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ABSTRACT 10 

This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to 11 

different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack 12 

initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy 13 

that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack 14 

surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic-15 

damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an 16 

explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based 17 

materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at 18 

material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the 19 

model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and 20 

RC beams failing in shear is investigated. 21 
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1. INTRODUCTION 25 

During the last decades several constitutive models have been developed in an attempt of capturing the quite 26 

sophisticated behaviour of cement based materials when submitted to multi-stress fields. To simulate the complex 27 

functioning of the structures formed by these materials, those constitutive models are in general implemented in 28 

computer programs based on the finite element method (FEM) [1-4]. Getting reliable FEM-based simulations is still a 29 
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challenge due to the complexity of concrete behaviour associated to the cracking in tension and crushing in 30 

compression. Experimental tests demonstrate that concrete behaviour in tension is brittle, and after cracking initiation 31 

concrete develops a softening behaviour with a decay of tensile capacity with the widening of the cracking process. This 32 

crack opening process is followed by a decrease of crack shear stress transfer due to the deterioration of aggregate 33 

interlock. Concrete in compression also demonstrates a pronounced nonlinear behaviour with an inelastic irreversible 34 

deformation. In the pre-peak stage of concrete response in uniaxial compression, a nonlinear stage is observed, whose 35 

amplitude depends of the concrete strength class, followed by a softening stage where brittleness is also dependent of 36 

the strength class. The complexity of concrete behaviour increases when submitted to multiaxial stress field that is the 37 

current situation of the major reinforced concrete (RC) structures. 38 

The elasto-plasticity (generally abbreviated as plasticity) [5], the nonlinear fracture mechanics [6] and the continuum 39 

damage mechanics (CDM) [7] are the frequently used approaches to simulate the behaviour of concrete structures. The 40 

elasto-plasticity theory is preferentially used for modelling the multiaxial behaviour of concrete, since the concept of 41 

failure criterion defines the strength capacity of a material when submitted to a generic stress field. The models based 42 

on elasto-plasticity alone fail to address the damage process due to crack initiation and propagation, therefore the 43 

experimentally observed stiffness degradation of the material is not captured accurately by using exclusively the elasto-44 

plasticity theory [8, 9]. In fact, the recent numerical models complement the elasto-plasticity theory with other 45 

approaches that provide a better interpretation of concrete behaviour in tension. Combining the elasto-plasticity theory 46 

with CDM [8-15], and with the nonlinear fracture mechanics [6, 16] are alternatives that have been explored.  47 

The theoretical framework of the CDM is based on the gradual reduction of the elastic stiffness. The damage is defined 48 

as the loss of strength and stiffness of the material when subjected to a certain loading process. However the CDM 49 

alone is not able to reproduce the irreversible (permanent) deformation of the concrete that is pronounced in the case of 50 

high confined compressive loading [10, 11]. Therefore plasticity and damage theories are being merged in an attempt of 51 

constituting reliable approaches capable of simulating the strength and stiffness degradation and occurrence of 52 

irreversible deformations. The plastic-damage models usually adopt the flow theory of plasticity based on isotropic 53 

hardening combined with either the isotropic, or anisotropic damage formulations [8], and different types of coupling 54 

strategies of the two theories are available [13]. Anisotropic damage models consider a damage tensor to account for 55 

micro-cracking in different directions, but the adoption of this approach is limited due to the high level of sophistication 56 

when it is combined with the plasticity [14]. The isotropic, scalar, damage models, on the other hand, are very often 57 

implemented in combination with the plasticity theory [8, 11, 12, 15], since they assume a state of damage equally 58 

distributed in all the material directions by means of a scalar measure. A realistic prediction of concrete damage process 59 

requires the adoption of at least two damage variables, one for tension and another for compression [8-15].   60 
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Another possibility of overcoming limitations of the plasticity theory is coupling a fracture approach to the elasto-61 

plasticity [6, 16]. In this class of models, the theory of plasticity is used to deal with the elasto-plastic behaviour of 62 

material under compression, whereas various fracture theories can be used to simulate the cracking behaviour. The 63 

present study proposes a constitutive model that belongs to this category, since the process of cracking initiation and 64 

propagation is accounted by a multi-directional fixed smeared crack approach, while the inelastic compressive 65 

behaviour of the material between cracks is simulated by a stress-based plasticity model. The plasticity model is 66 

described with the help of a pressure-sensitive yield surface inspired on the work of Willam and Warnke [17]. Some of 67 

the models based on classical plasticity simulate directly the material softening/hardening behaviour by including 68 

softening/hardening functions in the equation of the yield surface [18-21]. However, in the proposed constitutive model 69 

the plasticity part is maintained in hardening phase to only account for the development of irreversible strains and 70 

volumetric strain in compression, whereas the strain softening and stiffness degradation of the material under 71 

compression is controlled by an isotropic strain base damage model. 72 

In this work the main objective is to develop an efficient model capable of simulating the nonlinearities of cement based 73 

materials, like concrete, subjected to several loading paths. For this purpose a brief description of the already existing 74 

multi-directional fixed smeared crack approach (SC) is made [22, 23]. Then, a plasticity-damage model is proposed to 75 

consider the inelastic deformation of material between the cracks, and its coupling with the SC was implemented in the 76 

FEMIX FEM-based computer program [24]. To evaluate the performance of the model and to evidence the interaction 77 

between cracking and plasticity-damage parts of the model, some numerical tests at material level are executed and the 78 

obtained results are discussed. The predictive performance of the model was then extended by simulating: shear wall 79 

panel tests; an experimental program composed of T cross section RC beams shear strengthened with different 80 

configurations of carbon fibre reinforced polymer (CFRP) laminates applied according to the Near Surface Mounted 81 

(NSM) technique. Based on the numerical simulations of these experimental tests, the potentialities of the proposed 82 

model are discussed. 83 

 84 

2. MODEL DESCRIPTION  85 

2.1 – Multi-directional fixed smeared crack (SC) model 86 

Modelling cracked materials using a smeared approach is usually based on the decomposition of the total incremental 87 

strain vector,  , into an incremental crack strain vector, 
cr

 , and an incremental concrete strain vector, 
co

 , as 88 

proposed by De Borst [25], 
co cr

       . Assembling in 
cr

  the deformational contribution of the sets of 89 

smeared cracks that can be formed (according to a crack opening criterion) in an integration point (IP), the constitutive 90 
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law of the multi-directional fixed smeared crack (SC) model is obtained. In the present section the SC model is briefly 91 

discussed and its presentation is restricted to plain stress state and at the domain of an IP. 92 

For the present stage of the model description, it is assumed that material between cracks develops linear elastic 93 

behaviour, therefore the 
co

  is the incremental elastic strain vector (
co e

    ). To simulate the plastic response of 94 

material in compression, the 
co

  should also include the plastic part of the material deformation, 
co e p

       , 95 

which will  be discussed in the next section. 96 

The constitutive law for the elastic-cracked material can be, therefore, written as: 97 

( )
e cr

D       (1) 

being 
1 2 12{ , , }         the incremental stress vector induced into the material due to 

1 2 12{ , , }         and 98 

considering the constitutive matrix of the intact material, 
e

D .  99 

The 
cr

  is obtained from the incremental local crack strain vector, 
cr

 : 100 

T
cr cr cr

T    
 

 
(2) 

where: 101 

,1 ,1 , , , ,... ...
Tcr cr cr cr cr cr cr

n t n i t i n m t m                 
(3) 

includes normal ( cr

n ) and tangential ( cr

t ) crack strain components of the m cracks that can be formed in an IP, and 102 

cr
T  is the matrix that transforms the stress components from the coordinate system of the finite element to the local 103 

coordinate system of each crack (a subscript  is used to identify entities in the local crack coordinate system). If m  104 

cracks occur at an IP: 105 

1 ... ...
T

cr cr cr cr

i mT T T T 
 

 
(4) 

The transformation matrix of generic ith crack, 
cr

iT , is obtained by having orientation of the ith crack, i , that is the 106 

angle between 
1x  axis and the vector perpendicular to the ith crack [22].         107 

At the crack zone (damage material) of an IP, the opening and sliding process is governed by the following crack 108 

constitutive relationship: 109 

cr cr cr
D      (5) 

where 
cr

  is the vector of the incremental crack stress in the crack coordinate system with the contribution of normal, 110 

cr

n , and tangential components, 
cr

t : 111 

,1 ,1 , , , ,... ...
Tcr cr cr cr cr cr cr

n t n i t i n m t m                 
 (6) 
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where 
cr

D  is the matrix that includes the constitutive law of the m active cracks, i.e., the ones not completely closed. 112 

Accordingly the constitutive law of ith generic crack, 
cr

iD , is given:  113 

0

0

cr
cr n

i cr

t

D
D

D

 
  
 

 
 (7) 

where cr

nD  and cr

tD  represent, respectively, the stiffening/softening modulus corresponding to fracture mode   114 

(normal), and fracture mode   (shear), of the ith crack. 115 

At the IP the equilibrium condition is assured by imposing the following condition: 116 

cr cr
T     (8) 

In the course of the implementation of the constitutive model, it is assumed that at a certain loading step, n , the stress 117 

and strain quantities are known, and the local crack variables are updated as well. At the onset of the next loading step, 118 

1n  , Eq. (8) must be accomplished: 119 

1, 1 1

cr cr

nn nT    (9) 

Including Eqs. (1), (2) and (5) into Eq. (9), and taking into account that , 1 , , 1

cr cr cr

n n n       and 
1 1n n n     , 120 

yields, after some arrangements, in: 121 

1 1 1 1 1, , 1 1 , 1 0
T

cr cr cr cr cr e cr e cr cr

n n n n nn n n n nD T T D T D T          
        
 

