed in chapter 2 and reference [1]), the majority of them is focused on 

gene knock-outs and do not include in their formulation up- and down-regulations. 

Furthermore, many of these methods were designed to be used in an optimization context, 

i.e., they can indicate possible metabolic engineering targets, but cannot simulate 

quantitatively the effects that a set of genetic modifications would have on the organism’s 

phenotype. Since the simulation of strain phenotypes can be difficult, the validation of 

strain design methods is usually made by comparing the genetic targets obtained in silico, 

using optimization algorithms, with previously described metabolically engineered strains 

[3–7]. Alternatively, it is also possible to validate in silico strain designs by implementing 

them experimentally [8–10], but this process is quite time and resource consuming. Given 

the amount of rational strain designs available in the literature, it would be quite 

interesting to use them to validate the prediction capabilities of strain design algorithms. 

Among the options shown in Table 4.1, the most oriented for simulation purposes is the 

under/over-expression plugin [7] included in OptFlux [11], which allows the simulation 

of deletions and up/ down-regulations of genes/reactions according to user specified 

levels. The flux constraints created by the under/over-expression plugin can then be used 

in combination with the diverse simulation methodologies included in OptFlux (FBA [12, 

13], pFBA [14], MOMA [15], LMOMA [16], ROOM [17] and MIMBL [18]). The main 
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disadvantage of this algorithm is that up/down-regulations are restricted to metabolic 

reactions that have a non-zero flux value in the reference flux distribution. As a 

consequence, it is impossible to simulate gene/reaction activations or the introduction of 

heterologous genes.  

Table 4.1– Summary of constraint-based strain design methods that include in their formulation up/down-
regulation or activations 

Method (year) Focus Types of modifications 
allowed Brief description 

OptReg (2005) [3] Optimization 
(target discovery) a 

Up-regulation (activation c), 
down-regulation and deletion 

Gene regulations are modeled by 
constraining the flux bounds to 

predefined intervals 

OptForce (2010) [4] 
Optimization 

(target discovery) 
Up-regulation (activation), 

down-regulation and deletion Gene regulations are not modeled b 

EMILiO (2011) [5] 
Optimization 

(target discovery)  
Up-regulation (activation), 

down-regulation and deletion 

Gene regulations are modeled by 
optimizing the upper and lower 
flux bounds of individual fluxes 

Under/over 
expression plugin for 
OptFlux (2012) [7, 

11] 

Simulation and 
optimization (target 

discovery) 

Up-regulation, down-regulation 
and deletion 

Gene regulations are modeled by 
constraining the fluxes to a 

multiple of a reference (wild-type) 
flux 

CosMos (2013) [6] Optimization 
(target discovery) 

Up-regulation (activation), 
down-regulation and deletion 

Similar to OptForce, but the flux 
constraints can take any value in a 

continuous interval 

Redirector (2013) [9] 
Optimization 

(target discovery) a 
Up-regulation (activation) and 

down-regulation 

Gene regulations are modeled by 
adding the target fluxes to the 

objective function 

Proportional Flux 
Forcing (2014) [10] 

Simulation and 
optimization (target 

discovery) 
Activation and deletion 

Reaction activation/addition is 
modeled in a turnover dependent 

formulation 

a Although this method was not designed to simulate phenotypes its formulation can be used for this purpose  
b This strain optimization method inverts the optimization problem by analyzing which changes of flux are important to force flux to 
the target metabolite 
c  Since one of the methods from this list can only up-regulate reactions that are active in a reference state, the activation of a reaction is 
defined here as the possibility of up-regulating inactive reactions 

 

Other methods have different strategies to simulate the activation of reactions: OptReg [3] 

constrains the target flux to a value higher than a fraction of the maximum, EMILiO [5] 

manipulates the target flux to any feasible value, and Redirector [9] adds the flux variable 

to the objective function of the linear problem. However, these methodologies do not take 

into consideration the availability of resources when they “force” the flux through the 

activated metabolic reaction. Therefore, even if the substrate for the activated reaction is 

not being produced in the wild-type network, there will be a cascade of activations in the 

rest of the network to supply it. Understandably, no biological meaning can be derived 
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from flux simulations where a whole pathway can be activated by simply forcing flux 

through the terminal metabolic step.  

In contrast, the framework for reaction activation proposed by Ip et al., denominated 

Proportional Flux Forcing (PFF) [10], offers a much more attractive alternative to the 

methods mentioned above. This algorithm makes the flux through an activated reaction 

dependent on the abundance of its substrate. Since constraint-based flux simulations do 

not take into account metabolite concentrations, the abundance is estimated from the 

metabolite production turnover (sum of the fluxes producing the precursor metabolite) 

[10]. To simulate the flux through an activated reaction, PFF makes the target flux value 

proportional to the turnover of the precursor metabolite and simulates the distribution of 

fluxes using FBA [12, 13]. The authors developed this strategy in order to find gene 

deletions that increase the turnover (availability) of the precursor metabolite and decrease 

the flux in reactions competing for the same precursor. However, this strategy is limited 

to a single reaction activation and to knock-outs, which makes it inadequate for the 

simulation of more complex metabolically engineered strains. 

Here, we propose a new approach to simulate the flux distribution of complex strain 

designs using a new constraint-based modelling method called Turnover Dependent 

Phenotypic Simulation (TDPS). TDPS was designed with the goal of simulating 

quantitatively the phenotype of strains with complex genotypes in a resource conscious 

manner. Besides gene deletions and down-regulations, TDPS can also simulate the up-

regulation of metabolic reactions, as well as the introduction of heterologous genes or the 

activation of “dormant” reactions. In TDPS the flux values are never forced to pre-

calculated levels because the modelling methodology used takes into account the 

availability of resources in the network by assuming that the production turnover of a 

metabolite can be used as an indication of its abundance. Furthermore, a newly developed 

objective function that promotes network rigidity was implemented in conjunction with 

the turnover dependent genetic constraints, in order to allow TDPS to predict the flux 

rearrangements in mutant strains. Based on Stephanopoulos and Vallin’s [19] work on the 

rigidity of metabolic networks, this objective function reinforces network rigidity by 

minimizing the change in the split ratios between a reference network and the disturbed 

one. The goal was to keep the overall flux pattern in the network close to the wild-type 

even when selected split ratios are being manipulated. The complete simulation method 

was validated using phenotypic data of several strains available in the literature. 
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4.2 Turnover Dependent Phenotypic Simulation  

Motivated by the lack of simulation-oriented constraint-based methods capable of 

simulating complex strain designs at the genome-scale level, we developed the TDPS 

algorithm. Unlike other algorithms that manipulate flux values to emulate genetic 

modifications, TDPS uses a strategy similar to PFF [10] to take into consideration the 

availability of precursors for the regulated reactions. TDPS can simulate most types of 

genetic modifications used for strain engineering purposes and does it in a resource 

conscious manner. Therefore, the flux distributions obtained can be interpreted 

biologically and can be used to improve the physiological knowledge about the metabolic 

network. Furthermore, TDPS allows a quantitative approach to in silico strain design that 

can be validated with data available from metabolically engineered strains. 

4.2.1 Modeling genetic modifications 

In comparison with other methodologies, constraint-based modeling is a simple and fast 

alternative to estimate the flux distribution within a metabolic network [2]. However, it 

has the disadvantage of only modelling flux values in steady-state conditions, which 

leaves out the explicit modelling of metabolite and enzyme concentrations [2]. Given the 

absence of metabolite concentrations and enzymatic kinetic parameters, the most 

common strategy to simulate gene up and down-regulation is to force the regulated fluxes 

to a specific value or interval. While this strategy can help understand the system wide 

changes caused by the up/down-regulation of a certain reaction, it has no biological 

significance because a forced flux does not take into consideration the availability of 

precursors.  

One possibility to infer the availability of a metabolite using constraint-based modelling 

is by calculating the magnitude of the fluxes producing or consuming it (turnover) [18, 

20]. Here, we use the concept of production turnover (Tm), to refer to the sum of all fluxes 

producing metabolite m multiplied by the corresponding stoichiometric coefficients. 

Using Tm as an indicator for metabolite abundance, the activation of a reaction n can be 

modelled assuming that a certain fraction of Tm will be consumed by the activated 

reaction (as suggested by Ip et al. [10]). In this way, the flux through reaction n (Vn) 

becomes proportional to the Tm and can even be zero if no reaction in the network is 

producing metabolite m, i.e., if Tm is equal to zero. Unlike other methods from Table 4.1, 
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this heuristic does not force the flux to a certain value or interval, instead makes it 

dependent on the availability of the precursor.  

This concept has been extended in TDPS, as shown in Table 4.2, by assuming that the up-

regulation of a reaction n consuming metabolite m can be seen as an increase in the 

fraction (Xm,n) of the Tm that has to be consumed by reaction n in comparison to a 

reference fraction value. In the same line of thought, a down-regulated reaction can be 

modelled by decreasing the fraction (Xm,n) of the Tm that can be consumed by reaction n. 

The reference fraction values mentioned above are calculated from a wild-type flux 

distribution representative of normal growing conditions. For example, if reaction n is 

responsible for 25 % of the consumption of metabolite m under normal conditions, it can 

be up-regulated by forcing the flux to be at least 50 % of Tm. It is important to note that 

Tm is not a reference Tm value, but a variable in the simulation, which means that the flux 

is not forced to be above a certain value, but to be at least 50 % of whatever value Tm will 

have in the final simulation. The inactivation of a metabolic reaction is modeled as in all 

constraint-based methods by setting the flux value (Vn) through the inactivated reaction to 

zero. 

Another innovation of TDPS in comparison to PFF is the possibility of regulating 

reactions with more than one reactant (Table 4.2). If the up-regulated/activated reaction 

has multiple reactants, the created constrains assume that the flux through reaction n (Vn) 

will have to be higher than the lowest restriction imposed by the availability of 

precursors, which can be formulated with an OR operator (Table 4.2). In accordance, the 

flux through a down-regulated reaction with multiple reactants also has to be lower than 

the lowest constraint imposed by the availability of precursors. In this case, an AND 

operator is used instead (Table 4.2). 

The methodologies described in Table 4.2 try to mimic in vivo enzyme activity at two 

levels: firstly, the abundance of the substrate is modelled using metabolite production 

turnovers (Tm); secondly the fraction values (Xm,n) can be interpreted as the result of a 

combined effect of enzymatic kinetic parameters (Km and Kcat) and enzyme concentration. 

This is a simplification of reality that does not encompass other cellular events such as the 

different types of regulation, but it is considerably less computationally intensive than 

other modelling alternatives and can be used to model metabolism at the genome scale.  
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Table 4.2 - Constraints applied in TDPS to the flux values (Vn) for each type of genetic modification  

Type of modification Flux Constraints 

Inactivation 0 nV =  

Up-regulation/Activation { }
0 0 0 i, , , , 0. .  ...  . . , , M ,..., , 0

i in m n m n m n m n m n m n n i nV S X T V S X T m M m m V> ∨ ∨ > ∈ = ≥
 

Down-regulation { }
0 0 0 i, , , , m 0. .  ...  . . , M , M ,..., , 0

i in m n m n m n m n m n n n i nV S X T V S X T m m m V< ∧ ∧ < ∈ = ≥
 

Mn- Subset containing all the precursors of reaction n, Sm,n-Stoichiometric coefficient of metabolite m in reaction n, Tm- Production 
turnover of metabolite m in the simulation, Vn- Flux value of reaction n in the simulation, Xm,n- Turnover fraction value (see text) 

 

4.2.2 Objective function reinforces network rigidity 

As shown in Table 4.2, TDPS uses metabolite turnover fractions (Xm,n) to model genetic 

up- and down-regulations. The constraints applied serve the purpose of directing a certain 

fraction (higher or lower than a threshold) of the available precursor to the modified 

metabolic reaction. In order to obtain a flux distribution for the mutant organism it is also 

necessary to define a cellular goal that represents how the network would react to the 

disturbances applied. Since the constraints applied manipulate split ratios, it would be 

appropriate to define an objective function that represents how a cell controls the partition 

of flux at important nodes. Stephanopoulos and Vallin [19] have introduced the idea that 

some of the nodes in the network have rigid flux ratios, which have evolved with the 

objective of supplying biomass growth with relatively stable ratios of building blocks. 

Therefore, the concept of turnover fractions (Xm,n) was extended to create an objective 

function that promotes stability in the split flux ratios over the entire network.  

The rigidity based objective function was formulated as the minimization of two different 

terms (Figure 4.1): the first term represents the difference between the amount of 

metabolite m that reaction n is consuming and the amount it was supposed to consume 

according to the calculated turnover fractions (Xm,n); the second term is a penalty for the 

activation of reactions that were inactive in the reference flux-distribution. While the first 

term promotes the stability of the split ratios, the second term prevents flux from getting 

dispersed into pathways that were not active in the reference flux distribution. The Xm,n 

values used in the objective function are calculated using a wild-type (reference) flux 

distribution as the base and are modified depending on the genetic modifications applied 
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(Figure 4.1). The detailed calculations regarding these parameters are presented in section 

4.2.3.  

 
Figure 4.1- Flux calculations performed by the objective function implemented in TDPS using the up-
regulation of reaction R2 as an example. Im- set of inactive reactions in the reference flux distribution that 
can consume metabolite m, M- set of all metabolites, N- set of all reactions, P- penalty constant for 
activated reactions, R+

m- set containing all the active reactions consuming metabolite m in the reference flux 
distribution, Sm,n-stoichiometric coefficient of metabolite m in reaction n, Tm- production turnover of 
metabolite m in the simulation, Vn- flux value of reaction n in the simulation, Xm,n- normalized fraction 
value. 

In the example shown in Figure 4.1, the up-regulation of R2 was achieved by increasing 

the fraction (XA,2) of the production turnover of A (TA) that reaction R2 was forced to 

consume (from a value of 0.1 in the wild-type to 0.25 in the mutant). As a consequence 

the Xm,n values for R1 and R3 decreased accordingly to compensate for the up-regulation 

of R2 (see section 4.2.3 for the details about the calculations). In the simplistic network 

shown in Figure 4.1, the fluxes can easily be readjusted to comply with all the modified 

fraction values dictated by the algorithm. However, if the modified fraction values were 

imposed rigidly in a genome-scale metabolic network, the result would most likely be an 

unfeasible flux distribution. Therefore, the first term of the objective function (Figure 4.1) 

was formulated as the minimization of the difference between the amount of the total Tm 

that each reaction should be consuming (as dictated by Xm,n values) and the real value. 

The big advantage of an objective function that uses a reference set of split ratios in its 

formulation rather than flux values (such as MOMA [15] or LMOMA [16]) is that the 

network can adjust to a genetic modification without an implicit penalty in the objective 

value. While simulation methods that promote flux stability always try to keep the 
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network exactly like the reference, the objective function of TDPS allows fluxes to be 

flexible. Nevertheless, the flux flexibility is limited by the minimization of the 

disturbances in the split ratios computed from the reference network. As shown in Figure 

4.1, the distribution of fluxes changed to accommodate the up-regulation of R2 without 

penalizing the objective value. Furthermore, the objective function promoted the stability 

of the split ratios between R1 and R3, i.e., in the mutant network the ratio between the flux 

in R1 and R3 remained the same as in the reference flux distribution (1:2). This shows how 

TDPS tries to keep the ratios between the non-modified fluxes stable when a disturbance 

is introduced in a metabolic node. 

 

4.2.3 Algorithm flowchart 

TDPS is capable of simulating complex strain designs using two separate components: a 

newly developed modelling heuristic that can handle most types of genetic modifications 

(Table 4.2) and an innovative objective function that promotes flux ratio rigidity after 

network disturbances (Figure 4.1). Figure 4.2 shows how these two components were 

integrated into a robust simulation algorithm designed specifically to allow quantitative 

phenotypical analysis of complex metabolically engineered strains. The first step in the 

simulation process is to choose a Genome Scale Metabolic Model (GSMM) and define 

the environmental conditions by specifying a set of exchange fluxes (carbon source, 

nitrogen source, oxygen availability, etc.). These parameters are then used to compute a 

reference (wild-type) flux distribution using pFBA [14] as the simulation method. It is 

worthy of note that the reference flux distribution obtained with pFBA might change 

depending on the linear programming solver used. Since pFBA minimizes the total sum 

of fluxes in the network, assuming maximum biomass growth, it cannot determine a 

unique flux distribution if there are parallel pathways with equivalent stoichiometry in the 

network. Therefore, depending on the solver used, the reference flux distributions can 

have small variations in the fluxes through parallel pathways. In order to assure the 

reproducibility of the results obtained with TDPS, the reference flux distribution used 

should always be kept constant (the same is valid when other simulation tools that require 

a reference flux distribution are used, such as MOMA). 
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Figure 4.2- Flowchart describing the calculations performed by the TDPS algorithm (the detailed 
implementation is provided in section 4.3.1). C- regulation parameter, Fm,n- fraction of the production 
turnover consumed by reaction n (before normalization), FR

m,n- fraction of the production turnover 
consumed by reaction n in the reference network, GM- set of genetic modifications, h- number of active 
reactions consuming metabolite m , Im- set of inactive reactions in the reference flux distribution that can 
consume metabolite m, M- set of all metabolites, Mn- subset containing all the precursors of reaction n, N- 
set of all reactions, P- penalty constant for activated reactions, Rm- set containing all the reactions that can 
consume metabolite m, R+

m- set containing all the active reactions consuming metabolite m in the reference 
flux distribution, Sm,n-stoichiometric coefficient of metabolite m in reaction n, Tm- production turnover of 
metabolite m in the simulation, TR

m- production turnover of metabolite m in the reference flux distribution, 
Vn- flux value of reaction n in the simulation, VR

n- flux value for reaction n in the reference flux 
distribution, Xm,n- normalized fraction value. 

 

Using a reference flux distribution, the TDPS algorithm then starts the calculations 

necessary to obtain the Xm,n values required to formulate the genetic modification 

constraints (Table 4.2) and the objective function (Figure 4.1). To avoid confusing 
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nomenclatures of the variables, the intermediate turnover fraction values used in the 

calculations shown in Figure 4.2 were named F values. First, the wild-type or reference 

fraction values ( ,
R

m nF ) are calculated using the reference flux distribution, by computing 

the fraction of the reference production turnover for metabolite m ( R
mT ) that each of the 

consumer reactions (Rm) is using (Figure 4.2). The set of desired genetic modifications 

(GM) is then used to modify the ,
R

m nF  values according to the regulation parameter C 

associated with each modification. If a reaction is active in the reference flux distribution 

( , 0R
m nF > ) and it is targeted for up-regulation (1 < C ≤ 5), then the algorithm increases 

the fraction value for all its precursors (Mn) according to the formula shown in Figure 4.2. 

The up-regulation formula is composed of two terms: the first term increases the modified 

fraction value ( ,m nF ) up to five times the reference fraction and the second term is 

important to allow significant up-regulation when the magnitude of ,
R

m nF  in the wild-type 

organism is so low that multiplying it by 5 would not change its value significantly. If an 

active reaction is a target for down-regulation (0 < C < 1) then its ,m nF  value is decreased 

by direct multiplication with the C parameter. In both cases the magnitude of the C value 

should mimic the severity of the regulation applied to the organism and it is up to the user 

to find the value that best describes the genetic modification undertaken. 

When the reaction targeted for modification is inactive in the reference flux distribution (

, 0R
m nF = ), it is necessary to estimate the fraction of the total production turnover that this 

reaction will consume when activated. TDPS uses the number of reactions that compete 

for the same substrate (h) to estimate the average ,
R

m nF  value for each precursor required 

by the activated reaction. The number of reactions that compete for the same substrate (h) 

refers to the active consumers of metabolite m ( mR+ ) in the reference flux distribution and 

is calculated using the cardinality (card) of mR+ . With the estimated ,
R

m nF  value, TDPS can 

then apply the same rules described above for up- and down-regulation, depending on the 

value of the C parameter. Although the up-regulation of an inactive reaction is quite 

straightforward to understand, it is also biologically relevant to down-regulate inactive 

reactions. For example, in heavily engineered strains it is very likely that some of the 

modifications applied will result in a regulatory response that induces the activation of 

reactions that are usually off. These activated reactions can be important down-regulation 
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targets and it would not be appropriate to exclude them. Therefore, the estimated ,
R

m nF  

value is valid for both up and down-regulations. 

There is also the possibility that an inactive reaction ( , 0R
m nF = ) contains one or several 

precursors that are not being actively consumed by any reaction in the network (h = 0). In 

this case the TDPS algorithm assumes that the activated reaction will be the only 

consumer for those metabolites ( , 1R
m nF = ). 

After manipulating the ,m nF  values in accordance to the genetic modifications, the sum of 

all the fraction values for a certain metabolite is no longer guaranteed to be equal to one. 

To normalize them back to unitary fractions, each ,m nF  value is divided by the summed 

fraction values for the respective metabolite, which yields the ,m nX  values (Figure 4.2). 

Using the rules described in Table 4.2, the ,m nX  values are then employed in the creation 

of flux constraints for all the reactions present in the GM set. Finally, the ,m nX  values are 

used in the creation of the split ratio stability term of the objective function (Figure 4.2), 

which is then minimized by the solver in order to produce the mutant flux distribution. 

4.3 Methods 

4.3.1 Implementation of the TDPS algorithm 

The TDPS method was implemented in the JAVA programming language within the 

libraries of the OptFlux software [11]. OptFlux is an in silico metabolic engineering 

framework that allows the user to import and manipulate GSMMs and perform strain 

optimization/simulation tasks. With the integration of TDPS in OptFlux it is possible to 

access additional functionalities such as strain optimization algorithms and flux 

visualization tools, which expands the possible applications of TDPS. 

4.3.1.1 Pre-calculations 

The reference flux distributions that are required for the execution of TDPS were 

calculated with pFBA using biomass maximization as the objective function [14]. Using 
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the reference flux distribution, the fraction values ( ,
R

m nF ) were calculated for all reactions 

(n) consuming metabolite m ( mn R∈ ): 

 ,
,

.
, ,V 0

R
n m nR R

m n m nR
m

V S
F m M n R

T
= ∀ ∈ ∈ ≥   Equation 4.1  

   

Where R
nV  is the reference flux value in reaction n, ,m nS  is the stoichiometric coefficient 

of metabolite m in reaction n and M is the set of all the metabolites in the network. The 

reference production turnovers ( R
mT ) were calculated for all metabolites in the network (m

∈M) using the formula: 

 ,. , , 0
m

R R R
m n m n m n

n P
T V S m M n P V

∈

= ∀ ∈ ∈ ≥∑   Equation 4.2  

   

Where mP is set of reactions that can produce metabolite m. 

4.3.1.2 Splitting reversible reactions in two half-reactions 

During the simulations it was necessary to create variables for the production turnovers of 

the mutant flux distribution. These variables are required in the formulation of the flux 

constraints derived from the genetic modifications and for the formulation of the 

objective function. However, the existence of reversible reactions in metabolic models 

makes the creation of a variable describing the production turnover of a metabolite using 

linear programming quite challenging. Since the flux variable can be either positive or 

negative it was necessary to split all reversible reactions in two positive half-reactions in 

order to have flux variables that are specific for the forward or reverse direction:  

 Pos Neg
n n nV V V n U= − ∀ ∈   Equation 4.3  

   

  { }0 . 0,1Pos UB Pos Pos
n n n nV V B B≤ ≤ ∈   Equation 4.4  

   

  { }. 0 0,1LB Neg Neg Neg
n n n nV B V B≤ − ≤ ∈   Equation 4.5  

   

 1Pos Neg
n nB B+ ≤   Equation 4.6  
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Where Pos
nV is the flux value in the forward direction of reaction n during the simulation, 

Neg
nV  is the flux value in the reverse direction of reaction n during the simulation, U is the 

set containing all reversible reactions in the network, LB
nV is the lower flux bound of 

reaction n, UB
nV  is the upper flux bound of reaction n, and Pos

nB and Neg
nB  are the binary 

variables used to prevent both half-reactions from being active simultaneously. In 

addition to the variables created for the half-reactions it was also necessary to prevent 

both half-reactions to be active simultaneously so that futile cycles could not arise. Binary 

variables were used to create additional constraints so that only one of the half-reactions 

could be active at a time (Equation 4.6).As a consequence of using binary variables, the 

simulations performed with TDPS become a Mixed Integer Linear Programming (MILP) 

problem. 

4.3.1.3 TDPS implementation 

The mathematical implementation of the objective function shown in Figure 4.1 required 

a minor modification in the split ratio stability term to avoid that a flux distribution full of 

zeros would be a possible solution for the minimization problem. Therefore, the reference 

turnover value was included in the split ratio stability term to ensure that the turnover in 

the mutant flux distribution stayed close to the reference value. Using the modified 

objective function, TDPS was formulated mathematically as follows: 
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Where GMUR is the set of reactions that should be up-regulated, GRDR is the set of 

reactions that should be down-regulated, GMKO is the set of reactions that should be 

knocked-out and Dn is the direction of reaction n that should be modified if a reversible 

reaction is targeted for up- or down-regulation. As shown in equations 4.7 and 4.8, the 

number of terms present in the equations had to be increased to adjust for the existence of 

reversible reactions in the metabolic model. This was achieved by replacing nV  by the 

appropriate half-reaction ( Pos
nV  or Neg

nV ) for all reversible reactions ( n U∈ ). The flux 

constraints formulated in equations 4.14 - 4.19 also take into consideration which 

direction of reaction n should be modified by checking a directionality parameter (Dn) 
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provided by the user. For modifying the forward reaction of n, Dn must be set to 1 and for 

the reverse reaction to -1. 

4.3.1.4 TDPS_FBA implementation 

TDPS_FBA was implemented to test the robustness of the predictions obtained with the 

TDPS algorithm. Initially, a normal TDPS simulation was performed and the optimal 

value of the objective function (OF) was stored. Subsequently, a new TDPS problem was 

formulated with all the initial constraints but including a new one: 
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Equation 4.22  

   

Where T is the tolerance constant used to relax the initial objective function value. The 

objective function used in TDPS was then replaced in TDPS_FBA by the maximization 

of the biomass production flux. 

4.3.1.5 Solver 

The academic version of IBM ILOG CPLEX optimization studio V12.5.1 64bit was used 

as the LP and MILP solver in all simulations performed with TDPS. Given the size and 

complexity of the problems generated by TDPS, the CPLEX parameter 

“NumericalEmphasis” was activated in all simulations performed to avoid occasional 

numerical instability issues. All other CPLEX parameters were used as predefined by the 

manufacturer. 

