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Abstract. Earthworks tasks aim at levelling the ground surface at a target con-

struction area and precede any kind of structural construction (e.g., road and 

railway construction). It is comprised of  sequential tasks, such as excavation, 

transportation, spreading and compaction, and it is strongly based on heavy me-

chanical equipment and repetitive processes. Under this context, it is essential 

to optimize the usage of all available resources under two key criteria: the costs 

and duration of earthwork projects. In this paper, we present an integrated sys-

tem that uses two artificial intelligence based techniques: data mining and evo-

lutionary multi-objective optimization. The former is used to build data-driven 

models capable of providing realistic estimates of resource productivity, while 

the latter is used to optimize resource allocation considering the two main 

earthwork objectives (duration and cost). Experiments held using real-world da-

ta, from a construction site, have shown that the proposed system is competitive 

when compared with current manual earthwork design. 
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1 Introduction 

Levelling the ground surface and preparing the required foundation conditions are 

necessary steps prior to the construction of most Civil Engineering structures . These 

steps are especially  important in  the construction of linear structures, as is the case of 

roads or railways, since they imply the levelling of large extensions of ground su r-

face. In order to ach ieve this, engineers rely  on heavy mechanical equipment, such as 
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excavators, dumper trucks, bulldozers and compactors, which allow them to handle 

large amounts of soil or other materials. Usually  these tasks include excavating mate-

rial from areas that are above the target height and transporting them to the areas b e-

low target height, where they are spread into layers and compacted, forming an em-

bankment. The tasks associated with the usage of mechanical equipment to excavate, 

transport, spread and compact material in order to shape the ground surface in order 

to fulfil a specific purpose are often referred to as earthworks. 

The design of earthworks tasks is often performed  by a human expert. Such expert  

often uses her/his experience and intuition as the main  criteria for the selection and 

allocation of resources throughout the construction process, in order to achieve a 

fixed trade-off between the two key earthwork design objectives, cost and duration. 

This is not a triv ial task. Similarly to a wide range of real-word resource allocation 

tasks, the two-goal optimization is nonlinear and involves a large search space of 

design solutions for placing the available equipment in an earthworks project.  

Considering such human allocation practice, there is a h igh potential for reducing 

costs and duration of earthwork pro jects by adopting artificial intelligence techniques , 

such as data mining and Metaheuristics. In effect, data mining techniques have been 

proposed within this domain, taking advantage of the recent increase of available 

construction databases to accurately predict the productivity of mechanical equipment 

given specific site conditions [1–6]. Moreover, several Metaheuristics, such as evolu-

tionary computation, ant colony optimizat ion and swarm intelligence, have been pro-

posed for optimal allocation of resources  within the earthworks domain [7–13]. 

This paper presents a proposal of an intelligent system that uses both data min ing 

and evolutionary computation to tackle the multi-criteria optimization problem asso-

ciated with resource allocation in earthwork construction. The optimizat ion task ad-

dressed in this work is a particu lar instance of the more general job shop schedul-

ing problem. Considering  that the data mining approach has been presented in [18], a  

stronger emphasis is given towards the evolutionary multi -objective optimizat ion 

component of the proposed system. The main contributions are associated with the 

architecture and methodology that comprise the presented optimization system. In  

terms of optimizat ion methods, previous works either optimize a single objective, 

such as cost [7, 8] or duration [9], or adopt a weighted approach [10], that optimizes 

separately three duration-costs weight setups (i.e. 0.8/0.2;  0.7/0.3; and 0.5/0.5). In  

contrast with these solutions, the system discussed in this paper takes a Pareto front 

optimization approach, which not only optimizes both objectives simultaneously, but 

also outputs a set of interesting trade-off solutions. Depending on the budget and 

deadline restraints, the solution that best adjusts the objectives of the designer can 

then be selected. Furthermore, regard ing productivity estimat ion, while existent appli-

cations lean on the experience o f the designer [9, 10], resulting in rough estimation of 

equipment work rates, others attempt to build computer-demanding simulation mod-

els to solve this issue [7, 8, 11].  Contrariwise, the novel system uses data-driven mod-

els (fit  to real data) to estimate equipment p roductivity, which allows for a realistic 

estimation. Finally, proposed the system is validated by experimenting with real-

world data from a construction site and comparing the results with those obtained by 

conventional earthwork design.  



