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Abstract. Traffic Engineering (TE) approaches are increasingly impor-
tant in network management to allow an optimized configuration and
resource allocation. In link-state routing, the task of setting appropriate
weights to the links is both an important and a challenging optimization
task. A number of different approaches has been put forward towards
this aim, including the successful use of Evolutionary Algorithms (EAs).
In this context, this work addresses the evaluation of three distinct EAs,
a single and two multi-objective EAs, in two tasks related to weight
setting optimization towards optimal intra-domain routing, knowing the
network topology and aggregated traffic demands and seeking to mini-
mize network congestion. In both tasks, the optimization considers sce-
narios where there is a dynamic alteration in the state of the system,
in the first considering changes in the traffic demand matrices and in
the latter considering the possibility of link failures. The methods will,
thus, need to simultaneously optimize for both conditions, the normal
and the altered one, following a preventive TE approach towards robust
configurations. Since this can be formulated as a bi-objective function,
the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat-
urally, being those compared to a single-objective EA. The results show
a remarkable behavior of NSGA-II in all proposed tasks scaling well for
harder instances, and thus presenting itself as the most promising option
for TE in these scenarios.

Keywords: Multi-objective evolutionary algorithms, Traffic Engineer-
ing, NSGA, SPEA, intra-domain routing, OSPF

1 Introduction

Link-State protocols, such as Intermediate-System to Intermediate-System (ISIS)
[12] and Open Shortest Path First (OSPF)[11], are widely used routing proto-
cols. Positive weights, assigned to each link in the network, are used to compute
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the shortest path (SP) between each source-destination pair, through which net-
work traffic flows. The SPs are obtained using the Dijkstra algorithm [5], and
minimize the total sum of link weights in the path. Thus, link weights define
how traffic is accommodated onto the underlying network topology, being, in
this context, the most important decision factor for the configuration of the
traffic routing process. The decision making involved in link weights configura-
tion, usually performed by a network administrator, is not an easy task when
the scale of the network and the typically high volume of traffic and flows are
taken into consideration. If inadequate, a configuration can cause the misallo-
cation of traffic into the available resources, resulting in packet loss, increasing
delays, and, potentially, in the unfulfillment of service level agreements (SLAs).

The Traffic Engineering (TE) problem addressed by this work arises in this
context. It consists in finding a set of weights that optimize the congestion levels
of the network, for which there are known aggregated traffic demands specified
for each source-destination pair. This NP-hard optimization problem has been
covered in previous efforts [8, 1] with good results, resorting to several optimiza-
tion approaches, which include, for instance, Evolutionary Algorithms (EA) in
previous work by the authors [14, 13]. Indeed, EA based approaches to TE have
been proven to deliver near optimal solutions for the weight setting problem
with several advantages when compared with other optimization techniques.
Their ability to provide a set of possible solutions, with distinct trade-offs be-
tween objectives, enables network administrators to choose from a broader set of
configurations, and consequently offers a conscious choice of the most adequate
solution. However, distinct EAs have different merits and limitations [15] and
consequently some approaches may not offer equally good solutions.

In this context, the present work offers a comparative study of three popular
EAs spanning both single and multi-objective alternatives: the Non-dominated
Sorting Genetic Algorithm (NSGA-II), the Strength Pareto Evolutionary Algo-
rithm (SPEA2) and a Single-Objective Evolutionary Algorithm (SOEA) previ-
ously proposed by the authors. The experimental study allows to compare the
performance of the three approaches in two extensions of the described problem,
where the weights need to be set for scenarios considering the network’s dynamic
behavior, namely considering changes on the traffic demands over distinct time
periods, in the first case, and the possibility of a single link failure, in the latter
case.

The paper proceeds with section 2, describing the experimental model, the
framework that sustained the experiments and EAs configuration; section 3
presents the results for the scenario with two distinct traffic demand matrices;
section 4 presents the results for the scenarios with a single link failure; finally,
section 5 presents the conclusions of this study.

2 Experimental Model

Changes on traffic demands and link failures are dynamic conditions that un-
dermine the operational performance of a network. Traffic demands undergo
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periodic changes during specific periods of time, such as night and day, which
affect the congestion levels of the network. To address effective TE under those
changes, network administrators could, eventually, perform alterations on the
installed weights configuration to induce the redistribution of traffic. However,
weight configuration changes cause a temporary instability on the traffic flows
due to the distributed nature and convergence time of the routing protocol.
Furthermore, changes on traffic paths disrupt the performance of higher level
protocols, such as the Transport Control Protocol (TCP) whose connections
may become degraded by out of order packet delivery.