 
(10) 

The Newton-Raphson method is used to solve this system of nonlinear equations, where the unknowns are the 122 

components of , 1

cr

n  . After obtaining , 1

cr

n  , the 1

cr

n   and , 1

cr

n   are determined from Eqs. (2) and (5), 123 

respectively, and finally 
1n   is calculated from Eq. (1). 124 

The crack initiation is governed by the Rankin failure criterion that assumes a crack occurs when the maximum 125 

principal tensile stress in a IP attains the concrete tensile strength,
ctf , under an assumed tolerance. After crack 126 

initiation, the relationship between the normal stress and the normal strain in the crack coordinate system, i.e. cr cr

n n  , 127 

is simulated via the trilinear diagram represented in Fig. 1 [22]. Normalized strain, ( 1,2)i i  , and stress, ( 1,2)i i  , 128 

parameters are used to define the transition points between linear segments, being fG 
 the fracture energy mode I, while 129 

bl  is the characteristic length (crack bandwidth) used to assure that the results of a material nonlinear analysis is not 130 

dependent of the refinement of the finite element mesh. 131 

The model considers shear behaviour of the cracked concrete according to two methods:    132 
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1) using an incremental crack shear stress shear strain approach based on a shear retention factor,  . According to this 133 

approach the fracture mode  modulus, cr

tD , is simulated as:  134 

1

cr

t cD G






 

(11) 

where 
cG  is the concrete elastic shear modulus, while the shear retention factor ,  , can be a constant value or, 135 

alternatively, as a function of current crack normal strain, cr

n , and of ultimate crack normal strain, ,

cr

n u , such as: 136 

1

,

1

P
cr

n

cr

n u






 
   
 

 (12) 

being the exponent P1 a parameter that defines the decrease rate of   with increasing cr

n . 137 

2) adopting a cr cr

t t   softening law to simulate more correctly the shear stress transfer during the crack opening 138 

process, which allows better predictions in terms of load carrying capacity, deformability, and crack pattern of RC 139 

elements failing in shear [23]. The adopted shear softening law is represented in Fig. 2, and can be formulated by the 140 

following equation [23]: 141 

 

,1 ,

,

, , , ,

, ,

,

0

0

cr cr cr cr

t t t t p

cr

t pcr cr cr cr cr cr cr

t t p t t p t p t t ucr cr

t u t p

cr cr

t t u

D   


      

 

 

  



    





 

 

(13) 

where ,

cr

t p  is the crack shear strength (shear stress at peak), , , ,1

cr cr cr

t p t p tD   is the crack shear strain at peak, and ,

cr

t u  is 142 

the ultimate crack shear strain: 143 

,

,

,

2 f scr

t u cr

t p b

G

l



  

(14) 

being 
,f sG  the fracture energy corresponding to fracture mode II, and 

bl  the crack bandwidth that is assumed to be 144 

equal to the one adopted to simulate the fracture mode I. Since no dedicated research is available on the process of 145 

determining the crack band width parameter that bridges crack shear slide with shear deformation in the smeared shear 146 

crack band, it was decided to adopt the same strategy for the crack band width regardless the type of fracture process. 147 

This decision has, at least, the advantage of assuring the same results regardless the mesh refinement, which is not 148 

assured when using the concept of shear retention factor in structures failing in shear. The inclination of the hardening 149 

branch of diagram, ,1

cr

tD  (see Fig. 2), is introduced according to (11) where   is set as a constant value in the range 150 

 0,1 . More details corresponding to the crack shear softening diagram can be found elsewhere [23].  151 
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Fig. 3 represents a schematic representation of the crack shear stress-shear strain diagram for the incremental approach 152 

based on shear retention factor (Eq. (11) and Eq. (12)). It is verified that with the increase of 
cr

t  the crack shear 153 

modulus, 
cr

tD , decreases but the crack shear stress, 
cr

t , increases up to attain a maximum that depends on the 154 

parameters considered for the Eq. (12). This value can be much higher than the concrete shear strength according to 155 

available experimental data and design guidelines. For RC elements failing in bending the maximum value of 
cr

t  is 156 

relatively small, therefore simulating shear stress degradation with the evolution of 
cr

t  has not relevant impact of the 157 

predictive performance of the simulations. However, in RC structures failing in shear, the adoption of a constitutive law 158 

capable of simulating the crack shear stress degradation, as the one adopted in the present work, is fundamental for the 159 

predictive performance. The computing time consuming and the convergence stability of the incremental and iterative 160 

procedure of the model when adopting softening diagrams for simulating all the fracture processes are, however, 161 

increased, therefore shear softening approach is only recommended when shear is the governing failure mode. 162 

 163 

2.2 – Plastic-damage multi-directional fixed smeared crack (PDSC) model  164 

The SC model described in the section 2.1 is now extended in order to simulate the inelastic behaviour of cement based 165 

materials in a compression-compression and compression-tension stress fields. For this purpose a plastic-damage 166 

approach is coupled with the SC model, deriving a model herein designated as plastic-damage multi-directional fixed 167 

smeared crack (PDSC) model, which is capable of simulating the nonlinear behaviour of cement based materials due to 168 

both cracking and inelastic deformation in compression. 169 

 170 

2.2.1 – Damage concept in the context of plastic-damage model 171 

To demonstrate the process of damage evolution in compression when an isotropic damage model is applied to simulate 172 

strength and stiffness degradation in compression, a simple bar loaded in compression is presented. This problem is 173 

similar to the case of the bar under tension proposed by Kachanov [26]. Consider a bar made by cement based materials 174 

and exposed to a certain level of damage due to uniaxial compressive force, N , as illustrated in Fig. 4a [14]. The total 175 

cross-sectional area of the bar in damaged, nominal, status is denoted by A , then the stress developed on this area is 176 

defined as N A  , herein designated as nominal stress. Due to the thermo-hygrometric effects during the curing 177 

process of cement based materials, voids and micro-cracks are formed even before these materials have been loaded by 178 

external loads [20]. However, the impact of these “defects” in terms of stiffness and strength of the material can be 179 

neglected, and the degeneration of the micro- into meso- and macro cracks is generally a gradual damage process 180 

depending on the evolution of the external loading conditions. Let’s assume the variable DA  represents the area 181 
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corresponding to these defects (meso- and macro cracks) (Fig. 4b). According to the principle of isotropic damage 182 

approach, a scalar measure, 
cd , is defined to represent this damage level in total cross-sectional area ( )A , such that:       183 

D

c

A
d

A
  

(15) 

that can take values from 0 to 1. The state 0cd   implies the area of A  is intact, while 1cd   denotes the area of A  is 184 

completely damaged. 185 

A fictitious undamaged, effective, area of A , is defined by removing all the damage regions from the area of A  186 

(  1D cA A A d A    ), then the uniaxial stress developed on the area A , N A  , is denoted as effective stress  187 

(Fig. 4c). Since the applied force on both damaged and undamaged areas is N , then the following relation holds 188 

between the uniaxial stress at damaged (nominal),  , and undamaged (effective),  , configurations:  189 

 1 cd    (16) 

By extending this concept for a multidimensional stress field, the relation between the nominal stress vector ( ), and 190 

the effective stress vector ( ) for isotropic damage models can be expressed as:  191 

 1 cd    (17) 

The present study adopts a stress based plasticity model formulated in effective stress space in combination with an 192 

isotropic damage model. The resultant plastic-damage approach is meant to utilize for modelling inelastic deformation 193 

of material under compression. 194 

An important assumption of the proposed plastic-damage model is to define the stage that damage initiation takes place. 195 

In this study the damage threshold was assumed based on the phenomenological interpretation of the behaviour of 196 

current concrete under compressive loading. Fig. 5a demonstrates the three distinct consecutive stages of cracking that 197 

can be identified in concrete under uniaxial compressive load, based on initiation and propagation of cracks [27]: 198 

Stage I - below ≈30% of the peak stress. The formation of internal cracks at this stage is negligible, and the stress-strain 199 

response of the material may be assumed as linear; 200 

Stage II - between ≈30% and ≈100% of the peak stress. At the beginning of this stage the internal cracks initiate and 201 

propagate at the interface zone and new micro-cracks develop. Around 60% of the peak stress, the micro-cracks at the 202 

cementitious matrix start to develop randomly over volume of the material. At approximately 80% up to 100% of the 203 

peak stress, all the small internal cracks become unstable and start to localize into major cracks; 204 

Stage III - after peak load. At this stage the major cracks continuously propagate, although the applied load is reducing.  205 

In this study damage initiation is assumed to be related to development of the major cracks formed after the peak load. 206 