The paper is organized as follows. Firstly, the optimization framework for the de-

sign of earthworks, where the earthwork problem is described as a series of simulta-

neous production lines, susceptible to optimization, is presented in Section 2. Then, a 

brief state of the art description of data mining and Metaheuristics applications to the 

earthwork domain is described in Sect ion 3. Next, the multi-criteria optimizat ion 

system is detailed in Sect ion 4, featuring the description of the system and results that 

were obtained when applying  such system with real-world  data from a construction 

site. Finally, closing conclusions and perspectives of future work are presented in 

Section 5. 

2 An optimization framework for the design of earthworks 

Taking into account an optimizat ion point of view, earthwork construction can be 

described as a number of production lines based on resources and dependency rela-

tions between sequential tasks. The resources are the mechanical equipment that is 

essential for the development of the project, namely excavators, dumper trucks, bull-

dozers and compactors , while the sequential tasks  correspond to the associated pro-

cesses, specifically excavation, transportation, spreading and compaction, respectiv e-

ly. The speed at which the latter can be completed depends on the amount of the fo r-

mer being allocated into each task. In other words, the work rate (in this case often 

measured in  volume of handled material per hour, m
3
/h) in each sequential task can 

be manipulated by increasing or decreasing the amount of associated resources allo-

cated to it. This means that earthworks are strongly susceptible to optimization, which  

is aimed at minimizing both execution cost and duration. The mult i-criteria include 

conflicting propert ies: in general, one can decrease execution duration by increasing 

the amount of allocated resources  (mechanical equipment) to a task, but such results 

in an increase of the associated execution costs and vice-versa. However, it should be 

noted that the costs related to fuel and machinery maintenance (indirect costs) are 

substantial. Since these increase accordingly to the duration that mechanical equip-

ment are working, a solution with the least possible amount of allocated resources is 

not necessarily the least costly. Thus, the optimal balance between the criteria must be 

established. 

The tasks that comprise earthwork projects have a set of specific characteristics in 

this context, of which the focal point is interdependency. Indeed, earthwork tasks are 

not only sequential, but also the work rate of each of them is always limited  to the 

work rate of its preceding task. For instance, the dumper trucks cannot undergo the 

transportation of soil if the latter has yet to be excavated and loaded into them;  and 

bulldozers cannot spread soil into layers so as to allow compaction if the material has  

not been brought to them by the dumper trucks, and so on. Furthermore, when dealing 

with sequential and interdependent tasks such as these, the speed at which a single 

production line can carry out its work is equivalent to the work rate associated with its 

last task. In this context, maximizing the work rate in  the final task (in this case, co m-

paction) would correspond to a solution with min imum execution time for a produ c-

tion line. However, it is noteworthy to emphasize such allocation is limited by the 



available equipment and also by the site conditions, such as space restrictions in ex-

cavation or compaction areas (usually designated as fronts). To fully take advantage 

of the available resources, one must guarantee that the allocated compaction equip-

ment is fed enough material so as to allow for constant production. In other words, the 

work rate in all tasks prior to compaction (excavation, t ransportation and spreading) 

must be equal or similar to the work rate obtained in the associated compaction front. 

Should the work rate of a task fall short of the work rate of succeeding tasks, then the 

productivity of the whole production line will be limited to the one obtained in that 

task. This keeps the equipment from reaching its maximum potential in terms of work 

rate, i.e. by forcing it  to id le while waiting  for material. Therefore, it is essential to 

control the work rate in each task within a production line. 

