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Abstract 

The present work describes a model for the determination of the moment-rotation 

relationship of a cross section of fiber reinforced concrete (FRC) elements that also 

include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress-crack 

width relationship ( w  ) is used to model the post-cracking behavior of a FRC, the 

-w directly obtained from tensile tests, or derived from inverse analysis with three-

point notched beam bending tests, can be adopted in this approach. For a more realistic 

assessment of the crack opening, a bond stress vs. slip relationship is assumed for the 

simulation of the bond between longitudinal bars and surrounding FRC. To simulate the 

compression behavior of the FRC, a shear friction model is adopted based on the 

physical interpretation of the post-peak compression softening behavior registered in 

experimental tests. By allowing the formation of a compressive FRC wedge delimited 

by shear band zones, the ambiguous concept of concrete crushing failure mode in beams 

failing in bending is reinterpreted. By using the moment-rotation relationship, an 

algorithm was developed to determine the force-deflection response of statically 

determinate R/FRC elements. The model is described in detail and its good predictive 

performance is demonstrated by using available experimental data. Parametric studies 

were executed to evidence the influence of relevant parameters of the model on the 

serviceability and ultimate design conditions of R/FRC elements failing in bending. 
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1. Introduction 

Recently a closed form analytical model was developed for the prediction of the 

moment-curvature relationship of fiber reinforced concrete (FRC) cross section of 

elements that can be also flexurally reinforced with longitudinal steel and fiber 

reinforced polymer (FRP) bars [1]. In the present work this type of elements will be 

designated as R/FRC. In that model, strain softening and strain hardening FRC 

composites [2] can be simulated by using a tensile stress-strain diagram, but its 

applicability, mainly in case of strain softening FRCs, can be arguable, since the 

formation of a predominant tensile failure crack just after crack initiation recommends 

the use of a stress-crack width relationship ( w  ) for modeling the post-cracking 

behavior of this type of materials. The use of tensile strain concept, instead of crack 

width, on the simulation of the post-cracking behavior of tensile strain softening FRCs 

requires the adoption of a characteristic length parameter [3] whose evaluation is still a 

controversial process. Furthermore, in the model of Taheri et al. [1] perfect bond 

conditions were assumed between longitudinal tensile bars and surrounding concrete in 

order to get a closed form approach for the formulation. However, experimental and 

advanced numerical simulations evidence the effect on the crack patterns and on the 

flexural response of R/FRC elements failing in bending when considering more realistic 

approaches for modeling the bond behavior [4, 5]. 

Concrete in compression is normally simulated by a stress-strain relationship 

determined from uniaxial compression tests under axial displacement control, but the 

post-peak softening response is dependent of several factors, like the geometry and size 

of the specimen, boundary conditions of the specimen in the testing phase, stiffness of 

the testing rig, test control conditions, and monitoring arrangement for the evaluation of 

the axial strain [6, 7]. Therefore, the post-peak compression phase is not a material 

response, and can be regarded as a structural behavior where the softening is mainly 

caused by the coalescence of micro- and meso-cracks into a shear failure crack 

governed by a coupled phenomenon of shear friction and crack opening [8]. This 

physical interpretation of the concrete behavior in compression is implemented in the 

numerical approach developed in the present work. 

To estimate the average final crack spacing  csmL  and the design value of the crack 

width  dw  for members of steel fiber reinforced concrete (SFRC), including 
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longitudinal steel bars (R/SFRC) and subjected principally to flexure or tension, the 

RILEM TC 162-TDF [9] proposed the following equations: 
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where   is the bar diameter, 
,s efρ  is the effective reinforcement ratio: 
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being sA  the cross sectional area of the longitudinal reinforcement contained within the 

effective SFRC area in tension ,c efA =2.5cb, where c  is the concrete cover and b  is the 

width of the cross section. In Eq. (1) 
fl /

fd  is the fiber aspect ratio, where 
fl  and 

fd  is 

the fiber length and diameter, respectively. In Eq. (2) smε  is the mean strain in the 

reinforcement between cracks: 
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where st  is the stress in the reinforcement, sE  is modulus of elasticity of steel bars, 

and sr  is the maximum steel stress at crack section of the crack formation stage [10]: 
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where ctmf  and Ftsmf  is, respectively, the average value of the tensile strength and the 

average value of the residual flexural tensile strength of FRC ( Ftsf ): 

10.45Fts Rf f         (6) 

being 1Rf  the residual flexural tensile strength at a crack mouth opening displacement 

(CMOD) of 0.5 mm, evaluated from the force-CMOD relationship determined from 

three point notched beam bending tests carried out according to the recommendations of 

RILEM TC 162-TDF [9].  
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In Eq. (5) /s s cγ E E , where cE  is the SFRC Young’s modulus, and   is the 

longitudinal reinforcement ratio (= / ( )sA b h c , being h  the height of the cross section. 

In Eqs. (1), (2) and (4) 
1k  to 

5k  are non-dimensional coefficients, whose values can be 

found elsewhere [9]. 

More recently the CEB-FIP Model Code 2010 [10] has proposed the following equation 

to determine the 
dw  for R/FRC members: 
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where ,s efρ  is the effective reinforcement ratio: 
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2.5( / 2)
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
        (8) 

  bm  is the average bond strength between reinforcing bars and surrounding concrete: 

1.8  b tmm cf   (9) 

s  is the strain of rebar at the onset of cracking, and stσ  and sr  have the same 

meaning already proposed by RILEM TC 162 TDF [9]. In the evaluation of the stσ  the 

effect of the fiber reinforcement should be taken into account. To evaluate the 

maximum crack spacing in R/FRC elements, the CEB-FIP Model Code 2010 [10] 

proposes the following equation: 
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In Eqs. (7) and (10) 
6k  to 

8k  are non-dimensional coefficients, whose values can be 

found elsewhere [10]. 