Then evolution of the damage through the stage II is considered to be null ( 0cd  ), and nonlinear behaviour of the 207 
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current concrete in this stage is reproduced by only a plasticity model. At the stage III the plasticity model is responsible 208 

for simulating irreversible plastic deformation and inelastic volumetric expansion of the material whereas the isotropic 209 

damage model deals with strength and stiffness degradation of the material due to formation of the major cracks. Fig. 5b 210 

demonstrates the schematic representation of the damage evolution at the proposed plastic-damage model for the three 211 

stages of cracking in uniaxial compression. 212 

It is noted the statement of “damage” in the text intends to simulate the inelastic behaviour of concrete in compression 213 

by using a plastic-damage model, while cracking formation and propagation is simulated by a SC model. Therefore, if 214 

concrete is cracked and concrete between cracks experience inelastic deformation in compression, both models are 215 

coupled. 216 

  217 

2.2.2 – Constitutive relationship for PDSC model  218 

For modelling of a cracked member with material between cracks in compression, the term 
co

  is further decomposed 219 

into its elastic, 
e

 , and plastic parts, 
p

 , (
co e p

       ), thereby the incremental constitutive relation for the 220 

PDSC model is given by:  221 

( )
e p cr

D         (18) 

where the incremental crack strain vector, 
cr

 , is evaluated by the SC model described in section 2.1. A stress based 222 

plasticity model formulated in effective stress space, i.e. without considering damage, is responsible for the evaluation 223 

of 
p

 . The plasticity model assumes that plastic flow occurs on the undamaged material between the damaged regions 224 

formed during the strain softening compression stage of the material. Then the effective stress state obtained according 225 

to Eq. (18) needs to be mapped into nominal stress space according to the principle of CDM. This mapping process 226 

should distinguish the tensile from the compressive stress components, since the damage is only applied to these last 227 

ones. Ortiz [28] proposed the split of the effective stress vector,  , into positive (tensile) and negative (compressive) 228 

components to adopt different scalar damage variables for tension and compression. Such operation is given by:  229 

,
i ii

i

P P    
  

     (19) 

where 


 and 


 are the positive and the negative parts of the effective stress vector, respectively, and 
i  is the ith 230 

principal stress extracted from vector  , and 
i

P  is the normalized eigenvector associated with the ith principal stress 231 

( i ). The symbol .  denotes Macaulay bracket function operating as   2x x x  . 232 

The compressive damage scalar, 
cd , must affect only the negative part of the effective stress vector, i.e. 


, therefore a 233 

similar approach to Eq. (17) gives the nominal stress vector, such as: 234 
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(1 )cd  
 

    (20) 

 235 

2.2.3 – Plasticity model in effective stress space 236 

The plastic strain vector, 
p

 , is evaluated by a time-independent plasticity model that is defined by four entities: yield 237 

function (yield surface); flow rule; evolution law for the hardening variable; and condition for defining loading-238 

unloading process. In this study the yield function, f , was derived from the five-parameter Willam and Warnke (W-239 

W) failure criterion [17] (the details of this process are in the Annex A), which shows a good ability to represent the 240 

experimental results of cement based materials [17, 29], and also satisfies all the requirements of being smooth, convex, 241 

pressure dependent, and curved in the meridian plain.  242 

The equation of this yield function is:  243 

 

1/2

1

2 2

2 2
; ( ) ( ) ( ) 0

3
   

  
       
   

c c c c c c

I b a
f J J

c cc
 

(21) 

 

where 1I  is the first invariant of the effective stress tensor, 2J  is the second  invariant of the deviatoric effective stress 244 

tensor, and   is the angle of similarity, also known as Lode angle: 245 

31
1 2 2 3/2

2

1 3 3
; ; arccos ( )

3 2
ii ij ij

J
I J S S

J
     

(22) 

where 
, ( , 1,2,3)ij i j 

 is the effective stress tensor, 1 3  ij ij ijS I  is the deviatoric effective stress tensor, and 246 

1
3 3
 ij jk kiJ S S S  is the third invariant of the deviatoric effective stress tensor. The variables a, b and c are the scalars 247 

used to interpolate the current yield meridian between the tensile and compressive meridians, as described in detail in 248 

the Annex A.  249 

The term ( ) c c
 is the hardening function depending on the hardening parameter (

c
). The hardening parameter is a 250 

scalar measure used to characterize the plastic state of the material under compressive stress field. Therefore 
c

 is an 251 

indicator of the degree of inelastic deformation the material has experienced during the loading history. The evolution 252 

of the yield surface during the plastic flow is governed by 
c
. As long as 

c
 is null, no inelastic deformation occurred, 253 

and 
0( ; ( 0)) ( ; ) 0     c c cf f f  corresponds to the initial yield surface (

0  is a material constant to define the 254 

beginning of the nonlinear behaviour in uniaxial compressive stress-strain test, and 
cf  is the compressive strength).  255 

When the effective stress state reaches to the yield surface at generic stage (i) of yielding process, 0if , plastic strains 256 

are developed , being its increment evaluated by a flow rule: 257 
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p g
 




  


 

(23) 

where g  is a scalar function, called plastic potential function, and   is the non-negative plastic multiplier. In the 258 

present version of the model, g f  was assumed [30], therefore associate plasticity is adopted for preserving the 259 

symmetry of the tangent stiffness matrix for the elasto-plastic model.  260 

The state of hardening parameter, 
c

, during the plastic flow is changed according to the following evolution law [31]:  261 





   


c

c

f
 

(24) 

The yield function ( f ) and plastic multiplier (  ) at any stage of loading and unloading paths are constrained to 262 

follows Kuhn-Tucker conditions:  263 

0, ( , ) 0, ( , ) 0c cf f         (25) 

 264 

2.2.3.1 Hardening law 265 

Compressive behaviour of the material in effective stress space is governed by the uniaxial hardening law of  c c
 266 

(Fig. 6a). The  c
 is the current uniaxial compressive stress in effective stress space, and the hardening parameter (

c
) is 267 

an equivalent plastic strain measure proportional to the plastic strain ( 
p
) developed in the material. Hardening 268 

parameter corresponding to total axial strain at compression peak stress (
1c
) is obtained such that:  269 

1 1c c cf E   (26) 

being 
1c  the total strain at compression peak stress. 270 

In this study it is assumed that the compressive damage, 
cd , is initiated at the plastic deformation corresponding to 

1c
, 271 

i.e. if 
1c c , then 0cd   (Fig. 6b). According to this assumption, the effective and nominal responses are identical for 272 

the domain of 
1c c  (Eq. (17) assuming 0cd  ). Then  c c

 for the domain of 
1c c  can be directly obtained by 273 

experimental uniaxial stress-strain curves, which are in the nominal stress space, such relation was adopted according to 274 

the CEB-FIP (1993) model [32] as: 275 

 

 

1
2 2

0 0 2

1 1

2
( ) ( )

cc

c c c c c

c c

f f f
 

    
  

 

 

(27) 

where 
0cf  is the uniaxial compressive strength at plastic threshold, i.e. 

0( 0)  c c cf . 276 

For 
1c c ,  the damage takes place ( 0cd  ), then the effective stresses cannot be determined by direct identifications 277 

from relevant uniaxial compressive stress-strain tests [11, 14]. For this domain (
1c c ) and in order to reduce the 278 
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number of parameters required in the plasticity model it is assumed a hardening branch defined according to the 279 

following equation: 280 

1

1

( ) ( )
0.02

c

c c c c c

c

f
f   


 

(28) 

A more elaborated version of Eq. (28) with the ability to define the inclination of the hardening phase is represented in 281 

Annex B, and the resultant response of the proposed model in cyclic uniaxial compressive test is discussed. Fig. 6a 282 

represents the hardening law ( c c
) formulated in Eq. (27) and Eq. (28).   283 

Based on Eq. (27) and Eq. (28), the stress-strain response of the model in effective stress space does not exhibit 284 

softening phase, which is in alignment with the results obtained by Abu Al-Rub and Kim [14]. 285 

 286 

2.2.3.2 System of nonlinear equations 287 

Assuming the material is in uncracked stage, or eventually the former active cracks are completely closed, then the 288 

incremental crack strain is null, 0
cr

  , and the constitutive law of PDSC model, Eq. (18), is reduced to: 289 

( )
e p

D       (29) 

Including Eq. (23) in Eq. (29), and taking into account that 
1 1n n n     , yields: 290 

 1 1 1
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f
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(30) 

where the subscript n+1 represents the actual load increment of the incremental/iterative Newton-Raphson algorithm 291 

generally adopted in FEM-based material nonlinear analysis. The equations describing the yield function, Eq. (21), and 292 

the evolution law for hardening variable, Eq. (24), at loading increment 1n    are given as: 293 
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(31) 

 

(32) 

The system of equations for the proposed plasticity model includes the Eqs. (30)-(32) that must be solved for set of the   294 

unknowns that are the effective stress vector, 
1n 
, and the plasticity internal variables, 

1n   and , 1c n . The return-295 

mapping algorithm is used to solve this system of nonlinear equations [33]. The return-mapping algorithm is strain 296 

driven and basically consist of two steps; calculation of the elastic trial stress, elastic-predictor, and mapping back to the 297 

proper yield surface using a local iterative process, plastic-corrector. The details of the solution procedure of the system 298 

of nonlinear equations can be found elsewhere [34]. 299 

 300 
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2.2.4 – Coupling the plasticity and the SC models  301 

In this section the plasticity model, formulated in effective stress space, and the multi-directional smeared crack (SC) 302 

model are combined within an integrated approach in order to be capable of evaluating 
cr

  and 
p

  simultaneously 303 

at a generic integration point (IP). As indicated in section 2.1, the equilibrium condition for a cracked IP is assured 304 

when: 305 

Introducing Eqs. (2), (18) and (23) into Eq. (33)  yields after some arrangements in: 306 

1 1 1 1 1 1, , 1 1 , 1 1

1

0     


        



 
              

T
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n

f
D T T D T D T T D  

(34) 

The system of equations proposed for the plasticity model (Eqs. (30)-(32)) needs also to be modified to include the 307 

deformational contribution of the sets of active smeared cracks (
cr

 ). By considering 
1 1n n n      and 308 

introducing Eqs. (2) and (23) into Eq. (18), yields after some arrangements in: 309 

11 1 , 1 1

1

( ) 0    


   



                    

T
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n

f
D T D  

(35) 

The equations describing the yield function (Eq. (31)) and the evolution law for hardening variable (Eq. (32)), still hold 310 

in the form deduced in section 2.2.3.2, since these equations are not affected by 
cr