There are also similar considerations to be made when re-configuring weights
in response to link failures. The majority of these faults are single link failures,
and last, usually, a relatively short amount of time [9]. Frequent link weights
reconfigurations are thereby not considered a good approach to the problem. A
more appealing solution consists in finding a single weights setting that would
allow the network to maintain a good performance level against such events. In
this case, the weights configuration to seek would guarantee a good traffic distri-
bution in normal network conditions and continue to provide a good congestion
level after a link failure or in case of foreseen changes of traffic demands. The
next section presents an overview of the mathematical model used to support
the simulations.

2.1 Mathematical Model

Network topologies are modelled as directed graphs G (N,A), where N repre-
sents a set of nodes, and A a set of arcs, with capacity constrains ca for each
a ∈ A. The amount of demand routed on the arc a, induced by a particular

weight configuration, with source s and destination t, is denoted by f
(s,t)
a . We

define the utilization of an arc a as ua = `a
ca

where `a is the sum of all flows

f
(s,t)
a that travel over it. A well known piece-wise linear cost function Φa, pro-

posed by Fortz and Thorup [7], is used to heavily penalize over-utilized links.
The derivative of Φa is defined as:

Φ
′

a =



1 for 0 ≤ ua < 1/3
3 for 1/3 ≤ ua < 2/3

10 for 2/3 ≤ ua < 9/10
70 for 9/10 ≤ ua < 1

500 for 1 ≤ ua < 11/10
5000 for ua ≥ 11/10

(1)

The single optimization objective consists in distributing traffic demands in
order to minimize the sum of all costs, as expressed in Equation 2.

Φ =
∑
a∈A

Φa (2)

A normalized congestion measure Φ∗ is used to enable results comparison be-
tween distinct topologies and, for single objective EAs, to linearly combine the
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normal state congestion value of a network with the congestion after the occur-
rence of an event. It is important to note that when Φ∗ equals 1, all loads are
below 1/3 of the link capacity, while when all arcs are exactly full the value
of Φ∗ is 10 2/3. This value will be considered as a threshold that bounds the
acceptable working region of the network.

It is now possible to define the general multi-objective optimization problem
addressed in this work. Given a network represented by a graph G = (N,A) and
one or more demand matrices Di, the aim is to find the set of weights (w) that
simultaneously minimizes the objective functions Φ∗1 and Φ∗2, that, respectively,
evaluate the congestion level of the network on a normal state and the congestion
level after a change on the network operational conditions. For single objective
optimization, the algorithms use a linear weighting scheme where the cost of the
solution is given by:

f (w) = α× Φ∗1 + (1− α)× Φ∗2, α ∈ [0; 1] (3)

2.2 Experimental framework

The experimental simulations were run on a publicly available optimization
framework, NetOpt [13], previously developed by the authors, in which the opti-
mization meta-heuristic algorithms are provided by a Java-based library, JEColi
[6]. An OSPF routing simulator is used to accommodate the traffic demands
onto the networks topology arcs, and therefore enabling the application of the
congestion evaluation function Φ∗. An overall view of the framework architecture
is shown in Figure 1 that also translates the general multi-objective optimization
problem defined in the previous section.

Network Topology

OSPF weights 

Configuration

 Solutions
SOEA/MOEA 

Optimization EngineOther parameters:
 - Link Selection Stategy

 - EA configuration

Traffic Demands

and other constraints 

OSPF Routing 

Simulator

Fig. 1. General architecture of the optimization framework

The simulations were run for two synthetic topologies with 30 nodes, named
302 and 304 (the indexes 2 and 4 stand for the average in/out degree of each
node), and a real-world backbone topology, the well known Abilene topology. The
synthetic topologies were generated by the Brite topology generator [10], using
the Barabasi-Albert model, with a heavy-tail distribution and an incremental
grow type. The link capacities uniformly vary in the interval [1; 10] Gbits. The
characteristics of each topology are summarized in Table 1.
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Table 1. Synthetic and realistic network topologies

Name Topology Nodes Edges

Abilene backbone 12 15
302 random 30 55
304 random 30 110

Traffic demand matrices provide, for every ingress point a and every egress
point b in the network, the volume of traffic from a to b over a given time interval.
For each topology, three distinct levels of traffic demand Di, i ∈ {0.3, 0.4, 0.5},
were used in the experiments, where i represents the expected mean of congestion
in each link. Larger level values imply more difficult problems, as the volume of
traffic to accommodate is greater. The set of demands Di for the Abilene network
were obtained by scaling Netflow data [3] publicly available and measured on
March 1st 2004 and September 1st 2004. The set of demand matrices for the
synthetic topologies were randomly generate to fulfil the requirements of the
expected mean of congestion.