Both the RILEM TC 162 TDF [9] and CEB-FIP Model Code 2010 [10] propose the 

concept of residual flexural tensile strength parameters ( Rjf ) to characterize the post-

cracking behavior of FRC. These parameters are determined from the force-CMOD 

curves obtained from three point beam bending tests, whose typical relationship is 

depicted in Fig. 1. Based on the force values, jF , corresponding to the jCMOD  (j= 1 to 

4), the Rjf are determined from the following equation: 
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where b (=150 mm) and L (=500 mm) is the width and the span of the specimen, 

respectively, and sph (=125 mm) is the distance between the tip of the notch and the top 

of the cross section. 

 

Fig. 1: Typical load versus– crack mouth opening displacement (CMOD) curve of FRC 

[10]. 

 

For structural applications with normal and high-strength concrete, the FRC 

classification proposed by CEB-FIP Model Code 2010  [10] is based on the post-

cracking residual strength. For this purpose, the 1R kf  (representing the strength interval) 

and a letter a, b, c, d or e (representing the 3 1R k R kf / f  ratio) are considered. For instance 

(Fig. 2), a material denoted as “7b” has a strength 1R kf  ranging between 7 and 8 MPa, 

and the 3 1R k R kf / f  ratio ranging between 0.7 and 0.9. 
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Fig. 2: The concept of toughness class for FRC based on the relationship between the 

flexural stress and CMOD [10]. 

 

In the present work a new approach is developed to determine the moment-rotation 

relationship of R/FRC elements failing in bending by considering the concepts proposed 

elsewhere [11-15] and adopting the following innovative aspects: 1) a w   

relationship to simulate the FRC post-cracking behavior; 2) a comprehensive 

interpretation of the behavior of the FRC in compression; 3) the bond between 

longitudinal bars and surrounding FRC. A simple approach is proposed to derive the 

force-deflection response of statically determinate R/FRC elements from the moment-

rotation relationship of the sections of this type of elements. Using this model, a 

parametric study is carried out to assess the influence of the FRC toughness classes and 

bond stiffness on the behavior of R/FRC elements at serviceability and at ultimate limit 

states. 

 

 

2. Numerical strategy for the evaluation of the moment-rotation and force-

deflection of R/FRC beams failing in bending 

 

2.1 Constitutive laws for the intervening materials 

2.1.1 Tensile behavior of FRC 

Fig. 3 represents the constitutive laws adopted to simulate the tensile behavior of FRC. 

Up to crack initiation the FRC is simulated by the following stress-strain equation: 
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   0ct ct c ct ct crσ ε E ε ε ε    (12) 

where cr ct cε f E  is the strain at crack initiation, and ctf  and cE  are the tensile 

strength and Young’s modulus of FRC that can be obtained from the recommendations 

of CEB-FIP Model Code 2010 [10]: 
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being ccf  the concrete compressive strength in MPa. After crack initiation the FRC is 

described by a stress-crack opening diagram that can be formed by multi-linear 

segments (Fig. 3b) in order to have the potential of capturing, with high accuracy, the 

behavior of strain softening and strain hardening FRCs [1]: 
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 (15) 

where i i ctf   is the normalized stress parameter corresponding to crack width iw , 

and uw  is the ultimate crack width. The shape of the w   diagram can be determined 

by performing uniaxial tensile tests with notched FRC specimens [16, 17], or by inverse 

analysis by fitting with a target accuracy the force-crack mouth opening displacement 

(CMOD) registered in notched FRC beam bending tests [18]. Available experimental 

and numerical research evidence that a w   diagram formed by four branches is 

capable of simulating with enough accuracy the post cracking behavior of the types of 

FRC being used in structural applications [9] . The CEB-FIP model code 2010 [10] 

defines a strategy to determine the w   constitutive law for FRC by using the flexural 

tensile strength parameters obtained in three point FRC notched beam bending tests. 

This strategy has provided good predictions [18]. 
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(a) (b) 

Fig. 3: Tensile behavior of FRC: (a) linear stress-strain relationship before cracking, (b) 

Post-cracking stress-crack width response. 

 

2.1.2 Compressive behavior of FRC 

 

Fig. 4 identifies the four distinct consecutive stages of cracking that can be identified in 

concrete under uniaxial compressive load, based on initiation and propagation of cracks 

[19]: 

 Stage I - below ≈30% of the peak stress. The initiation of internal cracks is 

insignificant, and the stress-strain relationship may be considered as linear; 

 Stage II - between ≈30% and ≈80% of the peak stress. Firstly, the initial 

cracking at the interface zone (ITZ) starts to propagate and new micro-cracks 

develop. At approximately 60% of the peak stress, cracks at the cementitious 

matrix start to develop too. However, all these cracks are isolated and randomly 

distributed over the material volume; 

 Stage III - between ≈80% and 100% of the peak stress. At this stage, all the 

small internal cracks become unstable and start to localize into major cracks. 