Naturally, an earthwork construction is not depicted in a single production line, but 

rather in several independent production lines working simultaneous ly. Each of these 

production lines is associated with a compaction front, since that is the final stage for 

handling the geomaterials. Moreover, there is one more characteristic specific to these 

production lines that significantly increases its complexity. As construction ensues in 

several simultaneous production lines, compaction work will come to complet ion in  

one production line at a time. At the point when one production line has completed its 

assignment, the associated equipment is no longer contributing towards the comple-

tion of the earthwork pro ject, thus calling for its reallocation into either an  existent or 

a new production line. However, considering that site conditions have changed since 

the previous allocation, this reallocation should include all available equipment once 

again if it is to keep its optimal status. Thus, the whole resource allocation must be 

reorganized in order to optimally resume the execution of the project. Th is enhances 

the problem with a dynamic nonlinear feature, which must always be taken into ac-

count in earthworks design. 

3 Artificial intelligence in earthworks equipment allocation 

3.1 Data Mining 

The quality of an earthworks project design can only be as good as the ability to 

estimate the associated equipment productivity as close to reality  as possible. Nowa-

days, this parameter estimation is often based on the experience of the designer. In 

most cases, designers either settle for a somewhat random d istribution of equipment, 

just as long as it is feasible, o r attempt to apply a set of standardized teams to every 

production line, o f which an  average productivity can roughly be estimated. Obvious-

ly these neither guarantee a good design, nor result in optimal executions of the pro-

jects. In this context, data min ing provides an interesting alternative approach for 

estimating productivity parameters. Data mining [14] allows the ext raction of useful 

knowledge (e.g. pred ictive models) from raw data (often based on vast databases 

and/or with complex relationships), searching for patterns and tendencies in the data. 

Guided by domain knowledge and under a semi-automated process that uses compu-

tational tools, data mining  is an  iterat ive and interactive process. Popular predictive 



data min ing models are based on machine learning techniques such as mult iple re-

gression (MR), art ificial neural networks (ANN) [15] and support vector machines  

(SVM) [16]. These techniques are capable of automatically  analyzing complex rela-

tionships in the data, turning them into knowledge which can be used to predict future 

values in new environments and for a better understanding of the problem domain  

variable relat ionships. Data mining is often framed in the context o f a methodology, 

such as CRISP-DM (Cross Industry Standard Process for Data  Min ing) [17], which  

includes six phases (Figure 1) and facilitates the execution of data mining projects in 

real-world applications. 

 

 

Fig. 1. The six phases of the CRISP-DM methodology (adapted from [17]) 

Most data min ing applications to earthworks construction feature the estimat ion of 

equipment productivity, namely artificial neural network (ANN) for the estimat ion of 

excavation and transport equipment productivity rates  [1, 3, 4], execution time and 

cost in earthwork [5] or productivity of earthwork production lines [6]. Other data 

mining techniques, such a multip le regression, have been successfully applied to the 

prediction of excavator cycle time [2]. However, a characteristic shared by all data 

mining  techniques is that the quality of the models is h ighly dependent on the quality 

and availability the data used to fit such models . In cases for which databases are not 

available o r do not include the necessary quality or variab ility to be targeted by data 

mining applications, it is still possible to use data stemming from technical guides or 

reports, which is a common practice with in the geotechnical field. The practicality of 

this approach has been demonstrated by [18], in which several data mining models 

was adjusted for the purpose of estimat ing the productivity values for compactors in 

different conditions. In this work, the database consisted of the compaction tables 

featured in the GTR [19], a widely used empirical compaction guide. It encompassed 

several variables that were used as inputs for the model and can be summarized into 

qualitative variables (i.e., material and roller types, as well as compaction energy 

level) and quantitative variables (i.e., Q/S ratio, layer thickness, roller speed and 

number of roller passes). These inputs concern the use of soil in embankments and 

capping layers, representing a thorough description of the compaction conditions in 

regular construction cases (e.g., number of passes is one of the factors that determines 

the speed at which the compaction of each layer is completed, while layer thickness is 

directly related to the volume of material compacted after each set of ro ller passes). 

Using the R statistical tool [20] and the rminer library  [21], the model that showed the 

best adjustment to the data was based on an ANN, achieving positive results . The 

ANN ach ieved a high coefficient of determination values (e.g., R
2
=0.99), as well as 



low values for root mean squared erro r and mean  absolute error (e.g., RMSE=0.0068, 

MAE=0.0039), for unseen test data using 20 runs of a 10-fo ld cross-validation, corre-

sponding to a reliable  prediction model. Such predict ive model is capable of automat-

ically estimating the compaction conditions , specifically the productivity of compac-

tion equipment for any practical case with high efficiency.  