 . To solve the system of nonlinear 311 

Eqs. (31), (32), (34) and (35) an iterative process was implemented to obtain the unknown variables, namely, the 312 

effective stress vector, 
1n 
, he incremental local crack strain vector, , 1

cr

n  , the plastic multiplier, 
1n  , and the 313 

hardening parameter, , 1c n , all of them at the n+1 loading increment. This iterative process is similar to the return-314 

mapping algorithm indicated in 2.2.3.2, whose details can be found elsewhere [34]. 315 

 316 

2.2.5 – Isotropic damage law 317 

The stress vector (
1n 
) obtained by solving the system of equations presented in the sections 2.2.3.2 and 2.2.4 is in the 318 

effective stress space, and must be transferred to the nominal stress space (
1 n
). For the damage models based on the 319 

isotropic damage mechanics, the evaluation of the nominal stress is performed by a damage-corrector step (Eq. 17) 320 

without an iterative calculation process. The present model adopts a damage-corrector process according to the Eq. (20), 321 

which considers the compressive damage scalar (
cd ) only for negative (compressive) part of effective stress vector. The 322 

evaluation of the compressive damage scalar (
cd ) during loading history is obtained according to the approach 323 

proposed by Gernay et al. [11]: 324 

 1 1, , 1 1     
     
 

cr cr cr cr

n nn n n nD T  (33) 
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( ) 1 exp( )c d c dd a    (36) 

where 
d

 is a scalar parameter known as damage internal variable.    325 

Accordingly, the damage internal variable, 
d

, can be evaluated as a function of the plasticity hardening variable, 
c

, 326 

which is available at the end of plasticity analysis. As indicated in section 2.2.3.1, damage initiates at the plastic 327 

deformation corresponding to 
1c
, then the damage internal variable, 

d
, can be defined as:   328 

1

1 1

0 c c

d

c c c c

if

if


 

 
 

(37) 

The non-dimensional parameter 
ca  indicates the degree of softening, and is obtained from [34]: 329 

1

0.05
ln( ) / ( )

( )

c

c cu c

c cu

f
a


   

(38) 

being 
cu

 the maximum equivalent strain in compression that is related to the compressive fracture energy, 
,f cG , the 330 

characteristic length for compression, 
cl , the compressive strength, 

cf , and 
1c
 according to the following equation 331 

[34]:  332 

,

1

3.1 11

48

f c

cu c

c c

G

l f
   

(39) 

and ( ) c cu
 is the hardening function evaluated at the maximum equivalent strain 

cu
, see Fig. 5a. 333 

Eq. (39) is a modified version of the equation originally proposed by Feenstra [35] for taking to account the exponential 334 

softening rate of compressive stresses (Eq. (36)). The compressive fracture energy, 
,f cG , is assumed as the material 335 

parameter which can be derived based on experimental uniaxial stress-strain data; let’s designate this experimental data 336 

as 
c c  . Similar to Eq. (26), the hardening parameter (

c
) corresponding to a generic axial strain (

c ) is calculated 337 

as: 338 

c c c E    (40) 

Then 
,f cG  can be approximated as the area under post peak branch of 

c c   diagram [35] (see Fig. 6c). The 339 

characteristic lengths in tension (crack bandwidth) and compression (
cl ) are usually considered the same [11, 35], then 340 

in the present approach 
c bl l  was assumed. 341 

 342 

3. PREDICTIVE PERFORMANCE OF THE MODEL 343 

3.1 Introduction 344 

In this section, the performance of the proposed model is assessed. For this purpose, PDSC constitutive model, 345 

described in section 2.2, was implemented into FEMIX 4.0 computer program [24] as a new approach to simulate the 346 



 15 

nonlinear behaviour of cement based structures. FEMIX 4.0 is a computer code whose purpose is the analysis of 347 

structures by the Finite Element Method (FEM). This code is based on the displacement method, being a large library of 348 

types of finite elements available, namely 3D frames and trusses, plane stress elements, flat or curved elements for 349 

shells, and 3D solid elements. Linear elements may have two or three nodes, plane stress and shell elements may be 4, 8 350 

or 9-noded and 8 or 20 noded hexahedra may be used in 3D solid analyses. This element library is complemented with a 351 

set of point, line and surface springs that model elastic contact with the supports, and also several types of interface 352 

elements to model inter-element contact. Embedded line elements can be added to other types of elements to model 353 

reinforcement bars. All these types of elements can be simultaneously included in the same analysis, with the exception 354 

of some incompatible combinations. The analysis may be static or dynamic and the material behaviour may be linear or 355 

nonlinear. Data input is facilitated by the possibility of importing CAD models. Post processing is performed with a 356 

general purpose scientific visualization program named drawmesh, or more recently by using GID. 357 

In the same nonlinear analysis several nonlinear models may be simultaneously considered, allowing, for instance, the 358 

combination of reinforced concrete with strengthening components, which exhibit distinct nonlinear constitutive laws. 359 

Interface elements with appropriate friction laws and nonlinear springs may also be simultaneously considered. The 360 

global response history is recorded in all the sampling points for selected post-processing. 361 

Advanced numerical techniques are available, such as the Newton-Raphson method combined with arc-length 362 

techniques and path dependent or independent algorithms. When the size of the systems of linear equations is very 363 

large, a preconditioned conjugate gradient method can be advantageously used. 364 

The predictive performance of the proposed model (PDSC model) starts by executing numerical tests at the material 365 

level, and then at the structural level by simulating shear RC wall panel tests, and shear strengthened RC beams. The 366 

simulated structural elements are governed by nonlinear phenomenon due to simultaneous occurrence of cracking and 367 

inelastic deformation in compression. 368 

  369 

3.2 Simulations at the material level 370 

The stress-strain histories at the material (single element with one IP), loaded on some different scenarios are simulated 371 

by the proposed model (PDSC model). The loading procedure of the tests consists of imposing prescribed displacement 372 

increments and the crack bandwidth (
bl ) was assumed equal to 100 mm. Since the concrete properties in each test were 373 

different, the corresponding values are indicated in the caption of the figures. 374 

- Monotonic and cyclic uniaxial compressive tests (Fig. 7 and 8): A monotonic uniaxial compressive test of 375 

Kupfer et al. [36], and a cyclic uniaxial compressive test of Karsan and Jirsa [37] are simulated, and the 376 

predictive performance of the proposed model is appraised by comparing the numerical and experimental 377 
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results. Fig. 7 shows that the hardening and softening stress-strain branches registered experimentally by 378 

Kupfer et al. [36] are properly fitted by the nominal response of the proposed model. For comparison, Fig. 7 379 

also represents the response of the model in effective stress space. As can be seen the stress-strain response in 380 

both effective and nominal stress spaces are identical for the domain before attaining the peak (
1c c ), 381 

whereas for higher deformations (
1c c ) the two responses starts diverging because of the damage initiation 382 

process ( 0cd  ). Under the cyclic uniaxial compression the model (nominal stress response) accurately 383 

simulate the stress-strain envelope response registered experimentally, but overestimates the plastic 384 

deformation of the material when unloading occurs (Fig. 8), since the assumption of  a constant predefined 385 

hardening inclination in Eq. (28) is a simplified approach to reduce the number of parameters required in the 386 

plasticity model. A more elaborated version of Eq. (28) is represented in Annex B which gives better 387 

approximation in simulation of the unloading phase. Another alternative to better predict the residual strain in 388 

unloading phases is to follow a more sophisticated diagram, like the one proposed by Barros et al. [38] but this 389 

approach it too demanding in terms of computer time consuming when integrated in a PDSC model, and when 390 

the final goal is using this model for the analysis of structures of relatively large dimensions.       391 

- Simulation of closing a crack developed in one direction, by imposing compressive load in the orthogonal 392 

direction (Fig. 9): The element is initially subjected to the uniaxial tension in the direction of X1 (Step 1). Then 393 

a crack is formed with the orientation of 0º  , and further propagated up to a stage that the crack does not be 394 

able to transfer more tensile stresses (fully opened crack status). At this stage the displacement in the direction 395 

of X1 is fixed (Step 2), and the element is loaded by compressive displacements in the X2 direction up to end of 396 

the analysis (Step 3). 397 

Due to applied compressive displacements, uniaxial compressive stresses are induced in the material in the X2 398 

direction. Consequently, expansion of the material in the X1 direction imposes the crack be gradually closing. 399 

When the material is in the compression softening phase, in X2 direction, the crack will be completely closed. 400 

When the crack closes, the state of stress is changed to biaxial compression, and a second hardening-softening 401 

response is reproduced corresponding to the appropriate biaxial state of stress. The above-described loading 402 

path was successfully simulated by the proposed model, and the prediction agrees well with the solution of 403 

Cervenka and Papanikolaou [16]. 404 

 405 

3.3 Simulations at the structural level 406 

3.3.1 Shear RC walls 407 
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To highlight the efficiency of the proposed constitutive model, the two shear walls S1 and S4, tested by Maier and 408 

Thürlimann [39], were simulated. The experimental loading procedure introduces an initial vertical compressive force, 409 

vF , and then a horizontal force, 
hF , that was increased up to the failure of the wall. These shear walls had a relatively 410 

thick beam at their bottom and top edges for fixing the walls to the foundation, and for applying 
hF  and 

vF , 411 

respectively, as depicted in Fig. 10a and 11a.  412 

The walls, S1 and S4, differ in geometry, reinforcement ratio, and initial vertical load: 413 