The crack growth is stable until peak is reached, what means that cracks only 

propagate if the load is increased. This phenomenon is referred as damage 

localization or strain localization; 

 Stage IV - after the peak load. The major cracks continuously propagate, even 

though the load is decreasing. Unloading (snap-back) may occur at the material 

outside the damage zone, while the deformation at the localized damage band 

keeps increasing. 
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In fibrous concrete, the amplitude of the stages II and III is larger than the 

corresponding ones in plain concrete. This amplitude depends, mainly, on the fiber 

type and content. However, the main influence of the fiber reinforcement 

mechanisms is especially visible in the stage IV, where, depending on the fiber 

characteristics and concrete properties, a significant increase on the material energy 

absorption capacity can be obtained [20]. 

 

 

Fig. 4: Progress of damage in concrete under direct compression. 

 

The most important idea to retain of the aforementioned mechanisms is the effect of the 

phenomenon of strain localization in concrete fracture behavior. Until load reaches 

≈80% of peak load, only small isolated and randomly distributed cracks exist, and the 

distribution of stresses and strains can be reasonability predicted by continuous 

mechanics. With the increase of load, the subsequent coalescence of internal cracks into 

major cracks determines the damage and strain localization, converting fracture of 

concrete into a localized phenomenon. This invalidates the use of strain as state variable 

in constitutive laws for concrete [6]. Fracture mechanics should be used to describe the 

failure of concrete, since the localized damage band can be physically simulated by a 

crack. Stress and strain variables used to define the constitutive laws are, per definition, 

only valid at a macro-level of analysis and, consequently, unsuitable to describe 

localized phenomena, like the localization of cracking and shear-sliding in the post-peak 

regime. As soon as macro-cracks start to grow in the specimen, structural changes at a 
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scale of the order of the specimen size occur, and structural response is measured rather 

than pure material behavior in a representative volume. 

Moreover, available experimental research on the characterization of the uniaxial 

concrete compressive behavior indicates that the response of the specimen in the stage 

IV depends of several factors, namely: boundary conditions of the specimen; size and 

shape of the specimen; monitoring system adopted to evaluate the strain; loading rate; 

test controlling conditions; stiffness of the testing rig. Therefore, the response 

determined in the post-peak phase should not be regarded as a material property, being 

eminently a structural response. To take this experimental evidence into account, in the 

present approach the compressive response is decomposed in two phases (Fig. 5): a pre-

peak phase (including by simplification the stages I, II and III) characterized by a stress-

strain law ( cc ccσ ε ); a post peak phase (corresponding to the stage IV) simulated by a 

stress-deformation relationship ( ccσ u ), where the displacement, u , is the axial 

component of the sliding, S , in the shear band, as represented in Fig. 6. 

 

 

(a) (b) 

Fig. 5: Compressive behavior of a FRC: (a) pre-peak stress-strain response, (b) post-

peak stress-deformation response.  

 

To simulate the pre-peak stress-strain response the equation proposed by Vipulanandan 

and Paul [21] was adopted: 
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where ,cc p  is the strain corresponding to the concrete compressive strength  ccf , 

,seccE  is the secant modulus of elasticity of concrete  ,/cc cc pf ε , and p  is a 

parameter ranging between 0 to 1. For hooked ends steel fibers similar to the ones used 

in the experimental programs considered in the present work for the assessment of the 

predictive performance of the proposed model, Barros and Figueiras [22], based on 

experimental research and inverse analysis procedure, proposed the following equations 

for the evaluation of ,cc pε  and p parameters: 

, , 0.0002SFRC PC

cc p cc p fε ε W   (18) 

 1.0 0.919exp 0.394 fp W    (19) 

where Wf  is the fiber weight percentage, and ,

PC

cc pε  is the strain at compressive strength 

of the plain concrete of the same strength class of the FRC [10]. The superscript SFRC 

and PC in Eq. (18) indicate that the entity is measured in specimens of steel fiber 

reinforced concrete and plain concrete of the same strength class, respectively. 

The stage IV of the compressive behavior represented in Fig. 4 is simulated by the 

ccσ u  diagram schematically depicted in Fig. 5(b), where u  is the axial displacement 

component of the shear sliding occurred in the contour of the wedge concrete submitted 

to compression (see Figs. 6). The formation of a concrete wedge in compression, 

delimited by shear band zones where the stress relieve in the concrete interior to the 

wedge is caused by the shear sliding and crack opening in the shear bands, permits a 

non-superposition of the material usually assumed for the concrete in compression when 

a full stress-strain relationship is adopted for the concrete in compression [23]. The 

shear sliding is accompanied by a crack opening due to the aggregate interlock effect. 

Due to the softening nature of the shear stress, 1τ , and normal stress, 1σ , with the 

increase of shear sliding and crack opening developed in the shear bands [24], the 
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compressive stress in the concrete interior to the wedge also decreases with the increase 

of the u  displacement component. 

 

 

Fig. 6: Wedge sliding mechanism in compression. 

 

 

Fig. 7: Wedge sliding mechanism in a RC beam failing in bending. 

 

The shear stress versus shear sliding, 1τ S , depends on the normal stress 1σ  acting on 

the shear band, where for a certain cosS u γ , the 1τ  increases with the normal stress 

component 1σ . The following equation can be used to simulate this type of behavior 

[23]: 
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1
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fu
f N mm
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 (20) 

where   is the concrete frictional angle, which is ranging between  37° and 57.5° for 

ordinary concrete depending on the concrete resistance [25]. Since no reliable 



14 

 

information is available on the effect of the fiber reinforcement on the   value, the 

same interval is also assumed for FRC in the present work. Imposing equilibrium 

equations in both horizontal and vertical directions of the forces acting on the concrete 

wedge, the following equation is derived: 

 
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 (21) 

The influence of the concrete frictional angle ( ) on the compressive post-peak 

response of concrete is illustrated in Fig. 8a by considering two values for   

parameter, 37 and 47 degrees, and assuming a concrete of compressive strength of 60 

MPa. It is verified that varying the   parameter in an interval of values expected for 

concretes, the post-peak response of the concrete is not significantly affected. 