4.3.2 Toy model simulations 

TDPS was used to simulate the effects of different types of genetic modifications on a toy 

model using a penalty constant for activated reactions ( P ) equal to 1, the C parameter for 

up-regulation was assumed to be 2 and for down-regulation it was assumed to be 0.5. The 

reference flux distribution used in the simulations was calculated using pFBA by 

maximizing the biomass reaction R7.  
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4.3.3 Case study simulations 

4.3.3.1 Genome-scale models and reference flux distributions 

The consensus GSMM for S. cerevisiae version 6.06 [21] was downloaded in the SBML 

format from the project’s website: http://sourceforge.net/projects/yeast/files/ and modified 

according to Appendix B (Tables B1-B5). The Yeast 6.06 GSMM was imported into 

OptFlux 3.07 [11] and all stoichiometric coefficients were multiplied by 1000 in order to 

help solving occasional numerical instability issues reported by CPLEX. 

The case-studies that were collected from the literature to validate TDPS contained data 

obtained with two types of cultivation methods, chemostat and batch cultures. In order to 

simulate glucose limited chemostat conditions with a dilution rate of 0.1 h-1, the glucose 

uptake rate was set to 1.15 mmol/(gCDW·h) and the uptake rates of ammonia, phosphate, 

sulfate and oxygen were unconstrained. The modifications applied in chapter 3 to 

improve the reference flux distribution were also applied here during the computation of 

the reference flux distribution. 

With the purpose of simulating batch cultures, the glucose uptake rate was estimated from 

batch cultivations of S. cerevisiae CENPK (initial glucose concentration of 20 g/L) and 

set to 11.4 mmol/(gCDW·h). To mimic respiro-fermentative metabolism, the oxygen 

uptake rate was limited to 1.3 mmol/(gCDW·h) in order to obtain a final biomass yield on 

glucose characteristic of S. cerevisiae (0.12 g/g) [22]. During the computation of this flux 

distribution, the constraints described in chapter 3 were also applied, but in this case only 

the ones related to NADPH metabolism. Since during respiro-fermentative metabolism 

the abundance of NADH is altered in comparison to glucose limited conditions, the 

NADH related constraints used in chapter 3 were not used for calculating this reference 

set of fluxes. 

 4.3.3.2 Parametrization of the TDPS simulation of mutant phenotypes 

The simulation of mutant phenotypes was performed with TDPS using a penalty constant 

for activated reactions ( P ) of 50. This value was found to provide a good balance 

between the maintenance of the split ratio values (first term of the objective function in 

Figure 4.1) and the inhibition of reaction activation (second term of the objective function 

in Figure 4.1) in the conditions that Yeast 6.06 was tested. 
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The drain reactions were excluded from the objective function formulation because they 

do not represent any metabolic entity and are only present in the model to allow exchange 

of metabolites with the medium. Some metabolites were also excluded from the TDPS 

calculations because they are available in excess and it would not be logical that they 

were included in the resource based formulation used to model genetic modifications. In 

chemostat conditions the metabolites excluded were: H2O, H+, SO4
2-, NH4

+, HPO4
2-, Fe2+ 

and O2. Coenzyme A was also included in the list of metabolites to be excluded because it 

has a passive role in metabolism, i.e., it is always recycled in its original form and its 

availability should not be a limiting factor for metabolic fluxes at steady-state. In batch 

conditions, because oxygen availability was limiting, O2 was re-included in the 

calculations.  

Given the lack of knowledge regarding which values for the C parameter would be more 

appropriate to simulate the genetic modifications extracted from the literature, a random 

number generator was used to create virtual mutant populations of at least 500 individuals 

with diversified phenotypes for the same set of genetic conditions. For each up-regulation 

500 random numbers between 1 and 5 were attributed to the C parameter (1 < C ≤ 5), 

while for each down-regulation 500 random numbers between 0 and 1 (0 < C < 1) were 

generated and for reaction inactivation the C parameter was set to zero. The final values 

presented for each virtual strain include the average production yield obtained for the 

target metabolite, the minimum and the maximum production yields obtained for the 

randomly generated population. 

TDPS_FBA simulations were carried by relaxing 10 % (T = 1.1) the optimal value of the 

objective function obtained with TDPS and maximizing the biomass formation with the 

added constraint.  

4.4. Results and discussion 

4.4.1 TDPS toy-model validation 

TDPS was developed to simulate mutant phenotypes of engineered strains using GSMMs. 

However, GSMMs are difficult to visualize due to their size and it would be challenging 

to validate some of the aspects of TDPS using models with over 1000 metabolic 

reactions. Therefore, a small toy-model was created to verify if the all the components of 
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TDPS were working as expected. Figure 4.3 shows the toy-model developed, along with 

the changes in the flux distribution resulting from different types of genetic modifications 

that can be simulated with TDPS. 

 
Figure 4.3- Flux distributions obtained with TDPS for different types of genetic modifications using a toy-
model. For up-regulations the C parameter was set to 2 and for down-regulation to 0.5. The reaction 
activation penalty constant used was 1. 

 

The first step in the formulation of TDPS consists in the computation of a wild-type flux 

distribution using pFBA [14] (Figure 4.2) to serve as a reference for the calculations 

performed by the algorithm. In order to obtain the reference flux distribution for the toy-

model (Figure 4.3), the biomass production (R7) was maximized and a fixed substrate 

(metabolite A) uptake rate of 100 flux units was assumed. After examining the wild-type 

set of fluxes, we selected three testing targets for up-regulation (R2, R4, and R5), one for 

down-regulation (R2) and one for inactivation (R3). The up-regulations were simulated 

by setting the C parameter to 2 and for the down-regulation a value of 0.5 was used 

instead.  

The up-regulation of R2 was selected as an example for the amplification of a reaction 

active in the reference flux distribution. By defining the C parameter strength to 2, the 

constraints generated by the algorithm resulted in an increase of 17 flux units in R2 when 

comparing to the reference value (Figure 4.3). The flux increase occurred at the expense 
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of a symmetric decrease in the flux of R3, which is the only reaction competing for the 

same precursor (metabolite B). Although the absolute flux increase does not appear very 

high, the flux ratio between R2 and R3 increased from 3:2 to almost 8:2. As a result of 

up-regulating R2, the flux in reaction R4 was also activated in order to dispose of the 

excessive production of metabolite D, which cannot be excreted or used for biomass 

formation (Figure 4.3). The fact that R5 remained inactive shows that the penalty term for 

activated reactions (Figure 4.1) is working as expected, because only the indispensable 

reactions were activated. 

One of the features of TDPS is to make the flux through an up-regulated/activated 

reaction dependent on the availability of its precursors. In order to test this feature, two 

inactive reactions with differently available precursors were selected as targets for up-

regulation (R4 and R5).  Regarding the up-regulation of R4, Figure 4.3 shows how the 

availability of metabolite D results in a significant flux flowing through the activated 

reaction. On the contrary, when reaction R5 is up-regulated, there are no changes in the 

flux distribution in comparison with the reference network (Figure 4.3). The contrasting 

up-regulation phenotypes observed are the result of a considerable difference between the 

production turnovers of metabolites D and I. Therefore, simulating the activation of a 

metabolic reaction in TDPS does not imply that there will be any changes in the network, 

which highlights the advantage of using TDPS to simulate reaction activations in 

comparison to other methods that manipulate flux values directly (OptReg [3] and 

EMILiO [5]) or even the objective function (Redirector [9]).  

Although the up-regulation of R5 on its own resulted in a phenotype with zero flux over 

that reaction, TDPS is capable of modeling genetic modifications in an integrated manner. 

Therefore, if R4 is up-regulated simultaneously with R5, the production turnover for 

metabolite I will increase and R5 will become active as a consequence (data not shown). 

The fact that TDPS allows genetic modifications to affect each other is a consequence of 

the strategy used to handle production turnovers. In TDPS, the metabolite production 

turnover used to create the flux constraints is not a constant obtained from the reference 

flux distributions, but a variable inside the MILP problem. Consequently, TDPS can be 

used to find metabolic engineering strategies that are composed of genetic alterations that 

work synergistically the reach the desired production goal.  
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To illustrate the application of the TDPS algorithm to down-regulations, reaction R2 was 

selected as a down-regulation target. As shown in Figure 4.3, the attenuation of R2 

resulted in a decrease of 17 flux units, which caused a concomitant increase of the same 

magnitude in the flux through R3. This down-regulation limited the amount of metabolite 

D available in the network, which reduced the biomass formation rate. In terms of split 

ratios, the down-regulation of R2 resulted in a decrease from 3:2 to 1.5:2. 

TDPS handles gene deletions in the same way as other simulation methods available, so 

the only innovation introduced in this case is how the objective function (Figure 4.1) 

calculates the flux distribution of the inactivation mutant. In Figure 4.3 we show how 

TDPS predicts a drop in biomass formation in response to a decrease in the availability of 

metabolite E and an increase in reaction R6 in order to recycle excess of metabolite C1.  

Given the size of the toy-model, it was not possible to observe the objective function 

promoting stability at the flux ratio level. Since the model is quite small and we assumed 

a fixed substrate uptake rate, there are not many degrees of freedom in the network to 

allow significant flux flexibility in the network. Nevertheless, the toy-model served the 

purpose of testing how TDPS handled each type of genetic modification in an easy to 

visualize scale. 

4.4.2 TDPS validation with experimental results 

After the initial validation using a toy-model, the simulation method was put to the test 

with physiological data gathered from the literature. Given the importance of the 

reference flux distribution in the simulation outcome of strain design methods (chapter 3), 

it would not be advisable to test TDPS using models of uncertain quality. Since the 

genome-scale models for S. cerevisiae were previously curated in an effort to improve 

their wild-type flux distribution during growth on glucose (chapter 3), this microorganism 

was chosen as the case-study. Besides the availability of curated flux distributions, there 

was also the advantage of S. cerevisiae being a model organism with abundant 

physiological data available, as well as plenty of strain engineering strategies accessible 

in the literature. 

In order to select strain engineering strategies appropriate for the validation of the TDPS 

algorithm, we restricted the case-study search to S. cerevisiae strains grown aerobically 

on minimal media with glucose as the sole carbon source. Furthermore, to validate the 
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steady-state simulations obtained with TDPS it would be preferred to work only with data 

derived from glucose limited chemostat experiments. However, chemostat fermentations 

are labor intensive and as a consequence the majority of metabolic engineering studies 

available in the literature use batch cultures in bioreactors or shake-flasks for strain 

characterization instead. To include both batch and chemostat data in the validation of 

TDPS, we created two different reference flux distributions: the first one describes 

glucose-limited conditions characteristic of chemostat cultures growing at a dilution rate 

of 0.1 h-1 and the second one simulates respiro-fermentative conditions typical of the 

glucose consumption phase in batch fermentations. 

Besides providing a reference flux distribution it is also necessary to select appropriate C 

parameters (see section 4.2) for each genetic modification simulated in TDPS. However, 

the C parameter is dependent on the expression levels and kinetic characteristics of the 

enzyme used, which means that it would not be appropriate to specify the same value for 

all the modifications under analysis. In order to get an overview of the range of 

phenotypes that the TDPS algorithm can predict, each strain was simulated by attributing 

500 random values to each C parameter within the ranges defined in the methods section. 

Besides the average value we also show the minimum and maximum values obtained in 

the simulations to illustrate the simulation range of possible phenotypes. 

To simulate the phenotypes for the strains obtained in the literature, two different versions 

of TDPS were used: the regular version as it is described in section 4.2 and a relaxed 

version (TDPS_FBA) where the optimal value of the objective function is allowed to 

relax and is included as an additional constraint in a new problem (described in section 

4.3.1.4). TDPS_FBA was useful to determine how robust the phenotypes obtained with 

TDPS are, i.e., to check if the production yields obtained with TDPS can vary without 

compromising the objective function value considerably. 

4.4.2.1 Case-study 1: PHB production in S. cerevisiae 

The first case-study selected to validate TDPS consists in the production of 

polyhydroxybutyrate (PHB) in S. cerevisiae using the genes of the phaCAB operon from 

Ralstonia eutropha [23, 24]. In this case-study Kocharin et al. determined the PHB 

production in batch cultures (bioreactor and shake-flask) of a strain expressing three 

heterologous genes from R. eutropha (SCKK005) [23]. The authors also improved the 
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availability of cytosolic acetyl-CoA by expressing a deregulated acetyl-CoA synthetase 

(acsSE
L641P) from Salmonella enterica and by up-regulating the cytosolic aldehyde 

dehydrogenase (ALD6) and alcohol dehydrogenase (ADH2) endogenous of S. cerevisiae, 

which resulted in the strain SCKK006 that was characterized in batch cultures (bioreactor 

and shake-flask) [23] as well as in glucose limited chemostats [24]. 

Table 4.3 shows the PHB production yields calculated from the results of Kocharin et al. 

[23, 24] along with the corresponding yields simulated with TDPS. The simulated yields 

shown for batch conditions in Table 4.3 were obtained specifically for a respiro-

fermentative metabolism in glucose, which makes their value comparable only with the 

glucose consumption phase of bioreactor cultivations. Since the shake-flask yields were 

calculated at the end of the fermentation, the values shown include both the respiro-

fermentative phase on glucose and the growth on fermentation products phase. Therefore, 

the shake-flask yields shown in Table 4.3 cannot be compared directly with the simulated 

yields obtained with TDPS but can still be helpful in the validation of the algorithm.  

Table 4.3- TDPS validation case-study using PHB production in S. cerevisiae 

Strain 
Genotype relevant for 

simulations 
In vivo yields 

(mg PHB/g glucose) 
TDPS yields 

(mg PHB/g glucose) 

SCKK005 [23] 

Gene additions: 
phaA (EC 2.3.1.9), phaB (EC 
1.1.1.36), phaC (EC 2.3.1.-) 
 

Bioreactor cultivation 
- Glucose phase:  0.020 mg/g 
- Final yield: 0.097 mg/g 
Shake Flask 
- Final yield: 0.5 mg/g 

Batch simulation: 
TDPS: 1.0 mg/g 
Min: 0.26 mg/g  Max: 1.6 mg/g 
 
TDPS_FBA: 1.0 mg/g 
Min: 0.30 mg/g  Max: 1.6 mg/g 

SCKK006  
[23, 24] 

Gene additions: 
phaA (EC 2.3.1.9), phaB (EC 
1.1.1.36), phaC (EC 2.3.1.-), 
acsSE

L641P (EC 6.2.1.1) 
 
Gene up-regulations: 
ALD6 (EC 1.2.1.4), ADH2* 
(EC 1.1.1.1) 
 

Bioreactor cultivation 
- Glucose phase:  0.13 mg/g 
- Final yield: 2.3 mg/g 
Shake Flask 
- Final yield: 13 mg/g 

Batch simulation: 
TDPS: 21 mg/g 
Min: 11 mg/g Max: 31 mg/g 
 
TDPS_FBA: 21 mg/g 
Min: 9.9 Max: 30 mg/g 

Chemostat (D = 0.1 h-1) 
Steady state yield: 2.6 mg/g 

Chemostat simulation: 
TDPS: 50 mg/g 
Min: 12 mg/g Max: 91 mg/g 
 
TDPS_FBA: 10 mg/g 
Min: 2.6 mg/g Max: 17 mg/g 

*ADH2 up-regulation was not included in the simulations (see text) 

Regarding strain SCKK005 (Table 4.3), the average yield simulated with TDPS (1.0 

mg/g) was two orders of magnitude higher than the experimental value obtained in the 

glucose phase of the bioreactor fermentation (0.020 mg/g). Furthermore, even the 
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minimum value simulated with TDPS (0.26 mg/g) was still one order of magnitude above 

the experimental value (0.020 mg/g). However, the final PHB yield reported for shake-

flask cultivations (0.5 mg/g) was around 5 times higher than the corresponding value in 

bioreactors (0.097 mg/g). Assuming that the yield in the glucose phase in the shake-flask 

cultivations would also be 5 times higher than the bioreactor counterpart, we estimated 

the respiro-fermentative yield in shake-flasks to be close to 0.1 mg/g. When this 

estimation is compared to the lowest value simulated with TDPS (0.26 mg/g), the 

difference between simulated and experimental values decreases significantly.  

In comparison with SCKK005, the strain SCKK006 includes the additional expression of 

acsSE
L641P from S. enterica and the up-regulation of ALD6 and ADH2 in order to improve 

the availability of acetyl-CoA in the cytosol of S. cerevisiae. Since the up-regulation of 

ADH2 was implemented to improve ethanol utilization after glucose is exhausted, this 

gene was not included in the simulations performed with TDPS. Looking at Table 4.3, the 

improvement in the PHB production yield observed for the bioreactor cultivation was of 

6.5 times in the glucose phase and 23 times overall. Furthermore, in shake-flask 

cultivations the final yield improvement was of 26 times compared to strain SCKK005. 

TDPS predicted on average an improvement of 21 times in the production yield of PHB 

in respiro-fermentative conditions. Although this value is above the observed 

improvement for the glucose phase, it is quite similar to the overall improvement obtained 

in bioreactor and shake-flask cultivations. As seen for strain SCKK005, the production 

levels predicted by TDPS for strain SCKK006 (21 mg/g) are two orders of magnitude 

above the experimental value determined in bioreactor cultivations (0.13 mg/g). Even if 

we consider the minimum value simulated with TDPS (11 mg/g) the difference is still 

quite high. Again, only the shake-flask yields can approximate the values simulated with 

TDPS.  

The consistently higher PHB production levels determined computationally can be 

attributed to an overestimation of the reference fraction value (FR) in the calculations 

performed by the TDPS algorithm. As described in section 4.2, when a reaction is 

activated in the metabolic network, given the absence of reference data, the FR is 

estimated from other reactions in the network that consume the same precursor. In this 

case the estimated FR value for the acetoacetyl-CoA reductase (phaB) was very high, 

which caused the PHB yields to be overestimated independently of the C parameter 

associated with this up-regulation. In biological terms, this means that the performance of 
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the PHB biosynthetic enzymes introduced in S. cerevisiae was below the estimation made 

by TDPS. Consequently, the simulations assumed that the capacity of the heterologous 

enzymes to compete for precursors with the endogenous enzymes was higher than in 

reality, which resulted in the differences observed. Nevertheless, the magnitude of the 

variation between simulations and experiments was considerably lower in shake-flask 

fermentations, which might indicate a better activity of the PHB biosynthetic enzymes in 

these conditions. 

The final data presented in Table 4.3 refers to experiments performed with the strain 

SCKK006 in chemostat cultures. As seen for the batch cultures, the simulated yield (50 

mg/g) is higher than the experimentally determined value (2.6 mg/g) but in this case the 

difference is only around one order of magnitude. Looking at the interval of simulated 

yields, the minimum yield predicted by TDPS (12 mg/g) is only 5 times higher than the 

experimental value. Furthermore, the minimum yield predicted with TDPS_FBA (relaxed 

version of TDPS) is actually coincident with the experimentally determined value (2.6 

mg/g). When compared with the results obtained for the batch cultures, the yields 

simulated in glucose limited conditions are much closer to the simulated values. The 

better apparent performance of the TDPS algorithm in glucose limited conditions might 

be a consequence of the superior activity of the PHB producing enzymes under these 

cultivation conditions in comparison with respiro-fermentative metabolism. Alternatively, 

the assumptions made in the creation of a reference flux distribution for respiro-

fermentative conditions might be inadequate for an accurate simulation of production 

yields in batch cultures. However, the limited data available on chemostat conditions did 

not allow us to draw a confident conclusion about the differences observed between the 

conditions tested. 

4.4.2.2 Case-study 2: 3-HP production in S. cerevisiae 

The biosynthesis of 3-hydroxypropionic acid (3-HP) is not native to S. cerevisiae but it 

can be achieved from malonyl-CoA by a double step reduction. In the work of Chen et al. 

and Shi et al. [25, 26], the authors introduced into S. cerevisiae the bi-functional malonyl-

CoA reductase (mcr) from Chloroflexus aurantiacus in order to allow the production of 

3-HP from malonyl-CoA in this microorganism. Furthermore, the authors also created a 

series of strains with improved 3-HP production yields that we used here as case-studies 

to validate the simulation capability of TDPS. In Table 4.4 the results obtained from both 
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publications are shown, together with the simulated yields calculated with the TDPS 

simulation method.  

Strains HPY01 and HPY15 include the expression of the mcr gene from C. aurantiacus 

and showed a basal production level of 3-HP that relied on the natural availability of 

malonyl-CoA in S. cerevisiae. As shown in Table 4.4, the 3-HP production yield in the 

glucose phase of the bioreactor cultivation was very close to the simulated yield obtained 

with TDPS (2.4 mg/g vs. 1.3 mg/g), which indicates that the simulation method estimated 

quite accurately the availability of malonyl-CoA in the cell. Although the experimental 

yield was not inside the simulated interval (0.44 – 2.2 mg/g), the predictions given by 

TDPS were still quite remarkable for this strain when compared with the PHB case-study. 

In this case, the production yields in shake-flask were comparable to the bioreactor yields 

and did not offer any additional insight. 

Strain HPY04 was engineered for an improved availability of malonyl-CoA by up-

regulating the acetyl-CoA carboxylase gene (ACC1) [25]. The shake-flask cultivation of 

this strain resulted in an overall increase in the 3-HP production yield of 1.7 times in 

comparison with a predicted improvement of 2.2 times given by TDPS (Table 4.4). We 

could also estimate approximately the 3-HP yield during the glucose phase in shake-

flasks by assuming that 41% of the final yield is produced during the respiro-fermentative 

phase (value calculated from strain HPY18). The resulting value, 3.2 mg/g, was inside in 

the simulated interval (0.42 - 4.5 mg/g) and was quite close to the average value 

generated with TDPS (2.8 mg/g). 

In addition to strain HPY04, the ACC1 up-regulation genotype was also implemented in 

strain HPY18, but in this case the ACC1 gene was further modified to improve its 

enzymatic activity [26]. The 3-HP yields of strain HPY18 during cultivation in 

bioreactors improved 2.4 times in the glucose consumption phase and 3.4 times overall in 

comparison with strain HPY15 (Table 4.4). The 2.4 times improvement observed in the 

glucose phase is remarkably similar to the average improvement of 2.2 times obtained 

from the TDPS simulations. In regard to the production yield in the glucose phase of the 

bioreactor cultivation, the value reported for strain HPY18 (5.8 mg/g) falls outside the 

interval predicted by TDPS (0.42 - 4.5 mg/g). However, if we consider the TDPS_FBA 

results, the simulated interval was expanded just enough to include the experimental 

value.  
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Table 4.4- TDPS validation case-study using 3-hydroxypropionic acid (3-HP) production in S. cerevisiae 

Strain 
Genotype relevant for 

simulations 
In vivo yields 

(mg 3-HP/g glucose) 
TDPS yields 

(mg 3-HP/g glucose) 

HPY01 [25] / 
HPY15 [26] 

Gene additions: 
mcr (EC 1.2.1.75 + EC 
1.1.1.298) 

Shake Flask 
- Final yield: 4.6 mg/g 
Bioreactor cultivation 
- Glucose phase:  2.4 mg/g 
- Final yield: 4.1 mg/g 

Batch simulation: 
TDPS: 1.3 mg/g  
Min: 0.44 mg/g  Max: 2.2 mg/g 
TDPS_FBA: 1.3 mg/g 
Min: 0.45 mg/g  Max: 2.2 mg/g 

  HPY04 [25] 
/ HPY18 [26] 

Gene additions: 
mcr (EC 1.2.1.75 + EC 
1.1.1.298) 
 
Gene up-regulations: 
ACC1 (EC 6.4.1.2) 

Shake Flask 
- Final yield: 7.7 mg/g 
Bioreactor cultivation** 
- Glucose phase: 5.8  mg/g 
- Final yield: 14 mg/g 

Batch simulation: 
TDPS: 2.8 mg/g 
Min: 0.42 mg/g Max: 4.5  mg/g 
TDPS_FBA: 3.3 mg/g 
Min: 0.51  Max: 5.8 mg/g 

HPY05 [25] 

Gene additions: 
mcr (EC 1.2.1.75 + EC 
1.1.1.298), acsSE

L641P (EC 
6.2.1.1) 
 
Gene up-regulations: 
ALD6 (EC 1.2.1.4), ADH2* 
(EC 1.1.1.1) 

Shake Flask 
- Final yield: 7.0 mg/g 

Batch simulation: 
TDPS: 0.88 mg/g 
Min: 0.27 mg/g Max: 1.8 mg/g 
TDPS_FBA: 1.0 mg/g 
Min: 0.33 Max: 1.9  mg/g 

HPY06 [25] 

Gene additions: 
mcr (EC 1.2.1.75 + EC 
1.1.1.298), acsSE

L641P (EC 
6.2.1.1) 
 
Gene up-regulations: 
ALD6 (EC 1.2.1.4), ADH2* 
(EC 1.1.1.1), ACC1 (EC 
6.4.1.2) 

Shake Flask 
- Final yield: 11 mg/g  

Batch simulation: 
TDPS: 19 mg/g 
Min: 5.6 mg/g Max: 49 mg/g 
TDPS_FBA: 17 mg/g 
Min: 5.4 mg/g Max: 35 mg/g 

HPY09 [25] 
Gene additions: 
mcr (EC 1.2.1.75 + EC 
1.1.1.298), gapN (EC 1.2.1.9) 

Shake Flask 
- Final yield: 6.0 mg/g 

Batch simulation: 
TDPS: 1.2 mg/g 
Min: 0.42 mg/g Max: 2.1 mg/g 
TDPS_FBA: 1.3 mg/g 
Min: 0.43 mg/g Max: 2.1 mg/g 

HPY11 [25] 

Gene additions: 
mcr (EC 1.2.1.75 + EC 
1.1.1.298), acsSE

L641P (EC 
6.2.1.1), gapN (EC 1.2.1.9) 
 
Gene up-regulations: 
ALD6 (EC 1.2.1.4), ADH2* 
(EC 1.1.1.1), ACC1 (EC 
6.4.1.2) 
 
Gene deletions: 
MLS1 (EC 2.3.3.9) 

Shake Flask 
- Final yield: 23 mg/g 

Batch simulation: 
TDPS: 116 mg/g 
Min: 14 mg/g Max: 160 mg/g 
TDPS_FBA:  80 mg/g 
Min: 6.6 mg/g Max: 130 mg/g 

*ADH2 up-regulation was not included in the simulations (see text) 

** In the strain used in this cultivation (HPY18) the up-regulation of ACC1 was boosted by inhibiting its post-translational regulation 

[26]  
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The remaining strains presented in Table 4.4 were only characterized by the authors in 

shake-flask cultures, which hampered the comparison of the overall yields against the 

simulations. However, the overall improvement in comparison to HPY01 should still 

indicate if the TDPS simulations were capturing the cellular adaptation when faced with 

the additional disturbances. Strain HPY05 has an improved acetyl-CoA availability when 

compared to HPY01 because of the additional expression of a deregulated acetyl-CoA 

synthetase from S. enterica (acsSE
L641P) and the up-regulation of ALD6 and ADH2. As 

explained for the PHB case-study, the up-regulation of ADH2 was not included in any of 

the simulations because the amplification of this gene was targeted for activation only 

after the glucose in the media was exhausted. The performance of the strain HPY05 in 

shake flask revealed an improvement of 1.5 times compared to HPY01 (Table 4.4). 