2.3 EAs setup and evaluation metrics

Three different EAs were considered in this study, and applied to the contem-
plated optimization problems. The first approach was the use of a single objective
EA (SOEA) based on previous work by the authors [14]. Alternative approaches
were provided by two of the most popular multi-objective EAs, namely SPEA2
[16] and NSGA-II [4]. All algorithms were configured to use the same encod-
ing and reproduction operators and their configurations was done to reduce any
differences not related with the inherent differences of the optimization engines.

In all EAs, each individual encodes a solution as a vector of integer values,
where each value (gene) corresponds to the weight of a link (arc) in the network,
and therefore the size of the individual equals the number of links in the network.
Although OSPF link weights are integers valued from 1 to 65535, only values
in range [1; 20] were considered, allowing to reduce the search space and, simul-
taneously, increasing the probability of finding equal cost multipaths (ECMP).
ECMP offers substantial increases in bandwidth by load-balancing traffic over
multiple paths.

The individuals that populate the initial populations were randomly gener-
ated, with arc weights taken from a uniform distribution within the reduced
range. All EAs resort to the same reproduction operators for solutions combina-
tion and genetic diversity:

– Random mutation, replaces a given gene by a random value, within the
allowed range.

– Incremental/decremental mutation, replaces a given gene by the next or by
the previous integer value, with equal probabilities, within the allowed range.

– Uniform crossover, this operator works by taking two parents as input and
generating two offspring. For each position in the genome, a binary variable
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is randomly generated: if its value is 1, the first offspring takes the gene from
the first parent in that position, while the second offspring takes the gene
from the second parent; if the random value is 0, the roles of the parents are
reversed.

The single objective EAs use a roulette wheel scheme in the selection proce-
dure, by converting the fitness value into a linear ranking in the population. In
the experiments, a population size of 100 was considered, and for the MOEAs,
an archive of the same size was used. For the SOEA experiments, the final ob-
jective value is taken as a linear combination of the two objectives, weighted
by a factor (α) that defines the trade-off; three values were considered for
α ∈ {0.25, 0.5, 0.75}. Each simulation configuration was run 30 times with a
stopping criteria of 1000 generations.

Three performance metrics that enable results comparison and the evaluation
of the MOEA and SOEA algorithms performance were used in the experimental
study:

– C-measure: It is based on the concept of solution dominance. Given two
Pareto Fronts (PF1,PF2), the measure C(PF1; PF2) returns the fraction
of solutions in PF2 that are dominated by at least one solution in PF1. A
value of 1 indicates that all points in PF2 are dominated by points in PF1,
so values near 1 clearly favour the method that generated PF1; values near
0 show that few solutions in PF2 are dominated by solutions in PF1.

– Trade-off analysis (TOA): For a pareto front PF1, and given a value of α,
the solution that minimizes α × Φ∗1 + (1− α) × Φ∗2 is selected. Parameter
α can take distinct values in the range [0; 1], thus defining different trade-
offs between the objectives. The values with the same α can be compared
among the several multi objective optimizers (MOOs) and also with those
from traditional algorithms.

– Hypervolume: It is the n-dimensional space that is contained by a set of
points. It encapsulates in a single unary value a measure of the spread of
the solutions along the Pareto front, as well as the closeness of the solutions
to the Pareto-optimal front. We considered as an approximation for the
Pareto-optimal front the non dominated solutions of all simulations in the
same context, regardless of the algorithm.

The next two sections present more precised definitions of the two studied
case problems where changes in the operational conditions of a network under-
mine its performance. In each case, the results produced by the three algorithms,
SOEA, NSGA-II and SPEA2, are discussed and compared.

3 Optimization for Two Traffic Demands Matrices

3.1 Problem Definition

Traffic demands possess temporal properties that have a significant impact on
internet traffic engineering. The diversity of services available on contemporary
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networks, as well as human behaviors and habits, provoke variations on traffic
volumes and flow patterns not accommodated by traditional routing solutions.
To acknowledge those variations, for example between two periods, such as night
and day, we aim to find a link weight configuration that enables the network to
sustain good functional performance in both periods. Thus, given two demand
matrices, D1 and D2, that represent the traffic requirements of two distinct peri-
ods, we want to find a link weight configuration w that simultaneously minimizes
the congestion functions Φ∗1 and Φ∗2. Each Φ∗i is the normalized cost function Φ
(Equation 2) that evaluate the network congestion considering the traffic de-
mands matrix Di. The SOEA weighted-sum aggregation function for this set
of experiments is defined in accordance with Equation 3. The main idea be-
hind the optimization process is that, by compromising the congestion level in
each individual scenario, it is possible to obtain a suitable configuration for both
matrices. Under the SOEA algorithm, an administrator is able to fine tune ad-
justments, such as favouring one of the matrices and penalizing the other, by
setting the α parameter accordingly in Equation 3. Under MOEA algorithms,
the produced solutions feature distinct trade-offs between the objectives which
enables network administrators to select the most appropriate solution.