S4 - this wall has 1.18 m length, 1.2 m height, and 0.1 m thickness. It is reinforced in two layers of 8 steel bars in both 414 

vertical and horizontal directions with the ratios of ρx = 1.03% and ρy = 1.05%, respectively. The initial vertical load is 415 

equal to 262( )vF kN , and more details on geometry, supports and loading configurations are presented at Fig. 10a. 416 

S1 – the geometry of the wall S1 differs from that of the wall S4 due to the inclusion of vertical flanges at its lateral 417 

edges, see Fig. 11a. Theses flanges are reinforced vertically with the ratio of ρF = 1.16%, whereas the web 418 

reinforcements are ρx=1.03% and ρy = 1.16%. Moreover, an initial compressive load of 433( )vF kN was applied, 419 

which is almost 1.65 times of the vertical load applied to the wall S4. 420 

FEM modelling of the walls and top beams were performed using 8-noded serendipity plane stress finite elements with 421 

33 Gauss-Legendre IP scheme, see Fig. 10b and Fig. 11b. Instead of modelling the foundation, the bottom nodes of the 422 

panels are fixed in vertical and horizontal directions. The vertical and horizontal loads are uniformly distributed over 423 

the edges of the top beam, as schematically represented in Fig. 10b and Fig. 11b. Elements of the top beam are assumed 424 

to exhibit linear elastic behaviour during the analysis, since no damage is reported for these elements in the original 425 

papers. For modelling the behaviour of the steel bars, the stress-strain relationship represented in Fig. 12 was adopted. 426 

The curve (under compressive or tensile loading) is defined by the points PT1 = ( ,sy sy  ), PT2 = ( ,sh sh  ), and PT3 = 427 

( ,su su  ) and a parameter P that defines the shape of the last branch of the curve. Unloading and reloading linear 428 

branches with the slop of 
sy sy syE    are assumed in the present approach [22].  429 

The reinforcement is meshed using 2-noded perfect bonded embedded cables with two IPs. The values of parameters 430 

used to define the constitutive models of concrete and steel are included in Table 1 and Table 2, respectively. The effect 431 

of tension-stiffening was indirectly simulated using the trilinear tension-softening diagram. 432 

The experimental relationship between the applied horizontal force and the the horizontal displacement of the top beam, 433 

Fh-Uh, for the wall S4 is represented in Fig. 10c. This figure also includes the predicted Fh-Uh response obtained by both 434 

PDSC and SC models. According to the experimental observations, the wall S4 exhibits a ductile Fh-Uh response after 435 

attaining the peak load, and the failure was governed by crushing of concrete at the bottom left side of the panel. 436 

Predictions of the PDSC model are obtained for three levels of compressive fracture energy (
, 20,30,40 /f cG N mm ) 437 
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to evident the effect of different rate of compressive softening on behaviour of the simulated wall. At 4hU mm  the IP 438 

closest to the left bottom side of the wall enters to the compressive softening phase ( 0cd  ). After 7hU mm  the load 439 

carrying capacity and ductility of the simulated Fh-Uh responses are significantly affected by changing the compressive 440 

fracture energy; the load carrying capacity and ductility increase with 
,f cG . Ductility of the wall is underestimated for 441 

the simulation with 
, 20 /f cG N mm , and overestimated when using 

, 40 /f cG N mm . A proper fit of the 442 

experimentally observed ductility and softening response after peak load was obtained for 
, 30 /f cG N mm . This value 443 

is close to the upper limit of the interval values obtained by Vonk [40]. Fig. 10e and Fig. 10f present, respectively, the 444 

numerical crack pattern and the plastic zone, i.e. the area indicating those IPs under inelastic compressive deformation 445 

( 0c  ), for the simulation using 
, 30 /f cG N mm , at the deformation corresponding to 18hU mm (final converged 446 

step). A general analysis of Fig. 10e and Fig. 10f demonstrate the cracks with fully opened status are spread over the 447 

right lower side of the panel (tensile zone) while the plastic zones are concentrated at the bottom left corner of the 448 

panel. This numerical prediction correlates well with the experimental observations (see Fig. 10d). 449 

The Fh-Uh prediction of the SC model is similar to those of the PDSC model only in the beginning stage (up to 450 

1hU mm ) when inelastic deformation due to compression is negligible, but for higher displacements the two models 451 

start diverging significantly. The SC model does not consider the inelastic behaviour of concrete under compression that 452 

justifies the significant overestimation of the predicted load carrying capacity of the simulated panel.  453 

Results of the analysis of the wall S1 are represented in Fig. 11 in terms of Fh-Uh relationship, crack pattern, and plastic 454 

zone. As can be seen in Fig. 11c the PDSC model assuming 
, 30 /f cG N mm  was able to accurately predict the overall 455 

experimental Fh-Uh behaviour of this wall. The simulated plastic zone clearly evidence the formation of a larger 456 

compressive strut when compared to what happened in the wall S4, which is due to the higher initial vertical load and 457 

the confinement provided by the additional vertical flanges.  458 

 459 

3.3.2 Shear strengthened RC beams  460 

3.3.2.1 Beam prototypes 461 

The experimental program [41] is composed of a reference beam (Fig. 13) and four NSM shear strengthened beams 462 

(Fig. 14). Fig. 13 represents the T cross section geometry and the steel reinforcement detailing for the series of beams, 463 

as well as the loading configuration and support conditions. The adopted reinforcement systems were designed to assure 464 

shear failure mode for all the tested beams. To localize the shear failure in only the monitored shear spans, asp, a three 465 

point loading configuration with a distinct length for the beam shear spans was selected, as shown in Fig. 13. Steel 466 
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stirrups of 6 mm diameter at a spacing of 112 mm (6@112mm) were applied in the bsp beam span to avoid shear 467 

failure.  468 

The differences between the tested beams are restricted to the shear reinforcement systems applied in the asp beam span. 469 

The reference beam is designated as 3S-R (three steel stirrups in the asp shear span, 3S, leading a steel shear reinforcing 470 

ratio, ρsw, of 0.09%), while the following different NSM strengthening configurations were adopted for the other four 471 

beams that also include 3 steel stirrups in the asp shear span (Fig. 14 and Tables 3 and 4): 472 

3S-4LI-S2 - four CFRP laminates of type 2 (with a cross section of 1.4×20 mm2) per face, inclined at 52 degrees with 473 

respect to the longitudinal axis of the beam (f = 52º), and installed from the bottom surface of the flange to the bottom 474 

tensile surface of the beam’s web, i.e., bridging the total lateral surfaces of the beam’s web; each CFRP laminate was 475 

installed in the outer part of a slit of a depth of 21 mm executed on the beam’s web lateral surfaces. The length of each 476 

laminate was 634 mm; 477 

3S-4LI-P2 - four CFRP laminates of type 2 (with a cross section of 1.4×20 mm2) per face, inclined at 52 degrees with 478 

respect to the longitudinal axis of the beam (f = 52º), and installed from the bottom surface of the flange up to 10 mm 479 

above the top surface of the longitudinal tensile steel reinforcement. Each CFRP laminate was installed in the deeper 480 

part of a slit of a depth of 35 mm from the surface of the beam’s web lateral surfaces. The length of each laminate was 481 

527 mm; 482 

3S-4LI4LI-SP1 - eight CFRP laminates of type 1 (with a cross section of 1.4×10 mm2) per face, inclined at 52 degrees 483 

with respect to the longitudinal axis of the beam (f = 52º). The configuration of the slits executed in this section 484 

combines the configurations of the beams 3S-4LI-P2 and 3S-4LI-S2. In each slit, with a depth of 35mm, was installed 485 

one laminate as deeper as possible and one laminate as superficial as possible. 486 

3S-4LI4LV-SP1 - eight CFRP laminates of type 1 (with a cross section of 1.4×10 mm2) per face, four of them inclined 487 

at 52 degrees with respect to the longitudinal axis of the beam (f = 52º) and bridging the total lateral surfaces of the 488 

beam’s web (the length of each inclined laminate was 634 mm), while the other four laminates were installed in vertical 489 

slits executed from the bottom surface of the web up to 10 mm above the top surface of the longitudinal tensile steel 490 

reinforcement (the length of each vertical laminate was 432 mm). The vertical laminates were installed as deeper as 491 

possible into a slit of a depth of 35 mm from the surface of the beam’s web lateral surfaces. The inclined laminates were 492 

installed as outer as possible into a slit of a depth of 15 mm executed on the beam’s web lateral surfaces. 493 

The details of the shear strengthening configurations are indicated in Table 3, where it is verified that the tested beams 494 

had a percentage of longitudinal tensile steel bars (sl) of 2%, a percentage of steel stirrups (sw) of 0.09%, and a 495 

percentage of NSM CFRP laminates ranging from 0.101% to 0.113%.  496 

 497 
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3.3.2.2 Material properties  498 

All the NSM shear strengthened beams were executed with a concrete that presented an average compressive strength 499 

( cf ) of 40.1 MPa. For the reference beam 3S-R the value of cf  was 36.4 MPa. The average value of the yield stress of 500 

the steel bars of 6, 12, 16 and 32 mm diameter was 556.1, 566.6, 560.8 and 654.5 MPa, respectively, while average 501 

value of the ultimate stress for these corresponding bars was: 682.6, 661.6, 675.0 and 781.9 MPa. The constitutive law 502 

for the steel bars follows the stress-strain relationship represented in Fig. 12, and values for its definition are those 503 

indicated in Table 5. The CFRP laminates presented a linear-elastic stress-strain response with a tensile strength of 3009 504 

MPa and an elasticity modulus of 169 GPa and 166 GPa for the laminate type 1 and 2, respectively. The complementary 505 

discussion on the characterization of the CFRP laminates and epoxy adhesive can be found in Barros and Dias [41]. 506 