However, the yield predicted by TDPS actually decreased in comparison with the control 

strain. This result is quite odd judging by the improvement observed in the simulation of a 

similar strain from the PHB case-study (SCKK006). Since the up-regulation of the acetyl-

CoA boosting genes was shown to be functional in silico for the PHB producing strain 

SCKK006, the problem with the simulation of strain HPY05 must be in the limited 

conversion of acetyl-CoA to malonyl-CoA. This theory is supported by the simulations 

obtained in strain HPY06, which showed that the combined action of the acetyl-CoA 

boosting strategy with the up-regulation of ACC1 results in an improved 3-HP yield in 

silico when compared to each strategy on its own. 

The yield reported for strain HPY06 improved 2.4 times when compared with the 

production yield of strain HPY01 (Table 4.4), which was quite low compared to the 15 

times improvement predicted by TDPS. Such a considerable difference might be the 

consequence of a bottleneck in one of the up-regulated genes. As shown by Shi et al. the 

attenuation of the post-translational regulation of Acc1p resulted in a higher flux in this 

enzyme (HPY18) [26] and in an improvement of 1.8 times compared with a strain with 

the up-regulation of the wild-type ACC1 (HPY04). Therefore, it is likely that the up-

regulation of a modified ACC1 gene in strain HPY06 would result in a bigger 

improvement in 3-HP production, which should reduce the difference between the 

experimental yield and the value simulated with TDPS. Although the shake-flask yield 

cannot be directly compared with the simulated values, its value is included within the 

interval simulated with TDPS. 
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Strain HPY09 was engineered for improved NADPH availability by introducing in S. 

cerevisiae a NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (gapN) from 

Streptococcus mutans [25]. The objective of expressing gapN was to enhance the activity 

of the mcr gene, which requires two molecules of NADPH per molecule of 3-HP 

produced. Although the 3-HP yield improved 1.3 times in strain HPY09 cultivated in 

shake-flasks, the TDPS simulation failed to predict the advantage of the increased 

availability of NADPH (Table 4.4). However, when the expression of gapN was 

combined with all the other genetic modifications, we observed a cooperative effect in the 

TDPS simulations (strain HPY11 in Table 4.4). The shake-flask yield for strain HPY11 

improved 5 times over the strain HPY01, which was still considerably lower than the 89 

fold average improvement predicted by TDPS. Even if we consider the more conservative 

estimation obtained with TDPS_FBA for the improvement in the minimum simulated 

value, the fold change would still be 15 times, which is still considerably higher than the 

values reported experimentally. Regarding the production yield predicted by TDPS for 

strain HPY11, the average value (116 mg/g) was significantly higher than the overall 

yield reported in shake-flask (23 mg/g). However, the minimum values shown for TDPS 

(14 mg/g) and TDPS_FBA (6.6 mg/g) represent only 61 % and 29 % of the total 3-HP 

yield reported in shake-flasks (23 mg/g). When compared to the value reported for the 

percentage of 3-HP produced during the glucose phase for strain HPY18 (41 %), these 

simulated yields can be considered a reasonable estimation for observed experimental 

yield 

In general, the results obtained for the less engineered strains were quite satisfactory, and 

the production yields simulated with TDPS were very close to the values reported 

experimentally. However, for the more engineered strains there was a clear over-

estimation of the average 3-HP yields by TDPS. As discussed above for strain HPY06, 

this might be the result of a bottleneck in the 3-HP production pathway, which is reducing 

the experimental yields in comparison with the average predictions made by TDPS. The 

acetyl-CoA carboxylase (Acc1p) has been reported before to be one of the bottlenecks 

[26], but other enzymes might also be working at limited capacity. The existence of a 

bottleneck is the most likely suspect for the divergence observed between the 

experimental results and the simulated values and it became more pronounced with the 

increase in the number of genetic modifications applied. Nevertheless, the minimum 

values simulated with TDPS and TDPS_FBA indicate that the introduction of enzymes 
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with limited capacity can be simulated with these algorithms by assuming more 

conservative C parameters during the simulations. 

The simulation of the 3-HP productions yields in TDPS showed that this algorithm was 

successful in predicting the ranking between metabolically engineered strains. Among all 

the strains shown in Table 4.4, only two of them failed to be ranked correctly among the 

others (HPY05 and HPY09). Although the simulations of strains HPY05 and HPY09 did 

not show a direct improvement of the 3-HP production yield, when combined with 

additional genetic modifications, there was a clear positive effect of the underlying 

strategy. For example, in the specific case of the improvement of NADPH availability, it 

was shown that increasing this cofactor on its own (strain HPY09) was not relevant 

because the limiting substrate in silico was malonyl-CoA. However, when combined with 

a strategy to improve malonyl-CoA availability, the same NADPH improvement strategy 

had a positive impact on 3-HP production. This observation indicates that the strategy 

used in TDPS to model genetic modifications in a manner dependent on the limiting 

substrate is working as intended. 

4.4.2.3 Case-study 3: L-malic acid production in S. cerevisiae 

The production of L-malic acid (MA) in the cytosol of S. cerevisiae can be achieved from 

oxaloacetate and NADH using the malate dehydrogenase enzyme endogenous of this 

microorganism. Zelle et al. used a pyruvate decarboxylase negative (PDC-) S. cerevisiae 

as the platform strain to optimize L-malic acid production [27]. Since PDC- S. cerevisiae 

cannot grow in the absence of C2 compounds (ethanol, acetate, etc.), Zelle et al. used an 

evolved PDC- yeast that could grow on minimal media with glucose as the single carbon 

source both in batch and glucose limited chemostats [28]. The adaptation behind the C2-

independent phenotype could not be determined but it has been shown separately that the 

up-regulation of the threonine aldolase gene (GLY1) can supply enough C2 intermediates 

to cure the growth phenotype of a PDC- strain in glucose limited chemostats [29]. 

We used the TDPS method to simulate the phenotype of a PDC- strain in order to test 

how the growth rate would be affected in respiro-fermentative conditions with glucose as 

the single carbon source. The resulting phenotype was characterized by an 86 % reduction 

in the biomass yield on glucose with a considerable increase in the production of glycerol 

and pyruvate (data not shown). Interestingly, in silico, the lack of C2 intermediates in the 
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cytosol was compensated by an increase in flux of the threonine aldolase (GLY1), which 

is in accordance with the work of van Maris et al. [29]. Since the authors in reference [27] 

used an evolved PDC- strain with unknown physiological adaptations, there was not 

enough information available to calculate a proper reference flux distributions for the 

evolved strain. Therefore, we opted for simulating all the genetic modifications, including 

the PDC knock-outs, simultaneously. Although this was not the optimal scenario, it 

should still give an idea regarding the performance of the engineered strains. 

Table 4.5 shows the MA production yields of the mutant strains constructed and 

characterized by Zelle et al. [27] in comparison with the respective simulations performed 

with TDPS. Regarding the single up-regulation strains (A-C), TDPS could not replicate 

the better performance reported for strains B and C in comparison to strain A. The 

simulations showed that up-regulating the L-malic acid transporter (SpMAE1) was more 

effective than up-regulating the pyruvate carboxylase (PYC2) or the malate 

Dehydrogenase gene (MDH3). In silico, the advantage of up-regulating the transporter in 

comparison with the other two genes lies in the connectivity of MA with other pathways 

in S. cerevisiae. While the up-regulation of SpMAE1 results in the prompt transport of 

MA out of the cell, the up-regulation of MDH3 just increases the abundance of this 

metabolite inside the cell, which can then enter other metabolic pathways without being 

excreted. 

For the double up-regulation strains (D-F), the MA production ranking predicted by 

TDPS was also not coincident with the results obtained experimentally (Table 4.5). The 

experimental yields reported for strains D and F were very close to the values predicted 

by TDPS, but the performance of strain E was seriously underestimated by the algorithm. 

The failed prediction for strain E made it the worst performing mutant among the double 

up-regulation strains simulated with TDPS, which is exactly the opposite result obtained 

for strain E experimentally. In silico, the strains sharing the up-regulation of PYC2 

showed the best MA yields (strains D and F), which indicates that PYC2 up-regulation is 

quite important for MA production. However, the experimental results reported for strain 

E seem to indicate that PYC2 up-regulation is the least important of the modifications 

tested. These results suggest that oxaloacetate is quite limiting in silico when compared 

with the experimental results reported for the evolved PDC- strain. This is also 

corroborated by the experimental yields reported for the single up-regulation strains (A-

C), which showed that PYC2 up-regulation had the least impact on MA production, 
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indicating that oxaloacetate availability is not the most limiting factor in vivo for the 

evolved PDC- strain. The experimental yield reported for strain E (173 mg/g) was not 

inside the intervals simulated with TDPS (14 – 53 mg/g) or TDPS_FBA (38 – 140 mg/g), 

but these results would probably improve if a reference distribution specific for the 

evolved PDC- strain would be used in the simulations. 

When all the three up-regulations were combined into a single strain it was possible to 

verify that both experimental and simulated production yields for MA ranked first among 

all strains shown in Table 4.5. The experimental yield reported for strain G (312 mg/g) 

was above the simulated interval predicted by TDPS (94 – 190 mg/g) but it was included 

in the relaxed interval obtained with TDPS_FBA (55 – 530 mg/g). The big difference in 

the yields predicted by TDPS and TDPS_FBA is a direct consequence of the severe 

growth phenotype caused by deletion of the PDC genes, which caused harsh changes in 

the flux distribution of the mutant strain. Given the large flux readjustment, allowing the 

objective function of TDPS to relax by 10 % in this strain meant that a significant portion 

of the metabolic pathways could readapt, causing the simulation outcome to change 

pronouncedly between simulation methods.  

The inferior performance of TDPS in this case-study was most likely caused by the severe 

flux phenotype triggered by the deletion of all PDC genes. While the flux changes 

predicted by TDPS were based solely on the objective function included in TDPS, the 

PDC- strain used in the experiments was evolved in the lab with the goal of improving its 

growth phenotype and autotrophy for C2 compounds. Therefore, other genetic adaptations 

were probably acquired by the PDC- mutant during the laboratory evolution experiments. 

These unknown adaptations were not included in the simulations, and consequently the 

results obtained here could have been affected. This issue can be ameliorated by using a 

reference flux distribution that better represents the evolved PDC- strain used as the 

platform for building the MA overproducing strains analyzed in this case-study. 

However, in order to do that we would need more information concerning the fluxes of 

the evolved PDC- strain.  
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Table 4.5- TDPS validation case-study using L-malic acid (MA) production in S. cerevisiae 

Strain 
Genotype relevant for 

simulations 
In vivo yields 

(mg MA/g glucose) 
TDPS yields 

(mg MA/g glucose) 

A [27] 

Gene up-regulations: 
PYC2 (EC 6.4.1.1) 
 
Gene deletions: 
PDC1, PDC2, PDC6 (EC 
4.1.1.1) 

Shake Flask 
- Glucose phase: 13.6 mg/g 

Batch simulation: 
TDPS: 0 mg/g 
Min: 0 mg/g  Max: 0 mg/g 
 
TDPS_FBA: 2.8 mg/g 
Min: 0 mg/g  Max: 43 mg/g 

B [27] 

Gene up-regulations: 
MDH3 (EC 1.1.1.37) 
 
Gene deletions: 
PDC1, PDC2, PDC6 (EC 
4.1.1.1) 

Shake Flask 
- Glucose phase: 36 mg/g 

Batch simulation: 
TDPS: 0 mg/g 
Min: 0 mg/g  Max: 0 mg/g 
 
TDPS_FBA: 0 mg/g 
Min: 0 mg/g  Max: 0 mg/g 

C [27] 

Gene up-regulations: 
SpMAE1 (malate transporter) 
 
Deletion: 
PDC1, PDC2, PDC6 (EC 
4.1.1.1) 

Shake Flask 
- Glucose phase: 34 mg/g 

Batch simulation: 
TDPS: 11  mg/g 
Min: 7.8 mg/g  Max: 12 mg/g 
 
TDPS_FBA: 54 mg/g 
Min: 27 mg/g  Max: 71 mg/g 

D [27] 

Gene up-regulations: 
PYC2 (EC 6.4.1.1), MDH3 
(EC 1.1.1.37) 
 
Gene deletions: 
PDC1, PDC2, PDC6 (EC 
4.1.1.1) 

Shake Flask 
- Glucose phase: 53 mg/g 

Batch simulation: 
TDPS: 42 mg/g 
Min: 0 mg/g  Max: 100 mg/g 
 
TDPS_FBA: 44 mg/g 
Min: 0 mg/g  Max: 160 mg/g 

E [27] 

Gene up-regulations: 
MDH3 (EC 1.1.1.37), 
SpMAE1 (malate transporter) 
 
Gene deletions: 
PDC1, PDC2, PDC6 (EC 
4.1.1.1) 

Shake Flask 
- Glucose phase: 173 mg/g 

Batch simulation: 
TDPS: 36 mg/g 
Min: 14 mg/g  Max: 53 mg/g 
 
TDPS_FBA: 90 mg/g 
Min: 38 mg/g  Max: 140 mg/g 

F [27] 

Gene up-regulations: 
PYC2 (EC 6.4.1.1), SpMAE1 
(malate transporter) 
 

Gene deletions: 
PDC1, PDC2, PDC6 (EC 
4.1.1.1) 

Shake Flask 
- Glucose phase: 56 mg/g 

Batch simulation: 
TDPS: 44 mg/g 
Min: 5.9 mg/g  Max: 87 mg/g 
 
TDPS_FBA: 107 mg/g 
Min: 34 mg/g  Max: 240 mg/g 

G [27] 

Gene up-regulations: 
PYC2 (EC 6.4.1.1), MDH3 
(EC 1.1.1.37), SpMAE1 
(malate transporter) 
 

Gene deletions: 
PDC1, PDC2, PDC6 (EC 
4.1.1.1) 

Shake Flask 
- Glucose phase: 312 mg/g 

Batch simulation: 
TDPS: 130 mg/g 
Min: 94 mg/g  Max: 190 mg/g 
 
TDPS_FBA: 413 mg/g 
Min: 55 mg/g  Max: 530 mg/g 
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Regardless of the issues observed for the individual strains, TDPS was still capable of 

predicting the better overall performance of the double up-regulation strains (D-F) in 

comparison to the ones with a single up-regulation (A-C). Furthermore, the best 

performing strain was also correctly predicted by the simulation algorithm and its 

production yield was within the interval simulated with TDPS_FBA. 

4.4.2.4 Case-study 4: santalene production in S. cerevisiae 

Santalene is an isoprenoid that belongs to the sesquiterpene class (15 carbon atoms) and 

can be synthesized from farnesyl pyrophosphate (FPP), which is a precursor for sterol 

biosynthesis in S. cerevisiae. Scalcinati et al. introduced in S. cerevisiae the santalene 

synthase (SanSyn) from Clausena lansium in order to characterize metabolic engineered 

strains with improved production of sesquiterpenes [30]. The strain SCIGS28 was built 

by introducing a codon optimized SanSyn into S. cerevisiae together with the up-

regulation of a truncated version of HMG-CoA reductase (tHMG1) that lacks feedback 

regulation [30]. Further optimization of santalene production was accomplished in strain 

SCIGS29 by down-regulating squalene synthase (ERG9) and deleting the lipid phosphate 

phosphatase (LPP1) [30]. Since LPP1 deletion addressed the unspecific hydrolysis of 

FPP by the respective enzyme and this metabolic activity was not present in the Yeast 6 

model, this modification was not included in the simulations performed. 

The santalene production yields reported for the sesquiterpene producing strains are 

shown in Table 4.6 along with the simulation values obtained with TDPS. The average 

simulated yield obtained for strain SCIGS28 (1.5 mg/g) was almost triple the value 

reported experimentally (0.57 mg/g), but the interval of simulated values (0.52 – 2.5 

mg/g) still encompasses the experimental yield. The fact that the experimental yield 

reported for strain SCIGS28 is closer to the lower simulated value can indicate that the 

SanSyn enzyme used for santalene production has poor kinetic properties. Alternatively, 

the in silico availability of FPP might have been overestimated, which would also result 

in the differences observed between the average values. 

 

 

Rui Pereira  Universidade do Minho, 2015 



102 | Chapter 4 

Table 4.6- TDPS validation case-study using santalene production in S. cerevisiae 

Strain 
Genotype relevant for 

simulations 
In vivo yields 

(mg santalene/g glucose) 
TDPS yields 

(mg santalene/g glucose) 

SCIGS28 [30] 

Gene additions: 
SanSyn (EC 4.2.3.50) 
 
Gene up-regulations: 
tHMG1 (EC 1.1.1.34) 

Chemostat (D = 0.1 h-1) 
Steady state yield: 0.57 mg/g 

Chemostat simulation: 
TDPS: 1.5 mg/g 
Min: 0.52 mg/g Max: 2.5 mg/g 
 
TDPS_FBA: 1.5 mg/g 
Min: 0.52 mg/g Max: 2.5 mg/g 

SCIGS29 [30] 

Gene additions: 
SanSyn (EC 4.2.3.50) 
 
Gene up-regulations: 
tHMG1 (EC 1.1.1.34) 
 
Gene down-regulations: 
ERG9 (EC 2.5.1.21) 

Chemostat (D = 0.1 h-1) 
Steady state yield: 1.58 mg/g 

Chemostat simulation: 
TDPS: 1.1 mg/g 
Min: 0 mg/g Max: 2.8 mg/g 
 
TDPS_FBA: 1.8 mg/g 
Min: 0.41 mg/g Max: 3.8 mg/g 

 

Regarding the performance of the strain SCIGS29, the simulations performed using 

TDPS failed to predict the reported increase of 2.8 times in the production of santalene 

(Table 4.6). The yield simulated with TDPS (1.1 mg/g) actually decreased in comparison 

with strain SCIGS28 (1.5 mg/g). This drop in santalene production was caused by a 

severe decrease in biomass formation triggered by the down-regulation of ERG9. Since 

ergosterol is an essential growth component of S. cerevisiae, the down-regulation of 

ERG9 can affect the in silico growth dramatically. Although we expected that the down-

regulation of ERG9 would be compensated in silico by an increase in the flux towards 

FPP, in reality this was not observed in the simulations performed with TDPS. On the 

other hand, the secondary growth objective function used in TDPS_FBA was able to 

compensate partly the drop in biomass yield by increasing the production turnover of 

FPP. As a consequence, the simulations obtained with TDPS_FBA resulted in a 20 % 

increase in the average santalene yield (1.8 mg/g) along with a 36 % increase in the 

maximum value simulated (3.8 mg/g). Although these values are still below the 

improvement observed experimentally, the experimental yield (1.58 mg/g) is within the 

simulated interval (0.41 mg/g – 3.8 mg/g). 

4.4.2.5 Case-study 5: vanillin β-D-glucoside production in S. cerevisiae 

Vanillin β-D-glucoside (VG) is a flavoring compound of industrial importance that can be 

biosynthesized from 3-dehydroshikimate (an intermediate of aromatic amino acid 

synthesis). Brochado et al. used a S. cerevisiae strain containing four heterologous genes 

Improvement of in silico strain engineering methods in Saccharomyces cerevisiae 



TDPS - Turnover dependent phenotypic simulation: a quantitative constraint-based simulation method |103 

necessary to produce VG in this microbe: 3-dedhydroshikimate dehydratase (3DSD), aryl 

carboxylic acid reductase (ACAR), O-methyltransferase (hsOMT) and UDP-

glycosyltransferase (UGT) [31]. In addition to these four gene additions, the basal VG 

producing strain (VG0) has two additional deletions: the gene coding for a NADPH-

dependent medium chain alcohol dehydrogenase (ADH6) and the gene coding for exo-

1,3-beta-glucanase (EXG1). Both deletions were implemented to address unspecific 

degradation of vanillin and VG by the mentioned enzymes. These two deletions were not 

included in the simulations performed with TDPS because the unspecific activities of 

Adh6p and Exg1p were not present in the Yeast 6 model. 

Table 4.7 shows the VG production yields reported by Brochado et al. [31] in comparison 

with the values simulated with TDPS. For strain VG0, the average VG yield obtained 

with TDPS (1.6 mg/g) was 60 % lower than the value reported experimentally (4.0 mg/g). 

The difference decreased to 18 % if the experimental value was compared to the 

maximum value simulated with TDPS (3.3 mg/g). Furthermore, the difference was less 

pronounced in the simulations performed with TDPS_FBA and the maximum value 

simulated with this method for strain VG0 (3.8 mg/g) was only 5% lower than the 

experimentally determined value. Although the average yields obtained in the simulations 

were underestimated, the maximum simulated yields were reasonably good 

approximations to the experimental value reported for strain VG0. 

A closer analysis of the additional metabolites excreted in silico by the strain VG0 

revealed that one of the intermediaries in the production of VG, protocatechuic aldehyde 

(PAL), was being produced with a yield of 82 mg/g (data not shown). Experimentally, 

PAL was also produced by VG0 with a yield of 7 mg/g, which indicates that the 

conversion of PAL into vanillin is a limiting step. This step is catalyzed by the enzyme O-

methyltransferase and requires S-Adenosyl methionine (SAM) as the methyl group donor. 

In the TDPS simulations performed for strain VG0, we observed that SAM was the 

limiting precursor in the production of VG. The limited availability of this metabolite 

resulted in less than 1% of the total PAL molecules being converted to VG in silico. 

Judging by the accumulation of PAL reported for strain VG0 in chemostat experiments, 

the limitation of SAM might also be a contributing factor. Although other explanations 

for the PAL accumulation cannot be ruled out, these results showed the potential of the 

TDPS algorithm in the prediction of limited precursor availability using stoichiometric 

models. 
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Table 4.7- TDPS validation case-study using vanillin-glucoside (VG) production in S. cerevisiae 

Strain 
Genotype relevant for 

simulations 
In vivo yields 

(mg VG/g glucose ) 
TDPS yields 

(mg VG/g glucose ) 

VG0 [31] 

Gene additions: 
3DSD (EC 4.2.1.118), ACAR (EC 
1.2.1.30), hsOMT (EC 2.1.1.-), 
UGT (EC 2.4.1.136) 

Chemostat (D = 0.1 h-1) 
Steady state yield: 4.0 mg/g 

Chemostat simulation: 
TDPS: 1.6 mg/g 
Min: 0.42 mg/g Max: 3.3 mg/g 
 
TDPS_FBA: 2.2 mg/g 
Min: 0.74 mg/g Max: 3.8 mg/g 

VG2 [31] 

Gene additions:3DSD (EC 
4.2.1.118), ACAR (EC 1.2.1.30), 
hsOMT (EC 2.1.1.-), UGT (EC 
2.4.1.136) 
 
Gene deletions: 
PDC1 (EC 4.1.1.1) 

Chemostat (D = 0.1 h-1) 
Steady state yield: 5.6 mg/g 

Chemostat simulation: 
TDPS: 1.6 mg/g 
Min: 0.45 mg/g Max: 3.5 mg/g 
 
TDPS_FBA: 2.2 mg/g 
Min: 0.73 mg/g Max: 3.8 mg/g 

VG4 [31] 

Gene additions:3DSD (EC 
4.2.1.118), ACAR (EC 1.2.1.30), 
hsOMT (EC 2.1.1.-), UGT (EC 
2.4.1.136), GDH2 (EC 1.4.1.2) 
 
Gene deletions: 
PDC1 (EC 4.1.1.1), GDH1 (EC 
1.4.1.4) 

Chemostat (D = 0.1 h-1) 
Steady state yield: 4.2 mg/g 

Chemostat simulation: 
TDPS: 1.5 mg/g 
Min: 0.39 mg/g Max: 3.3 mg/g 
 
TDPS_FBA: 2.2 mg/g 
Min: 0.74 mg/g Max: 3.9 mg/g 

 

To improve the performance of strain VG0, the gene coding for pyruvate decarboxylase 1 

(PDC1) was deleted by the authors in [31], originating strain VG2. PDC1 was chosen as 

a target by the authors because the strain VG0 produced significant amounts of ethanol, 

which was decreasing the yields of biomass and product formation. The ethanol 

production observed was justified by Brochado et al. as the consequence of a decrease in 

the respiratory capacity of VG0, possibly caused by the toxicity of one or several 

intermediates present in the VG biosynthetic pathway [31]. Since the constraint-based 

modeling approach used in TDPS does not take into account any toxicity phenomena, no 

ethanol production was observed in the simulations performed for VG0. Therefore, we 

did not expect that TDPS would predict correctly the outcome of any genetic 

modifications targeted at solving phenotypes induced by the toxicity of the intermediates. 

As anticipated, the experimental results revealed a 40 % improvement in the VG 

production yield experimentally, which we could not replicate in the simulations 

performed with TDPS (Table 4.7).  

The final strain analyzed in this case-study (VG4) included the replacement of the 

canonical NADPH-dependent glutamate dehydrogenase (GDH1) with a NADH 
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dependent variant (GDH2). The switch of the cofactor specificity in this reaction, which 

is responsible for ammonia assimilation, was intended to increase the availability of 

NADPH in the cytosol, so that more flux could flow in the ACAR reaction. However, the 

resulting strain showed no improvement both in silico and experimentally when 

compared with VG0 (Table 4.7). In fact, when compared with VG2, the strain VG4 

showed a decrease in the production yield of VG in chemostat cultures. As discussed 

above the production of VG is limited in silico by the availability of SAM and no further 

improvements should be observed unless this bottleneck is addressed. 

4.5 Conclusions and future perspectives 

Constraint-based modelling methodologies can be of great help during the laborious trial 

and error strain design procedure by suggesting promising metabolic engineering targets. 

However, most in silico strain design methods were developed with an optimization 

oriented goal and are not equipped for simulating quantitatively the flux changes in 

complex mutant strains. One of biggest drawbacks present in most of the methods 

currently available is that they force the flux values in activated/heterologous reactions 

without considering the availability of resources.  

TDPS was developed with the goal of simulating the majority of the genetic 

modifications usually implemented in engineered strains. Besides gene deletions and 

down-regulations, TDPS can also simulate the up-regulation of metabolic reactions as 

well as the introduction of heterologous genes or the activation of “dormant” reactions. 

The methodology implemented inside TDPS takes into account the availability of 

resources in the network by assuming that the production turnover of a metabolite can be 

used as an indication of its abundance. Consequently, the flux values are never forced to 

pre-calculated levels, allowing the objective function to work in harmony with the genetic 

constraint in order to predict the flux rearrangements in mutant strains. 