3.2 Metaheuristics 

Although data min ing can be used for estimating  parameters with a good adjus t-

ment to reality, it  cannot, by itself, guarantee an optimal solution in terms of execu-

tion costs and durations. Since these criteria are a function of the allocation solution 

chosen by the designer, optimization becomes a complex task. Considering the non-

linear characteristics of the prob lem and since the solution space includes a large 

search space (in terms of distribution combinations of equipment throughout the con-

struction site in each phase), conventional Operat ional Research (e.g. linear pro-

gramming) and blind search methods are not effective for solving this problem. As 

such, Metaheuristics are an interesting solution within  this domain, since they are 

capable of searching interesting search space regions under a reasonable use of co m-

putational resources. Indeed, several studies have followed  this approach by using 

optimization methods such as Genetic Algorithms (GA) [7, 12, 22] and Swarm Intel-

ligence [9, 10, 13, 23]. Yet, the optimization carried out in most of these systems 

(e.g., [7, 9, 10, 12, 13, 23]) still requires an estimation of parameters, especially  

equipment productivity, which is still left to the experience gathered by the designer 

or attempted to be estimated in theoretical simulat ion models . Moreover, many of 

these applications focus on single tasks or partial processes that compr ise earthworks, 

i.e., excavation and hauling [9, 12], in an attempt to deal with the high complexity of 

the problem. For this reason, these systems lack the advantages of a global optimiza-

tion of execution durations and costs throughout all construction phases. In terms of 

optimization objectives, existent systems tend to be limited to single object ive optimi-

zation, such as cost [7] or duration [9], or attempt to consider both objectives via a 

weight-based optimizat ion [10]. A lthough these solutions are considered effective in  

reducing computation effort requirements, they overlook the advantages of optimizing 

both objectives simultaneously. Even if it can be looked at as multi-criteria optimiza-

tion, the weighted-based approach used in [10] on ly outputs a single trade-off for a 

particular weight combination (e.g. 0.8 for first criteria and 0.2 for second). However, 

as one can easily infer in non-trivial multi-criteria optimizat ion problems, often there 

is not a single optimal t rade-off solution, but rather a set of t rade-offs with conflict ing 

objectives. Thus, a much natural multi-criteria optimizat ion approach is to optimize a 

Pareto front of solutions, where each solution is called non-dominated, or Pareto op-

timal, if none of the objectives can be improved in  value without worsening the other. 

In the context of earthwork optimizat ion, all Pareto-optimal solutions are considered 

equally good and the main choice criteria for selecting one solution over the other is 

often decided by the project designer based on the construction final deadline and/or 

budget. Obviously, secondary criteria may be used to support the final decision, such 



as environmental aspects, which can be assessed by the determination of carbon emis-

sions in each solution.  

Taking into account that Pareto front multi-optimizat ion requires the tracking of a 

population of solutions, population based Metaheuristics such as evolutionary comp u-

tation, have become a natural and popular solution. Evolutionary computation is in-

spired in natural evolution and selection processes . Several computational variants 

have been proposed, such as GA [24], which are quite used within the earthwork co n-

struction domain. Evolutionary computation methods often start with a random popu-

lation of possible solutions (or individuals ), which are evaluated according to their 

fitness in a given situation. Then, the best fitted solutions are most likely to produce 

offspring, in the form of a new set of solutions that include characteristics from the 

individuals that orig inated then. This way, the in itial set of solutions is improved in  

each iteration (or generation), ult imately coming to an optimal o r near-optimal set of 

solutions.  