 507 

3.3.2.3 Finite element modelling and constitutive laws for the materials 508 

The finite element mesh of 8-noded plain stress finite element with 22 Gauss-Legendre IP scheme, represented in Fig. 509 

15, was adopted (corresponds to the 3S-4LI-S2 beam, but the differences for the other beams are limited to the CFRP 510 

strengthening configurations). To avoid local crushing of the concrete, the load and support conditions were applied 511 

through steel plates that are modeled as a linear-elastic material with Poisson’s coefficient of 0.3 and elasticity modulus 512 

of 200 GPa. The longitudinal steel bars, stirrups and CFRP laminates were modelled using 2-noded embedded cables 513 

(one degree-of-freedom per each node) with two IPs. Perfect bond was assumed between the reinforcement and the 514 

surrounding concrete. The behaviour of CFRP laminates was modeled using a linear-elastic stress-strain relationship.  515 

The values correspondent to the parameters of the constitutive model for concrete is gathered in Table 6. These values 516 

are obtained from the experimental program for the characterization of the relevant properties of the intervening 517 

materials. For the 
,f cG  the average value of the interval proposed by Vonk [40] was assumed.    518 

To simulate the shear crack initiation and the degradation of crack shear stress transfer, the shear softening diagram 519 

represented in Fig. 2 is assumed, and the values of the parameters to define this diagram are included in Table 6. Due to 520 

lack of reliable experimental evidences to characterize this diagram, the adopted values are indirectly obtained from the 521 

test data using the inverse method (by simulating the experimental results as best as possible) [23]. In general by 522 

increasing ,f sG  and 
,

cr

t p , and decreasing  , the load carrying capacity of RC elements failing in shear increases. To 523 

define reliable intervals of values for these parameters, a comprehensive parametric study is necessary to be executed, 524 

which is planned to be executed in next future by the authors. Based on the experience of the authors, however, the 525 

following intervals of values can be recommended for RC beams with regular shear and flexural reinforcement ratios: 526 

 , 1.0 3.0cr

t p   MPa;  , 0.04 0.5f sG   N/mm;  0.02 0.3   .  527 

 528 
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3.3.2.4 Results and discussions 529 

For the shear strengthened beams (3S-4LI-S2; 3S-4LI-P2; 3S-4LI4LI-SP1; 3S-4LI4LV-SP1), the transversal 530 

reinforcement (CFRP laminates and steel stirrups) provides additional confinement effect on the surrounding concrete 531 

bulk. This confinement enhances the aggregate interlock effect in the shear cracks crossed by these shear 532 

reinforcements. For these beams, even though the CFRP laminates and steel stirrups are separately modelled with 533 

embedded cable elements, their favourable effect in terms of aggregate interlock was considered by adopting different 534 

values of shear fracture energy ( ,f sG ) for the reference and strengthened beams. Since the equivalent shear 535 

reinforcement ratio (CFRP laminates and steel stirrups) was not too different amongst the strengthened beams, the same 536 

value of , 0.3 /f sG N mm  was adopted in the constitutive model, while in the reference beam a , 0.04 /f sG N mm  537 

was assumed, see Table 6. In fact, by increasing ,f sG  the beam’s stiffness and load carrying capacity also increase, 538 

which indirectly simulates the favorable effect of the shear reinforcements on the aggregate interlock. 539 

Predictions of the PDSC model in terms of the applied load versus the displacement at the loaded section for all the 540 

beams of the experimental program are represented at Fig. 16. The good predictive performance was not only in terms 541 

of the load-deformation responses, but also in regards of the crack patterns (Figs. 17 and 18). The plastic zone for each 542 

beam is also represented in Fig. 18 that demonstrate the formation of the compressive strut in this type of shear tests. 543 

 544 

4. CONCLUSIONS 545 

In the present study, a constitutive law for cement based materials is proposed that combines a multi-directional fixed 546 

smeared crack model to account for cracking, and a plasticity-damage model to simulate the inelastic compressive 547 

behaviour of materials between the cracks. The crack opening process is initiated based on the Rankine tensile criterion, 548 

whereas a trilinear softening diagram is used to simulate the crack propagation. Two methods are available to simulate 549 

the crack shear stress transfer: one based on the concept of shear retention factor (  ), and the other on a shear softening 550 

diagram that requires some information about fracture mode II propagation. The plasticity model is formulated in 551 

effective (undamaged) stress space and adopts a single hardening parameter to account for the compressive plastic 552 

deformations. The plasticity approach is combined with an isotropic damage model to account for strength and stiffness 553 

degradation of the material under compression. An algorithm is, also, proposed that accounts for simultaneous 554 

occurrence of cracking in tension and inelastic compressive deformation of material between the cracks. 555 

The constitutive model was implemented in the finite element computer code FEMIX, and its performance was assessed 556 

by simulating experimental tests at material and structural levels. The potentialities of the proposed model for 557 

simulating RC elements governed simultaneously by cracking and inelastic deformation in compression were 558 

investigated by simulating shear wall panel tests, and an experimental program composed by T cross section RC beams 559 
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shear strengthened with different configurations of NSM-CFRP laminates. The results of these analyses demonstrate the 560 

applicability of the proposed model for simulating structures made by cement based materials subjected to multi-axial 561 

loading configurations. 562 
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 567 

ANNEX A 568 

According to the Willam-Warnke failure criterion, two extreme meridians and an elliptical function, used to interpolate 569 

the current failure meridian between the two extreme meridians, can represent the entire failure surface. The extreme 570 

meridians are called the tensile meridian where angle of similarity is zero ( 0 )  , and the compressive meridian 571 

where 60   (see Fig. A.1).  572 

The equations for the tensile and compressive meridians in ( , ,   ) coordinate system are given by the following 573 

quadratic parabolas [29]: 574 
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being   the hydrostatic stress invariant defined as 1 3I  , and   the deviatoric stress invariants also defined as 575 

22 J  .  The term 
( , ) 

  implies the deviatoric stress invariant (  ) that is corresponds to any set of   and  . For 576 

the tensile meridian (where 0  )  and compressive meridian (where 60  ), the deviatoric stress invariant (  ) are 577 

denoted, respectively, by 
( , 0 ) 




 and 
( , 60 ) 




. 578 

It is assumed that the tensile and compressive parabolas (meridians) intersect each other at the hydrostatic axis, 579 

22 0  J , therefore 0 0a b  [29]. The constants 
0 1 2 1, , ,a a a b  and 

2b  are the five constants of the W-W failure 580 

surface, and they are defined in ( , ,   ) coordinate system such that [34]: 581 
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 586 

being   a non-dimensional parameter defined as 
ct cf f  . The details corresponding to the Eq. (A.3) are available 587 

elsewhere [34]. 588 

The W-W failure criterion uses the following elliptical equation to interpolate current failure meridian, or the 589 

intermediate failure meridians, between the two extremes (tensile and compressive meridians) [17, 29]: 590 

( , ) 
 

s

t  (A.4a) 

where 591 

2 2

( , 60 ) ( , 60 ) ( , 0 ) ( , 60 ) ( , 0 ) ( , 60 )

1/2
2 2 2 2

( , 60 ) ( , 0 ) ( , 0 ) ( , 0 ) ( , 60 )

2 ( )cos (2 )

4( )cos 5 4

s
           

         

      

     

     

    

   

    
 

 (A.4b) 

and 592 

2 2 2 2

( , 60 ) ( , 0 ) ( , 60 ) ( , 0 )
4( )cos ( 2 )

       
    

   
   t  (A.4c) 

being 
( , ) 

  is the deviatoric stress invariant of  current failure meridian (see Fig. A.1b that demonstrates the deviatoric 593 

plane of W-W). As Fig. A.1b shows, Eq. (A.4) ensures convexity and smoothness of the surface anywhere. Eqs. (A.1), 594 

(A.2) and (A.4) describe one sixth of the failure cone lying between 0 60  , then due to six fold symmetry, these 595 

equations are sufficient to present the entire failure surface. 596 

The intermediate failure meridians are also quadratic parabola in a form [29]: 597 

2

( , ) ( , )   
     

        
   c c c

a b c
f f f

 (A.5) 

The intermediate meridian must also meet the hydrostatic axis at the same location that tensile and compressive 598 

meridians already intersected, such a requirement implies that:    599 
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0 0c a b   (A.6) 

The two unknowns a  and b  are determined by solving Eq. (A.5) in two known failure points laying on the 600 

intermediate failure meridian. Based on the current state of effective stress vector ( ) the angle of similarity is 601 

calculated from Eq. (22). The arbitrary control points of 2cf    and 4cf    were chosen [29], then the 602 

corresponding failure points of 
( 2, ) 




, and 
( 4, ) 




 were interpolated from Eq. (A.4). The coefficients a  and b  603 

can then be obtained from [29]: 604 
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(A.8) 

Including 1 3I   and 2( , )
2 J

 
   into Eq. A.5 and replacing 

cf  with the current uniaxial compressive stress, i.e. 605 

the hardening function denoted by  c
,  the equation of yield function is obtained in the form of Eq. (21). 606 

 607 

ANNEX B 608 

The   c c
 law for the domain 

1c c  (Eq. (28)) can be modified to include the parameter   that controls the slop of 609 

this branch such that: 610 

1

1

( ) ( )c

c c c c c

c

f
f


  


 

(B.1) 

where   is calculated as 
0 1cl  , and the non-dimensional coefficient 

0l  can take the values as 
01 l   . For 611 

0l    Eq. (B.1) gives ( )c c cf   that corresponds to ideal plastic behaviour (slop of  c c
 law for the domain 612 

1c c  becomes zero). Using the values of the parameters of the constitutive model in the simulation of cyclic test of 613 