To our knowledge this was the first time that a constraint-based method was validated 

quantitatively using metabolically engineered S. cerevisiae strains available in the 

literature by comparing the simulated and experimental production yields of the target 

metabolite. Overall, the estimated yields obtained with TDPS were quite close to the 

experimentally reported values, although the performance oscillated among the different 
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case-studies tested. The fact that most experimental results available in the literature were 

obtained in batch cultures (PHB, 3-HP and L-malic acid) complicated the comparison of 

the simulated steady-state values with the experimental yields. Furthermore, some 

simulation inconsistencies were also observed in several cases: when a strain with an 

uncertain genetic background was used (L-malic acid), when there were flux changes 

resulting from product toxicity (vanillin β-D-glucoside) and when some of the 

modifications had a large impact on biomass formation (L-malic acid and santalene). The 

results also showed that TDPS might be helpful in finding metabolic bottlenecks (namely 

the ones caused by limitations in the availability of precursors from other pathways), but 

further experiments would be required to confirm such findings. Although this work was 

not focused on the search for metabolic engineering targets, TDPS could also be used for 

this purpose when combined with strain optimization algorithms. 

Overall, the results obtained are very promising but could eventually be improved by 

using an objective function that better describes the cellular adaptation when faced with 

serious disturbances. In laboratory conditions, mutant microorganisms are continuously 

being selected for better growth, first in media plates and then on each cultivation step 

until the final characterization experiment. Judging by the better performance of the 

hybrid objective function tested (TDPS_FBA) in some case-studies, we believe that if we 

used an objective function that incorporates a term to promote better growth rates, the 

simulation results would improve. It would also be interesting to expand the case-studies 

used to validate TDPS to other organisms in order to increase the number of strains 

characterized in chemostats, which could help fine-tuning the performance of the 

algorithm. 
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CHAPTER 5  
 Optimization of the cytosolic acetyl-CoA pool in S. cerevisiae using in 

silico driven metabolic engineering 
 

Acetyl-coenzyme A (acetyl-CoA) is the biosynthetic precursor of many important 

metabolites for the chemical industry (e.g. biopolymers, isoprenoids and lipids). The 

production yield of acetyl-CoA derived products in S. cerevisiae is usually limited by the 

low levels of this metabolite in the cytosol and, understandably, many metabolic 

engineering strategies have tried to address this limitation. However, the creation of a cell 

factory engineered for optimal acetyl-CoA availability has been hampered by the 

complexity of the native pathways present in S. cerevisiae.  

Genome-scale metabolic modeling offers a whole cell perspective of metabolism and may 

be used to simulate flux changes in response to perturbations in the network. In order to 

optimize the flux to acetyl-CoA in S. cerevisiae, the turnover dependent phenotypic 

simulation method (chapter 4) was used in combination with an evolutionary algorithm to 

search for sets of genetic alterations that improve the production yield of 3-

hydroxypropionic acid (3-HP) derived from acetyl-CoA. The in silico suggested 

modifications were implemented sequentially in S. cerevisiae, and the resulting strains 

were physiologically characterized in batch fermentations to test the validity of the 

simulations. Although the yields obtained experimentally were considerably lower than 

the simulations suggested, a positive effect on the 3-HP yield was observed for the down-

regulation of the pyruvate dehydrogenase complex and the deletion of ACH1 (succinyl-

CoA:acetate CoA-transferase).  
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5.1 Introduction 

Acetyl-coenzyme A (acetyl-CoA) is a central metabolic node in most living organisms 

and it is the precursor for many industrially important bio-based products [1]. In S. 

cerevisiae the two major sources of acetyl-CoA are the pyruvate dehydrogenase complex 

(PDHc) in the mitochondria and acetyl-CoA synthetase (ACS) in the cytosol and 

peroxisome [2]. One additional mitochondrial source has been reported, Ach1p, but it 

appears to be solely important for growth on acetate [3]. Ach1p was initially reported to 

be an acetyl-CoA hydrolase [4] but additional characterization revealed that its major role 

is to transfer the coenzyme A moiety from succinyl-CoA to acetate in the mitochondria of 

S. cerevisiae [3]. 

In the mitochondria, acetyl-CoA produced by the PDHc has a major catabolic role under 

non-fermentative conditions because it fuels the citric acid cycle, which contributes 

substantially to ATP production in the cell. Additionally, mitochondrial acetyl-CoA is 

also necessary for the anabolic synthesis of cellular components such as L-leucine and 2-

oxoglutarate derived amino-acids [5]. In the cytosol, ACS is the exclusive source of 

acetyl-CoA and plays an essential anabolic role [6] in the synthesis of fatty acids and L-

lysine [5, 7]. Furthermore, cytosolic acetyl-CoA is also the precursor of the mevalonate 

pathway, which is responsible for the synthesis of important cellular components such as 

isoprenoids and sterols.  

When S. cerevisiae grows on ethanol or other C2 carbon sources, the availability of 

pyruvate is very limited and PDHc cannot fulfil the need of acetyl-CoA in the 

mitochondria. In this case, the cytosolic/peroxisomal acetyl-CoA synthetase becomes the 

central supply of acetyl-CoA for the cell [2]. However, acetyl-CoA cannot be directly 

transported between compartments in the absence of carnitine [8] and the glyoxylate 

cycle is required to synthesize C4 and C6 intermediates that can be transported to the 

mitochondria and enter the citric acid cycle [2].  

To improve the availability of acetyl-CoA in the cytosol of S. cerevisiae, several 

strategies have been implemented over the years. In the work of Shiba et al. [9], the 

authors up-regulated the PDH bypass by over-expressing the aldehyde dehydrogenase 

gene ALD6 and introducing a deregulated ACS from Salmonella enterica [10] in S. 

cerevisiae. The result was an increase in the synthesis of acetyl-CoA in the cytosol that 
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boosted the production of amorphadiene and mevalonate. Similar strategies were 

implemented for the improvement of polyhydroxybutyrate [11], α-santalene [12], 1-

butanol [13] and 3-hydroxypropionic acid (3-HP) production [14]. In parallel with the 

PDH bypass amplification, it has also been shown that deleting the peroxisomal citrate 

synthase (CIT2) or the malate synthase (MLS1), which participate in the glyoxylate cycle, 

has a positive impact on the yield of acetyl-CoA derived products [12–14].  

Different enzymes have also been tested to improve the synthesis of acetyl-CoA in the 

cytosol and offer alternative ways to optimize its production. Kozak et al. showed that an 

acetylating acetaldehyde dehydrogenase (A-ALD) can replace the joint activity of the 

native aldehyde dehydrogenase (ALD) and ACS in S. cerevisiae [15]. The advantage of 

this system is that while the sequential activity of ALD and ACS consumes 2 ATP 

equivalents, A-ALD has no ATP requirements and can increase the maximum theoretical 

yield of acetyl-CoA derived products. In the same work, it was also shown that pyruvate 

formate lyase (PFL) can replace the activity of all the enzymes in the PDH bypass of S. 

cerevisiae under anaerobic conditions [15]. Additionally it has also been demonstrated 

that it is possible to express a functional PDH complex in the cytosol of S. cerevisiae 

derived from either Enterococcus faecalis [16], Escherichia coli or S. cerevisiae [17]. 

Furthermore, additional heterologous pathways have also been tested in S. cerevisiae to 

produce cytosolic acetyl-CoA: ATP-citrate lyase can produce acetyl-CoA and 

oxaloacetate from citrate [17] and the coordinated activity of phosphoketolase and 

phosphotransacetylase can synthesize acetyl-CoA from D-xylulose-5-phosphate [18, 19]. 

Despite all the efforts to optimize acetyl-CoA production in the cytosol of S. cerevisiae, 

the product yields obtained are still quite far from the theoretical maximum. Therefore, 

there is a significant room to improve acetyl-CoA cell factories and to clarify additional 

aspects of acetyl-CoA metabolism in S. cerevisiae. 

The application of Genome Scale Metabolic Models (GSMMs) to strain engineering is of 

industrial importance because it promises to be a cost efficient methodology to build and 

improve microbial cell factories [20, 21]. They have been applied successfully in the past 

for strain engineering of S. cerevisiae, for instance in the improvement of sesquiterpene 

[22] and vanillin production [23]. Given the laborious and expensive nature of strain 

engineering, it is important that simulation results have a high success rate when 

implemented experimentally. In order to maximize the chances of success of an in silico 
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strain engineering project, special attention should be paid to the quality of the GSMM 

used and the accuracy of the simulation method applied. Nevertheless, even failed strain 

engineering strategies can still be useful to offer new insights into the cell’s physiology 

and can offer good case studies to improve GSMMs and simulation algorithms. 

Here we tested the application of the Turnover Dependent Phenotypic Simulation (TDPS) 

method (chapter 4) in the optimization of the acetyl-CoA supply in the cytosol of S. 

cerevisiae. The model chosen, Yeast 6 [24], was manually curated in chapter 3 to 

improve the accuracy of central carbon fluxes. In order to assess the availability of acetyl-

CoA we used 3-hydroxypropionic acid (3-HP) production as a case study. The production 

of this compound has been shown to benefit from an increase in acetyl-CoA availability 

and given its extracellular nature it is easy to quantify [14]. Furthermore, the recent 

development of a deregulated Acc1p makes the conversion of acetyl-CoA to malonyl-

CoA (direct precursor of 3-HP) more efficient and independent of the glucose 

concentration in the medium [25]. To test the validity of the results obtained from the 

TDPS simulations, we implemented three different in silico strategies to improve acetyl-

CoA availability. The strains were then characterized in bioreactors to compare their 

behavior with the predictions from TDPS. 

5.2 Materials and methods 

5.2.1 Model and software 

The GSMM Yeast 6.06 [24] was downloaded in SBML from the project’s website: 

http://sourceforge.net/projects/yeast/files/ and modified according to Appendix B (Table 

B1). The model was imported into OptFlux 3.07 [26] and the in silico environmental 

conditions were set to mimic minimal growth media supplemented with glucose under 

fully aerobic conditions (ammonia: unconstrained uptake, phosphate: unconstrained 

uptake, sulfate: unconstrained uptake, oxygen: unconstrained uptake, glucose: 1.15 

mmol/(gCDW·h)). All simulations were run within OptFlux 3.07 [26] using IBM ILOG 

CPLEX Optimization Studio (Academic) as the linear and MILP programming solver. 

The “NumericalEmphasis” parameter in CPLEX was activated in order to solve the 

occasional numerical instability issues observed in MILP problems. 
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5.2.2 Optimizations of 3-HP production using TDPS 

The turnover dependent phenotypic simulation (chapter 4) was used to simulate the 

mutant phenotypes, while the evolutionary algorithm included in OptFlux was in charge 

of the strain optimization layer [27]. pFBA [28] was used for the calculation of the 

reference (wild-type) flux distributions, with the maximization of biomass production as 

the objective function. The cofactor constraints applied in chapter 3 were also used here 

to improve the quality of the reference flux distribution in regard to NADPH and NADH 

metabolism. The Yeast 6 model was modified according to Appendix B (Table B6) to 

account for the heterologous malonyl-CoA reductase activity and 3-HP excretion. 

The total number of possible strain engineering targets was reduced by removing: 

reactions without associated genes, dead ends and other reactions that cannot be active 

under growth on glucose, transporting reactions and others included in pathways of little 

relevance for 3-HP production. The objective function used in the evolutionary algorithm 

was the Biomass Product Coupled Yield (BPCY) [27] and the C parameter (see chapter 4) 

could assume any value in the set {0, 0.25, 0.5, 2, 5}, which represent two levels of up-

regulation (2x and 5x), two levels of down-regulation (0.5x and 0.25x) and the 

inactivation is represented by zero. The reaction activation penalty constant was set to 50 

and the evolutionary algorithm was run five times, setting the number of solution 

evaluations to 50,000 and the maximum number of strain modifications allowed to 10.  

5.2.3 Flux distribution under growth on ethanol 

The same environmental conditions mentioned in 5.2.1 were used here with the exception 

that glucose was replaced by ethanol as the sole carbon source (ethanol specific 

consumption rate: 3.68 mmol/(gCDW·h) [29]). Two modifications had to be implemented 

to make the glyoxylate cycle functional in the yeast 6 model as described in Appendix B 

(Table B7). For the calculation of the flux distributions pFBA [28] was used, with the 

maximization of biomass production as the objective function. 

5.2.4 PCR and DNA handling 

Oligonucleotides were purchased from Sigma-Aldrich (St. Louis, USA) and a PDC1 gene 

fragment (see below) was purchased from Integrated DNA Technologies (Leuven, 

Belgium). High fidelity PCR was performed with Phusion polymerase from Thermo 
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Scientific (Waltham, USA), fusion PCR was performed with PrimeSTAR HS DNA 

polymerase from Takara Bio Europe (Otsu, Japan) and colony PCR was performed with 

DreamTaq DNA polymerase from Thermo Scientific. E. coli plasmid extraction, PCR 

product purification, and DNA gel extraction were performed with the respective 

GeneJET kits from Thermo Scientific. S. cerevisiae plasmid extraction was performed 

with Zymoprep Yeast Plasmid Miniprep II from Zymo Research (Irvine, USA). All 

restriction enzymes were obtained in fast-digestion format from Thermo Scientific. PCR 

reactions were performed in a S1000 Thermal Cycler from Bio-Rad (Hercules, USA) 

using the protocols recommended by the manufacturers for each polymerase. Yeast 

genomic DNA for colony PCR and gene cloning was prepared as described in [30]. 

E. coli DH5α was used for plasmid isolation and maintenance using the competence and 

transformation procedures developed by Inoue et al. [31] as described in [32]. S. 

cerevisiae transformation was performed using the lithium acetate method as described 

by Gietz and Woods in [33]. Yeast recombinational cloning [34, 35] procedures used for 

plasmid construction were performed as described by Bessa et al. [36]. 

5.2.5 Media used and strain handling 

Selection and maintenance in E. coli of the plasmids constructed/used in this work was 

performed in LB medium containing 10 g/L of peptone, 10 g/L of NaCl, 5 g/L of yeast 

extract and supplemented with 100 mg/L of ampicillin sodium salt. The solid version of 

this medium also included 16 g/L of agar. All cultivations of E. coli were performed at 37 

ºC and 200 rpm agitation (for liquid cultures). 

Recombinant yeast strains were selected for HIS+ and URA+ phenotypes on Synthetic 

Dextrose (SD) medium containing 6.7 g/L of yeast nitrogen base without amino acids 

(ForMedium, Norfolk, United Kingdom), 0.77 g/L of complete supplement mixture (CSM 

lacking uracil or histidine) (ForMedium) and 20 g/L of glucose. Simultaneous selection of 

HIS+ and URA+ phenotypes was done in the same medium but containing 0.75 g/L of 

complete supplement mixture lacking uracil and histidine (ForMedium). For KanMX 

marker selection the cells were cultivated in YPD medium, containing 10 g/L yeast 

extract, 20 g/L of peptone, 20 g/L of glucose and supplemented with 200 mg/L G418 

disulphate (ForMedium). To loop out the KanMX marker the cells were cultivated in 

YPGal medium which contained 20 g/L of galactose instead of glucose. To make SD, 
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YPGal or YPD plates, 20 g/L of agar was included in the medium formulation. All 

cultivations of S. cerevisiae were performed at 30 ºC with 200 rpm agitation in the case of 

liquid cultures. 

Strains were preserved for long-term storage after overnight cultivation in selective media 

by adding glycerol to a final concentration of 15 % and keeping them in a -80 ºC freezer. 

5.2.6 Plasmid construction 

All plasmids used and constructed in this study are listed in Table 5.1, as well as their 

main features and source. 

ACC1(ser659ala, ser1157ala) was obtained from Shi et al. [25] and cloned into the NotI and SacI 

sites of the pYC1 plasmid [14]. The resulting plasmid pYC5 contains the ACC1(ser659ala, 

ser1157ala) gene controlled by the PGK1 promoter and a codon-optimized version of the 

malonyl-CoA reductase gene (mcr) from Chloroflexus aurantiacus [14] under the control 

of the TEF1 promoter. 

Table 5.1- Plasmids used in this work 

Plasmid Features Source 
pYC1 PTEF1-mcr-TCYC1 URA3 [14] 
pYC5 PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-TADH1 URA3 This work 

pIYC04 PTEF1-TADH1 PPGK1-TCYC1  HIS3 [12] 
pIYC05 PTEF1-acsSE

L641P -TADH1 PPGK1-ALD6-TCYC1 HIS3 [12] 

p3HP02 PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE
L641P -TADH1 PPGK1-ALD6-TCYC1 

HIS3 
This work 

p3HP03 
PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE

L641P -TADH1 PPGK1-ALD2-TCYC1 
HIS3 

This work 

XI-5 Vector containing homology regions for site XI-5 URA3 [38] 
X-2 Vector containing homology regions for site X-2 URA3 [38] 

pUG6 Vector containing the KanMX marker [39] 
pDel1 loxP PTEF1-KanMX PGAL1 [Alexandra Bergman, 

unpublished] pDel2 PGAL1-cre loxP 

 

The coding sequence of the PDC1 5LS30 gene [37] was constructed by introducing 5 

codon substitutions on the CENPK113-11C genomic DNA template. The gene was 

constructed in three fragments: the first fragment was amplified with primers 1 and 2 (a 

list of primers used in this chapter is given in Table C1 of Appendix C) to introduce the 

first codon substitution, the second fragment was amplified with primers 3 and 4 to 

introduce the second codon substitution and the final fragment (last 750 base pairs) was 

Improvement of in silico strain engineering methods in Saccharomyces cerevisiae 



Optimization of the cytosolic acetyl-CoA pool in S. cerevisiae using in silico driven metabolic engineering |119 

ordered from IDT technologies to include the other three codon substitutions. The three 

fragments were fused by PCR using primers 1 and 6, which resulted in the final sequence 

containing all the codon substitutions. 

To construct plasmid p3HP02, the mutated PDC1 coding sequence was cloned by gap 

repair into the AscI site of plasmid pIYC05 [12] under the control of a PGK1 promoter 

(amplified from pIYC05 with primers 7 and 8) and a CYC1 terminator (amplified from 

pIYC05 with primers 9 and 10). The final plasmid contains PDC1 5LS30 controlled by a 

PGK1 promoter, followed by a codon-optimized version of the acetyl-CoA synthetase 

gene from S. enterica with the L641P mutation (acsSE
L641P) under the control of a TEF1 

promoter and finally the ALD6 gene also under the control of a PGK1 promoter. The 

assembled plasmid was extracted from S. cerevisiae and transformed in E. coli in order to 

be amplified and confirmed by restriction digestion and sequencing.  

To build the plasmid p3HP03, the ALD6 coding sequence present in plasmid p3HP02 was 

replaced by ALD2 using gap repair cloning. First, the coding sequence of ALD2 was 

amplified from CEN.PK113-11C genomic DNA using primers 11 and 12. The primers 

contained regions homologous to the PGK1 promoter and CYC1 terminator in order to 

promote homologous recombination with the flanking regions of ALD6. CEN.PK113-11C 

was transformed with p3HP02 digested with XhoI (an XhoI site is located between the 

CYC1 terminator and the ALD6 coding sequence) and the ALD2 DNA fragment, which 

resulted in the insertion of ALD2 between the PGK1 promoter and the CYC1 terminator. 

The resulting plasmid, p3HP03, was extracted from S. cerevisiae and transformed in E. 

coli in order to be amplified and confirmed by restriction digestion and sequencing. 

5.2.7 Strain construction  

The strain CEN.PK113-11C, auxotrophic for histidine and uracil, was used as the base for 

the construction of all strains used in this work. The complete list of strains is shown in 

Table 5.2 with the corresponding genotype and source. 
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Table 5.2- Strains used in this work 

Strain Genotype Source 

CEN.PK113-11C MATa SUC2 MAL2-8c ura3-52 his3-Δ1 P. Kötter, University 
of Frankfurt,Germany 

HPRA (CEN.PK113-11C) PTC5Δ::loxP This work 

HPRB (CEN.PK113-11C) PTC5Δ::loxP ACH1Δ::KanMX This work 

HPR00 
(CEN.PK113-11C) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-
TADH1 URA3 This work 

HPR01 (CEN.PK113-11C) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-
TADH1 URA3 HIS3 

This work 

HPR02 
(CEN.PK113-11C) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-
TADH1 URA3 PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE

L641P -TADH1 
PPGK1-ALD2-TCYC1 HIS3 

This work 

HPR03 
(CEN.PK113-11C) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-
TADH1 URA3 PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE

L641P -TADH1 
PPGK1-ALD4c-TCYC1 HIS3 

This work 

HPR04 
(HPRA) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-TADH1 URA3 
PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE

L641P -TADH1 PPGK1-ALD2-
TCYC1 HIS3 

This work 

HPR05 
(HPRA) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-TADH1 URA3 
PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE

L641P -TADH1 PPGK1-ALD4c-
TCYC1 HIS3 

This work 

HPR06 
(HPRB) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-TADH1 URA3 
PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE

L641P -TADH1 PPGK1-ALD2-
TCYC1 HIS3 

This work 

HPR07 
(HPRB) PTEF1-mcr-TCYC1 PPGK1-ACC1(ser659ala, ser1157ala)-TADH1 URA3 
PPGK1-PDC1 (5LS30)-TCYC1 PTEF1- acsSE

L641P -TADH1 PPGK1-ALD4c-
TCYC1 HIS3 

This work 

 

Strain HPRA was constructed by deleting the coding sequence of the phosphatase 2C 

(PTC5) in CEN.PK113-11C. Briefly, two overlapping DNA fragments containing the 

KanMX marker and the Cre recombinase were amplified from the plasmids pDel1 and 

pDel2 [Alexandra Bergman, unpublished] and fused to up- and downstream genomic 

sequences flanking PTC5. The upstream sequence was amplified from genomic DNA 

with primer pair 13/14 and the downstream region was amplified with primers 15/16. The 

DNA fragment containing the KanMX marker was amplified with primers 54/55 using 

pDel1 as template and the fragment containing the Cre recombinase gene was amplified 

with primers 56/57 using pDel2 as template. The upstream DNA fragment was fused to 

the KanMX fragment with primers 13/55 and the downstream DNA fragment was fused 

to the Cre recombinase fragment with primers 16/56. Both fusion fragments were 

transformed into CEN.PK113-11C and the deletion was confirmed by colony PCR using 

primer pairs 21/55 and 22/56. The fully assembled cassette was flanked by loxP sites and 

included the KanMX marker and a galactose inducible Cre recombinase. Therefore, to 
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loop out the whole cassette, the mutants confirmed by PCR were cultured in YPGal 

medium. After an overnight culture in YPGal medium the cells were plated in YPGal 

plates and the loopout was confirmed by colony PCR using primers 21 and 22.  

Strain HPRB was obtained by deleting the coding sequence of succinyl-CoA:acetate 

CoA-transferase (ACH1) in strain HPRA. Briefly, two overlapping fragments [40] of the 

KanMX marker were amplified from the plasmid pUG6 [39] and fused to up- and 

downstream genomic sequences flanking ACH1. The upstream sequence was amplified 

from genomic DNA with the primer pair 23/24, while the downstream region was 

amplified with primers 25/26. The 5’ fragment of the KanMX marker was amplified with 

primers 17/18 using pUG6 as template and the 3’ overlapping fragment was amplified 

with primers 19/20 using the same template. The upstream DNA fragment was fused to 

the 5’ KanMX fragment with primers 18/23 and the downstream DNA fragment was 

fused to the 3’ KanMX fragment with primers 19/26. Both fusion fragments were 

transformed into HPRA and the deletion was confirmed by colony PCR using primers 18 

and 27. 

To obtain HPR00, the 12 kilobase (kb) MreI/AscI fragment from pYC5 was integrated in 

site 5 of chromosome XI [38] from CEN.PK113-11C. The MreI/AscI fragment, which 

contains PTEF1-mcr-TCYC1 and PPGK1-ACC1(ser659ala+ser1157ala)-TADH1, was co-transformed 

into CEN.PK113-11C with upstream and downstream DNA fragments designed to 

promote homologous recombination in the correct integration site. The upstream DNA 

fragment was amplified by PCR from the XI-5 vector [38] using primers 28/29 and 

includes: a genome homology region upstream of the integration site and the ADH1 

terminator. The downstream DNA fragment was amplified from the same vector using 

primers 30/31 and includes: a genome homology region downstream of the integration 

site, the URA3 marker gene from Kluyveromyces lactis flanked by direct repeats and the 

CYC1 terminator. The integration was confirmed by colony PCR with the primer pairs: 

40/41, 38/42 and 43/44. 

To create strain HPR01, the 3.8 kb MreI/ApaLI fragment from pIYC04 [12] was 

integrated in site number 2 of the chromosome X [38] from HPR00. The MreI/ApaLI 

fragment, which contains PTEF1-TADH1, PPGK1-TCYC1 and the HIS3 marker, was co-

transformed into HPR00 with upstream and downstream DNA fragments designed to 

promote homologous recombination in the correct integration site. The upstream 
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fragment included: a genome homology region upstream of the integration site amplified 

from X-2 plasmid with primers 32/33 and a region homologous to the 5’ end of 

MreI/ApaLI fragment amplified from p3HP03 with primers 34/35. Both fragments were 

fused by PCR using primers 32/35. The downstream fragment included: a region 

homologous to the downstream part of the integration site amplified from X-2 plasmid 

with primers 36/37 and a region homologous to the 3’ end of MreI/ApaLI fragment 

amplified from p3HP03 with primers 38/39. The integration was confirmed by colony 

PCR with the primer pairs: 35/45 and 38/46. 

To build strain HPR02 the same strategy was implemented to integrate the MreI/ApaLI 

fragment from p3HP03 into site number 2 of chromosome X [38] of the strain HPR00. 

The MreI/ApaLI fragment, which contains PPGK1-ALD2-TCYC1, PTEF1- acsSE
L641P -TADH1, 

PPGK1-PDC1(5LS30)-TCYC1 and the HIS3 marker, was co-transformed into HPR00 with 

upstream and downstream DNA fragments designed to promote homologous 

recombination in the correct integration site. The upstream fragment included: a genome 

homology region upstream of the integration site amplified from X-2 plasmid with 

primers 32/33 and a region homologous to the 5’ end of the MreI/ApaLI fragment 

amplified from p3HP03 with primers 34/35. Both fragments were fused by PCR using 

primers 32/35. The downstream fragment included: a genome homology region 

downstream of the integration site amplified from X-2 plasmid with primers 36/37 and a 

region homologous to the 3’ end of the MreI/ApaLI fragment amplified from p3HP03 

with primers 38/39. The integration was confirmed by colony PCR with the primer pairs: 

35/45, 38/46, 11/39, 47/48 and 6/7. 