3.2 Simulation Results

The experimental results, for each of the three algorithms (SOEA, NSGA-II and
SPEA2), are summarized in Table 2 and Table 3 which respectively present the
best and the mean fitness values of all runs with distinct trade-offs, organized
by traffic demands levels and α values. In the experiments with the 304 network
topology only D0.3 level traffic demand matrices were considered as for higher
levels of demands the obtained congestion values surpass the threshold of 10 2/3,
above which the network ceases to operate acceptably. As the size and degree of
each node increase, the difficulty of the optimization problem also increases. It is
important to mention that, in all simulations, the linear correlation between the
two considered traffic demands matrices, D1 and D2, for which the congestion
is simultaneously optimized, is approximately 0.5.

The results for the Abilene topology show that all three algorithms were able
to converge to the same best solution in at least one of the 30 simulations. The
average fitness values, for all levels of demands and trade-offs, Table 3, are also
very similar among the three algorithms. The performance metric C-measure,
given in Table 4, where the overall mean value for all the distinct instances
and runs was computed, reinforces the conclusion that all performances are
akin with respect to the Abilene topology. The SOEA, NSGA-II and SPEA2
algorithms were able to provide equally good solutions as all values are of the
same magnitude and, consequently, no algorithm’s pareto fronts are considered
to dominate the others.

For larger network topologies, the performance of the three algorithms starts
to diverge. The results for the synthetic topology 302, with 30 nodes and 55
edges, show that the NSGA-II algorithm is able to attain best fitness values
for every α and demands level. This can be observed, for instance, with D0.4
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Table 2. Best fitness comparison for two demand matrices optimization

Algorithm
First Second Abilene 302 304

Demands Demands 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

SOEA
0.3 0.3

1.139 1.161 1.179 1.374 1.386 1.398 2.503 2.487 2.472
NSGA-II 1.139 1.161 1.179 1.338 1.349 1.357 1.907 1.968 1.961
SPEA2 1.139 1.161 1.179 1.461 1.452 1.442 4.336 5.620 6.178

SOEA
0.3 0.4

1.446 1.367 1.283 1.745 1.638 1.531 - - -
NSGA-II 1.446 1.367 1.283 1.659 1.559 1.453 - - -
SPEA2 1.446 1.367 1.283 1.878 1.718 1.559 - - -

SOEA
0.4 0.4

1.522 1.522 1.521 1.951 1.985 2.019 - - -
NSGA-II 1.522 1.522 1.521 1.841 1.882 1.916 - - -
SPEA2 1.522 1.522 1.521 2.139 2.184 2.214 - - -

Table 3. Mean fitness comparison for two demand matrices optimization

Algorithm
First Second Abilene 302 304

Demands Demands 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

SOEA
0.3 0.3

1.218 1.218 1.218 3.103 2.977 2.785 38.017 40.592 43.167
NSGA-II 1.212 1.213 1.213 1.925 1.826 1.728 4.306 4.440 4.575
SPEA2 1.213 1.213 1.214 2.186 2.064 1.942 43.983 46.922 49.862

SOEA
0.3 0.4

1.489 1.399 1.308 7.946 6.115 4.285 - - -
NSGA-II 1.482 1.393 1.304 3.538 2.860 2.183 - - -
SPEA2 1.482 1.393 1.304 4.551 3.622 2.693 - - -

SOEA
0.4 0.4

1.565 1.554 1.543 10.446 10.213 9.980 - - -
NSGA-II 1.559 1.549 1.540 2.919 2.801 2.684 - - -
SPEA2 1.559 1.549 1.540 5.401 5.271 5.141 - - -

matrices and α = 0.5, where the minimum and average fitness values are, re-
spectively, 1.951 and 10.446 (SOEA), 1.841 and 2.919 (NSGA-II), 2.139 and
5.401 (SPEA2). Although NSGA-II and SOEA best values are very similar, and
better than SPEA2 results, the average congestion values for NSGA-II are sub-
stantially smaller, that is, the NSGA-II solutions are globally better than those
provided by the other two algorithms. The averaged C metric values for the
302 network topology scenarios, Table 4, show that NSGA-II solutions domi-
nate SPEA2 ones in more than 56% on average, with a reverse C-measure of
almost 0%. When compared with SOEA solutions, NSGA-II solutions dominate
approximately 16% of the SOEA ones and, for the reverse case, SOEA solutions
dominate NSGA-II ones in only about 6%. It is therefore possible to conclude,
that, for the 302 topology experiment scenarios, the NSGA-II algorithm offers
generally better solutions than any of the two other algorithms and that the
SPEA2 algorithm had the worst performance of all.