Karsan and Jirsa [37], Fig. B.1a represents the Eq. (28), and Eq. (B.1) for two distinct values of 
0 4.5l   and 

0 9.0l  . 614 

As can be seen in this figure, by increasing the value of 
0l  the inclination of the  c c

 law is decreased. The 615 

appropriate value for the parameter 
0l  is usually obtained using an inverse analysis whereas such inverse method is 616 

described in the contribution Abu Al-Rub and Kim [14]. For the case 
0 4.5l   (assuming all the other parameters have 617 
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the same values as described in Fig. 7) the cyclic stress strain response of the model for the test of Karsan and Jirsa [37] 618 

is represented in Fig. B.1b which demonstrates a close approximation of the residual plastic deformations in compare to 619 

those registered as the experimental. 620 
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NOTATIONS 711 

  stress vector  at global coordinate system providing no compressive damage is included 

  stress vector at global coordinate system which include compressive damage softening 

eD  linear elastic constitutive matrix 




 the positive component, corresponding to tensile state of stress, of stress vector   




 the negative component, corresponding to compressive state of stress, of stress vector    

i  ith principle stress extracted from the vector   

i
P  the normalized eigenvector associated with the ith principle stress i  

cr
  

incremental crack strain vector 

co
  

incremental concrete strain vector  

  incremental total strain vector 

p
  

incremental plastic strain vector 

i  orientation corresponding to the i-th crack 

IP  integration point 

cr
  incremental crack strain vector at crack coordinate system 

cr
  incremental stress vector at crack coordinate system 

cr

n  normal components of the local crack stress vector 

cr

t  shear components of the local crack stress vector 

cr

n  normal components of the local crack strain vector 

cr

t  shear components of the local crack strain vector 

cr
T  transformation matrix from crack local coordinate system to finite element coordinate system 

crD  crack constitutive matrix 

cr

nD  the stiffness modulus correspondent to the fracture mode I   

cr

tD  the stiffness modulus correspondent to the fracture mode II   

E  modulus of elasticity 

  Poisson’s coefficient 
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i
  normalized stress parameters (i=1, 2) in trilinear diagram 

  shear retention factor 

i
  normalized strain parameter (i =1, 2) in trilinear diagram 

cf  compressive strength of concrete 

ct
f  tensile strength of concrete 

c
G  elastic shear modulus 

I
f

G  mode I fracture energy 

,f s
G  mode II fracture energy 

 

,f c
G  compressive fracture energy 

b
l  crack bandwidth 

 

c
l  Compressive characteristic length which was assumed identical to the crack bandwidth  

,

cr

n u  ultimate crack normal strain 

1P  parameter that defines the amount of the decrease of   upon increasing cr

n  

,

cr

t p
  peak crack shear strain 

,
cr
t p
  

peak crack shear stress 

,

cr

t u
  

ultimate crack shear strain 

1I  first invariant of the effective stress tensor 

2J  second  invariant of the deviatoric effective stress tensor 

3J  third invariant of deviatoric stresses 

  angle of similarity 

  hydrostatic stress invariant 

  deviatoric stress invariants 

, ,a b c  parameters of Willam-Warnke yield surface depending to state of stress 

c  hardening function of the plasticity model 
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1c  strain at compression peak stress 

( , )cf    yield function 

c
 compressive hardening variable 

  plastic multiplier 

1c
 accumulated plastic strain at uniaxial compressive peak stress 

0cf  uniaxial compressive stress at plastic threshold   

0  material constant to define the beginning of the nonlinear behaviour in uniaxial compressive stress-

strain test 

cd  scalar describing the amount compressive damage 

d
 internal damage variable for compression 

ca  non-dimensional parameter of damage   

x  horizontal reinforcement ratio of web of the shear wall panel 

y  vertical reinforcement ratio of web of the shear wall panel 

F  reinforcement ratio corresponding to the vertical flange of the shear wall panel 

vF  initial vertical load applied to the shear wall panel 

hF  horizontal load applied to the shear wall panel 

, ,sy sh su    three strain points at the steel constitutive law  

, ,sy sh su    three stress points at the steel constitutive law 

P  parameter that defines the shape of the last branch of the steel stress-strain curve 

syE  unloading-reloading slop for the steel constitutive law  

hU  horizontal deformation of the panel 

spa  monitored span of the shear strengthened beams  

spb  span of the beam which has no shear strengthened CFRP laminates 

f  CFRP inclination with respect to the longitudinal axis of the beam 

sw  ratio of steel stirrups for the beams  

sl  ratio of tensile steel bars for the beams 

f  shear strengthening ratio of the beams 



 31 

 

 712 
Table captions 

Table 1 Values of the parameters of the concrete constitutive model for shear wall test. 

Table 2 Values of the parameters of the steel constitutive model for shear wall test. 

Table 3 General information about the series of the tested RC beams. 

Table 4 CFRP shear strengthening configurations of the tested beams. 

Table 5 Values of the parameters of the steel constitutive model for RC beams failing in shear 

Table 6 Values of the parameters of the concrete constitutive model for RC beams failing in shear.  
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Figure captions 

Fig. 1 Diagram for modelling the fracture mode I at the crack coordinate system [22]. 

Fig. 2 Diagram for modelling the fracture mode II at the crack coordinate system [23]. 

Fig. 3 Relation between crack shear stress and crack shear strain for the incremental approach based on a 

shear retention factor [22]. 

Fig. 4 One dimensional representation of the effective and nominal stresses [14]. 

Fig. 5 Behaviour of the cement based materials under uniaxial compression: (a) three stage of cracking [27], 

(b) schematic representation of damage evolution in the proposed model. 

Fig. 6 Diagram for modelling compression: (a) the  c c
 relation (in effective stress space) used in the 

proposed plasticity model; (b) the (1 )c dd   relation adopted in isotropic damage model; (c) the 

c c   diagram for compression with indication of the compressive fracture energy, 
,f cG . 

Fig. 7 Experimental [36] versus predicted stress-strain response of concrete under monotonic uniaxial 

compressive test: (Values for the parameters of the constitutive model: poison’s ratio, 0.2  ; young’s 

modulus, 27E GPa ; compressive strength, 32cf MPa ; strain at compression peak stress 

1 0.0023c  ; parameter to define elastic limit state 
0 0.3  ; compressive fracture energy, 

, 15.1 /f cG N mm  ). 

Fig. 8 Experimental [37] versus predicted stress-strain response of concrete under cyclic uniaxial compressive 

test: (Values for the parameters of the constitutive model: 0.2  ; 27E GPa ; 
0 0.3  ; 

1 0.0017c  ; 28cf MPa ; , 11.5 /f cG N mm ). 
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Fig. 9 Prediction of the PDSC model for closing a crack developed in one direction, by imposing compressive 

load in the orthogonal direction (Values for the parameters of the constitutive model: 0.2  ; 

33E GPa ; 30cf MPa ; 
, 30 /f cG N mm ; 2.45ctf MPa ; 

1 0.0022c  ; 
0 0.3  ; 

0.05 ,fG N mm 
1 10.2; 0.7,    

2 20.75, 0.2   . 

Fig. 10 Simulation of the S4 shear wall tested by Maier and Thürlimann [39]: (a) geometry and loading 

configurations (dimensions in mm) ; (b) finite element mesh used for the analysis; (c) horizontal load 

versus horizontal displacement diagram, Fh-Uh; (d) experimentally observed crack pattern [39]; (e) 

crack pattern and (f) plastic zone at 18hU mm

 

(final converged step). 

Fig. 11 Simulation of the S1 shear wall, tested by Maier and Thürlimann [39] by PDSC model and assuming 

, 30 /f cG N mm : (a) geometry and loading configurations (dimensions in mm) ; (b) finite element 

mesh; (c) horizontal load versus horizontal displacement diagram, Fh-Uh; (d) experimentally observed 

crack pattern [39]; (e) numerical crack pattern; (f) numerical plastic zone (results of (e) and (f) 

correspond to 30hU mm , the final converged step). 

Fig. 12 Uniaxial constitutive model (for both tension and compression) for the steel bars [22]. 

Fig. 13 Geometry of the reference beam (3S-R), steel reinforcements common to all beams, support and load 

conditions (dimensions in mm) [41]. 

Fig. 14 NSM shear strengthening configurations (CFRP laminates at dashed lines; dimensions in mm) [41]. 

Fig. 15 Finite element mesh used for the beam 3S-4LI-S2 (dimensions are in mm). 

Fig. 16 Experimental [41] and numerical load versus the deflection at loaded deflection: (a) 3S-R; (b) 3S-4LI-

S2; (c) 3S-4LI-P2; (d) 3S-4LI4LI-SP1; (e) 3S-4LI4LV-SP1. 

Fig. 17 Crack patterns of the tested beams at failure [41]. 

Fig. 18 The crack patterns and plastic zone predicted by PDSCM model for the beams at the experimental: (a) 

3S-R; (b) 3S-4LI-S2; (c) 3S-4LI-P2; (d) 3S-4LI4LI-SP1; (e) 3S-4LI4LV-SP1. (Note: the results are 

correspondent to the final converged step). 

Fig. A.1 Willam-Warnke failure surface represented in (a) meridian plane; (b) deviatoric plane (
1 2 3, ,    are 

the principle stresses in the effective stress space). 