The construction of strain HPR03 was hampered by the impossibility of cloning the 

truncated ALD4 sequence (ALD4c) into the ALD6 locus in p3HP02. Whenever the 

putative plasmid was transformed into E. coli there were few transformants that never 

contained the right construct. To solve this issue, the ALD4c sequence was amplified 

from the genomic DNA using the primer pair 49/50 and fused to a PGK1 promoter 

(amplified with primers 51/52) and a CYC1 terminator (amplified with primers 38/39) 

using primers 51 and 39. The complete ALD4c cassette was co-transformed with the 9.3 

kb ApaLI/XbaI fragment from p3HP02 (the XbaI site is located in the middle of the ALD6 

sequence) and with the same upstream and downstream fragments created for the 

construction of HPR02. The integration was confirmed by colony PCR with the primer 

pairs: 35/45, 38/46, 39/53, 47/48 and 6/7. 
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Strains HPR04 and HPR06 were created by integrating the 12 kb MreI/AscI fragment 

isolated from pYC5 and the MreI/ApaLI fragment from p3HP03 into the genome of 

HPPRA and HPRB, respectively. The same strategies described in the construction of 

strain HPR02 were used to integrate the two DNA fragments. To build strains HPR05 and 

HPR07 the same integration procedures described for strain HPR03 were followed using 

the basal strains HPRA and HPRB as the template.  

5.2.8 Batch cultivations 

Batch fermentations were performed in the minimal medium described by Verduyn et al. 

[41] containing 20 g/L of glucose, 5 g/L of (NH4)2SO4, 3 g/L of KH2PO4, 0.5 g/L of 

MgSO4·7H2O, 0.05 mL/L of antifoam, 1 mL/L of a vitamin solution and 1 mL/L of a 

trace metal solution. The trace metal solution contained 15 g/L of Na2EDTA, 4.5 g/L of 

ZnSO4·7H2O, 0.84 g/L of MnCl2·2H2O, 0.3g/L of CoCl2·6H2O, 0.3 g/L of CuSO4·5H2O, 

0.4 g/L of Na2MoO4·2H2O, 4.5 g/L of CaCl2·2H2O, 3 g/L of FeSO4·7H2O, 1g/L of 

H3BO3 and 0.1 g/L of KI. The vitamin solution contained 0.05 g/L of biotin, 1 g/L of 

calcium pantothenate, 1 g/L of thiamin hydrochloride, 1 g/L of pyridoxine hydrochloride, 

1 g/L of nicotinic acid, 0.2 g/L of p-aminobenzoic acid and 25 g/L of myo-inositol. The 

medium used to prepare the pre-cultures in shake-flasks is the same as above with the 

following modifications: no antifoam, 7.5 g/L of (NH4)2SO4, 14.4 g/L of KH2PO4 and the 

pH was adjusted to 6.5 with NaOH before autoclaving.  

Each fermenter was inoculated with an initial OD600 of 0.05 using a pre-culture obtained 

by cultivating a single colony of the desired strain in 25 mL of minimal medium inside a 

100 mL shake-flask at 200 rpm in an orbital shaker kept at 30ºC. The batch fermentations 

were performed in a DASGIP® Parallel Bioreactor System for Microbial Applications 

with 8 simultaneous bioreactors placed on a temperature controlled BioBlock. The 

operating volume for the fermentations was 0.5 L, the temperature set-point was 

maintained at 30 ºC, the airflow was set at 1 VVM, the pH was controlled by feedback 

controlled addition of 2 M KOH, the dissolved oxygen was kept above 30 % of saturation 

by feedback control of the stirring speed from 400 rpm until a maximum of 1200 rpm. 

The concentration of O2 and CO2 in exhaust gas was monitored by a DASGIP® GA4 

exhaust analyzer. 
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5.2.9 Analytical methods 

Cell dry weight was determined by filtering 5 mL of culture broth through a 0.45 µm pore 

filter from Sartorius. The initial weight of the filters was determined after drying them in 

a microwave oven for 30 min at 150 W and letting them cool in a desiccator. The filters 

were then used to filter 5 mL of culture broth and washed twice with 5 mL of deionized 

water. Again, the filters were dried for 30 min at 150 W in a microwave oven and stored 

in a desiccator before being weighted.  

Samples from the bioreactors were taken at precise sampling times and filtered using 

syringe nylon filters with a pore size of 0.45 µm into HPLC vials and stored in a -20 ºC 

freezer until being analyzed. HPLC analysis was performed in a Dionex UltiMate 3000 

systems using a refractive index detector (RI-101 from Shodex) and an absorbance 

detector set at 210 nm (Ultimate 3000 VWD from Dionex). The samples were analyzed 

using an Aminex HPX-87H column from Bio-Rad, which was kept at 65 ºC and 0.5 mM 

H2SO4 was used as the mobile phase with a flow rate of 0.5 mL/min. Quantitative 

analysis of glucose, 3-HP, glycerol, acetate and ethanol was performed by injecting a 

mixture of standards with known concentrations of each metabolite. Calibration curves 

were calculated using the peak areas of the RI detector for glucose, glycerol and ethanol 

and of the absorbance detector for 3-HP and acetate.  

5.3 Results and discussion 

5.3.1 In silico optimization of 3-HP production under glucose limitation 

Strain optimization strategies are often complex and involve different types of genetic 

alterations. We used TDPS (chapter 4) in combination with an evolutionary algorithm to 

search for combinations of up/down-regulations and deletions that would optimize the 

production of 3-HP under steady-state conditions. The goal was to find metabolic 

engineering strategies that optimize cytosolic acetyl-CoA availability and can be applied 

to other products that share this precursor. Table 5.3 shows the details of four different 

virtual strains (A-D) obtained in silico from TDPS simulations and that have increased 3-

HP production and also a viable growth phenotype. 
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Table 5.3 - Metabolic engineering strategies obtained using TDPS for 3-HP optimization 

Strain In silico genotype 
TDPS 

3-HP yield on 
glucose 

Biomass yield on 
glucose 

A Up-regulation: 5x ACC, 2x MCR 0.023 g/g 0.36 g/g 

B 
Up-regulation: 2x PDC, 2x ALDc, 
2x ACS, 2x ACC, 2x MCR 

0.20 g/g 0.18 g/g 

C 

Up-regulation: 2x PDC, 2x ALDc, 
2x ACS, 5x ACC, 2x MCR; 
 

Down-regulation: 0.5x PDH 

0.33 g/g 0.13 g/g 

D 

Up-regulation: 2x PDC, 2x ALDc, 
2x ACS, 5x ACC, 2x MCR; 
 

Down-regulation: 0.5x PDH; 
Deletion: SCAT 

0.37 g/g 0.054 g/g 

Metabolic reactions: PDC- pyruvate decarboxylase, ALDc- cytosolic NAD+ aldehyde dehydrogenase, ACS- acetyl-CoA synthetase, 
ACC- Acetyl-CoA carboxylase, MCR- malonyl-CoA reductase, PDH- pyruvate dehydrogenase complex, SCAT- succinyl-
CoA:acetate CoA-transferase 

With the up-regulation of acetyl-CoA carboxylase (ACC) and expression of malonyl-CoA 

reductase (MCR), strain A represents the basal level of 3-HP obtainable with the 

endogenous supply of cytosolic acetyl-CoA under fully oxidative growth on glucose. 

Although MCR is referred in Table 5.3 as an up-regulation, this terminology is used to 

denote an increase of activity in absolute terms, not in comparison to a wild-type 

organism (S. cerevisiae does not possess MCR activity endogenously). To improve the 3-

HP production yield, the optimization algorithm suggested, in strain B, the up-regulation 

of three genes that constitute the pyruvate dehydrogenase bypass (PDH bypass). The 

combined action of pyruvate decarboxylase (PDC), aldehyde dehydrogenase (ALDc) and 

acetyl-CoA synthetase (ACS) is able to deviate flux away from the oxidative metabolism 

of pyruvate (inside the mitochondria) and boost the amount of acetyl-CoA present in the 

cytosol. Strain B shows an improvement in the 3-HP production yield of 8-fold, when 

compared to strain A, at the expense of a 50% drop in biomass formation. 

Further improvement of strain B can be achieved by down-regulating the pyruvate 

dehydrogenase complex in the mitochondria as shown in strain C (Table 5.3). This 

enzymatic complex is responsible for most of the pyruvate consumption and its 

attenuation provokes an increase of flux through pyruvate decarboxylase and subsequent 

reactions of the PDH bypass (strain C). The severe decrease in oxidative metabolism is 

responsible for the biomass yield to drop to 36% of strain A (Table 5.3). The increased 
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flux to acetyl-CoA can then be channeled into 3-HP, by ACC and MCR, and results in a 

65% increase of the 3-HP production yield over strain B. 

The final step in the improvement of 3-HP was achieved by preventing that part of the 

acetaldehyde formed in the cytosol would be channeled into the mitochondria, where it 

could be converted to acetyl-CoA by the action of mitochondrial aldehyde dehydrogenase 

and succinyl-CoA:acetate CoA-transferase (SCAT). The inactivation of SCAT in strain D 

results in an increase in the flux through the PDH bypass, which further improves the 3-

HP yield by 12% (16-fold improvement overall) while reducing the biomass yield to 15% 

of strain A. Figure 5.1 shows the metabolic context of all the modifications suggested by 

the simulations and the detailed information about flux rearrangements is provided in the 

Appendix C (Figure C1). 

 
Figure 5.1- Schematic representation of the flux modifications suggested by the TDPS algorithm. Up-
regulations are shown in green, down-regulations in yellow and deletions in red. MCR is referred as an up-
regulation but in this case this terminology is used to denote an increase of activity in absolute terms, not in 
comparison to a wild-type.  Reactions:  ACC- acetyl-CoA carboxylase, ACONT- aconitase, ACSc- acetyl-
CoA synthetase, AKGD- alpha-ketoglutarate dehydrogenase, ALDc- cytosolic aldehyde dehydrogenase, 
ALDm- mitochondrial aldehyde dehydrogenase, CSm- citrate synthase, FUM- fumarase, ICD- 
mitochondrial isocitrate dehydrogenase, MCR- malonyl-CoA reductase, MDH- mitochondrial malate 
dehydrogenase, ME- mitochondrial malic enzyme, PYC- pyruvate carboxylase, PDH- pyruvate 
dehydrogenase complex, PDC- pyruvate decarboxylase, SCAT- succinyl-CoA:acetate CoA-transferase, 
SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase; Metabolites: 3HP- 3-hydroxypropionic 
acid, AcCoA- acetyl-CoA, Akg- 2-oxoglutarate, Cit- citrate, Fum- fumarate, Icit- isocitrate, Mal - L-malate, 
malCoA- malonyl-CoA, Oaa- oxaloacetate, Succ- succinate, SucCoa- succinyl-CoA. 
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5.3.2 Translation of the simulation results into strain engineering strategies 

When it comes to implementation of strain optimization strategies that were obtained 

from in silico metabolic modelling, there are many interpretations that can be derived for 

the same virtual strain. Although gene deletions are quite straightforward to implement, 

up/down-regulations may have different interpretations, i.e., change in gene expression, 

modification of protein regulation or use of enzymes with attenuated/improved kinetic 

parameters. Depending on the type of regulation present in the host, it is of utmost 

importance to choose the right strategy to maximize the impact of each modification at 

the flux level. In order to convert the in silico genotypes from Table 5.3 into genetic 

engineering operations, each target was analyzed in detail to determine the best option to 

achieve the desired phenotype. Table 5.4 summarizes all the genetic modifications 

conducted to mimic the flux changes observed at the simulation level.  

Table 5.4- Genetic engineering strategies chosen to mimic the flux regulations obtained in the simulations 

In silico 
modification 

Genetic modification 

Expression Regulation 

Up-regulation MCR 
a 

Integration of a heterologous 
Malonyl-CoA reductase  from 
Chloroflexus aurantiacus (mcr) [14] 
under a strong promoter 

- 

Up-regulation ACC 
Integration of a mutated ACC1 from 
S. cerevisiae  [25] under a strong 
promoter 

The mutated (ser659ala,ser1157ala) Acc1p is no 
longer regulated at the protein level by Snf1p-
mediated phosphorylation and shows improved 
activity  

Up-regulation PDC 
Integration of a mutated PDC1 from 
S. cerevisiae [37] under a strong 
promoter 

The mutated Pdc1 contains five point mutations 
that improved its activity (lower S0.5) and reduced 
its inhibition by phosphate 

Up-regulation ACS 
Integration of a mutated acs from S. 
enterica (acsSE

L641P) [10, 12] under a 
strong promoter 

Regulation by acetylation at the protein level  was 
abolished in the mutated Acs (leu641pro) 

Up-regulation ALDc 

- Integration of ALD2 under a strong 
promoter 
- Integration of ALD4 (without 
mitochondrial targeting signal) [42] 
under a strong promoter 

- 

Down-regulation of 
PDH Deletion of PTC5 [43, 44] 

Activation of the PDH complex by the 
phosphatase Ptc5p was abolished, resulting in 
lower activity 

Deletion SCAT Deletion of ACH1  - 

a MCR is referred as an up-regulation but in this case this terminology is used to denote an increase of activity in absolute terms, not in 
comparison to a wild-type. 

Metabolic reactions: PDC- pyruvate decarboxylase, ALDc- cytosolic NAD+ aldehyde dehydrogenase, ACS- acetyl-CoA synthetase, 
ACC- Acetyl-CoA carboxylase, MCR- malonyl-CoA reductase, PDH- pyruvate dehydrogenase complex, SCAT- succinyl-
CoA:acetate CoA-transferase 
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As show in Table 5.4, it was necessary to introduce a heterologous gene encoding 

malonyl-CoA reductase in S. cerevisiae, because 3-HP is not naturally produced in this 

microorganism. Based on the work of Chen et al., we decided to use a Mcr from C. 

aurantiacus because it has shown increased activity compared to other enzymes when 

expressed in yeast [14]. Regarding the up-regulation of ACC, it was previously shown by 

Shi et al. [25] that efficient up-regulation of Acc1p activity in S. cerevisiae is achieved by 

two point mutations to abolish regulation by Snf1p. In order to bypass Acc1p regulation 

and increase the flux through this enzyme, the mutated ACC1 was integrated in the 

genome under the control of a strong constitutive promoter. 

The great improvement in 3-HP production shown for strain B (Table 5.3) is the result of 

an efficient up-regulation of the PDH bypass. In order to replicate this phenotype in vivo, 

the three enzymes that constitute the PDH bypass need to have good kinetic properties 

and low regulation. The first of the three enzymes, pyruvate decarboxylase (Pdc1p), has a 

substrate affinity constant for pyruvate (Km) ten times higher than the PDH complex [45]. 

Consequently, in glucose limited cultures growing at low growth rates (< 0.20 h-1) the 

over-expression of Pdc1p has no impact on the flux distribution around the pyruvate node 

[46]. Furthermore, even under glucose abundance conditions the over-expression of 

Pdc1p on its own does not have a significant effect on the ethanol formation rate [47]. 

Given the kinetic limitations of this enzyme, it was unlikely that a simple over-expression 

would change the flux ratio in the pyruvate node in favor of the PDH bypass. Therefore, 

we opted to use a mutated Pdc1p (5LS30) evolved by Stevenson et al. [37] that showed a 

3-fold reduction in the pyruvate half-saturation constant (S0.5) and 4-fold reduction in 

phosphate inhibition (Table 5.4).  

Additionally, the simulation results suggested the up-regulation of a NAD+ dependent 

aldehyde dehydrogenase (ALDc) for the second step of the PDH bypass. The analysis of 

the flux distribution suggested that the use of a NAD+ dependent enzyme under glucose 

limitation may have a positive impact on 3-HP production by increasing the amount of 

ATP available in cell, which is required for acetyl-CoA (2 ATP equivalents) and malonyl-

CoA synthesis (1 ATP). In S. cerevisiae, Ald4p and Ald6p are the major enzymes with 

acetaldehyde dehydrogenase activity [48]. While Ald6p is cytosolic and NADP+ 

dependent, Ald4p is localized in the mitochondria and can use both NAD+ and NADP+ 

[48]. There are additional aldehyde dehydrogenases in S. cerevisiae (Ald2p, Ald3p and 

Ald5p) but their activity towards acetaldehyde is much lower [48, 49]. As shown in Table 
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5.4, Ald2p and a cytosolic version of Ald4p [42] were over-expressed separately in order 

to test which of them would result in higher flux through the PDH bypass. 

The final enzyme in the PDH bypass, acetyl-CoA synthetase (ACS), was up-regulated by 

integrating a copy of a mutant version of this enzyme from S. enterica into the yeast 

genome [10]. This enzyme is acetylation-insensitive and was shown to have a positive 

influence on the production of metabolites that have acetyl-CoA as their precursor [9–12, 

14].  

In order to decrease the rate of oxidative metabolism of pyruvate, it was suggested by the 

simulations that the PDH complex should be down-regulated. As mentioned above this 

type of modification can have many interpretations and not all of them may produce the 

desired effect. Based on the work of Gey et al. [43], there are two phosphatases that 

contribute to the dephosphorylation of the PDH complex, Ptc5p and Ptc6p, and both of 

them contribute to the activation of this enzymatic complex. Therefore, the down-

regulation of the PDH-complex can be achieved by deleting either of the corresponding 

genes [43]. According to published results, the deletion of PTC5 results in a less severe 

phenotype (56 % reduction in activity) than PTC6 inactivation (94 % reduction in 

activity) [43, 44]. Therefore, since the simulation results showed that a reduction of 50 % 

in the activity of the PDH complex would be optimal, we chose to delete PTC5. 

The final strain engineering operation was the inactivation of succinyl-CoA:acetate CoA-

transferase inside the mitochondria. According to the literature, ACH1 is the only gene in 

S. cerevisiae coding for this activity and its deletion should result in the desired effect [3]. 

5.3.3 Strain analysis in bioreactors 

The constructed strains (HPR01-HPR07) were cultivated under the controlled conditions 

of a bioreactor and the extracellular metabolite concentrations were measured at two 

time-points: after glucose was exhausted, which represents the respiro-fermentative 

metabolism of S. cerevisiae; and after all the ethanol was consumed, which represents 

fully oxidative metabolism of the products of fermentation (ethanol, glycerol and acetate).  

Figure 5.2 shows the overall 3-HP yields on glucose at the end of the batch cultivation, 

i.e., after the O2 consumption and biomass production dropped to zero. When the yield of 

HPR01 is compared to the corresponding simulation result in Table 5.3 (strain A), we can 
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see that the results are quite similar in terms of magnitude (0.013 g/g versus 0.023 g/g). 

However, the strains engineered for improved acetyl-CoA availability performed worse 

than what would have been expected from the simulation results. Furthermore, the best 

constructed strain (HPR06) showed an increase of 52 % over the basal strain, which is 

much lower than the 16-fold improvement predicted. 

 
Figure 5.2- 3-HP yields on glucose at the end of the batch cultivation for the strains engineered to improved 
cytosolic acetyl-CoA supply. The values shown are the average of at least two biological replicates and the 
error bars represent the standard deviations. MCR- Expression of the malonyl-CoA reductase gene from C. 
aurantiacus, ACC- up-regulation of ACC1, PDC- up-regulation of PDC1, ALD2- up-regulation of ALD2, 
ALD4- expression of a truncated ALD4 lacking the mitochondrial targeting signal, ACSc- expression of a 
mutated acs from S. enterica, PDH- deletion of PTC5 to decrease the activity of the Pyruvate 
Dehydrogenase complex, ACH1- deletion of the succinyl-CoA:acetate CoA-transferase (ACH1). 

 

5.3.3.1 Strain analysis under respiro-fermentative glucose metabolism 

The simulation results showed that the most important step in the 3-HP optimization 

process was the supply of cytosolic acetyl-CoA using the PDH bypass. As discussed in 

section 5.3.2 the success of this strategy relies on the capacity of the three enzymes from 

this pathway to redirect flux from pyruvate oxidation to acetyl-CoA production. Under 

respiro-fermentative conditions the flux through PDC should not be limiting, because 

there is a considerable amount of acetaldehyde being produced by this enzyme [50]. 

Therefore, the limiting step for 3-HP production under respiro-fermentative conditions 

should lie downstream of PDC. 

The next step of the PDH bypass is the oxidation of acetaldehyde to acetate catalyzed by 

an aldehyde dehydrogenase. In this work, we tested two NAD+-dependent aldehyde 

dehydrogenases, Ald2p and Ald4cp, in order to compare which one would result in a 
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higher flux through this pathway. As shown in Table 5.5, all strains over-expressing 

Ald4cp (HPR03, HPR05 and HPR07) accumulated around 3-fold more acetate 

extracellularly. The increased NAD+-dependent acetaldehyde dehydrogenase activity in 

the cytosol is also corroborated by the 2-fold increase in glycerol production in the strains 

expressing Ald4cp. Since glycerol production is used by the cell as a “redox valve” to 

dispose of excessive NADH [51], the increase in NADH originating from acetate 

formation was compensated (partially) by glycerol formation. The strains over-expressing 

Ald2p (HPR02, HPR04, HPR06) also showed increase production of acetate in 

comparison with the control strain (HPR01), but in lower amounts than observed for the 

Ald4cp strains. 

Table 5.5- Physiological properties during respiro-fermentative metabolism of the strains engineered for 3-
HP production.  

 

 
The samples were taken right after the glucose in the medium was exhausted and the values are given in g/L for the extracellular 
metabolite concentrations and for cell dry weight. The maximum growth rate (µmax) is given in h-1. The values shown are the average 
of at least two biological replicates ± the standard deviations. 

 

Interestingly, the strains expressing Ald4cp (HPR03, HPR05 and HPR07) accumulate less 

3-HP than the Ald2p over-expressing counterparts, meaning that it is very unlikely that 

ALD activity is the limiting step for 3-HP production. One possible explanation for this 

counter-intuitive phenotype may be the decreased availability of NADPH caused by the 

competition between the native NADP+-dependent Ald6p and the introduced NAD+-

dependent Ald4cp. Since 3-HP production requires 2 NADPH molecules per 3-HP 

molecule, decreasing NADPH formation in the cytosol may result in a lower activity of 

Mcr and lower 3-HP production. In fact, it has been shown before that increasing the 

availability of NADPH has a positive impact on 3-HP production [14]. 

Strain 
Acetate 

(g/L) 
Glycerol 

(g/L) 
Ethanol 

(g/L) 
Dry weight 

(g/L) 
3HP 
(g/L) 

µmax 
(h-1) 

HPR01 0.22 ± 0.00 1.06 ± 0.03 9.25 ± 0.44 2.40 ± 0.21 0.18 ± 0.01 0.35 ± 0.01 

HPR02 0.30 ± 0.02 1.15 ± 0.10 9.28 ± 0.42 2.53 ± 0.09 0.20 ± 0.01 0.32 ± 0.03 

HPR03 0.88 ± 0.03 2.21 ± 0.10 8.31 ± 0.30 2.35 ± 0.09 0.16 ± 0.01 0.31 ± 0.02 

HPR04 0.31 ± 0.02 1.01 ± 0.03 9.27 ± 0.10 2.25 ± 0.09 0.21 ± 0.00 0.36 ± 0.01 

HPR05 0.92 ± 0.02 2.16 ± 0.01 8.26 ± 0.00 2.14 ± 0.18 0.18 ± 0.00 0.32 ± 0.01 

HPR06 0.35 ± 0.02 0.86 ± 0.06 9.29 ± 0.16 2.25 ± 0.08 0.21 ± 0.03 0.36 ± 0.02 

HPR07 1.05 ± 0.07 2.38 ± 0.16 8.38 ± 0.02 1.82 ± 0.02 0.16 ± 0.01 0.29 ± 0.02 
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Judging by the levels of acetate accumulation for the strains expressing Ald4cp, ALD 

activity does not seem to be the reason for the low performance of these strains. ACS is 

much more likely to be the limiting step in acetyl-CoA production, even though the 

strains constructed include an unregulated version of this enzyme from S. enterica 

(section 5.3.2). In previous studies, the acsSE
L641P was expressed from multi-copy 

plasmids in S. cerevisiae [9, 11, 12, 14], while here only a single copy was integrated into 

the genome. Given the heterologous nature of this enzyme it is probable that the single 

copy integration method used may result in limiting amounts of ACS activity. 

Unfortunately, our attempts of using strains based on expression from two plasmids 

(p3HP02 + pYC5) instead of genomic integrations resulted in severe phenotypic 

instability, which prevented long term culture of those strains (data not shown).  

Another possibility for the lack of effect of the PDH bypass amplification on 3-HP 

production can also be related with potential additional post-transcriptional regulation of 

Acc1p or insufficient enzyme levels of Acc1p and/or Mcr. On one hand, we integrated a 

single copy of the mutated ACC1 and of mcr, which might be limiting under these 

conditions. On the other hand it is also possible that Acc1p is subject to additional 

regulation mechanisms that have not been reported yet. Another factor that was not 

analyzed is the availability of biotin and of biotin:apoprotein ligase (Bpl1p) to activate 

Acc1p. In fact, it has been show in E. coli that additional levels of both of these 

components boosted the activity of Photorhabdus luminescens Acc [52]. 

The down-regulation of the PDH complex under respiro-fermentative metabolism should 

have rather little impact since it is already repressed by elevated glucose concentrations 

[53, 54]. As expected there were no significant differences between HPR02/3 and their 

PDH down-regulated equivalent counterparts HPR04/5. Furthermore, the deletion of 

ACH1 also had no significant effect on 3-HP production, although it appears to be 

detrimental to biomass formation when combined with Ald4cp expression. As shown in 

Table 5.5 for strain HPR07 the drop in biomass formation is coincident with the highest 

acetate and glycerol formation among all strains.  

5.3.3.2 Oxidative growth on fermentation products 

When S. cerevisiae is grown on ethanol as the sole carbon source several changes occur 

in central carbon metabolism. Ethanol is first oxidized to acetaldehyde and then converted 
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to acetyl-CoA using the enzymes in the PDH bypass. Acetyl-CoA can then enter the 

glyoxylate cycle to supply energy and biomass precursors to the cell [2]. The production 

of acetyl-CoA is so vital in these conditions that an additional acetyl-CoA synthetase 

(Acs1p) becomes active to accommodate the increased flux to acetyl-CoA [55, 56]. 

Therefore, when compared to respiro-fermentative metabolism there should be a 

significant improvement in the availability of cytosolic acetyl-CoA in cells growing on 

ethanol. However, as shown in Table 5.6, the 3-HP production levels were quite low 

taking into consideration the increased flux through acetyl-CoA. 

Table 5.6- Physiological properties during oxidative growth on the fermentation products of the strains engineered for 
3-HP production.  