As the size of the used topology increases, the performance of the NSGA-
II algorithm detaches from the others. The experiments with the 304 network
topology show that while the best values of the three algorithm remain accept-
able, NSGA-II features the best solutions, and is the only algorithm whose mean
fitness values remain within the acceptable operating limits of the network (Ta-
ble 3). The C metric values for this new set of simulations are very similar to
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Table 4. Overall C-Measure for two traffic demand matrices optimization

Abilene 302 304

SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2

SOEA - 0.143 0.179 - 0.062 0.553 - 0.029 0.602
NSGA-II 0.150 - 0.182 0.161 - 0.564 0.150 - 0.600
SPEA2 0.110 0.113 - 0.001 0.004 - 0.000 0.001 -

those obtained for the 302 topology, and again, NSGA-II solutions are globally
better than those provided by SOEA and SPEA2.

Table 5. Average hypervolume for two traffic demand matrices optimization

Algorithm
Topology

Abilene 302 304

SOEA 0.002 0.585 34.359

NSGA-II 0.002 0.321 4.868

SPEA2 0.002 4.592 7950.838

It is possible to identify a consistency in the performance of all three algo-
rithms where NSGA-II is the algorithm that show comparatively best results.
The hypervolume indicators, presented in Table 5, also support that NSGA-II is
the best choice algorithm in the context of weights setting optimization for two
traffic demand matrices. The NSGA-II pareto fronts are closer to the Pareto-
optimal approximation, and better spread, than those provided by SOEA and
SPEA2.

4 Single Link Failure Optimization

4.1 Problem Definition

Link failures on network topologies can occur for different reasons. At the physi-
cal layer, a fiber cut or a failure of optical equipment may cause a loss of physical
connectivity. Other failures may be related to hardware, such as linecard fail-
ures. Router processor overloads, software errors, protocol implementation and
misconfiguration errors may also lead to loss of connectivity between routers.
Failures may also vary in nature. They can be due to scheduled network main-
tenance or be unplanned. Although backbone networks are usually well planned
and adequately provisioned, link failures may still occur and undermine their
operational performance. Several mechanisms can be used to protect an IP net-
work against link failures, such as overlay protection or MPLS fast re-route [2],
but protecting all links remains a very difficult task, or even impossible, espe-
cially for large network topologies. Thus, protection against failure continues to
be link based.
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The NetOpt framework supports several criteria to select the failing link,
some are dynamic, that depend on the solution that is being evaluated, while
others are user choices. The framework also allows to select more than one link to
fail simultaneously each corresponding to an optimization objective. This study
only considers two of the available single link selection criteria:

– Highest Load : The selected link, for each solution being evaluated, is the
one that has the highest load for the traffic demands given as parameter.
Therefore, distinct solutions may have a different failing link.

– User Selected : A network administrator identifies the link against whose
failure the network should be protected.

For a given network topology with n links and a traffic demands matrix D,
the aim is to find a set of weights w that simultaneously minimize the function
Φ∗n, representing the congestion cost of the network in the normal state, and
Φ∗n−1, representing the congestion cost of the network when foreseeing that a
selected link from the topology will fail. The SOEA weighted-sum aggregation
model is described in Equation 4:

f (w) = α× Φ∗n + (1− α)× Φ∗n−1, α ∈ [0; 1] (4)

An administrator is able to define a trade-off between the objectives by tuning
the value of the α weight. When α = 1, the optimization is only performed for
the normal state topology, without any link failure, whereas when using α = 0.5
the same level of importance is given to the two topology states. However, as
the link failure optimization can compromise the network congestion level in a
normal state, a network administrator may wish to focus on the performance of
the normal state network, e.g. using a α value between 0.5 and 1, at the expense
of the congestion level in a failed state, that may not occur. Although this feature
offers a good tuning tool for administrator, it requires several distinct runs in
order to assert the best compromised solution. MOEA algorithms, on the other
hand, are able to deliver such knowledge base and choice selection after a single
run, and therefore, being more appealing in this context.

4.2 Highest Load Link Failure Optimization

The failure of the network link that carries the highest traffic load is one of the
worst case scenarios for the failure of a single link in a network. Its failure would
translate into the re-routing of the higher amount of traffic and potentially the
worst case for out of order TCP packet delivery. Distinct levels of traffic demands,
D0.3, D0.4 and D0.5 were used to compare the algorithms in problems with
increasing difficulty. For comparison purpose, Table 6 that shows the obtained
minimum weighted-sum aggregation fitness values, also includes the optimized
congestion values for the networks without link failure optimization, and the
respective congestion level after the failure of the link with higher load.