Several evolutionary computation methods have been proposed for Pareto front op-

timizat ion. In this work, we adopt the Non-dominated Sort ing Genetic Algorithm-II 

(NSGA-II) [25] due two main reasons. Firstly, NSAGA -II is a popular and standard 

method for multi-criteria evolutionary optimizat ion. Secondly, NSGA -II is easily  

available for a computational use in the R statistical tool [20] via the package mco  

[26], which is the same tool adopted for the development of our integrated optimiza-

tion system. The R tool was selected since the data mining models (i.e., ANNs) were 

also fit  using this computational environment, thus allowing an easier o f integration 

of both data min ing and NSGA -II methods. Moreover, the R tool includes several 

conventional optimizat ion methods, such as the Linear Programming (LP) method 

that is used for individual fitness calculation (see Section 4.1). 

4 Multi-criteria optimization of earthworks 

4.1 System overview 

The developed system is comprised of a data min ing module integrated into the 

multi-objective optimizat ion module of equipment distribution in earthworks. The 

first module takes care of estimating equipment productivity, while the second mod-

ule carries out its optimal allocation. The system arch itecture falls into the framework 

proposed in [6]. In this work, the data min ing module was applied to the GTR guide, 

aiming to determine compactor productivity given the material and site conditions.  

The algorithmic flow for the mult i-criteria evolut ionary optimizat ion method and 

its associated fitness function is shown in Figure 2. By interpreting the problem as a 

series of production lines, it becomes possible to focus the NSGA-II allocation of 

resources to the compaction task (last task of the production lines), which sets the 

work rate target value for each production line. Each solution is represents the com-

paction equipment for all necessary construction phases. For a particular construction 

phase, the solution is composed of a sequence of C integer genes: g1 g2 g3…gC, where 

gi denotes the position of the i-th compactor (or ro ller) in terms of its compaction 



front and C represents the total number of compactors. The genes can take a value 

that ranges from 0 (not used) to the maximum number of compaction fronts F that 

have to be completed. The whole ind ividual (or chromosome) includes all construc-

tion phase gene sequences, thus the total number of genes corresponds to the number 

of available compactors times the number of necessary construction phases: CxF . For 

demonstration purposes, Figure 3 exemplifies a particu lar case where there are C=2 

rollers and F=2, thus individuals are represented using four genes . 

 

Fig. 2. Algorithmic flow of multi-criteria optimization system 

At the start of the fitness evaluation procedure, only the genes that correspond to 

the first construction phase are selected and a repair strategy is implemented to ensure 

that all solutions are feasible. Given that the NSGAII implementation of the R tool 

only works with real values, the first step of the repair strategy is to round each chro-

mosome to the nearest integer. Then, the work rate in each compaction front is then 

estimated by the data mining module. Under these conditions, the equipment for the 

remain ing tasks (excavation, transportation, spreading) of each production line (asso-



ciated with each compaction front) is then distributed by using LP optimizat ion mod-

els. Essentially, there is one LP model per equipment type (or per task type) which is 

responsible for distributing the associated equipment according to the work rate o b-

tained in the last task of the each production line. Each model targets the min imiza-

tion of the total cost of the allocated equipment, while ensuring that total productivity 

is as close as possible to the productivity estimated in the associated compaction 

front. 

With the allocation process completed for each production line (or compaction 

front), it is then possible to ascertain which one will be completed first. The infor-

mat ion regarding the durat ion and costs of the current phase (up to the point the co m-

paction in one of the fronts is completed), as well as the completed front, is saved  into 

memory. Then, the remaining material volumes in every other active compaction and 

excavation fronts are updated. As the genes for the next construction phase are select-

ed and the previously described process is executed, a second step of the repair strate-

gy is added, which verifies which compaction fronts have been completed. The se-

cond step assures that any compactor in the current construction phase that is allocat-

ed to a completed front is: a) allocated to another front, if possible; or b) not allocated 

(by changing the gene to zero). For executing step a), the gene is iteratively changed 

according to the rule: gi = (gi+1) mod (F+1), until a  feasible front value is found. This 

way the availab le equipment is reorganized throughout the construction fronts at the 

beginning of each construction phase, while assuring that work fronts that have al-

ready been completed are excluded from future allocations , as exemplified in the left  

of Figure 3. In each solution, this process is repeated for each construction phase, 

resulting in a determination of global costs and durations for the initial distribution of 

compaction equipment. The best solutions are then subjected to NSGA -II genetic 

operators, namely crossover and mutation, generating new solutions which are evalu-

ated using the same methodology. 