Furthermore, in Fig 8b are compared the post-peak responses of the concrete 

determined from the shear wedge sliding approach (Eq. 21) and from a conventional 

approach based on a stress-strain diagram (Eq. 16). According to Fig. 8b the shear 

wedge sliding approach leads a higher post-peak compressive resistance. For the 

concrete strength class considered and for the values adopted in this example, the 

maximum difference on the post-peak compressive resistance was limited to 14%.  

 
 

(a) (b) 

Fig. 8: (a) Influence of the   parameter on the concrete compressive post-peak 

response; (b) Comparison between compressive behaviour of concrete determined 

from shear wedge sliding and conventional stress-strain approach. 
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2.1.3 Tensile behavior of steel reinforcement 

The elastic-perfectly plastic stress-strain response represented in Fig. 9 was considered 

to simulate the tensile behavior of the steel bars in tension: 

 
s st st sy

st st

sy st sy

E

f

  
 

 


 


 (22) 

where sE  is the modulus of elasticity, 
syf  and 

sy  is the yielding stress and the 

corresponding strain, respectively, and su  is the ultimate tensile strain. 

 

 

Fig. 9: Elastic-perfectly plastic response to simulate the tensile behavior of steel bars. 

 

2.1.4 Bond stress-slip relationship to simulate the bond behavior between FRC and 

reinforcement 

Based on equilibrium considerations, the following fundamental equation governing the 

bond between a steel bar and the surrounding concrete is determined [26]: 

 
 
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L Ld s x
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dx A E E A


 
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 (23) 

where sA  and psL  is the cross section area and the perimeter of the reinforcement, 

respectively, ,c efA  is the effective area of concrete in tension that can be defined 

according to the recommendations of CEB-FIP Model Code 2010 [10]. In the present 
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work 
,c efA  was assumed as the cross section area in tension, therefore its value is 

updated during the loading process in consequence of the variation of the neutral axis. 

In the present version of the model, a simplified linear bond stress-slip relationship is 

assumed, but other more sophisticated laws can be adopted, only requiring more steps in 

the algorithm and more iterations for the convergence. Therefore, assuming a linear 

bond stress-slip relationship, 
bsk s  , the solution of Eq. (23) can be obtained from: 

( ) cosh( ) sinh( )s ss x A x B x      (24) 

where 

,

ps ps

s bs

s s c c ef

L L
k

A E E A


 
   
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 (25) 

being bsk  the bond stress-slip stiffness. The A  and B  constants in Eq. (24) are obtained 

by satisfying the boundary conditions in accordance to the bar-concrete sliding 

conditions between consecutive cracks, as schematically represented in Fig. 10. 

 

 

Fig. 10: Crack propagation and consequent sliding and strain distribution between 

cracks. 
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In the present approach it is assumed that the cracking formation process divides the 

beam in concrete prisms of a length csL  that is the crack spacing.  

In Fig. 10 is represented the variation along the bar-embedment length: the sliding, ( )s x

; concrete tensile strain,  ( )ct ct s cε x σ w x E    ; and strain in the reinforcing bar, 

   ( )st s s sε x F x A E , when the crack, of a crack width sw , is formed in section 1 and 

just before the formation of the crack at section 2. For longitudinal bars crossed by 

flexural cracks the sliding of the bar at each face of the crack can be approximated as 

half of the crack width at the level of the reinforcement  1( 0) / 2ss x s w   , as 

already considered by other researchers [23, 27]. In this approach the crack width is 

always assumed as being evaluated at the level of the tensile reinforcement. The sliding 

variation in section 1 is the difference between the strain in the reinforcement and in the 

surrounding concrete at this section: 

 1

0

ct ss

x s s c

σ wFds

dx A E E

   (26) 

where 1sF  is the force installed in the reinforcement at section 1, and  ct sσ w  is the 

concrete tensile stress for a crack width sw , evaluated from the stress-crack width 

diagram attributed to the FRC (Fig. 3b).  

Sliding value and sliding variation tend to zero at section 2 ( ( ) 0css x L  ; 

( ) 0csds x L dx  ), where perfect bond conditions between reinforcement and 

surrounding concrete are assumed. Imposing these bond conditions to Eq. (24), the 

crack spacing of two adjacent cracks, which is the distance between sections 2 and 1, is 

obtained by assuming the following equation, whose deduction is detailed in [28]:  

2
cs

s

L


  (27) 

 

2.2. Algorithm to predict the moment–rotation response of FRC hybrid reinforced 

cross section 

 



18 

 

A segment of a FRC beam flexurally reinforced with longitudinal bars, herein 

designated as R/FRC, with a length equal to the crack spacing, csL , is subjected to a 

pure bending moment M , as schematically represented in Fig. 11. When the most 

tensioned concrete surface (in Fig. 11 is the bottom surface) attains the concrete strain at 

crack initiation, ct crε ε , i.e., when cracking bending moment is installed  crM M , a 

flexural crack is initiated, and due to symmetry only half part of the beam’s segment is 

represented in Fig. 11. By increasing the rotation  at the extremities of the beam’s 

segment, the crack propagates towards the top surface of the beam. A symmetric cross 

section that can have a width varying along its depth (Fig. 11b), and a height h, is 

discretized in n layers in order to take into account the appropriate constitutive law for 

each concrete layer during the loading procedure. The width, the thickness and the 

depth of the ith layer (with respect to the beam’s top surface) is designated, respectively, 

by ib , it , and id . For the concrete layer at the level of the reinforcement  i sd d  the 

total width of this layer  ib  is decomposed in the part corresponding to the 

reinforcement sb   /s s ib A t  and to the concrete bc  c i sb b b  . 