The simulation results show that, for the smallest topology, Abilene, all three
algorithm behave alike producing equally good solutions. But, as the topology
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Table 6. Best fitness values for single link failure weights setting optimization - Highest
Load Link

Topology Demand
Without Link With Link Failure Optimization

AlgorithmFailure Optimization α = 0.25 α = 0.5 α = 0.75

Before After Before After Before After Before After

Abilene

0.3 1.20 1.76
1.29 1.23 1.29 1.23 1.23 1.33 NSGA-II
1.34 1.21 1.33 1.22 1.24 1.35 SOEA
1.29 1.23 1.29 1.23 1.23 1.34 SPEA2

0.4 1.53 32.22
1.63 1.58 1.63 1.58 1.55 1.70 NSGA-II
1.69 1.58 1.69 1.58 1.55 1.73 SOEA
1.64 1.58 1.64 1.58 1.55 1.70 SPEA2

0.5 1.91 309.48
2.14 1.91 2.14 1.91 2.05 2.17 NSGA-II
2.26 1.93 2.26 1.93 2.26 1.93 SOEA
2.14 1.91 2.14 1.91 2.04 2.14 SPEA2

302

0.3 1.49 14.20
1.55 1.42 1.44 1.48 1.44 1.48 NSGA-II
1.56 1.58 1.56 1.58 1.54 1.61 SOEA
1.57 1.50 1.56 1.51 1.49 1.64 SPEA2

0.4 1.79 41.44
1.83 1.76 1.75 1.80 1.75 1.80 NSGA-II
2.07 2.09 1.85 2.22 1.85 2.22 SOEA
1.95 1.93 1.91 1.96 1.91 1.96 SPEA2

0.5 5.49 180.94
4.99 3.70 4.99 3.70 4.11 5.31 NSGA-II

12.61 17.58 12.61 17.58 12.61 17.58 SOEA
8.23 8.41 8.15 8.48 7.86 9.03 SPEA2

304

0.3 3.67 73.69
2.38 2.20 2.30 2.25 2.10 2.59 NSGA-II

11.14 7.91 11.14 7.91 6.04 13.64 SOEA
59.48 29.64 28.95 47.39 28.95 47.39 SPEA2

0.4 33.93 223.04
18.66 10.13 18.66 10.13 10.07 28.42 NSGA-II
77.09 88.80 77.09 88.80 58.81 140.07 SOEA

355.03 139.57 205.65 190.92 159.03 325.12 SPEA2

0.5 126.90 158.44
157.19 95.15 97.19 132.37 97.19 132.37 NSGA-II
310.85 180.52 310.85 180.52 224.07 277.66 SOEA
490.70 466.66 490.70 466.66 467.31 504.91 SPEA2

size increases, or with the escalation of traffic requirements, NSGA-II is able to
obtain solutions which translate into lower congestion values before and after the
link failure. In the 304 network topology scenario, with D0.3 traffic demands and
α = .5, the fitness values before and after the link failure are, respectively, 2.19
and 2.29 for NSGA-II; 5.81 and 33.01 for SOEA; 204.29 and 219.19 for SPEA2.
These results are even more relevant when comparing with the congestion values
when only the congestion of the network in the normal state is optimized by
resourcing to a single objective algorithm (α = 1). The NSGA-II algorithm
was able to provide a better solution while optimizing two objectives than a
SOEA algorithm that optimizes a single objective, the congestion of the network
before the link failure. This result is observed in all scenarios that are more
demanding, allowing to conclude that NSGA-II performs better in these more
difficult optimization tasks than SOEA even considering two objectives rather
than a single one.

Although congestion values above 10 2/3 are not acceptable within an oper-
ational network, the results allow to observe that the more difficult the problem,
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the greater the difference between the quality of the solutions produced by each
of the three EAs. NSGA-II is able to outperform SOEA and SPEA2 in all sce-
narios. The lack of performance of the SOEA algorithm in more demanding
scenarios can be explained by its requirement of a higher number of generations
to properly converge. It is also important to acknowledge that even small changes
on a single weight can provoke drastic changes on shortest paths and therefore
on the congestion value. The crowding distance used in the selection operator of
NSGA-II, that keeps a diverse front by making sure each member stays a crowd-
ing distance apart, seems to positively influence the algorithm performance.

The C-measure values in Table 7 show that, despite being able to offer so-
lutions with equivalent best fitness for the Abilene topology, the SO algorithm
produces more solutions that are neither dominated by NSGA-II or SPEA2 so-
lutions. In contrast, for the more demanding topologies, 302 and 304, NSGA-II
solutions dominate approximately 14% of the SOEA solutions, when the reverse
is 7% or less. When compared against SPEA2, both NSGA-II and SOEA present
better values.