Strain 
Acetate 

(g/L) 
Glycerol 

(g/L) 
Ethanol 

(g/L) 
Dry weight 

(g/L) 
3HP 
(g/L) 

µmax 
(h-1) 

HPR01 -0.22 ± 0.00 -0.98 ± 0.02 -9.25 ± 0.44 3.77 ± 0.07 0.08 ± 0.03 0.10 ± 0.01 

HPR02 -0.30 ± 0.02 -1.01 ± 0.09 -9.28 ± 0.42 3.57 ± 0.19 0.07 ± 0.01 0.08 ± 0.00 

HPR03 -0.88 ± 0.03 -1.04 ± 0.12 -8.31 ± 0.30 3.45 ± 0.16 0.06 ± 0.04 0.10 ± 0.01 

HPR04 -0.30 ± 0.02 -0.91 ± 0.01 -9.27 ± 0.10 3.58 ± 0.06 0.10 ± 0.02 0.10 ± 0.01 

HPR05 -0.91 ± 0.02 -1.00 ± 0.07 -8.26 ± 0.00 3.49 ± 0.07 0.08 ± 0.02 0.12 ± 0.01 

HPR06 -0.35 ± 0.01 -0.43 ± 0.10 -9.29 ± 0.16 2.66 ± 0.14 0.18 ± 0.01 0.05 ± 0.01 

HPR07 -0.32 ± 1.34 -0.21 ± 0.07 -8.38 ± 0.02 1.71 ± 0.47 0.11 ± 0.02 0.03 ± 0.01 

Changes in metabolite concentrations and cell dry weight (compared to the end of the glucose phase) are given in g/L. Negative values 
represent the consumption and positive represent the production of each species. The maximum growth rate (µmax) is given in h-1. The 
values shown are the average of at least two biological replicates ± the standard deviations. 

 

Comparing the performance of the strains HPR02/3 to the control strain HPR01 reveals 

that as observed in respiro-fermentative conditions the up-regulation of the PDH bypass 

enzymes does not lead to an improvement in the 3-HP production levels (Table 5.6). 

Taking into consideration that we expressed an unregulated ACS from S. enterica and 

that Acs1p should also be active in the cytosol, it appears that the limiting step in 3-HP 

production is located downstream of acetyl-CoA metabolism. Even if Acs1p is mostly 

active in the peroxisome in order to fuel the glyoxylate cycle [2], the additional activity 

from the introduced AcsSE
L641P should be supplying additional acetyl-CoA in the cytosol. 

Assuming that acetyl-CoA is in fact not limiting under growth on ethanol, means that the 

activity of Acc1p and/or Mcr are the bottleneck in this pathway.  

Judging by the similar levels of biomass formation between HPR01 and HPR02/3, it 

appears that the amount of acetyl-CoA being diverted to other malonyl-CoA derived 
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metabolites (such as lipids) is not substantial enough to affect the final cell dry weight. 

However, we did not measure the accumulation of any additional metabolites derived 

from malonyl-CoA and consequently cannot conclude about a less pronounced increase 

in the flux through Acc1p. In fact, it has been shown before that the expression of the 

mutated Acc1p used in this study results in an increase of fatty acid ethyl esters 

accumulation in S. cerevisiae [25]. As mentioned before, it is possible that insufficient 

levels of Acc1p or lack of biotin or Bpl1p activity are limiting the flux though the acetyl-

CoA carboxylase from reaching higher fluxes. 

Another possibility for the low 3-HP production levels observed could be that insufficient 

enzyme activity of Mcr is limiting the flux to 3-HP. Since Mcr is competing for malonyl-

CoA with endogenous enzymes of S. cerevisiae, this phenotype could be explained by a 

low substrate affinity of Mcr towards malonyl-CoA in comparison with other consuming 

enzymes. If other enzymes are very efficient at metabolizing malonyl-CoA, the flux to 3-

HP might be limited because of the low activity of Mcr caused by a low intracellular 

concentration of malonyl-CoA. This hypothesis is supported by an increase in 3-HP 

production in the ethanol phase when extra mcr is expressed from a multi-copy plasmid in 

strain HPR00 (data not shown). 

In contrast to the differences observed under respiro-fermentative conditions, under 

growth on ethanol the expression of Ald4cp did not influence 3-HP formation (Table 5.6). 

When strain HPR03 (Ald4cp) is compared to HPR02 (Ald2p) the only differences 

observed are the amount of ethanol and acetate consumed, which were accumulated in 

different amounts during the glucose consumption phase. This lack of effect is supported 

by the finding that the deletion of ALD6 can be compensated by Ald4p activity [42], 

which indicates that the cofactor specificity of this enzyme is not paramount for normal 

growth on ethanol. 

Regarding the behavior of the PDH down-regulation mutants (HPR04 and HPR05) a 

small increase was observed in 3-HP production (43 % and 33 %) compared to the 

original strains (HPR02 and HPR03). However, the increase is not statistically significant 

and therefore quite difficult to interpret. This may indicate that PDH has a small role in 

ethanol or glycerol utilization and that its down-regulation increases the flux through the 

PDH bypass. Nevertheless, the lack of significant phenotypical changes in the PTC5 

deletion strains suggests that the PDH complex is not very relevant for the consumption 
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of ethanol or glycerol. These findings are supported by the lack of phenotype of a PDH-

negative mutant grown on ethanol limited chemostats [29]. 

Of all genetic modification implemented, ACH1 deletion resulted in the most severe 

phenotype when the cells were growing in the mixture of fermentation products. Strain 

HPR06 showed a prolonged growth phase on ethanol, which lasted 23 hours in 

comparison to the 12.5 hours of HPR04 (data not shown), and a 50% decrease in the 

maximum growth rate (Table 5.6). During the initial period of ethanol consumption this 

strain accumulated extracellular acetate (data not shown) as observed by Fleck and Brock 

in their ACH1 deletion mutant [3]. The acetate “overflow” phenotype suggests that Ach1p 

is responsible for consuming part of the acetate originating from ethanol oxidation. As 

shown in Table 5.6, HPR06 shows an improvement in 3-HP production of over 2-fold 

when compared to HPR01. This phenotype is probably caused by the increased acetyl-

CoA production in the cytosol as a result of the inactivation of a competing pathway for 

acetate consumption.  

Unexpectedly, HPR07, which differs from HPR06 in the aldehyde dehydrogenase used 

(Ald4cp vs. Ald2p), showed an even longer growth phase on ethanol (data not shown) 

and difficulty in fully consuming the acetate accumulated (Table 5.6). This odd 

phenotype may be caused by an imbalance of activity between the cytosolic aldehyde 

dehydrogenase and acetyl-CoA synthetase, which results in acetate induced stress and 

reduced biomass yield and 3-HP production (Table 5.6). A thorough analysis of the 

ACH1 deletion phenotype and its interaction with Ald4cp expression is given in section 

5.3.4. 

5.3.4 Integration of Ach1p role into C2 metabolism 

As show by Fleck and Brock [3] and reinforced by the phenotypes observed (Table 5.6), 

Ach1p has an important role in the metabolism of C2 carbon sources by S. cerevisiae. At 

the same time, the PDH bypass and the glyoxylate cycle also have a critical part in C2 

metabolism [2]. In order to estimate the contribution of each pathway for ethanol 

metabolism we used flux balance analysis [57, 58] and a genome scale metabolic model 

of S. cerevisiae to estimate the fluxes in the central carbon metabolism. Figure 5.3 shows 

the computed fluxes in the most relevant reactions for the wild-type S. cerevisiae (green) 

and for the ACH1 deletion mutant (red). The flux values were estimated assuming 
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maximum biomass yield under a fixed ethanol influx. Therefore, the flux distribution 

represents the most efficient metabolic state achievable using the enzymatic 

transformations present in the model.  

 
Figure 5.3- Flux distributions for growth on ethanol of wild-type S. cerevisiae (green) and ACH1 deletion 
mutant (red) obtained using FBA. Reactions: ACC- acetyl-CoA carboxylase, ACONT- aconitase, ACSc- 
cytosolic acetyl-CoA synthetase, ACSp- peroxisomal acetyl-CoA synthetase, ADH- alcohol dehydrogenase, 
AKGD- alpha-ketoglutarate dehydrogenase, ALDc- cytosolic aldehyde dehydrogenase, ALDm- 
mitochondrial aldehyde dehydrogenase, CSm- mitochondrial citrate synthase, CSp- peroxisomal citrate 
synthase, FUM- mitochondrial fumarase, FUMc- cytosolic fumarase, ICD- mitochondrial isocitrate 
dehydrogenase, ICL- isocitrate lyase, MALS- malate synthase, MDH- mitochondrial malate dehydrogenase, 
MDHc- cytosolic malate dehydrogenase, ME- mitochondrial malic enzyme, PCK- phosphoenolpyruvate 
carboxykinase,  PDH- pyruvate dehydrogenase complex, SCAT- succinyl-CoA:acetate CoA-transferase, 
SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase; Metabolites: AcCoA- acetyl-CoA, Akg- 
2-oxoglutarate, Cit- citrate, Fum- fumarate, Glx- glyoxylate,  Icit- isocitrate, Mal - L-malate, malCoA- 
malonyl-CoA, Oaa- oxaloacetate, PEP- phosphoenolpyruvate, Succ- succinate, SucCoa- succinyl-CoA. 

 

As shown in Figure 5.3 for the wild-type flux distribution, there is a split of flux at the 

acetaldehyde node that diverges either to acetyl-CoA synthetase (ACS) in the 

cytosol/peroxisome or to succinyl-CoA:acetate CoA-transferase (SCAT) in the 

mitochondria. Since Ach1p is more energy efficient (one ATP equivalent needed) than 

ACS (two ATP equivalents needed) in the activation of acetate to acetyl-CoA, it would be 

logical that Ach1p is the preferred route if we disregard their occurrence in different 

compartments. However, given the small differences in the simulated yields between 

wild-type and ACH1 deletion mutant (Figure 5.3) it is not likely that there is a significant 

selective pressure on the use of Ach1p based on efficiency only. Instead, it is much more 

likely that Ach1 is used to maximize the capacity of the cell to metabolize C2 carbon 
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sources and achieve higher growth rates. This theory is supported by the observation that 

ACH1 deletion mutants have a longer growth phase on ethanol, lower maximum growth 

rate (Table 5.6) and excrete acetate in the early growth period (this work and [3]).  

The reason for the existence of two options for activating acetate to acetyl-CoA may be 

related to the limitation of acetyl-CoA synthetase to support very high fluxes. As shown 

in Figure 5.3, Ach1p (SCAT) is responsible for activating 46% of the acetate available, 

which is then used for synthesizing citrate and fueling the citric acid cycle. If ACH1 is 

deleted the overall flux through ACS (cytosolic + peroxisomal) almost doubles, and more 

citrate has to be produced by the peroxisomal citrate synthase. Since the additional citrate 

has to be transported across two membranes (peroxisomal and mitochondrial) in order to 

be metabolized in the mitochondria, it might also act as a metabolic bottleneck in ACH1 

deletion mutants. 

Fleck and Brock [3] suggested that the growth retardation phenotype of the ACH1 

deletion strain on acetate was caused by acetate related toxicity in the mitochondria. 

However, it has been reported by Chan et al. [59] that if the flux through ACS is 

artificially up-regulated in S. enterica growing on acetate, this results in slow growth 

caused by ATP/ADP depletion and AMP accumulation. This phenotype can be rescued 

by expressing an ADP-forming acetyl-CoA synthetase because it reduces substantially the 

energetic burden of acetate consumption. Judging by the flux changes observed in Figure 

5.3 for the ACH1 deletion mutant it is very likely that a higher flux in the 

cytosolic/peroxisomal ACS also results in ATP depletion and accumulation of AMP in S. 

cerevisiae. Furthermore, when Ald4cp was over-expressed in HPR07, we observed 

additional growth retardation (Table 5.6) when compared to an isogenic strain expressing 

the less active Ald2p (HPR06). This phenotype is consistent with the hypothesis that 

higher flux through ACS leads to the depletion of ATP and an energetic imbalance in the 

cell.  

Putting all the evidences together, Ach1p seems to act on two fronts: to help the cell 

metabolizing a considerable part of the acetate and preventing excessive flux through 

ACS which might cause an energy imbalance.  Further clarification of its role will need 

additional experiments similar to the ones mentioned above for S. enterica [59]. 
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5.4 Conclusions 

In this study, we used in silico metabolic modeling to discover new strain engineering 

targets that would improve acetyl-CoA availability in the cytosol and increase the 

production levels of 3-HP. Although the yields obtained experimentally are considerably 

lower than the ones suggested in the simulations, we observed a positive effect of PDH 

down-regulation and ACH1 deletion on the 3-HP yield in batch cultivations (Figure 5.2). 

Overall, the results would benefit from additional studies regarding the regulation of the 

acetyl-CoA and malonyl-CoA nodes in order to improve the flux through the PDH bypass 

and acetyl-CoA carboxylase. 

We also observed that Ach1p might have a more important role in the metabolism of C2 

carbon sources than previously acknowledged (Figure 5.3). In addition to the increase in 

3-HP production, the inactivation of ACH1 also caused a considerable growth slowdown 

in the ethanol consumption phase of the batch fermentation. The reason for such a severe 

phenotype is not fully understood and further studies are required to clarify the exact 

mechanism responsible for the growth retardation. However, FBA analysis of the flux 

readjustment needed in an Ach1p negative S. cerevisiae indicates that a higher flux 

through ACS may cause ATP depletion and consequently an energetic imbalance. A 

similar response to a high flux through ACS has been described in S. enterica and 

supports this theory.  
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CHAPTER 6  
General conclusions 

 

This final chapter includes the general conclusions about the work that is included in this 

thesis, as well as additional suggestions of future work to be carried out to answer some 

questions that were raised by the results obtained here. 
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6.1 General conclusions 

The main goal of this thesis was to improve the methodologies used for in silico strain 

engineering by using Saccharomyces cerevisiae as the case study organism. The main 

conclusions resulting from the work developed here are as follows: 

- A review of the literature, regarding the availability of genome-scale modeling 

methods that can be used for strain engineering, revealed that there is a 

considerable variety and quantity to choose from. However, the abundance of 

methods is somehow contradictory with the number of experimental 

implementations of strain engineering strategies obtained using genome-scale 

metabolic models in S. cerevisiae. 

 

- An analysis of some of the genome-scale metabolic models available for S. 

cerevisiae has shown that the internal flux distributions predicted with 

parsimonious flux balanced analysis (pFBA) under fully aerobic conditions 

included some inconsistencies in central areas of the metabolism. Using cofactor 

abundance in aerobic conditions as guidance, constraints were applied to all the 

metabolic reactions including NADH of NADPH, resulting in several 

improvements in the pentose phosphate pathway and other parts of NADPH 

metabolism. Those improvements were shown to have a positive impact on the 

simulation of gene knock-outs obtained for the production of acetate and 

mevalonate.  

 

- The lack of a simulation method that could predict in quantitative terms the 

phenotype of strains with complex engineered genotypes, led us to develop a 

novel simulation method called turnover dependent phenotypic simulation 

(TDPS). This method was designed with the goal of simulating the majority of the 

genetic modifications usually implemented in engineered strains and its 

formulation takes into account the availability of resources in the network by 

assuming that the production turnover of a metabolite can be used as an indication 

of its abundance. 
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- TDPS was validated quantitatively using metabolically engineered S. cerevisiae 

strains available in the literature by comparing the production yields of the target 

metabolite between the simulations and experiments. Overall, the estimated yields 

obtained with TDPS were quite close to the experimentally reported values, 

although the performance oscillated among the different case-studies tested. To 

the best of our knowledge, this was the first time that a simulation method was 

validated in quantitative terms using experimental data. 

 

- TDPS was used in combination with the manually curated models in order to 

search for new strain engineering targets that would improve acetyl-CoA 

availability in the cytosol and increase the production levels of 3-

hydroxypropionic acid (3-HP). Although the yields obtained experimentally were 

considerably lower than the ones suggested in the simulations, we observed a 

positive effect of the pyruvate dehydrogenase down-regulation and ACH1 

(succinyl-CoA:acetate CoA-transferase) deletion on the 3-HP yield in batch 

cultivations.  

 

- It was also observed that Ach1p might have a more important role in the 

metabolism of C2 carbon sources than previously acknowledged because its 

inactivation caused a considerable growth slowdown in the ethanol consumption 

phase of the batch fermentation. A modified genome-scale model of S. cerevisiae 

was used to predict how the deletion of ACH1 affects the internal fluxes of cells 

growing on ethanol and some hypotheses were formulated to explain the 

phenotypes observed.  

6.2 Recommended future work 

As it is usually the case, most research projects lead to more questions than answers. 

Although this thesis provided relevant insights into the field of in silico strain 

engineering, a few questions remain unanswered and consequently we provide a few 

topics where additional research would be recommendable:  

- The results obtained with TDPS were very promising but could still be improved 

in our opinion by using an objective function that better describes the cellular 
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adaptation when faced with serious disturbances. Therefore, further efforts should 

be made to test additional objective functions. In addition, it would also be 

recommendable to expand the case-studies used to validate TDPS to other 

organisms, in order to help fine-tuning the performance of the algorithm. 

 

- The experimental results obtained for the engineered 3-HP producing strains 

would benefit from additional studies regarding the regulation of the acetyl-CoA 

and malonyl-CoA nodes in order to improve the flux through the pyruvate 

dehydrogenase bypass and acetyl-CoA carboxylase. Therefore, the corresponding 

enzymes should be further investigated for limited availability of cofactors and the 

existence of regulatory phenomena.  

 

- The reason for the severe phenotype observed for the ACH1 deletion in S. 

cerevisiae during the ethanol phase of a batch culture was not fully understood. 

Therefore further studies are required to clarify the exact mechanism responsible 

for the growth retardation. A good starting point would be to verify if the higher 

flux through acetyl-CoA synthetase (as suggested by FBA simulations) is creating 

an energetic imbalance. 

 

- Although the strains engineered for improved availability of acetyl-CoA were 

designed for glucose limited conditions, the experiments reported in this thesis 

only encompassed batch cultivations. Therefore, in order to understand better the 

physiology of those strains, it would be interesting to perform chemostat 

experiments and compare the results obtained with the simulated values. 

 

- As a final remark, it is important to point out that in order to increase the use and 

acceptance of in silico strain engineering methodologies in the metabolic 

engineering field, it is necessary to carefully analyze the existing methodologies 

and improve them to the point that researchers will trust simulations over their 

rationally derived hypothesis. To do so, further experimental studies should be 

carried out to validate strain engineering computational methods, in order to 

reveal their advantages and disadvantages. 
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Appendix A: Manual curation of the genome-scale models of S. cerevisiae 

Table A1- List of reactions modified during the curation process of the model iFF708 

Reaction ID Stoichiometric equation Genes Comment verdict 

MDH3 Malate + NAD+ <=> NADH + Oxaloacetate YDL078C part of the glyoxylate cycle (not needed in 
glucose growth) 

reversibility 
constrained 

MDH2 Malate + NAD+ <=> NADH + Oxaloacetate YOL126C part of the glyoxylate cycle (not needed in 
glucose growth) 

reversibility 
constrained 

U45_ D-Mannitol_1-phosphate + NAD+ <=> beta-D-Fructose_6-phosphate + 
NADH 

NA (Mannitol-1-
phosphate 5-

dehydrogenase) 

dead end (D-Mannitol_1-phosphate only 
present in this reaction) inactivated 

ADH2 Ethanol + NAD+ <=> Acetaldehyde + NADH YMR303C not active with a dilution rate of 0.10 h-1 reversibility 
constrained 

ADH1 Ethanol + NAD+ <=> Acetaldehyde + NADH YOL086C not active with a dilution rate of 0.10 h-1 reversibility 
constrained 

PRO3_3 L-1-Pyrroline-3-hydroxy-5-carboxylate + NADH => trans-4-Hydroxy-
L-proline + NAD+ YER023W capable of using NADH or NADPH in 

the model, more likely to use NADPH inactivated 

ADH5 Ethanol + NAD+ <=> Acetaldehyde + NADH YBR145W not active with a dilution rate of 0.10 h-1 reversibility 
constrained 

ADH4 Ethanol + NAD+ <=> Acetaldehyde + NADH YGL256W not active with a dilution rate of 0.10 h-1 reversibility 
constrained 

FAS1_4 Acyl-[acyl-carrier_protein] + NAD+ <=> 2,3-Dehydroacyl-[acyl-
carrier_protein] + NADH YKL182W dead end (general compound present in 

the reaction: acyl-CoA) inactivated 

BIO2 Dethiobiotin + 2 NAD+ + Hydrogen_sulfide + ATP <=> Biotin + 2 
NADH + AMP + Pyrophosphate YGR286C reaction is coupled to ATP hydrolysis reversibility 

constrained 

SFA1_2 Ethanol + NAD+ <=> Acetaldehyde + NADH YDL168W not active with a dilution rate of 0.10 h-1 reversibility 
constrained 

SFA1_1 Formaldehyde + Glutathione + NAD+ <=> S-Formylglutathione + 
NADH YDL168W 

not active with a dilution rate of 0.10 h-1 
(formaldehyde is not produced in these 

conditions) 

reversibility 
constrained 

LYS1 N6-(L-1,3-Dicarboxypropyl)-L-lysine + NAD+ <=> L-Lysine + 2-
Oxoglutarate + NADH YIR034C used in the direction of L-lysine synthesis 

(NADH producing) 
reversibility 
constrained 
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Table A1- List of reactions modified during the curation process of the model iFF708 (continuation) 

Reaction ID Stoichiometric equation Genes Comment Verdict 

TDH1 D-Glyceraldehyde_3-phosphate + Orthophosphate + NAD+ <=> 
NADH + 3-Phospho-D-glyceroyl_phosphate YJL052W part of glycolysis (NADH producing) reversibility 

constrained 

TDH2 D-Glyceraldehyde_3-phosphate + Orthophosphate + NAD+ <=> 
NADH + 3-Phospho-D-glyceroyl_phosphate YJR009C part of glycolysis (NADH producing) reversibility 

constrained 

TDH3 D-Glyceraldehyde_3-phosphate + Orthophosphate + NAD+ <=> 
NADH + 3-Phospho-D-glyceroyl_phosphate YGR192C part of glycolysis (NADH producing) reversibility 

constrained 

FOX2 (3S)-3-Hydroxyacyl-CoA + NAD+ <=> 3-Oxoacyl-CoA + NADH YKR009C dead end (general compound present in the 
reaction: 3-oxoacyl-CoAs) inactivated 

GPD2 Glycerone_phosphate + NADH => sn-Glycerol_3-phosphate + NAD+ YOL059W thermodynamically favorable in the 
forward direction (dG=-31.5 KJ/mol)* 

no changes 
applied 

GPD1 Glycerone_phosphate + NADH => sn-Glycerol_3-phosphate + NAD+ YDL022W thermodynamically favorable in the 
forward direction (dG=-31.5 KJ/mol)* 

no changes 
applied 

GLT1 2-Oxoglutarate + L-Glutamine + NADH => NAD+ + 2 L-Glutamate YDL171C thermodynamically favorable in the 
forward direction (dG=-40 KJ/mol)* 

no changes 
applied 

PRO2_1 alpha-D-Glutamyl_phosphate + NADH => NAD+ + Orthophosphate + 
L-Glutamate_5-semialdehyde YOR323C capable of using NADH or NADPH in the 

model, more likely to use NADPH inactivated 

NDE1 NADH + Ubiquinone-9M => UbiquinolM + NAD+ YMR145C 
Important role in the oxidation of cytosolic 

NADH (part of the oxidative 
phosphorylation) 

no changes 
applied 

NDE2 NADH + Ubiquinone-9M => UbiquinolM + NAD+ YDL085W 
Important role in the oxidation of cytosolic 

NADH (part of the oxidative 
phosphorylation) 

no changes 
applied 

LYS2_2 L-2-Aminoadipate + NADH + ATP => L-2-Aminoadipate_6-
semialdehyde + NAD+ + AMP + Pyrophosphate YBR115C capable of using NADH or NADPH in the 

model, more likely to use NADPH inactivated 

HOM6_1 L-Aspartate_4-semialdehyde + NADH => NAD+ + L-Homoserine YJR139C capable of using NADH or NADPH in the 
model, more likely to use NADPH inactivated 

TYR1 Prephenate + NADP+ => 3-(4-Hydroxyphenyl)pyruvate + CO2 + 
NADPH YBR166C capable of using NADH or NADPH in the 

model, more likely to use NADH inactivated 

IDP3_1 Isocitrate + NADP+ => NADPH + Oxalosuccinate YNL009W cytosolic NADP+-dependent isocitrate 
dehydrogenase [1] inactivated 

ARA1_2 D-Arabinose + NADP+ => D-Arabinono-1,4-lactone + NADPH YBR149W capable of using NADH or NADPH in the 
model, more likely to use NADH inactivated 

HMG2 (R)-Mevalonate + CoA + 2 NADP+ <=> (S)-3-Hydroxy-3-
methylglutaryl-CoA + 2 NADPH YLR450W 

Hydrolysis of CoA and consumption of 2 
NADPH; thermodynamically favorable in 
the forward direction (dG=-18.6 kJ / mol)* 

reversibility 
constrained 
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Table A1- List of reactions modified during the curation process of the model iFF708 (continuation) 

Reaction ID Stoichiometric equation Genes Comment Verdict 

HMG1 (R)-Mevalonate + CoA + 2 NADP+ <=> (S)-3-Hydroxy-3-
methylglutaryl-CoA + 2 NADPH YML075C 

Hydrolysis of CoA and consumption of 2 
NADPH; thermodynamically favorable in 

the forward direction (dG=-18.6 kJ / 
mol)* 

reversibility 
constrained 

ZWF1 alpha-D-Glucose_6-phosphate + NADP+ <=> D-Glucono-1,5-
lactone_6-phosphate + NADPH YNL241C Oxidative pentose phosphate pathway no changes 

applied 

ERG1 Squalene + Oxygen + NADP+ => (S)-2,3-Epoxysqualene + NADPH YGR175C wrong stoichiometry (see text) stoichiometry 
corrected 

ALD6 Acetaldehyde + NADP+ => NADPH + Acetate YPL061W capable of using NADH or NADPH in 
the model, more likely to use NADH inactivated 

GND2 6-Phospho-D-gluconate + NADP+ => NADPH + CO2 + D-Ribulose_5-
phosphate YGR256W Oxidative pentose phosphate pathway no changes 

applied 

GND1 6-Phospho-D-gluconate + NADP+ => NADPH + CO2 + D-Ribulose_5-
phosphate YHR183W Oxidative pentose phosphate pathway no changes 

applied 
YBR006WU

GA2 Succinate_semialdehyde + NADP+ => Succinate + NADPH YBR006W thermodynamically favorable in the 
forward direction (dG=-63 KJ/mol)* 

no changes 
applied 

ADE3_1 5,10-Methylenetetrahydrofolate + NADP+ <=> 5,10-
Methenyltetrahydrofolate + NADPH YGR204W inconclusive data regarding the 

reversibility of the reaction 
no changes 

applied 

ECM17 Sulfite + 3 NADPH <=> Hydrogen_sulfide + 3 NADP+ YJR137C thermodynamically favorable in the 
reverse direction (dG=103 KJ/mol)* 

reversibility 
constrained 

IDP2_1 Isocitrate + NADP+ => NADPH + Oxalosuccinate YLR174W cytosolic NADP+-dependent isocitrate 
dehydrogenase [1] inactivated 