 

 

(a) (b) 

Fig. 11: (a) Cracked R/FRC segment of length csL  submitted to pure bending, (b) layer 

approach to discretize the cross section. 
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In the developed incremental-iterative algorithm (the increment is the rotation, while the 

iterative procedure is executed up to assure force equilibrium according to an adopted 

tolerance), the rotation of the beam in a kth generic step of the computation is imposed 

by considering a constant increment of  : 

k k    (28) 

For this rotation, the axial displacement of the ith layer, k

iD , is determined by 

considering its position, id , and the distance of the neutral axis ( NAd ): 

k

i k i NAD d d   (29) 

while its corresponding effective strain is obtained from the following equation (the 

superscript k representing the loading step will be not indicated hereafter in order to 

simplify the notation): 

2ef i
i

cs

D

L
   (30) 

where csL  is the spacing between cracks obtained from Eq. (27). If i NAd d  the 

compressive force in the ith layer, c

iF , can be obtained from the following equation: 

 
 

,

,

ef ef

cc i i i i cc pc

i ef

cc i i i i cc p

b t if
F

u b t if

   

  

 
 



 (31) 

where iu  is the horizontal component of ith layer sliding, iS , of the concrete wedge in 

compression softening, which is determined by solving the following system of 

equations: 

 

   
,

,

2 / 0

0

ef

i cc i i cs

cc i cc cc i

ε ε u L

σ u σ ε

   


 
 (32) 

where ,cc iε  is the compressive strain of the layer when subjected to the axial 

displacement iu  (see Fig. 5b). 

If  i NAd d  the tensile force in the ith layer, c

iF , can be obtained from the following 

equation: 
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 
 

ef ef

ct i i i i crc

i ef

ct i i i i cr

b t if
F

w b t if

   

  

 
 



 (33) 

where the tensile stress,  ef

ct i  , is obtained from the diagram represented in Fig. 3(a), 

while iw  is the crack width determined by solving iteratively the following equation: 

 
2

ct i

i i cs

c

w
w D L

E

 
  
 

 (34) 

The approach subjacent to Eq. (34) assumes that the crack width of the formed crack 

plus the deformation of the concrete along the prism (  ct i cs cw L E ) is equal to total 

displacement of the cracked concrete at this level (2Di). 

To evaluate the force installed in the reinforcement  s

iF , two conditions should be 

considered: 

i) when the reinforcement is not crossed by the crack ( s crd d , see Fig. 11a): in this 

case perfect bond conditions are assumed for the reinforcement, thereby the force is 

determined from the following equation: 

 s ef

i s i st iF b t   (35) 

ii) when the reinforcement is crossed by the crack ( s crd d , see Fig. 11a): in this case 

the s

iF  is obtained by considering the bond stress-slip model described in Section 2.1.4, 

resulting the following equation [28]: 

 1 0.76 ( )

0.76

s s s s ct ss

i

c

A E s E w
F

E

 
  (36) 

By imposing the equilibrium of the axial forces in the cross section, the depth of the 

neutral axis, NAd , is determined. For this equilibrium configuration corresponding to 

the kth loading step, the bending moment is evaluated: 

1

n
c s

k i i i s

i

M F d F d


   (37) 
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where n is the number of layers of the cross section. Eqs. (28) and (37) define a point 

of the moment-rotation relationship, k kM  . The moment-curvature response can 

also be obtained, k kM  , where the curvature is determined from: 

,1cc

k

NAd



  (38) 

being 
,1cc  the concrete compressive strain at the top surface of the cross section. The 

flowchart of the algorithm is described in Fig. 12. 
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Fig. 12: Flow chart of the algorithm of the model. 

 

2.3. Evaluation of force-deflection relationship  

The force-deflection response of statically determinate beams failing in bending is 

determined by the algorithm schematically represented in Fig. 13. To evaluate the force-

deflection response of a RC beam (or a slab’s strip), the structural element is 

decomposed in m  segments of length x . The moment-rotation relationship for each 

segment x  representative of the beam (in terms of cross section geometry, materials 

and flexural reinforcement) is determined, and then converted in a moment-curvature 

relationship according to Eq. (38), since curvature is not dependent of the length of the 

adopted segments. The bending moment in the middle section of the ith segment at a 

distance ix  from the left support  ( )k iM x  can be obtained for each increment of the 

imposed load configuration  kP .  

By using the moment-curvature relationship for the cross section representative of each 

segment, obtained according to the model described in Section 3, the curvature  i

kχ  

and the corresponding flexural stiffness  i

kEI  for the ( )k iM x  are determined. By 

applying the principle of virtual work, the mid-span deflection of the beam for the kth 

loading step  kδ  is obtained, resulting a kP  - kδ  point of the force-deflection response 

of the beam [29]. 

In [28] it is demonstrated that the length adopted for x  in the algorithm of Fig. 13 has 

no effect on the force-deflection response, as long as it is adopted a number of segments 

capable of representing the types of sections of the structural element to simulate, as 

well as the variation of the bending moment. 
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Fig. 13: Numerical approach to determine the force–deflection response of statically 

determinate beams failing in bending [29]. 