 

 

 

 

 

Fig. 3. Example of an initial chromosome for 2 compactors and 2 compaction fronts (left) and 

the final chromosome after the execution of the repair strategy (right) 

4.2 Results 

The proposed system was tested using real-word data from a construction site. A 

subset from a database that has been previously used during the development of the 

data mining  models [6] was used as a reference. The available data includes the daily  

allocation of earthwork equipment throughout a road construction site, including in-

formation on available equipment, material volumes and types in excavation and 

compaction fronts and distances between fronts. The selected subset includes five 

production lines working simultaneously (F=5), to which equipment was originally  

allocated by conventional design methodologies . Since there is a total of C=5 availa-

2 2 1 2 

Phase 1 Phase 2 

2 2 1 1 

Phase 1 Phase 2 Repair 



ble compactors, the resulting individuals in the optimization system will be comprised 

of 5x5=25 genes each, defining the search space for this problem. 

Pareto results. Using the methodology described in Section 4.1, the system outputs a 

Pareto-optimal set of solutions and their associated global costs and durations . The 

Pareto line represents several potential allocations of equipment throughout the con-

struction site, in each construction phase, and this information can be accessed for 

each solution. Such Pareto-optimal set of solutions is useful for the designer or engi-

neer, as she/he might want  to choose different solutions depending on the available 

budget and the required deadlines. As earthwork construction is inherently a dynamic 

and unpredictable environment, different cost-duration solutions might become better 

adjusted to the ever-changing site conditions as construction develops. 

The default parameterization of NSGA -II method, as implemented in the R tool, 

was adopted, namely : population size of 100, stop after 100 generations, crossover 

probability of 0.7 and mutation probability of 0.2. The rationale is to focus more on 

assessing and validating the capabilit ies of the proposed integrated system when 

compared with current human design, rather than calibrating the optimization algo-

rithm. We note that in preliminary tests, smaller population sizes (e.g., 20) were e x-

plored, but the obtained results were worse than the default population size of 100. 

Also, the fitness evaluation is computationally costly, as it requires several data min-

ing model estimations and LP optimizations (for each front), thus a population size 

much larger than 100 individuals would increase the computational effort.  In effect, 

with the default  NSGA-II population size, the method was executed with 3 runs on an 

Intel Core 2 Duo 2.66 GHz processor, and it required  from 24 to 28 hours to complete 

each single run. The total computational time fo r the computational experiment (all 3 

runs) was approximately 76 hours, even though this could be easily reduced using 

parallel co mputation (e.g., server with several multicore processors). The average 

Pareto-optimal front (over all 3 runs) is shown in Figure 4a, while a comparison be-

tween the conventional human design and those obtained by the proposed optimiza-

tion system is illustrated in Figure 4b. The Pareto-optimal front (Figure 4a) is the 

result of a vertical averaging (i.e ., accord ing to the Duration objective) of the Pareto 

curves outputted by each run, using the averaging algorithm proposed by Fawcett [27] 

for vertical averaging of ROC curves. Since these are mean values, indicat ion of the 

95% confidence interval according to a t-student distribution was also included. 

In this optimization attempt, the equipment available for the conventional design 

allocation was kept fixed. In other words, the presented results stem from a simple 

reorganizat ion of the available equipment throughout the construction fronts, without 

the addition of any other piece of equipment. Bearing in mind Figure 4b, it is easy to 

infer how the solution obtained by conventional design is far from optimal. In  fact, 

should this system be implemented for this construction project, a high impact could 

be achieved, with an estimated reduction of around 50% to 70% of both costs and 

durations. Still, the system does not take into account the occurrence of unpredictable 

events during construction (i.e ., equipment malfunction). However, this could be 

mitigated by rerunning a new optimization procedure that included new restraints, 

which would result in a new set of optimal solutions for current site cond itions. 