MET10 Sulfite + 3 NADPH <=> Hydrogen_sulfide + 3 NADP+ YFR030W thermodynamically favorable in the 
reverse direction (dG=103 KJ/mol)* 

reversibility 
constrained 

LYS9 L-Glutamate + L-2-Aminoadipate_6-semialdehyde + NADPH <=> N6-
(L-1,3-Dicarboxypropyl)-L-lysine + NADP+ YNR050C used in the direction of L-lysine synthesis 

(NADPH consuming) 
reversibility 
constrained 

* The change in Gibbs free energy was calculated using the website: http://equilibrator.weizmann.ac.il/. Standard conditions were used for every metabolite except NADPH, NADP+, NADH and NAD+. For these 
cofactors the concentrations were obtained from references [1] and [2]: [NADPH]= 263 μM; [NADP+]= 35.5 μM; [NADH]= 120 μM; [NAD+]= 1810 μM  
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Table A2- List of reactions modified during the curation process of the model iMM904 

Reaction ID Stoichiometric equation (model IDs) Genes Comment Verdict 

BTDD-RR [c] : btd-RR + nad <==> actn-R + h + nadh YAL060W 
not active with a dilution rate of 0.10 h-1 

(acetoin is not produced in these 
conditions) 

reversibility 
constrained 

FALDH [c] : fald + gthrd + nad <==> Sfglutth + h + nadh YDL168W 
not active with a dilution rate of 0.10 h-1 
(formaldehyde is not produced in these 

conditions) 

reversibility 
constrained 

2HBO [c] : 2hb + nad <==> 2obut + h + nadh NA 
not active with a dilution rate of 0.10 h-1 
(2-Hydroxybutyrate  is not produced in 

these conditions) 

reversibility 
constrained 

ALCD2x [c] : etoh + nad <==> acald + h + nadh YDL168W 
not active with a dilution rate of 0.10 h-1 

(ethanol  is not produced in these 
conditions) 

reversibility 
constrained 

SACCD2 [c] : h2o + nad + saccrp-L <==> akg + h + lys-L + nadh YIR034C used in the direction of L-lysine 
synthesis (NADH producing) 

reversibility 
constrained 

MDH [c] : mal-L + nad <==> h + nadh + oaa YOL126C part of the glyoxylate cycle (not needed 
in glucose growth) 

reversibility 
constrained 

GAPD [c] : g3p + nad + pi <==> 13dpg + h + nadh YJL052W or YJR009C or 
YGR192C part of Glycolysis (NADH producing) reversibility 

constrained 

AASAD2 [c] : L2aadp + atp + h + nadh --> L2aadp6sa + amp + nad + 
ppi YBR115C and YGL154C capable of using NADH or NADPH in 

the model, more likely to use NADPH inactivated 

G5SD2 [c] : glu5p + h + nadh --> glu5sa + nad + pi YOR323C capable of using NADH or NADPH in 
the model, more likely to use NADPH inactivated 

G3PD1ir [c] : dhap + h + nadh --> glyc3p + nad YDL022W thermodynamically favorable in the 
forward direction (dG=-31.5 KJ/mol)* 

no changes 
applied 

HPROa [c] : 1p3h5c + (2) h + nadh --> 4hpro-LT + nad YER023W capable of using NADH or NADPH in 
the model, more likely to use NADPH inactivated 

ALCD25xi [c] : h + nadh + pacald --> 2phetoh + nad 
YBR145W, YGL256W, 
YDL168W, YMR303C, 

YOL086C 

not active with a dilution rate of 0.10 h-1 
(2-phenylethanol is not produced in 

these conditions) 
inactivated 

ALCD2ir [c] : acald + h + nadh --> etoh + nad YOL086C or YGL256W or 
YBR145W 

not active with a dilution rate of 0.10 h-1 
(ethanol  is not produced in these 

conditions) 
inactivated 
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Table A2- List of reactions modified during the curation process of the model iMM904 (continuation) 

Reaction ID Stoichiometric equation (model IDs) Gene Comment Verdict 

ALCD26xi [c] : h + id3acald + nadh --> ind3eth + nad 
YGL256W or YDL168W or 
YMR303C or YBR145W or 

YOL086C 

not active with a dilution rate of 0.10 h-1 
(Indole-3-ethanol  is not produced in these 

conditions) 
inactivated 

ALCD22xi [c] : 2mbald + h + nadh --> 2mbtoh + nad 
YBR145W or YMR303C or 
YDL168W or YGL256W or 

YOL086C 

not active with a dilution rate of 0.10 h-1 
(2-methyl-1-butanol is not produced in 

these conditions) 
inactivated 

FMNRx [c] : fmn + h + nadh --> fmnh2 + nad YLR011W capable of using NADH or NADPH in the 
model, more likely to use NADPH inactivated 

ALCD23xi [c] : 2mppal + h + nadh --> ibutoh + nad 
YGL256W or YBR145W or 
YDL168W or YOL086C or 

YMR303C 

not active with a dilution rate of 0.10 h-1 
(isobutyl-alcohol  is not produced in these 

conditions) 
inactivated 

C22STDSx [c] : ergtrol + h + nadh + o2 --> ergtetrol + (2) h2o + nad 

(( ( YIL043C and YNL111C ) 
and YMR015C ) or ( ( 

YNL111C and YMR015C ) and 
YKL150W )) 

capable of using NADH or NADPH in the 
model, more likely to use NADPH inactivated 

LNS14DMx [c] : (2) h + lanost + (3) nadh + (3) o2 --> 44mctr + for + (4) 
h2o + (3) nad 

(( ( YNL111C and YHR007C ) 
and YKL150W ) or ( ( 

YIL043C and YNL111C ) and 
YHR007C )) 

capable of using NADH or NADPH in the 
model, more likely to use NADPH inactivated 

HSDxi [c] : aspsa + h + nadh --> hom-L + nad YJR139C capable of using NADH or NADPH in the 
model, more likely to use NADPH inactivated 

GLUSx [c] : akg + gln-L + h + nadh --> (2) glu-L + nad YDL171C thermodynamically favorable in the 
forward direction (dG=-40 KJ/mol)* 

no changes 
applied 

ALCD24xi [c] : 3mbald + h + nadh --> iamoh + nad 
( ( ( (YDL168W or YGL256W) 
or YMR303C) or YOL086C) or 

YBR145W) 

not active with a dilution rate of 0.10 h-1 
(Isoamyl-alcohol  is not produced in these 

conditions) 
inactivated 

NADH2-
u6cm h[c] + nadh[c] + q6[m] --> nad[c] + q6h2[m] YMR145C or YDL085W 

Important role in the oxidation of Cytosolic 
NADH (part of the oxidative 

phosphorylation) 

no changes 
applied 

MTHFD [c] : mlthf + nadp <==> methf + nadph YGR204W inconclusive data regarding the reversibility 
of the reaction 

no changes 
applied 

HMGCOAR [c] : coa + mev-R + (2) nadp <==> (2) h + hmgcoa + (2) 
nadph YLR450W or YML075C 

Hydrolysis of CoA and consumption of 2 
NADPH; thermodynamically favorable in 
the forward direction (dG=-18.6 kJ / mol)* 

reversibility 
constrained 
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Table A2- List of reactions modified during the curation process of the model iMM904 (continuation) 

Reaction ID Stoichiometric equation (model IDs) Gene Comment Verdict 

SACCD1 [c] : L2aadp6sa + glu-L + h + nadph <==> h2o + nadp + 
saccrp-L YNR050C used in the direction of L-lysine 

synthesis (NADPH consuming) 
reversibility 
constrained 

LSERDHr [c] : nadp + ser-L <==> 2amsa + h + nadph YMR226C 
dead end (2-aminomalonate 

semialdehyde only present in this 
reaction) 

inactivated 

SULR [c] : (3) h2o + h2s + (3) nadp <==> (5) h + (3) nadph + so3 YFR030W or YJR137C thermodynamically favorable in the 
reverse direction (dG=103 KJ/mol)* 

reversibility 
constrained 

ATHRDHr [c] : athr-L + nadp <==> 2aobut + h + nadph YMR226C dead end inactivated 

GND [c] : 6pgc + nadp --> co2 + nadph + ru5p-D (YGR256W or YHR183W) Oxidative pentose phosphate pathway no changes applied 

G6PDH2 [c] : g6p + nadp --> 6pgl + h + nadph YNL241C Oxidative pentose phosphate pathway no changes applied 

PPND2 [c] : nadp + pphn --> 34hpp + co2 + nadph YBR166C capable of using NADH or NADPH in 
the model, more likely to use NADH inactivated 

SSALy [c] : h2o + nadp + sucsal --> (2) h + nadph + succ YBR006W thermodynamically favorable in the 
forward direction (dG=-63 KJ/mol)* no changes applied 

GLYCDy [c] : glyc + nadp --> dha + h + nadph YOR120W thermodynamically favorable in the 
reverse direction (dG=25 KJ/mol)* inactivated 

SHCHD [c] : dscl + nadp --> h + nadph + scl YBR213W 
enzyme is reported in the databases 

(KEGG and SGD) as NAD dependent: 
EC 1.3.1.76 

stoichiometry 
corrected 

ARAB1D2 [c] : arab-D + nadp --> Dara14lac + h + nadph YBR149W only active is Arabinose is supplied 
(dead end) inactivated 

ICDHy [c] : icit + nadp --> akg + co2 + nadph YLR174W cytosolic NADP+-dependent isocitrate 
dehydrogenase [1] inactivated 

ALDD20y [c] : h2o + id3acald + nadp --> (2) h + ind3ac + nadph YPL061W dead end (indole-3-acetate cannot be 
metabolized) inactivated 

ALDD2y [c] : acald + h2o + nadp --> ac + (2) h + nadph YPL061W other models have NAD-dependent 
alternative- see text 

inactivated and new 
reaction was  added: 

R_ALDD2x 

* The change in Gibbs free energy was calculated using the website: http://equilibrator.weizmann.ac.il/. Standard conditions were used for every metabolite except NADPH, NADP+, NADH and NAD+. For these 
cofactors the concentrations were obtained from references [1] and [2]: [NADPH]= 263 μM; [NADP+]= 35.5 μM; [NADH]= 120 μM; [NAD+]= 1810 μM  
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Table A3- List of reactions modified during the curation process of the model iTO977 

Reaction ID Stoichiometric equations Gene Comment Verdict 

GLT1 
2-oxoglutarate[Cytosol] + L-glutamine[Cytosol] + 

NADH[Cytosol] => 2 L-glutamate[Cytosol] + 
NAD(+)[Cytosol] 

YDL171C thermodynamically favorable in the 
forward direction (dG=-40 KJ/mol)* 

no changes 
applied 

BIO2 
ATP[Cytosol] + H2S[Cytosol] + 2 NAD(+)[Cytosol] + 

dethiobiotin[Cytosol] <=> AMP[Cytosol] + 2 
NADH[Cytosol] + biotin[Cytosol] + diphosphate[Cytosol] 

YGR286C reaction is coupled to ATP hydrolysis reversibility 
constrained 

LYS2_2 

ATP[Cytosol] + L-2-aminoadipate[Cytosol] + 
NADH[Cytosol] => AMP[Cytosol] + L-2-aminoadipate 6-

semialdehyde[Cytosol] + NAD(+)[Cytosol] + 
diphosphate[Cytosol] 

YBR115C:YGL154C capable of using NADH or NADPH in the 
model, more likely to use NADPH inactivated 

PRO2_1 
D-alpha-glutamyl phosphate[Cytosol] + NADH[Cytosol] => 
L-glutamate 5-semialdehyde[Cytosol] + NAD(+)[Cytosol] + 

phosphate[Cytosol] 
YOR323C capable of using NADH or NADPH in the 

model, more likely to use NADPH inactivated 

U45_ 
D-mannitol 1-phosphate[Cytosol] + NAD(+)[Cytosol] <=> 

NADH[Cytosol] + beta-D-fructofuranose 6-
phosphate[Cytosol] 

NA (Mannitol-1-phosphate 
5-dehydrogenase) 

dead end (D-Mannitol_1-phosphate only 
present in this reaction) inactivated 

PRO3_3 
L-1-pyrroline-3-hydroxy-5-carboxylate[Cytosol] + 

NADH[Cytosol] => NAD(+)[Cytosol] + trans-4-hydroxy-L-
proline[Cytosol] 

YER023W capable of using NADH or NADPH in the 
model, more likely to use NADPH inactivated 

HOM6_1 L-aspartate 4-semialdehyde[Cytosol] + NADH[Cytosol] => 
L-homoserine[Cytosol] + NAD(+)[Cytosol] YJR139C capable of using NADH or NADPH in the 

model, more likely to use NADPH inactivated 

LYS1 L-saccharopine[Cytosol] + NAD(+)[Cytosol] <=> 2-
oxoglutarate[Cytosol] + L-lysine[Cytosol] + NADH[Cytosol] YIR034C used in the direction of L-lysine synthesis 

(NADH producing) 
reversibility 
constrained 

r275 
NAD(+)[Cytosol] + ergosta-5,7,24(28)-trienol[Cytosol] <=> 

Ergosta-5,7,22,24,(28)-tetraen-3beta-ol[Cytosol] + 
O2[Cytosol] + NADH[Cytosol] 

YKL150W:YMR015C:YNL
111C 

capable of using NADH or NADPH in the 
model, more likely to use NADPH 

reversibility 
constrained 

ADH1 NAD(+)[Cytosol] + ethanol[Cytosol] <=> NADH[Cytosol] + 
acetaldehyde[Cytosol] 

YBR145W;YDL168W;YGL
256W;YMR303C;YOL086C not active with a dilution rate of 0.10 h-2 reversibility 

constrained 

SFA1_1 
NAD(+)[Cytosol] + formaldehyde[Cytosol] + 

glutathione[Cytosol] <=> NADH[Cytosol] + S-
formylglutathione[Cytosol] 

YDL168W 
not active with a dilution rate of 0.10 h-1 
(formaldehyde is not produced in these 

conditions) 

reversibility 
constrained 
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Table A3- List of reactions modified during the curation process of the model iTO977 (continuation) 

Reaction ID Stoichiometric equations Gene Comment Verdict 

MDH2 NAD(+)[Cytosol] + malate[Cytosol] <=> NADH[Cytosol] + 
oxaloacetate[Cytosol] YDL078C part of the glyoxylate cycle (not needed in 

glucose growth) 
reversibility 
constrained 

PGA3 NADH[Cytosol] + 2 ferricytochrome b5[Cytosol] => 
NAD(+)[Cytosol] + 2 ferrocytochrome b5[Cytosol] YML125C dead end (ferrocytochrome b5 only present 

in this reaction) inactivated 

GPD1 NADH[Cytosol] + glycerone phosphate[Cytosol] => 
NAD(+)[Cytosol] + sn-glycerol 3-phosphate[Cytosol] YDL022W;YOL059W thermodynamically favorable in the 

forward direction (dG=-31.5 KJ/mol)* 
no changes 

applied 

SCS7 NADH[Cytosol] + P-ceramide[Cytosol] + oxygen[Cytosol] => D-
ceramide[Cytosol] + NADP(+)[Cytosol] YMR272C no information in databases about this 

reactions 
no changes 

applied 

NDH1 NADH[Cytosol] + ubiquinone-9[Mitochondrion] => 
NAD(+)[Cytosol] + ubiquinol[Mitochondrion] YDL085W;YMR145C 

Important role in the oxidation of cytosolic 
NADH (part of the oxidative 

phosphorylation) 

no changes 
applied 

HMG1 
(R)-mevalonate[Cytosol] + 2 NADP(+)[Cytosol] + coenzyme 

A[Cytosol] <=> (S)-3-hydroxy-3-methylglutaryl-CoA[Cytosol] + 
2 NADPH[Cytosol] 

YLR450W;YML075C 
Hydrolysis of CoA and consumption of 2 
NADPH; thermodynamically favorable in 
the forward direction (dG=-18.6 kJ / mol)* 

reversibility 
constrained 

FAS2_1_2 NADPH[Cytosol] + acetoacetyl-[acp][Cytosol] <=> (R)-3-
hydroxybutanoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis - reaction occurs in the 

forward direction 
reversibility 
constrained 

FAS2_2_2 3-oxohexanoyl-[acp][Cytosol] + NADPH[Cytosol] <=> (R)-3-
hydroxyhexanoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis - reaction occurs in the 

forward direction 
reversibility 
constrained 

FAS2_3_2 3-oxooctanoyl-[acp][Cytosol] + NADPH[Cytosol] <=> (R)-3-
hydroxyoctanoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis - reaction occurs in the 

forward direction 
reversibility 
constrained 

FAS2_4_2 3-oxodecanoyl-[acp][Cytosol] + NADPH[Cytosol] <=> (R)-3-
hydroxydecanoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis - reaction occurs in the 

forward direction 
reversibility 
constrained 

FAS2_5_2 3-oxododecanoyl-[acp][Cytosol] + NADPH[Cytosol] <=> (R)-3-
hydroxydodecanoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis - reaction occurs in the 

forward direction 
reversibility 
constrained 

FAS2_6_2 3-oxotetradecanoyl-[acp][Cytosol] + NADPH[Cytosol] <=> (R)-
3-hydroxytetradecanoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis - reaction occurs in the 

forward direction 
reversibility 
constrained 

FAS2_7_2 3-oxohexadecanoyl-[acp][Cytosol] + NADPH[Cytosol] <=> (R)-
3-hydroxypalmitoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis - reaction occurs in the 

forward direction 
reversibility 
constrained 
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Table A3- List of reactions modified during the curation process of the model iTO977 (continuation) 

Reaction ID Stoichiometric equations Gene Comment Verdict 

FAS2_8_2 3-oxostearoyl-[acp][Cytosol] + NADPH[Cytosol] <=> 3-
hydroxyoctadecanoyl-[acp][Cytosol] + NADP(+)[Cytosol] YPL231W fatty acid synthesis- reaction occurs in 

the forward direction 
reversibility 
constrained 

ADE3_1 
5,10-methylenetetrahydrofolate[Cytosol] + 

NADP(+)[Cytosol] <=> 5,10-
methenyltetrahydrofolate[Cytosol] + NADPH[Cytosol] 

YGR204W inconclusive data regarding the 
reversibility of the reaction 

no changes 
applied 

GND1 
6-phospho-D-gluconate[Cytosol] + NADP(+)[Cytosol] => 

CO2[Cytosol] + D-ribulose 5-phosphate[Cytosol] + 
NADPH[Cytosol] 

YGR256W;YHR183W Oxidative pentose phosphate pathway no changes 
applied 

r173 2-methylpropanal[Cytosol] + NADP(+)[Cytosol] => 
NADPH[Cytosol] + isobutyl alcohol[Cytosol] YMR318C;YCR105W wrong stoichiometry-reaction should 

consume NADPH 
stoichiometry 

corrected 

ARA1_2 D-arabinose[Cytosol] + NADP(+)[Cytosol] => D-arabinono-
1,4-lactone[Cytosol] + NADPH[Cytosol] YBR149W capable of using NADH or NADPH in 

the model, more likely to use NADH inactivated 

FAS1_1_2 NADPH[Cytosol] + trans-but-2-enoyl-[acp][Cytosol] <=> 
NADP(+)[Cytosol] + butyryl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

FAS1_2_2 NADPH[Cytosol] + trans-hex-2-enoyl-[acp][Cytosol] <=> 
NADP(+)[Cytosol] + hexanoyl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

FAS1_3_2 NADPH[Cytosol] + trans-oct-2-enoyl-[acp][Cytosol] <=> 
NADP(+)[Cytosol] + octanoyl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

FAS1_4_2 NADPH[Cytosol] + trans-dec-2-enoyl-[acp][Cytosol] <=> 
NADP(+)[Cytosol] + decanoyl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

FAS1_5_2 NADPH[Cytosol] + trans-dodec-2-enoyl-[acp][Cytosol] <=> 
NADP(+)[Cytosol] + dodecanoyl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

FAS1_6_2 NADPH[Cytosol] + trans-tetradec-2-enoyl-[acp][Cytosol] 
<=> NADP(+)[Cytosol] + tetradecanoyl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

FAS1_7_2 NADPH[Cytosol] + trans-hexadec-2-enoyl-[acp][Cytosol] 
<=> NADP(+)[Cytosol] + hexadecanoyl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

FAS1_8_2 NADPH[Cytosol] + trans-octadec-2-enoyl-[acp][Cytosol] 
<=> NADP(+)[Cytosol] + stearoyl-[acp][Cytosol] YKL182W fatty acid synthesis - reaction occurs in 

the forward direction 
reversibility 
constrained 

r581 FMN[Cytosol] + NADP(+)[Cytosol] => NADPH[Cytosol] + 
Reduced FMN[Cytosol] YPL069C capable of using NADH or NADPH in 

the model, more likely to use NADH inactivated 
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Table A3- List of reactions modified during the curation process of the model iTO977 (continuation) 

Reaction ID Stoichiometric equations Gene Comment Verdict 

r572 FMN[Cytosol] + NADP(+)[Cytosol] => NADPH[Cytosol] + 
Reduced FMN[Cytosol] YLR011W capable of using NADH or NADPH in 

the model, more likely to use NADH inactivated 

ZWF1 
NADP(+)[Cytosol] + alpha-D-glucose 6-phosphate[Cytosol] 

<=> 6-O-phosphono-D-glucono-1,5-lactone[Cytosol] + 
NADPH[Cytosol] 

YNL241C Oxidative pentose phosphate pathway no changes 
applied 

r671 NADP(+)[Cytosol] + glycerol[Cytosol] => 
Dihydroxyacetone[Cytosol] + NADPH[Cytosol] YOR120W thermodynamically favorable in the 

reverse direction (dG=25 KJ/mol)* inactivated 

IDP2_1 NADP(+)[Cytosol] + isocitrate[Cytosol] => 
NADPH[Cytosol] + oxalosuccinate[Cytosol] YLR174W cytosolic NADP+-dependent isocitrate 

dehydrogenase [1] inactivated 

r253 L-Allo-threonine[Cytosol] + NADP(+)[Cytosol] => L-2-
Amino-3-oxobutanoate[Cytosol] + NADPH[Cytosol] YMR226C dead end (L-allo-threonine only present 

in this reaction) inactivated 

r833 NADP(+)[Cytosol] + L-serine[Cytosol] => 2-Aminomalonate 
semialdehyde[Cytosol] + NADPH[Cytosol] YMR226C 

dead end (2-aminomalonate 
semialdehyde only present in this 

reaction) 
inactivated 

ALD6 NADP(+)[Cytosol] + acetaldehyde[Cytosol] => 
NADPH[Cytosol] + acetate[Cytosol] YPL061W capable of using NADH or NADPH in 

the model, more likely to use NADH inactivated 

TYR1 
NADP(+)[Cytosol] + prephenate[Cytosol] => 3-(4-

hydroxyphenyl)pyruvate[Cytosol] + CO2[Cytosol] + 
NADPH[Cytosol] 

YBR166C capable of using NADH or NADPH in 
the model, more likely to use NADH inactivated 

LYS9 
L-2-aminoadipate 6-semialdehyde[Cytosol] + L-
glutamate[Cytosol] + NADPH[Cytosol] <=> L-

saccharopine[Cytosol] + NADP(+)[Cytosol] 
YNR050C used in the direction of L-lysine 

synthesis (NADPH consuming) 
reversibility 
constrained 

YBR006W NADP(+)[Cytosol] + succinate semialdehyde[Cytosol] => 
NADPH[Cytosol] + succinate[Cytosol] YBR006W thermodynamically favorable in the 

forward direction (dG=-63 KJ/mol)* 
no changes 

applied 

ECM17 3 NADPH[Cytosol] + sulfite[Cytosol] <=> H2S[Cytosol] + 3 
NADP(+)[Cytosol] YFR030W;YJR137C thermodynamically favorable in the 

reverse direction (dG=103 KJ/mol)* 
reversibility 
constrained 

AYR1 NADP(+)[Cytosol] + acylglycerone phosphates[Cytosol] => 
NADPH[Cytosol] + acyl-sn-glycerol 3-phosphates[Cytosol] YIL124W wrong stoichiometry-reaction should 

consume NADPH ( EC 1.1.1.101) 
stoichiometry 

corrected 
 

* The change in Gibbs free energy was calculated using the website: http://equilibrator.weizmann.ac.il/. Standard conditions were used for every metabolite except NADPH, NADP+, NADH and NAD+. For these 
cofactors the concentrations were obtained from references [1] and [2]: [NADPH]= 263 μM; [NADP+]= 35.5 μM; [NADH]= 120 μM; [NAD+]= 1810 μM  
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Table A4- List of reactions modified during the curation process of the model Yeast 6 

Reaction ID Stoichiometric equations Gene Comment Verdict 

r_0169 H_c + NADH_c + phenylacetaldehyde_c -----> NAD_c + 
2_phenylethanol_c 

YOL086C or YBR145W) or 
YDL168W 

not active with a dilution rate of 0.10 h-1 
(2-phenylethanol is not produced in 

these conditions) 
inactivated 

r_0166 H_c + NADH_c + 2_methylbutanal_c -----> NAD_c + 
2_methylbutanol_c 

YOL086C or YBR145W) or 
YDL168W 

not active with a dilution rate of 0.10 h-1 
(2-methyl-1-butanol is not produced in 

these conditions) 
inactivated 

r_0179 H_c + NADH_c + 3_methylbutanal_c -----> NAD_c + 
isoamylol_c 

( (YOL086C or YBR145W) 
or YDL168W) 

not active with a dilution rate of 0.10 h-1 
(isoamylol is not produced in these 

conditions) 
inactivated 

r_0182 H_c + NADH_c + isobutyraldehyde_c -----> NAD_c + 
isobutanol_c 

( (YOL086C or YBR145W) 
or YDL168W) 

not active with a dilution rate of 0.10 h-1 
(isobutanol is not produced in these 

conditions) 
inactivated 

r_0186 H_c + NADH_c + indol_3_ylacetaldehyde_c -----> NAD_c + 
tryptophol_c 

( (YOL086C or YBR145W) 
or YDL168W) 

not active with a dilution rate of 0.10 h-1 
(tryptophol is not produced in these 

conditions) 
inactivated 

r_0770 H_c + NADH_c + ubiquinone_6_m -----> NAD_c + 
ubiquinol_6_m (YMR145C or YDL085W) 

important role in the oxidation of 
cytosolic NADH (part of the oxidative 

phosphorylation) 

no changes 
applied 

r_0771 ATP_c + NADH_c -----> H_c + ADP_c + NADPH_c (YJR049C or YEL041W) de novo production of NADPH no changes 
applied 

r_0714 NAD_c + S_malate_c <----> H_c + NADH_c + 
oxaloacetate_c YOL126C part of the glyoxylate cycle (not needed 

in growth on glucose) 
reversibility 
constrained 

r_2115 H_c + NADH_c + acetaldehyde_c -----> NAD_c + ethanol_c YOL086C or YBR145W 
not active with a dilution rate of 0.10 h-1 