 

3. Model appraisal 

The performance of the proposed model in terms of predicting the force-deflection 

response is evaluated by simulating the force-deflection relationship in R/FRC beams 

tested by Barros et al. [30]. 

The parameterized geometry and reinforcement arrangement of the beams of the three 

simulated experimental programs are represented in Fig. 14, and the corresponding data 

is indicated in Table 1. In these three experimental programs SFRC was used, and a four 

point loading configuration was adopted. 

 

Fig. 14: Reinforced SFRC beam under four point loading configuration (data included 

in Table 1). 

 

 

Table 1: Geometric properties of the beams (Fig. 14) 
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Beam 

 series 
Reference 

b  h  c  
1L  2L  ,s tA  

,s cA  

[mm] [mm] [mm] [mm] [mm] [mm2] [mm2] 

B1 

Barros et al. [30]  350 150 20 450 450 

84.8 

84.8 B2 150.8 

B3 235.6 

B4 Vandewalle [31] 200 350 35 750 1750 628.3 - 

B5 Tan et al. [32] 100 125 25 665 665 157.1 - 

 

The B1, B2, and B3 beams were made by a concrete reinforced with 45 kg/m3 of 

hooked ends steel fibers of a length and diameter of 60 and 0.75 mm, respectively. The 

concrete compressive strength and the yield stress of the longitudinal steel bars are the 

relevant available information. To derive the constitutive law for defining the tensile 

behavior of SFRC, an inverse analysis procedure was executed by matching, as much as 

possible, the force-deflection response registered experimentally in the B1 beam. The 

obtained data is included in Table 2. The Young’s modulus was determined from Eq. 

(14) for SFRC utilized in B1-B3 for both in tension and in compression. For the bsk  

bond stiffness the value 70 MPa/mm was used. 

In Fig. 15 the force-deflection response of B1, B2 and B3 beams, obtained by the 

developed numerical strategy, is compared to the corresponding one registered 

experimentally, being evident the good predictive performance of the model. 

 

Table 2: Mechanical properties of intervening materials of the simulated beams 

Beam 

series 
ccf  ctf  1α  2α  3α  4α  5α  1w  2w  3w  4w  5w  uw  syf  

suε  

[MPa] [MPa] - - - - - [mm] [mm] [mm] [mm] [mm] [mm] [MPa] [‰] 

B1 

99.2 2.53 0.86 

          600 10 

B2 0.83 0.64 0.36 0.27 0.01 0.1 0.3 0.6 1.8 3.0 670 15 

B3           680 12 

B4 37.5 2.49 1.11 0.57 0.49 0.40 0.31 0.016 0.40 1.10 1.80 2.49 2.55 500 15 

B5 34.5 2.49 1.11 0.56 0.48 0.39 0.31 0.011 0.42 1.09 1.76 2.45 2.55 500 15 

sE = 200 GPa 
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(a) (b) 

 

(c) 

Fig. 15: Load-deflection response predicted by the proposed model and recorded in the 

experimental program. 

 

The capability of the model to predict the crack width is also assessed by simulating the 

tests carried out by Vandewalle [31], and Tan et al. [32], whose test samples were made 

by SFRC with, respectively, 45 and 40 kg/m3 hooked ends steel fibers of a length and 

diameter of 35 and 0.54 mm, designated in Table 1 by B4 and B5. Material properties of 

SFRC of beams B4 and B5 are indicated in Table 2, in which, due to lack of 

information about the post-cracking response of the utilized SFRC in these two 

experimental programs, CEB-FIP Model Code 2010 [10] recommendations were 

adopted to characterize the SFRC of these beams. For this purpose, the residual flexural 

strength parameters fR1 and fR3 were estimated according to the volume percentage ( )fV  

and geometry of the fibers ( fl  fiber length, fd  fiber diameter) by using the 

following equations proposed by Moraes-Neto et al. [33]: 
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0.8

1 7.5
f

R f

f

l
f V

d

 
   

 
 (39) 

0.7

3 6.0
f

R f

f

l
f V

d

 
   

 
 (40) 

Table 2 includes the data derived according to this strategy to determine the tensile 

behavior of the SFRC of B4 and B5 beams. The value of 85 MPa/mm was considered 

for the bond stiffness parameter, bsk . Fig. 16 shows that the model is capable of 

predicting with good accuracy the moment versus crack width response. 

This figure also includes the moment-crack width relationship obtained by using the 

approaches proposed by RILEM TC 162-TDF [9] (Eqs. (1)-(6)) and Model Code 2010 

[10] (Eqs. (7)-(9)). In the RILEM approach it was considered k1=0.8, k2=0.5, k3=1.7, 

k4=k5=1.0. For the evaluation of smε  in Eq. (4) and the strain and stress values in the 

reinforcement by using Eq. (7) ( stσ , sr , s ), the numerical approach proposed in the 

present work was also used. The average bond strength,   bm , was calculated using Eq. 

(9) and by adopting the average concrete tensile strength (   ctmf ) indicated in Table 2. 

The Ftsf  was obtained from Eq. (6) by considering the values for the 1  Rf  calculated by 

Eq. (39). From the obtained results it is notable that the proposal of RILEM TC 162-

TDF [9] predicts with high accuracy the crack width variation, as long as the average 

strain in the tensile reinforcement, which changes during the loading process, is 

determined by the numerical approach proposed in the present paper. 