 

Fig. 4. Optimization results: a) vertically averaged Pareto-optimal front; b) comparison be-

tween optimized Pareto front (line) and the real-world human based allocation solution (dot); in 

both graphs, the Cost objective, y-axis, is presented in Euro, while the Duration objective, x-

axis, is presented in hours 

Allocation analysis. From the orig inal solution regarding equipment allocation 

throughout the five production lines, a general improvement could  be observed. In 

most cases, a reasonable reduction in both durations and costs was  attained by the 

optimization system, which is the case of the second example described in Table 1 

(production line 2). One production line featured a significant increase in  global work 

rate without increasing costs, while in other cases considerable reductions in costs 

were achieved without a relevant increase in total durat ion. Regard ing the latter, a  

comparison between the resource allocation in the original human based solution and 

the one obtained by the proposed optimizat ion system is shown in Table 1 (produc-

tion line 1). This also corresponds to the production line where the highest amount of 

material volume was handled. The same methodology was used to determine costs 

and durations for both the original and the optimized setup. 

It is easy to infer that, for both production lines depicted in  Table 1, the work rates 

in each task of the original setup are not homogeneous, as opposed to the work rates 

of the optimized solution. For both cases, the whole production line is limited by the 

work rate o f excavators in the orig inal setup, which means that the other tasks have to 

wait for material to be excavated in order to allow for its transport, spreading and 

finally compaction. This incurs in equipment id le t ime while waiting for material to 

be ready for handling, which represents wastes in terms of resources (since these do 

not work at full efficiency) and fuel (contributing to unnecessary costs), as well as an 

increase on unnecessary carbon emissions. As a result, the total work rate of these 

production lines cannot be considered superior to that of the minimum work rate ob-

tained in the production line tasks, in this case excavation (1080 m
3
/h in production 

line 1 and 394 m
3
/h in production line 2). In contrast, the work rates obtained in the 

proposed optimized solutions for each task that comprises the production line are as 

homogeneous as possible, given the available equipment. As such, a constant flow of 

material throughout tasks can be achieved, using the allocated resources to their full 

potential and efficiency. It is noteworthy to emphasize that, besides optimizing the 

whole allocation in terms of costs and durations, the developed system is expected to 

always keep the allocated equipment working at full efficiency. This is done by min-



imizing equipment idle time as much as possible, which will also result in min imiza-

tion of unnecessary carbon emissions. This is very challenging to ach ieve by conven-

tional design methodologies. 

Although the total work rate of the original setup is still slightly superior to the one 

obtained in its optimized counterpart in  production line 1, the human based allocation 

solution features several pieces of equipment which are not necessary for its progress, 

as is the case of the six 40 ton dumpers that have been originally se lected, for in-

stance. In this case, the optimization system allocated five considerably smaller t rucks 

(lower capacity, but lower fuel consumption and, thus, lower operation costs) to fulfil 

this role instead. As a result, the optimized setup for this case resulted in a decrease of 

75% in total costs, while not incurring in  any significant increase in duration (the 

actual increase in total duration is less than 1 hour of work). In the case of production 

line 2, besides solving the problem of work rate bottlenecks when compared to the 

original solution, the proposed optimized solution also features the allocation of high-

er productivity equipment. Consequently, a substantial decrease, over 50% in both 

cost and duration objectives, is obtained when comparing the integrated system opti-

mized setup with the original human based solution. These results emphasize the 

importance of using intelligent computational tools for optimizing this type of con-

struction works, also revealing how conventional human design allocation methodol-

ogies can be relatively counter-productive in some situations. 