Table 7. C-measure of the highest Load link failure optimisation

Abilene 302 304

SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2

SOEA - 0.173 0.242 - 0.071 0.702 - 0.056 0.887
NSGA-II 0.007 - 0.098 0.143 - 0.709 0.143 - 0.887
SPEA2 0.010 0.108 - 0.003 0.005 - 0.000 0.000 -

4.3 User Choice Link Failure Optimization

A network administrator can consider that a particular link is more crucial than
others, because of its capacity or for other reasons. It is therefore important to
enable an administrator to select the link that needs to be protected against
failure. For this set of simulations, the selected link in each topology is such that
it occurs in the largest number of shortest paths when assigning to each link a
weight inversely proportional to its capacity.

The minimal congestion values before and after the failure of the selected
link, for distinct trade-offs (α = 0.25, 0.5, 0.75), are presented in Table 8.

The results of this new test suite consolidate previous observations, that is,
for simpler problems, with smaller topologies and lower traffic demand levels,
the SOEA and MOEAs algorithms provide equally good solutions, but, as the
number of nodes and links increases, or with the growth of traffic demands,
NSGA-II is able to deliver better solutions, in the large majority of scenarios,
both before and after the link failure. The C metric values, Table 9, are also
similar to those observed for the higher load link failure optimization. In average
and in the context of simpler problems, SOEA continues to have more solutions
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Table 8. Best fitness values for single link failure weights setting optimization - User
Select Link

Topology Demand
Without Link With Link Failure Optimization

AlgorithmFailure Optimization α = 0.25 α = 0.5 α = 0.75

Before After Before After Before After Before After

Abilene

0.3 1.20 1.76
1.23 1.73 1.20 1.74 1.20 1.74 NSGA-II
1.22 1.71 1.21 1.72 1.20 1.74 SOEA
1.24 1.72 1.20 1.74 1.20 1.74 SPEA2

0.4 1.53 25.57
1.58 33.44 1.58 33.44 1.53 33.52 NSGA-II
1.56 5.26 1.56 5.26 1.56 5.26 SOEA
1.58 33.44 1.58 33.44 1.53 33.52 SPEA2

0.5 1.91 309.48
1.97 119.30 1.95 119.32 1.93 119.34 NSGA-II
1.98 281.63 1.98 281.63 1.98 281.63 SOEA
2.01 119.29 1.95 119.32 1.93 119.34 SPEA2

302

0.3 1.49 8.17
1.40 1.50 1.40 1.50 1.40 1.50 NSGA-II
1.54 4.55 1.54 4.55 1.54 4.55 SOEA
1.61 1.74 1.60 1.74 1.60 1.74 SPEA2

0.4 1.79 58.65
1.76 1.93 1.76 1.93 1.75 1.93 NSGA-II
2.10 3.40 2.10 3.40 2.10 3.40 SOEA
2.18 2.50 2.18 2.50 2.18 2.50 SPEA2

0.5 5.49 193.16
5.79 41.19 5.44 41.51 5.44 41.51 NSGA-II

22.45 87.53 17.23 91.56 8.07 117.40 SOEA
28.13 47.86 12.86 55.66 12.30 56.43 SPEA2

304

0.3 3.67 117.13
2.20 2.29 2.19 2.29 2.18 2.33 NSGA-II
5.81 33.01 5.81 33.01 5.81 33.01 SOEA

204.29 219.19 204.29 219.19 204.29 219.19 SPEA2

0.4 33.93 98.98
10.43 9.67 9.90 10.05 9.85 10.11 NSGA-II
49.27 111.08 49.27 111.08 49.27 111.08 SOEA

456.36 509.50 456.36 509.50 440.71 544.54 SPEA2

0.5 126.90 421.07
89.91 88.98 62.21 112.74 62.21 112.74 NSGA-II

165.46 319.34 165.46 319.34 165.46 319.34 SOEA
557.49 600.71 557.49 600.71 557.49 600.71 SPEA2

that are not dominated by any of the non-dominated sets of solutions resulting
from NSGA-II and SPEA2 based optimizations. As the difficulty of the problem
increases, NSGA-II stands out, providing better sets of non-dominated solutions.