 

  

(a) (b) 

Fig. 16: Predictive performance of the model in terms of moment-crack width response. 
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4. Parametric study 

The numerical model is now used to assess the influence of the post-cracking 

performance of FRC on the load carrying capacity and cracking behavior of R/FRC 

beams. For this purpose, the post-cracking performance of FRC is classified according 

to the CEB-FIP Model Code 2010 [10] recommendations, a subject already introduced 

in “Introduction” section, and the four toughness classes of FRC indicated in Table 3 

are adopted. This parametric study is applied to simply supported R/FRC beams of 2500 

mm span length and rectangular cross section of 300 ×150 mm. A longitudinal 

reinforcement ratio of 0.5% was adopted by using steel bars of 16 mm diameter in the 

tension region, with a concrete cover of 50 mm. A FRC of compressive strength of 60 

MPa was used, while for the longitudinal steel bars a yield stress  syf  of 500 MPa, a 

modulus of elasticity  sE  of 200 GPa, and ultimate strain  suε  of 11.5‰ were 

considered. 

 

Table 3 – Toughness classes according to the CEB-FIP Model Code 2010 [10]. 

Case study Toughness 

classification 

Interval of 

1Rf  [MPa] 

Interval of 

3 1/R Rf f  

FRC1 6a [6,7] [0.5-0.7] 

FRC2 6d [6,7] [1.1-1.3] 

FRC3 12a [12,13] [0.5-0.7] 

FRC4 12d [12,13] [1.1-1.3] 

By considering these values and adopting the methodology recommended by CEB-FIP 

Model Code 2010 [10] to define the post-cracking behavior of FRC (Fig.17), the 

influence of the toughness classes of FRC on the force-deflection and on the force-crack 

width response of the beams is represented in Fig. 18(a) and 18(b), respectively (two 

vertical dotted lines are represented in Fig. 18(b), corresponding to the maximum crack 

width limits imposed by CEB-FIP Model Code 2010[10],: 0.1 and 0.3 mm). The crack 

width was determined at the level of the longitudinal tensile reinforcement. 
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Fig. 17: Post-cracking diagrams of FRC of different toughness classes. 

 

According to these figures, by varying the toughness class from 6a to 6d, and also from 

12a to 12d has no effect on the service load (load level up to a crack width limit of 

0.3mm, Fig. 18b). This means that the increase of the fR3/fR1 ratio for a FRC of a certain 

fR1 has negligible effect in terms of load carrying capacity for service load conditions. 

However, for the present R/FRC beams an increase of 20.1% was obtained for the 

service load level corresponding to a crack width of 0.3mm when a FRC of fR1=12MPa 

is used instead of a FRC of fR1=6MPa. When compared to the adopted plain concrete of 

the same strength class, an increase of 42.8% and 71.5% was obtained in terms of load 

carrying capacity at serviceability limit conditions due to cracking when a FRC of 
1Rf  

equal to, respectively, 6 and 12 MPa is used. 

 

  

(a) (b) 

Fig. 18: Influence of the FRC toughness class on the: (a) load-deflection, and (b) load-

crack width responses of R/FRC beams. 
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Considering the material model properties of FRC3 (Table 3), the influence of the bsk  

bond stiffness is evaluated in Fig. 19 by adopting a very stiff value ( bsk =80 MPa/mm), 

which simulates high bond conditions, and two other smaller values simulating higher 

sliding between reinforcement and surrounding concrete ( bsk = 15 and 7 MPa/mm). As 

Fig. 19(a) shows, for the interval of values considered for the bsk , and assuming that a 

linear response for the bond stress versus slip is acceptable, which is the hypothesis 

considered in the present version of the model, the bond stiffness has no appreciable 

influence on the load-deflection response up to peak load, but for deflection levels 

higher than the one corresponding to the peak load, the load carrying capacity increases 

with bsk . Both the peak load and its corresponding deflection increase with bsk . The 

highest benefit of increasing bsk  is, however, on the load carrying capacity of the 

R/FRC for serviceability limit conditions due to maximum crack width restrictions (Fig. 

19b). This figure clearly evidences that the load carrying capacity for this interval of 

crack width (0.1 to 0.3mm) increases with bsk . The increase of the bond stiffness can be 

attained by including micro- and meso-fibers in the FRC composition, capable of 

minimizing the crack opening and propagation in the concrete surrounding the tensile 

steel bars [34]. In the present parametric studies it is verified that the increase of bsk  

from 7 MPa/mm to 80 MPa/mm has provided an increase of 38.9% and 53.7% on the 

load carrying capacity for a crack width of, respectively, 0.1 and 0.3 mm. 
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Fig. 19: Effect of the bsk  bond stiffness on the: (a) load-deflection, and (b) load-crack 

width responses of R/FRC beams. 

 

5. Conclusions  

In the present paper an innovative numerical approach was developed to determine the 

moment vs. rotation relationship of cross section of fiber reinforced concrete (FRC) 

elements failing in bending. These elements can also include flexural tensile steel bars 

(R/FRC). The following novelties were implemented: a stress-crack width relationship 

for modeling the post-cracking behavior of R/FRC; a new approach to simulate the FRC 

in compression by using a stress-strain equation up to the strain corresponding to the 

compressive strength, and then a stress-deformation relationship based on the shear 

friction theory; a bond model to simulate the sliding between longitudinal tensile bars 

and surrounding FRC. By using the moment-rotation relation obtained from this 

approach, an algorithm was proposed to derive the force-deflection of statically 

determinate R/FRC elements. The good predictive performance was demonstrated by 

using available experimental data in terms of force-deflection and moment-crack width. 