Table 1. Comparison between the conventional allocation the optimized allocation for two 

different production lines 

 Production line 1 Production line 2 

Parameter Original solution 
Optimized 

 solution 
Original solution 

Optimized  

solution 

Average distance 
to excavation 

fronts (m) 

700 175 

C - Number of  
Compactors 

2 2 1 1 

Compactor work 
rate (m

3
/h) 

1831 1008 614 1055 

Number of 

spreaders 
2 2 1 2 

Spreader work 
rate (m

3
/h) 

1500 1088 413 1239 

Number of 
dumper trucks  

6 5 2 2 

Dumper truck 
work rate (m

3
/h) 

2228 1009 2960 1600 

Number of  

excavators 
2 2 1 2 

Excavator work 
rate (m

3
/h) 

1080 1080 394 1080 



Finally, is important to note that the results associated with Figure 4 and Table 1 

were obtained using an efficiency factor for mechanical equipment, k, of 0.75. Th is 

efficiency factor is related to the amount of time that the mechanical equipment 

spends in actual production. According to earthwork technical guides [19], actual 

“on-the-job” productivity is  commonly influenced by factors such as operator skill, 

personal delays, job layout and other delays.  Since one of the main focuses of this 

system is to maximize p roductivity of all the allocated mechanical equipment, it  

makes sense to consider the maximum value commonly suggested in earthwork tech-

nical guides (k=0.75). However, it is very hard to achieve the same efficiency factor 

in pract ice by means of conventional design, especially  taking into account the fact 

that, as previously mentioned, it is mostly based on the experience of each designer. 

Additionally, unforeseen delays due to unpredictable situations that can occur in a 

real environment often have a significant impact on the actual efficiency factor of 

equipment in a construction site. In the present case, the available data indicates that 

the average actual efficiency factor for the mechanical equipment was just over k=0.3, 

which is not uncommon in this type of construction. As such, this large gap between 

these efficiency factors must be taken into account when analyzing the apparent dis-

crepancy between the optimized results and the ones obtained by conventional design. 

5 Conclusions and future work 

Earthwork tasks are resource-dependant processes which aim to level target ground 

areas so as to allow for the construction of structures or infra -structures. Considering 

that these tasks represent a significant percentage of total execution durat ions and 

costs of road and railway projects, optimizing the resources involved is essential. 

However, the fact that conventional design methodologies lack the tools for optimal 

resource allocation can significantly hinder the durations and costs associated with the 

obtained solutions. Moreover, these methodologies are not prepared to keep up with 

the recent increasing demands regarding higher productivities and environmental 

aspects, such as minimizing carbon emissions. 

In this work, a Pareto approach based on Non-dominated Sorting Genetic Algo-

rithm-II (NSGA-II) was chosen as a basis for the development of an  earthworks opti-

mization system. The proposed system integrates several technologies, including 

artificial intelligence, in  the form of evolutionary  computation and data min ing meth-

ods, and linear programming optimization, in an  attempt to ad just to the complex 

reality associated with these types of constructions. The aim is to optimize the availa-

ble resource allocation (represented by mechanical equipment) throughout the s e-

quential tasks (namely excavation, transportation, spreading and compaction of geo-

materials) that comprise the earthworks process. In this framework, the data min ing 

technology supports the optimization techniques by providing realistic estimates to 

the productivity of the available equipment given site conditions. 

Experiments have been carried  out, using real-word  data from a construction site 

and focusing on the assessment of the capabilities of the integrated system when 

compared with human allocation design. Competit ive results were achieved by the 



proposed system, stressing the importance of using intelligent optimization tools in 

the design of earthworks. A lso, some limitations of conventional human allocation 

design were shown, in particu lar where the production line equipment is either signif-

icantly above the required work rate requirements (incurring in unnecessary costs) or 

below it (resulting in id le times and low efficiency ratios). Moreover, it was possible 

to verify the capability of the proposed system to distribute equipment in a relatively  

homogeneous way (when compared to conventional design), while min imizing costs 

and durations, which was the goal of this research. 

Future work should include the addition of features which should allow a better ad-

justment to reality by the system, as is the case of better grasping of space restriction 

conditions in the construction site. The determination of carbon emissions, either to 

be used as secondary criteria or a minimizat ion objective, also fits the future work 

category. Furthermore, the explorat ion of d ifferent NSGA -II parameterization (e.g. 

crossover and mutation probability), as well as other multi-objective optimizat ion 

methods, such as Strength Pareto Evolutionary Algorithm 2 (SPEA-2) or S-Metric 

Selection Evolutionary Multi-objective Optimization Algorithm (SMS-EMOA), will 

be addressed in future work.  
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