Table 9. C-measure of User Choice link failure optimization

Abilene 302 304

SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2 SOEA NSGA-II SPEA2

SOEA - 0.162 0.203 - 0.074 0.443 - 0.065 0.659
NSGA-II 0.008 - 0.063 0.122 - 0.468 0.163 - 0.657
SPEA2 0.024 0.125 - 0.014 0.019 - 0.000 0.001 -
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5 Conclusion

The simplicity of link-state protocols, and their reliability proven over the last
two decades, continues to justify the use of such routing algorithms in the con-
text of IP backbone networks. However, the dynamic conditions of IP networks,
such as changes on traffic demands and disruptions on the underlying topology
need to be addressed so that the network continues to ensure a good operational
performance even if such events take place. An administrator could react to
such changes by re-configuring the link weights but with a temporary negative
impact on traffic flows. Other approaches, such as preventive optimization, can
effectively take into consideration foreseen changes to compute weight configu-
rations that allow the network to ensure a continues good levels of performance
even in dynamic conditions. In this context, two multi objective problems were
addressed, that consider changes on traffic demands and single link failure, re-
sourcing to three popular EAs spanning both single and multi-objective: NSGA-
II, SPEA2 and single objective EA using weighted-sum aggregation.

The results showed that for simpler problems the single objective optimiza-
tion approaches provide solutions with best fitness values as good as the MOEA
algorithms but, as the difficulty of the problems increases, for more complex
network topologies and for more demanding traffic requirements, NSGA-II pro-
vides better solutions. By comparing the obtained results with previous work by
the authors, it can be observed that SOEA algorithms require a greater number
of generations for more demanding problems than MOEA algorithms. The two
MOEAs, NSGA-II and SPEA2, rely heavily on their density estimator mecha-
nisms, where the NSGA-II ability to provide a broader spread seems to influence
more positively the optimization process than a better solution distribution at-
tained by SPEA2.

Apart from the quality of the solutions other more practical aspects help
determine the most appropriate algorithm to the problem. The single objec-
tive approaches have an important limitation. They assume, in each individual
optimization process, that there is a single optimum trade-off between the ob-
jectives. A network administrator needs to guess which value of the weighting
trade-off parameter better fits the needs of a network on the addressed opera-
tional conditions. In contrast, MOEA algorithms are able to calculate a set of
solutions with distinct trade-offs between the two objectives, and let the network
administrator decide which solution to implement. Moreover, NSGA-II is able
to offer this broader set of solutions within a shorter time than the SOEA using
weight-aggregation, or SPEA2 in the same conditions.

References

1. Aysegl Altin, Bernard Fortz, Mikkel Thorup, and Hakan mit. Intra-domain traffic
engineering with shortest path routing protocols. Annals of Operations Research,
204(1):56–95, 2013.

2. D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus. Requirements
for Traffic Engineering Over MPLS. RFC 2702 (Informational), September 1999.



Comparison of Single and Multi-objective EAs for Robust LS Routing 15

3. B. RFC 3954 - Cisco Systems NetFlow Services Export Version 9, October 2004.
4. Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and eli-

tist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Com-
putation, 6(2):182–197, 2002.

5. E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

6. P. Evangelista, P. Maia, and M. Rocha. Implementing metaheuristic optimization
algorithms with jecoli. In Proceedings of the 2009 Ninth International Confer-
ence on Intelligent Systems Design and Applications, ISDA ’09, pages 505–510,
Washington, DC, USA, 2009. IEEE Computer Society.

7. B. Fortz. Internet traffic engineering by optimizing ospf weights. In Proceedings of
IEEE INFOCOM, pages 519–528, 2000.

8. B. Fortz and M. Thorup. Optimizing ospf/is-is weights in a changing world. IEEE
Journal on Selected Areas in Communications, 20(4):756–767, 2002.

9. G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analysis
of link failures in an ip backbone. In Proceedings of the 2Nd ACM SIGCOMM
Workshop on Internet Measurment, IMW ’02, pages 237–242, New York, NY, USA,
2002. ACM.

10. A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Universal topology genera-
tion from a users perspective. Technical report, Boston, MA, USA, 2001.

11. J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998. Updated by RFC
5709.

12. D. Oran. OSI IS-IS Intra-domain Routing Protocol. Technical report, IETF,
February 1990.

13. V. Pereira, M. Rocha, P. Cortez, M. Rio, and P. Sousa. A framework for robust
traffic engineering using evolutionary computation. In Guillaume Doyen, Martin
Waldburger, Pavel eleda, Anna Sperotto, and Burkhard Stiller, editors, Emerging
Management Mechanisms for the Future Internet, volume 7943 of Lecture Notes in
Computer Science, pages 1–12. Springer Berlin Heidelberg, 2013.

14. M. Rocha, P. Sousa, P. Cortez, and M. Rio. Quality of Service Constrained
Routing Optimization Using Evolutionary Computation. Applied Soft Comput-
ing, 11(1):356–364, 2011.

15. K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary algorithms for multi-
objective optimization: Performance assessments and comparisons. Artif. Intell.
Rev., 17(4):251–290, June 2002.

16. E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving the strength pareto
evolutionary algorithm. Technical report, 2001.