(ethanol is not produced in these 
conditions) 

inactivated 

r_0441 H_c + NADH_c + FMN_c -----> NAD_c + FMNH2_c YLR011W capable of using NADH or NADPH in 
the model, more likely to use NADPH inactivated 

r_0486 NAD_c + phosphate_c + glyceraldehyde_3_phosphate_c <---
-> H_c + NADH_c + 1_3_bisphospho_D_glycerate_c 

( (YJR009C or YJL052W) 
or YGR192C) part of Glycolysis (NADH producing) reversibility 

constrained 

r_0470 NAD_c + H2O_c + L_glutamate_c <----> H_c + NADH_c + 
ammonium_c + 2_oxoglutarate_c YDL215C should degrade glutamate to ammonia 

and alpha-ketoglutarate (SGD) 
reversibility 
constrained 

r_0472 H_c + NADH_c + L_glutamine_c + 2_oxoglutarate_c -----> 
NAD_c + 2.0*L_glutamate_c YDL171C thermodynamically favorable in the 

forward direction (dG=-40 KJ/mol)* 
no changes 

applied 
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Table A4- List of reactions modified during the curation process of the model  Yeast 6 (continuation) 

Reaction ID Stoichiometric equations Gene Comment Verdict 

r_0491 H_c + NADH_c + dihydroxyacetone_phosphate_c -----> 
glycerol_3_phosphate_c + NAD_c (YOL059W or YDL022W) thermodynamically favorable in the 

forward direction (dG=-31.5 KJ/mol)* 
no changes 

applied 

r_0003 NAD_c + R_R_2_3_butanediol_c <----> H_c + NADH_c + 
R_acetoin_c YAL060W 

not active with a dilution rate of 0.10 h-1 
(acetoin is not produced in these 

conditions) 

reversibility 
constrained 

r_1010 H_r + oxygen_r + squalene_r + NADH_r -----> H2O_r + 
S_2_3_epoxysqualene_r + NAD_r YGR175C capable of using NADH or NADPH in 

the model, more likely to use NADPH inactivated 

r_0173 H2O_c + NADP_c + acetaldehyde_c -----> 2.0*H_c + 
NADPH_c + acetate_c YPL061W capable of using NADH or NADPH in 

the model, more likely to use NADH inactivated 

r_0177 indol_3_ylacetaldehyde_c + H2O_c + NADP_c -----> 
2.0*H_c + indole_3_acetate_c + NADPH_c YPL061W dead end (indole-3-acetate cannot be 

metabolized) inactivated 

r_0234 
NADP_c + zymosterol_intermediate_1c_c -----> H_c + 

carbon_dioxide_c + NADPH_c + 
zymosterol_intermediate_2_c 

YGL001C other models have NAD-dependent 
alternative- see text 

inactivated 
and new 

reaction was  
added: 
r_234x 

r_0659 NADP_c + isocitrate_c -----> carbon_dioxide_c + NADPH_c 
+ 2_oxoglutarate_c YLR174W cytosolic NADP+-dependent isocitrate 

dehydrogenase [1] inactivated 

r_0676 NADP_c + L_allothreonine_c <----> H_c + 
L_2_amino_3_oxobutanoate_c + NADPH_c YMR226C dead end inactivated 

r_0690 NADP_c + L_serine_c -----> H_c + NADPH_c + 
L_alpha_formylglycine_c YMR226C dead end (alpha_formylglycine only 

present in this reaction) inactivated 

r_0732 NADP_c + 5_10_methylenetetrahydrofolate_c <----> 
NADPH_c + 5_10_methenyl_THF_c YGR204W inconclusive data regarding the 

reversibility of the reaction 
no changes 

applied 

r_0321 NADP_c + D_arabinose_c -----> H_c + NADPH_c + 
D_arabinono_1_4_lactone_c YBR149W capable of using NADH or NADPH in 

the model, more likely to use NADH inactivated 

r_1023 H2O_c + NADP_c + succinic_semialdehyde_c -----> 
2.0*H_c + succinate_c + NADPH_c YBR006W thermodynamically favorable in the 

forward direction (dG=-63 KJ/mol)* 
no changes 

applied 

r_0466 D_glucose_6_phosphate_c + NADP_c -----> H_c + 
NADPH_c + 6_O_phosphono_D_glucono_1_5_lactone_c YNL241C Oxidative pentose phosphate pathway no changes 

applied 
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Table A4- List of reactions modified during the curation process of the model  Yeast 6 (continuation) 

Reaction ID Stoichiometric equations Gene Comment Verdict 

r_0889 NADP_c + 6_phospho_D_gluconate_c -----> 
carbon_dioxide_c + NADPH_c + D_ribulose_5_phosphate_c (YGR256W or YHR183W) Oxidative pentose phosphate pathway no changes 

applied 

r_0939 
prephenate_c + NADP_c -----> 

3_4_hydroxyphenylpyruvate_c + carbon_dioxide_c + 
NADPH_c 

YBR166C other models have NAD-dependent 
alternative- see text 

inactivated 
and new 

reaction was  
added: 
r_939x 

* The change in Gibbs free energy was calculated using the website: http://equilibrator.weizmann.ac.il/. Standard conditions were used for every metabolite except NADPH, NADP+, NADH and NAD+. For these 
cofactors the concentrations were obtained from references [1] and [2]: [NADPH]= 263 μM; [NADP+]= 35.5 μM; [NADH]= 120 μM; [NAD+]= 1810 μM   
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Appendix B: Modifications applied to the model Yeast 6 for simulation and optimization purposes 

Table B1- List of general changes performed in the model Yeast 6 

Modification Details Source/Justification 
Added reaction r_4039 acetate_m + succinyl_CoA_m<---->succinate_m + acetyl_CoA_m imported from Yeast 7.11 (more recent consensus model) 

Modified r_0718 NADP_m + S_malate_m----->NADPH_m + pyruvate_m + carbon_dioxide_m updated according to Yeast 7.11 (more recent consensus model) 

Modified r_0773 NADH_m + H_m + ubiquinone_6_m-----> NAD_m + ubiquinol_6_m updated according to Yeast 7.11 (more recent consensus model) 

Modified r_0226 4 H_c + 1 ADP_m + 1 phosphate_m -----> 3 H_m + 1 H2O_m + 1 ATP_m updated according to Yeast 7.11 (more recent consensus model) 

Modified r_2129 H_m <----- H_c updated according to Yeast 7.11 (more recent consensus model) 

Modified r_1110 ADP_c + ATP_m <----> ATP_c + ADP_m updated according to Yeast 7.11 (more recent consensus model) 

Modified r_0470 NAD_c + H2O_c + L_glutamate_c -----> H_c + NADH_c + ammonium_c + 
2_oxoglutarate_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0303 citrate_c -----> H2O + cis_aconitate_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0338 ubiquinone_6_m + S_dihydroorotate_c -----> ubiquinol_6_m + orotate_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0339 oxygen_c + S_dihydroorotate_c -----> hydrogen_peroxide_c + orotate_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_2127  NAD_c + S_dihydroorotate_c -----> NADH_c + orotate_c updated according to Yeast 7.11 (more recent consensus model) 

Modified r_1254 H_e + pyruvate_e <----> H_c + pyruvate_c updated according to Yeast 7.11 (more recent consensus model) 

Gene rule update r_0530 (YPL252C AND YDR376W) or (YPL252C AND YDR376W AND YER141W)  updated according to Yeast 7.11 (more recent consensus model) 
Updated biomass 
reaction r_4041 Add 1.0E-6 * chitin_c and 1.0E-6* heme_a_m to reactants updated according to Yeast 7.11 (more recent consensus model) 

Gene rule update r_0076 (YER037W or YGL224C) updated according to Yeast 7.11 (more recent consensus model) 

Gene rule update r_0078 (YER037W or YGL224C) updated according to Yeast 7.11 (more recent consensus model) 

Gene rule update r_1619 YER037W updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0333 phosphate_c + 2_deoxyuridine_c <----> uracil_c + 
2_deoxy_D_ribofuranose_1_phosphate_c updated according to Yeast 7.11 (more recent consensus model) 
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Table B1- List of general changes performed in the model Yeast 6 (continuation) 

Modification Details Source/Justification 
Removed r_0944 phosphate_c + adenosine_c<----> alpha_D_ribose_1_phosphate_c + adenine_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0945 phosphate_m + adenosine_m <----> adenine_m + alpha_D_ribose_1_phosphate_m updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0946 phosphate_c + 2_deoxyadenosine_c <----> 2_deoxy_D_ribofuranose_1_phosphate_c + 
adenine_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0947 phosphate_c + 2_deoxyguanosine_c <----> guanine_c + 
2_deoxy_D_ribofuranose_1_phosphate_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0948 phosphate_c + 2_deoxyinosine_c <----> hypoxanthine_c + 
2_deoxy_D_ribofuranose_1_phosphate_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_0952 phosphate_c + xanthosine_c <----> alpha_D_ribose_1_phosphate_c + 9H_xanthine_c updated according to Yeast 7.11 (more recent consensus model) 

Removed r_1044 phosphate_c + thymidine_c <----> 2_deoxy_D_ribofuranose_1_phosphate_c + thymine_c updated according to Yeast 7.11 (more recent consensus model) 

Added reaction  r_4045 H2O_c + uridine_c -----> uracil_c + D_ribose_c imported from Yeast 7.11 (more recent consensus model) 

Gene rule update r_0888 (YMR105C or YKL127W) updated according to Yeast 7.11 (more recent consensus model) 

Gene rule update r_0907 ( (YMR278W or YMR105C) or YKL127W) updated according to Yeast 7.11 (more recent consensus model) 

Modified r_0110 H_c + coenzyme_A_c + acetate_c <----- H2O_c + acetyl_CoA_c As corrected in chapter 3 

Added reaction r_0234x NAD_c + zymosterol_intermediate_1c_c -----> H_c + NADH_c + carbon_dioxide_c + 
zymosterol_intermediate_2_c As corrected in chapter 3 

Added reaction r_0939x  prephenate_c + NAD_c -----> NADH_c + 3_4_hydroxyphenylpyruvate_c + 
carbon_dioxide_c As corrected in chapter 3 

Inactivated r_1840  3_hydroxy_3_methylglutaryl_CoA_c <-----> 3_hydroxy_3_methylglutaryl_CoA_m No data supporting such reaction 

Modified r_1117 H_c + L_aspartate_c -----> H_m + L_aspartate_m As corrected in chapter 3 
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Table B2- List of changes applied to the model Yeast 6 to allow polyhydroxybutyrate (PHB) production 

Modification Details Source/Justification 
Added reaction 
R_phaA 2 acetyl_CoA_c -----> coenzyme_A_c + acetoacetyl_CoA_c Acetoacetyl-CoA thiolase from Ralstonia eutropha  

Added reaction 
R_phaB H_c + NADPH_c + acetoacetyl_CoA_c -----> 3hbcoa_c + NADP_c Acetoacetyl-CoA reductase from Ralstonia eutropha  

Added reaction 
R_phaC 3hbcoa_c -----> phb_c + coenzyme_A_c PHB synthase from Ralstonia eutropha  

Added reaction 
R_EX_PHB_e_ PHB_c -----> PHB drain reaction required for simulation purposes 

 

Table B3- List of changes applied to the model Yeast 6 to allow 3-hydroxypropionic acid (3-HP) production 

Modification Details Source/Justification 
Added reaction 
R_MCR  

2* H_c + 2* NADPH_c + 1* malonyl_CoA_c -----> 1* coenzyme_A_c + 2* NADP_c + 1* 
3hp_c Malonyl-CoA reductase from Chloroflexus aurantiacus 

Added reaction 
R_EX_3hp_e_  M_3hp_c ----->   3-HP drain reaction required for simulation purposes 

Added reaction 
R_gapN 

glyceraldehyde_3_phosphate_c + H2O_c + NADP_c -----> H_c + NADPH_c + 
3_phosphoglycerate_c 

Glyceraldehyde-3-phosphate dehydrogenase from Streptococcus 
mutans 

 

Table B4- List of changes applied to the model Yeast 6 to allow santalene production 

Modification Details Source/Justification 
Added reaction 
R_SANSYN farnesyl_diphosphate_c -----> diphosphate_c + santalene_c Santalene synthase from Clausena lansium 

Added reaction 
R_EX_santalene_e_ santalene_c -----> Santalene drain reaction required for simulation purposes 
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Table B5- List of changes applied to the model Yeast 6 to allow vanillin β-D-glucoside production 

Modification Details Source/Justification 
Added reaction 
r_3DSD 3_dehydroshikimate_c -----> H2O_c + pac_c 3-dehydroshikimate dehydratase from Podospora pausiceta 

Added reaction 
r_ACAR ATP_c + pac_c + NADPH_c -----> H2O_c + diphosphate_c + AMP_c + pal_c + NADP_c Aryl-aldehyde dehydrogenase from Nocardia sp. 

Added reaction 
r_hsOMT pal_c + S_adenosyl_L_methionine_c -----> S_adenosyl_L_homocysteine_c + vanillin_c O-methyltransferase from Homo sapiens 

Added reaction r_UGT UDP_D_glucose_c + vanillin_c -----> UDP_c + vanillin_glucoside_c UDP-glycosyltransferase from Arabidopsis thaliana 
Added reaction 
r_ex_pac pac_c -----> Protocatechuic acid drain reaction required for simulation 

purposes 
Added reaction 
r_ex_pal pal_c -----> Protocatechuic aldehyde drain reaction required for simulation 

purposes 
Added reaction 
r_ex_vanillin_glucosid
e 

vanillin_glucoside_c -----> Vanillin glucoside drain reaction required for simulation purposes 

 

Table B6- List of changes applied to the model Yeast 6 for optimizing 3-hydroxypropionic acid (3-HP) production 

Modification Details Source/Justification 

Inactivated r_0113  ATP_m + coenzyme_A_m + acetate_m -----> acetyl_CoA_m + AMP_m + 
diphosphate_m It is not likely that Acp1p is be active in the mitochondria [3, 4] 

Updated biomass 
reaction r_4041 Removed 1.0E-6 * chitin_c and 1.0E-6* heme_a_m from reactants Low stoichiometric coefficients interfere with the optimization 

procedure 
Added reaction 
R_MCR  

2* H_c + 2* NADPH_c + 1* malonyl_CoA_c -----> 1* coenzyme_A_c + 2* 
NADP_c + 1* 3hp_c Malonyl-CoA reductase from Chloroflexus aurantiacus 

Added reaction 
R_EX_3hp_e_  M_3hp_c ----->   3-HP drain reaction required for simulation purposes 
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Table B7- List of changes applied to the model Yeast 6 to simulated growth on C2 carbon sources 

Modification Details Source/Justification 
Added reaction 
r_1635p M_acetate_c <----> M_acetate_x Acetate transporter to the peroxisome/Diffusion of acetate to the 

peroxisome 

Added reaction r_0113 coenzyme_A_x + acetate_x + ATP_x -----> acetyl_CoA_x + diphosphate_x + 
AMP_x 

Acs1p is possibly localized in the peroxisome [5]. It is required 
for an active glyoxylate cycle in the model Yeast 6 
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Appendix C: Construction of 3-hydroxypropionic acid producing 

strains 

Table C1- Primers used in the work performed in chapter 5 

# Name Sequence (5’-3’) 
1 PDC1_Fw ATGTCTGAAATTACTTTGGGTAAATATTTG 

2 PDC1_mut_Rv1 ATCTGTCAATTTCAGCTGGGGCGGTAGTAATGTCAGTGATCATAGCAGTG 

3 PDC1_mut_Fw2 ACCGCCCCAGCTGAAATTGACAGATGTATCAGAACCGCTTACGTCACCCAAAGACCAG 

4 PDC1_mut_Rv2 CGAATTTCATTTGGACACCTG 

5 PDC1_FR_FW ATCAGAAACGCCACTTTCCC 

6 PDC1_Rv TTATTGCTTAGCGTTGGTAGCA 

7 PGK1_AscI_site GGTCGCTCCAATTCCTAGGTCGTTTGGCGCGCCTGGAAGTACCTTCAAAGAATGG 

8 PGK1_PDC1 ATTTACCCAAAGTAATTTCAGACATTGTTTTGGATCCTTGTTTTATATTTG 

9 CYC1_PDC1 TGCTGCTACCAACGCTAAGCAATAAATCCGCTCTAACCGAAAAGG 

10 CYC1_AscI_site TTCGCTATTACGCCAGCTGGATAAAGGCGCGCCCTTCGAGCGTCCCAAAAC 

11 RPLC_ALD2_Fw ACAACAAATATAAAACAAGGATCCAAAACAATGCCTACCTTGTATACTGATATCG 

12 RPLC_ALD2_Rv TAGCTAGCCGCGGTACCAAGCTTACTCGAGTTAGTTGTCCAAAGAGAGATTTATG 

13 Ppp1_UP_Fw AGTGGCTTCCCTTGCTTTC 

14 Ppp1_Up_Rv ATACGAACGGTAATTAAGGGTTGTCAGTTAAGGGAGACATGGAGAGA 

15 Ppp1_Down_Fw GCTATACGAACGGTATATCAGATCCTGACGATATAAACTTATGCTGAGG 

16 Ppp1_Down_Rv GATTGTGGTTTTGTAACGTCG 

17 KanMX_Fw CTGAAGCTTCGTACGCTG 

18 KanMX_IntRv TCACCATGAGTGACGACTG 

19 KanMX_IntFw TTCCAACATGGATGCTGAT 

20 KanMX_Rv CCACTAGTGGATCTGATATCACC 

21 Ppp1_Out_Fw GGTGGCATCTTCGAAATATAAC 

22 Ppp1_Out_rv ACCAACTAACGCAATGATGA 

23 ACH1_UpFw CAAACATACCACGATCCAAACG  

24 ACH1_UpRv CTGCAGCGTACGAAGCTTCAGGCATACCTAACTCTCTGCTTTAACAA 

25 ACH1_Down_Fw AGGTGATATCAGATCCACTAGTGGAGAATGCTTTCAAGTTCCACACC 

26 ACH1_Down_Rv  GCTTACCAATCCTTCCACCAC  

27 ACH1_out_Fw GCAGAGATTATCGCCATCAACTACTA 

28 pXI5_UP_Fw GCGGAGAAGTCGTTGATAG 

29 ADH1_Fw ACGAAAAGATGGAAAAGGGTCAAATCGTTGGTAGATACGTTGTTGACACTTC 

30 Cyc1_Fw_long CGAGTAAGCTTGGTACCGCGGCTAGCTAAGATCCGCTCTAACCGAAAAGGA 

31 pXI5_Down_Rv GATCATAGATCCGGCACTTAGAGA 

32 X2_UP_Fw CGTCTATGAGGAGACTGTTAGTTGG 

33 X2_UP_Rv TCACCAAGCTCTTAAAACGGGAATTTATGGTGCACACGTGACCACTTCGAGAGC 

34 His3_Fw GTGCACCATAAATTCCCGTT 

35 His3_Rv CAGTGGTGTGATGGTCGTCT 
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Table C1- Primers used in the work performed in chapter 5 (continuation) 

36 X2_Down_Fw AGGTTTTGGGACGCTCGAAGATCCTCCGGATCCCTGCATAATCGGCCTCACA 

37 X2_Down_rv CTCGCCAAGGCATTACCATC 

38 Cyc1_fw CTCGAGTAAGCTTGGTACCGC 

39 Cyc1_Rv GATCCGGAGGATCTTCGAGC 

40 check_XI5_fw GGTAGTTGTTCCTACACGCCA 

41 ACC1_test_fw CATCAGGTAGGCGAAGCATCA 

42 check_XI5_rv GCGAAAGCGTGGACTAGGTA 

43 MCR1shortF TTGGAAGTTATGGATGGTTCTGAC 

44 MCR1shortR  ATTACTCTTGGACCTCTTGCTCTA 

45 check_X2_fw ACAATGTAGTGGTAGTAGCAGCA 

46 check_X2_Rv TTCCATCGTCGGTTGTACGC 

47 ACSse_Fw CCTGCGAATATCGCTGACAGG 

48 tADH1_Rv GGCAAGGTAGACAAGCCGACAAC 

49 RPLC_ALD4_Fw ACAACAAATATAAAACAAGGATCCAAAACAATGTCACACCTTCCTATGACAGTG 

50 RPLC_ALD4_Rv TAGCTAGCCGCGGTACCAAGCTTACTCGAGTTACTCGTCCAATTTGGCAC 

51 TEF1_rv GTTTTGCGGCCGCTTGTAAT 

52 PGK1_rv CATTGTTTTGGATCCTTGTTTTA 

53 ALD4_check_fw CCGTGCCTTCTCTAATGGGT 

54 DEL1_fw GACAACCCTTAATTACCGTTCGTATAATG 

55 DEL1_rv GACATTTAGGTTTTTTCTCCTTGACG 

56 DEL2_fw CTCTCGAGAACCCTTAATCG 

57 DEL2_rv GGATCTGATATACCGTTCGTATAGC 
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Figure C1- Flux distribution in the central metabolism for the wild-type (green) and for the strain desgins obtained with TDPS A-D (red). The wild type flux distribution was 
obtained using the cofactor constraints described in chapter 3 and the mutant strains’ flux distributions were calculated with TDPS.  Reactions: ACC- acetyl-CoA 
carboxylase, ACH1- succinyl-CoA:acetate CoA-transferase, ACONT- aconitase, ACSc- acetyl-CoA synthetase, AKGD- alpha-ketoglutarate dehydrogenase, ADH- alcohol 
dehydrogenase, ALD2/6- NAD+/NADP+ cytosolic aldehyde dehydrogenase, ALDm-  mitochondrial aldehyde dehydrogenase, CSm- citrate synthase, FBA- fructose 1,6-
bisphosphate aldolase, FUM- fumarase, G3PD1ir- glycerol-3-phosphate dehydrogenase, G3PT- glycerol-1-phosphatase, GAPD- glyceraldehyde-3-phosphate dehydrogenase, 
GHMT2r- serine hydroxymethyltransferase, GND- 6-phosphogluconate dehydrogenase, HEX- hexokinase, ICD- mitochondrial isocitrate dehydrogenase, MCR- malonyl-
CoA reductase, MDH- mitochondrial malate dehydrogenase, ME- mitochondrial malic enzyme, PDC- pyruvate decarboxylase, PDH- pyruvate dehydrogenase, PFK- 
phosphofructokinase, PGI- phosphoglucose isomerase, PGK- 3-phosphoglycerate kinase, PGMT- phosphoglucomutase, PP3- sum of the non-oxidative reactions of the 
pentose phosphate pathway producing glyceraldehyde-3-phosphate, PP6- sum of the non-oxidative reactions of the pentose phosphate pathway producing fructose-6-
phosphate, PSP- phosphoserine phosphatase, PYC- pyruvate carboxylase, PYK- pyruvate kinase, SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase, THRS- 
threonine synthase, TPI- triose phosphate isomerase; Metabolites: 13dPG- 1,3-diphosphoglycerate, 3HP- 3-hydroxypropionic acid, 3PG- 3-phosphoglycerate, AcCoA- acetyl-
CoA, Akg- 2-oxoglutarate, Cit- citrate, DHAP- dihydroxyacetone-phosphate, Fum- fumarate, G3P- glyceraldehyde-3-phosphate, Icit- isocitrate, Mal - L-malate, malCoA- 
malonyl-CoA, Oaa- oxaloacetate, Ser- L-serine, Succ- succinate, SucCoa- succinyl-CoA. 
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Figure C1- Flux distribution in the central metabolism for the wild-type (green) and for the strain desgins obtained with TDPS A-D (red). The wild type flux distribution was 
obtained using the cofactor constraints described in chapter 3 and the mutant strains’ flux distributions were calculated with TDPS.  Reactions: ACC- acetyl-CoA 
carboxylase, ACH1- succinyl-CoA:acetate CoA-transferase, ACONT- aconitase, ACSc- acetyl-CoA synthetase, AKGD- alpha-ketoglutarate dehydrogenase, ADH- alcohol 
dehydrogenase, ALD2/6- NAD+/NADP+ cytosolic aldehyde dehydrogenase, ALDm-  mitochondrial aldehyde dehydrogenase, CSm- citrate synthase, FBA- fructose 1,6-
bisphosphate aldolase, FUM- fumarase, G3PD1ir- glycerol-3-phosphate dehydrogenase, G3PT- glycerol-1-phosphatase, GAPD- glyceraldehyde-3-phosphate dehydrogenase, 
GHMT2r- serine hydroxymethyltransferase, GND- 6-phosphogluconate dehydrogenase, HEX- hexokinase, ICD- mitochondrial isocitrate dehydrogenase, MCR- malonyl-
CoA reductase, MDH- mitochondrial malate dehydrogenase, ME- mitochondrial malic enzyme, PDC- pyruvate decarboxylase, PDH- pyruvate dehydrogenase, PFK- 
phosphofructokinase, PGI- phosphoglucose isomerase, PGK- 3-phosphoglycerate kinase, PGMT- phosphoglucomutase, PP3- sum of the non-oxidative reactions of the 
pentose phosphate pathway producing glyceraldehyde-3-phosphate, PP6- sum of the non-oxidative reactions of the pentose phosphate pathway producing fructose-6-
phosphate, PSP- phosphoserine phosphatase, PYC- pyruvate carboxylase, PYK- pyruvate kinase, SUCD- succinate dehydrogenase, SUCOAS- succinyl-CoA ligase, THRS- 
threonine synthase, TPI- triose phosphate isomerase; Metabolites: 13dPG- 1,3-diphosphoglycerate, 3HP- 3-hydroxypropionic acid, 3PG- 3-phosphoglycerate, AcCoA- acetyl-
CoA, Akg- 2-oxoglutarate, Cit- citrate, DHAP- dihydroxyacetone-phosphate, Fum- fumarate, G3P- glyceraldehyde-3-phosphate, Icit- isocitrate, Mal - L-malate, malCoA- 
malonyl-CoA, Oaa- oxaloacetate, Ser- L-serine, Succ- succinate, SucCoa- succinyl-CoA.(continuation). 
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