By performing parametric studies with the developed numerical model, it was verified 

that in R/FRC elements of a longitudinal reinforcement ratio of 0.5% (a convenient ratio 

when fibers and longitudinal tensile bars are used) the flexural capacity for crack width 

limits imposed by actual design guidelines for the accomplishment of the serviceability 

limit states has increased significantly with the increase of the residual flexural tensile 

strength parameter for a CMOD=0.5 mm, 1Rf . However, the other parameter that 

defines the toughness class of a FRC according to the CEB-FIP Model Code 2010[10], 

fR3/fR1, had only a beneficial effect on the flexural capacity for crack width values above 

the one corresponding to the yield initiation of the longitudinal reinforcement. Finally, it 

was observed that the bond stiffness has a quite favorable effect on the flexural capacity 

and on the arrestment of the crack opening up to the yield initiation of the longitudinal 

reinforcement. 
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Notation 

 

A  = constant coefficient 

,c effA  = effective area in tension 

sA  
= cross sectional area of steel bar 

s ,cA  = area of reinforcement in compression zone 

s ,tA  = area of reinforcement in tension zone 

a  = distance between load point and support 

B  = constant coefficient 

b  = beam width 

ib  = width of ith layer 

sb  = width of reinforcement 

cb  = width of surrounding concrete of reinforcement 

c  = cover of reinforcement 

sd  = central distance of steel bars from top face of section 

fd  = diameter of fibre 

crd  = distance of crack apex from top face of section 

id  = depth of ith layer 

NAd  = depth of neutral axis 

wdd  = Depth of wedge 

iD  = horizontal deformation at ith layer 

cE  = modulus of elasticity of FRC 

,seccE  = secant modulus of elasticity of FRC 

sE  = modulus of elasticity of steel bars 
i

kEI  = flexural stiffness of the ith  segment in the kth step of loading 

jF  = force value corresponding to the jCMOD  

c
iF  = Force of FRC in layer i 

1sF  = internal force of reinforcement at section1 
s

iF  = internal force of reinforcement at layer i 

ccf  = compressive strength of FRC 

ctmf  = average value of the concrete axial tensile strength 

Ftsmf  = average value of the residual flexural tensile strength parameter for serviceability 

limit state analysis of FRC 

ctf  = tensile strength of concrete 

syf  = yielding stress of steel bar 

1Rf  
= residual flexural tensile strength at a crack mouth opening displacement (CMOD) of 

0.5 mm 

3Rf  
= residual flexural tensile strength at a crack mouth opening displacement (CMOD) of 

2.5 mm 

h  = beam depth 

sph  = distance between the tip of the notch and the top of the cross section 

k  = counter 

ik  = non dimensional coefficients 

bsk  = stiffness of linear bond-slip behaviour 
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L  = beam total length 

csL  = crack spacing 

csmL  = average crack spacing for members subjected to flexure or tension 

,maxcsL  = maximum crack spacing in R/FRC elements 

psL  = circumference of the reinforcement 

fl  = length of fibre 

M  = bending moment  

crM  = cracking moment of the section 

i
M  = bending moment in stage i 

kM  = moment of the prism section, corresponds to the imposed k  

n  = number of layers 

P  = total applied load on beam 
p  = constant parameter 

kP  = total applied load on beam in kth step of loading 

q  = constant parameter 

S  = relative displacement along the wedge plane 

iS  = relative displacement along the wedge plane in layer i 

s  = sliding displacement 

1s  = sliding at section1 

it  = thickness of ith layer 

st  = thickness of reinforcement 

u  = axial component of the sliding 

iu  = axial component of the sliding of layeri 

fV  = volume fraction of fibres 

w  = crack width 

dw  = design value of crack width 

iw  = crack width of layer i 

uw  = ultimate crack width 

sw  = crack width at the level of reinforcement bar 

fW  = fibre weight percentage in the mixture 

iα  
= normalized post cracking stress 

sβ  = constant coefficient 

γ  = angle of the wedge plane  

sγ  = normalized modulus of elasticity of steel bars 

δ  = deflection 

kδ  = mid-span deflection of the beam for the kth loading step 

ccε  = compressive strain of FRC 

,cc pε  = strain corresponding to compressive strength 

,

PC

cc pε  = strain at compressive strength of the plain concrete 

,

SFRC

cc pε  = strain at compressive strength of the steel fiber reinforced concrete 

,cc iε  = compressive strain of layer when subjected to sliding of iS . 

,1ccε  = compressive strain at upper face of the prism section 

cuε  = ultimate compressive strain of FRC 
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 crε  = tensile strain at crack initiation of FRC 

 ctε  = tensile strain of FRC 
ef

iε  = effective strain of layer i  

sε  = strain of rebar at the onset of cracking 

stε  = tensile strain of steel bar 

syε  = yielding strain of steel bar 

suε  = ultimate tensile strain of steel bar 

smε  = mean strain in the reinforcement between the cracks 

,s ef  = effective reinforcement ratio 

ρ  = reinforcement ratio of longitudinal steel bars 

σ  = stress 

ccσ  = compressive stress of FRC 

ctσ  = tensile stress of FRC 

 ct sσ w  = tensile stress-crack width response of FRC 

stσ   = tensile stress of the steel bars 

srσ  = the maximum steel stress in a crack in the crack formation stage 

1σ  = normal stress at wedge plane 

  = bond stress 

  bm  = average bond strength between reinforcing bars and concrete 

1  = shear stress at wedge plane 

  = curvature  
i
k  = curvature of the ith  segment in the kth step of loading 

k  = Curvature of beam corresponding to the imposed k  

  = rotation of section 

k  = imposed rotation at kth step 

  = bar diameter 

θΔ  = increment of rotation 
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