Fig. B.1 Cyclic uniaxial compressive test of Karsan and Jirsa [37]; (a) the  c c
 law of the model, (b) 

Experimental [39] versus predicted stress-strain response (assuming 
0 4.5l  ). 
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 721 

Table 1 – Values of the parameters of the concrete constitutive model for shear wall test. 722 

Property Value 

Poisson’s ratio ( ) 0.15 

Young’s modulus ( E ) 26000 
2

N mm  

Compressive strength (
cf ) 30.0 

2
N mm  

Strain at compression peak stress (
1c ) 0.0035 

Compressive fracture energy (
,f cG )  for the wall S4 20, 30, 40 N mm ; 

for the wall S1 30 N mm  

Parameter to define elastic limit state (
0 ) 0.4 

Trilinear tension-softening diagram 2

1 1 2 22.2 ; 0.14 ; 0.15; 0.3; 0.575; 0.15ct ff N mm G N mm           

Parameter defining the mode I fracture 

energy available to the new crack [22] 

2 

Type of shear retention factor law P1 = 2 

Crack bandwidth Square root of the area of Gauss integration point 

Threshold angle [22] 30 degree 

Maximum number of cracks per 

integration point [22] 

2 
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Table 2 – Values of the parameters of the steel constitutive model for shear wall test. 743 

 (%)sy  2( )sy N mm

 

(%)sh  2( )sh N mm  (%)su  2( )su N mm

 

Third branch 

exponent 

8  0.287 574 0.287 574 2.46 764 1 
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Table 3 - General information about the series of the tested RC beams. 773 

Beam 
ρsl 

[%] 

ρf 

[%] 

θf 

[º] 

ρsw 

[%] 

fc 

[MPa] 
asp/d(1) 

3S-4LI-S2 

2.0 

0.113 52 

0.09 40.1 2.5 
3S-4LI-P2 0.113 52 

3S-4LI4LI-SP1 0.113 52 

3S-4LI4LV-SP1 0.101 52/90 

(1) d: effective depth 774 
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Table 4 - CFRP shear strengthening configurations of the tested beams. 796 

Beam 

Shear reinforcement system in the shear span asp 

Material Quantity 
Percentage 

[%] 

Spacing 

[mm] 

Angle 

[º] 

3S-4LI-S2 
Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP laminates 2×4 laminates (1.4×20 mm2) 0.113 350 52 

3S-4LI-P2 
Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP laminates 2×4 laminates (1.4×20 mm2) 0.113 350 52 

3S-4LI4LI-SP1 
Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP laminates 2×(4×2) laminates (1.4×10 mm2) 0.113 350 52 

3S-4LI4LV-SP1 

Steel stirrups 3ϕ6 0.09 350 90 

NSM CFRP laminates 2×4 laminates (1.4×10 mm2) 0.056 350 90 

NSM CFRP laminates 2×4 laminates (1.4×10 mm2) 0.044 350 52 
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 820 
Table 5 – Values of the parameters of the steel constitutive model for RC beams failing in shear. 821 

Property 6  10  12  16  32  

(%)sy  0.27805 

 

0.2833 

 

0.2833 

 

0.2804 

 

0.32725 

 
2( )sy N mm  556.1 

 

566.6 

 

566.6 

 

560.8 

 

654.5 

 

(%)sh  1 1 1 1 1 

 
2( )sh N mm  583.905 

 

594.93 

 

594.93 

 

588.8 

 

687.2 

 

(%)su  10 10 10 10 10 

 
2( )su N mm  682.6 

 

661.6 

 

661.6 

 

675.0 

 

781.9 

 

Third branch 

exponent 

1 1 1 1 1 
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Table 6 – Values of the parameters of the concrete constitutive model for RC beams failing in shear.  841 
Property Value 

Poisson’s ratio ( ) 0.15 

Young’s modulus ( E ) 32000 
2

N mm  

Compressive strength (
cf ) for strengthened beams 

2
40.1cf N mm ;  

for the reference beam (3S_R) 
2

36.4cf N mm   

Strain at compression peak stress (
1c ) 0.0035 

Compressive fracture energy (
,f cG )  20 N mm  

Parameter to define elastic limit state (
0 ) 0.4 

Trilinear tension-softening diagram 2

1 1 2 22.5 ; 0.1 ; 0.008; 0.25; 0.4; 0.05ct ff N mm G N mm           

Parameter defining the mode I fracture 

energy available to the new crack [22] 

2 

Crack shear stress-crack shear strain 

softening diagram 

2

, 1.6 ; 0.03cr

t p N mm  

 for strengthened beams 
, 0.3 ;f sG N mm  

for the reference beam (3S_R) 
, 0.04 ;f sG N mm  

Crack bandwidth square root of the area of Gauss integration point 

Threshold angle [22] 30 degree 

Maximum number of cracks per 

integration point [22] 

2 
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Fig. 1 – Diagram for modelling the fracture mode I at the crack coordinate system [22]. 
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Fig. 2 – Diagram for modelling the fracture mode II at the crack coordinate system [23]. 
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Fig. 3 – Relation between crack shear stress and crack shear strain for the incremental approach based on a shear 

retention factor [22]. 
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(a) the bar under compression (c) Effective (undamaded)

      configuration

N

A

N
A

 
N

A
 

A

Remove the cracks 

DA (Area of the cracks)

N

(b) Nominal (damaded)

      configuration  
Fig. 4 – One dimensional representation of the effective and nominal stresses [14].   
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Fig. 5 – Behaviour of the cement based materials under uniaxial compression: (a) three stage of cracking [27], (b) 

schematic representation of damage evolution in the proposed model.  
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Fig. 6 – Diagrams for modelling compression: (a) the  c c
 relation (in effective stress space) used in the proposed 

plasticity model; (b) the (1 )c dd   relation adopted in isotropic damage model; (c) the 
c c   diagram for 

compression with indication of the compressive fracture energy, 
,f cG .   
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Fig. 7 – Experimental [36] versus predicted stress-strain response of concrete under monotonic uniaxial compressive 

test: (Values for the parameters of the constitutive model: poison’s ratio, 0.2  ; young’s modulus, 27E GPa ; 

compressive strength, 32cf MPa ; strain at compression peak stress 
1 0.0023c  ; parameter to define elastic limit 

state 
0 0.3  ; compressive fracture energy, , 15.1 /f cG N mm  ). 
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Fig. 8 – Experimental [37] versus predicted stress-strain response of concrete under cyclic uniaxial compressive test: 

(Values for the parameters of the constitutive model: 0.2  ; 27E GPa ; 
0 0.3  ; 

1 0.0017c  ; 28cf MPa ; 

, 11.5 /f cG N mm ). 
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Fig. 9 – Prediction of the PDSC model for closing a crack developed in one direction, by imposing compressive load in 

the orthogonal direction (Values for the parameters of the constitutive model: 0.2  ; 33E GPa ; 30cf MPa ; 

, 30 /f cG N mm ; 2.45ctf MPa ; 
1 0.0022c  ; 

0 0.3  ; 0.05 ,fG N mm 
1 1 2 20.2; 0.7; 0.75; 0.2       . 
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Fig. 10 – Simulation of the S4 shear wall tested by Maier and Thürlimann [39]: (a) geometry and loading configurations 

(dimensions in mm); (b) finite element mesh used for the analysis; (c) horizontal load versus horizontal displacement 

diagram, Fh-Uh; (d) experimentally observed crack pattern [39]; (e) crack pattern and (f) plastic zone (results of (e) and 

(f) correspond to 18hU mm , the final converged step). 

(In pink color: crack completely open; in red color: crack in the opening process; in cyan color: crack in the reopening 

process; in green color: crack in the closing process; in blue color: closed crack; in red circle: the plastic zone). 
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Fig. 11 – Simulation of the S1 shear wall, tested by Maier and Thürlimann [39] by PDSC model and assuming 

, 30 /f cG N mm : (a) geometry and loading configurations (dimensions in mm) ; (b) finite element mesh; (c) horizontal 

load versus horizontal displacement diagram, Fh-Uh; (d) experimentally observed crack pattern [39]; (e) numerical crack 

pattern; (f) numerical plastic zone (results of (e) and (f) correspond to 30hU mm , the final converged step). 
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Fig. 12 – Uniaxial constitutive model (for both tension and compression) for the steel bars [22]. 
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Fig. 13 - Geometry of the reference beam (3S-R), steel reinforcements common to all beams, support and load 

conditions (dimensions in mm) [41]. 
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Fig. 14 – NSM shear strengthening configurations (CFRP laminates at dashed lines; dimensions in mm) [41]. 
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Fig. 15 – Finite element mesh used for the beam 3S-4LI-S2 (dimensions are in mm). 
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Fig. 16 – Experimental [41] and numerical load versus the deflection at loaded deflection: (a) 3S-R; (b) 3S-4LI-S2; (c) 

3S-4LI-P2; (d) 3S-4LI4LI-SP1; (e) 3S-4LI4LV-SP1.  
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Fig. 17 – Crack patterns of the tested beams at failure [41]. 
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Fig. 18  – The crack patterns and plastic zone predicted by PDSC model for the beams at the experimental: (a) 3S-R; (b) 

3S-4LI-S2; (c) 3S-4LI-P2; (d) 3S-4LI4LI-SP1; (e) 3S-4LI4LV-SP1  (the results are correspondent to the final 

converged step). 

(In pink color: crack completely open; in red color: crack in the opening process; in cyan color: crack in the reopening 

process; in green color: crack in the closing process; in blue color: closed crack; in red circle: the plastic zone). 
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Fig. A.1 – Willam-Warnke failure surface represented in (a) meridian plane; (b) deviatoric plane (
1 2 3, ,    are the 

principle stresses in the effective stress space). 
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Fig. B.1 – Cyclic uniaxial compressive test of Karsan and Jirsa [37]; (a) the  c c
 law of the model, (b) Experimental 

[39] versus predicted stress-strain response (assuming 
0 4.5l  ). 
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