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Abstract: One of the most popular approaches to path planning and control is the
potential field method. This method is particulary attractive because it is suitable
for on-line feedback control. In this approach the gradient of a potential field is used
to generate the robot’s trajectory. Thus, the path is generated by the transient
solutions of a dynamical system. On the other hand, in the nonlinear attractor
dynamic approach the path is generated by a sequence of attractor solutions. This
way the transient solutions of the potential field method are replaced by a sequence
of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We
discuss at a theoretical level some of the main differences of these two approaches.
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1. INTRODUCTION

A very well known approach for the control
and path planing is the artificial potential field
method (PFM) that was originally developed in
(Khatib, 1986) for manipulators and mobile ro-
bots as a local method. After that, several authors
have used it and made contributions and improve-
ments, specially concerning its most documented
limitation - the existence of a local minimum (e.g.,
(Khosla and Volpe, 1988), (Connolly et al., 1990),
(Latombe, 1991), (Koren and Borenstein, 1991),
(Rimon and Koditschek, 1992), (Khatib, 1996),
(Ge and Cui, 2002)). One of the main reasons

1 This work was support in part, through grant
POSI/SRI/38051/2001 and SFRH/BD/23821/2005 from
the Portuguese Foundation for Science and Technology.

for the success of this method is the fact that
it can not only be used for global off-line path
planning, when the robot has total knowledge of
its environment, but also for local on-line path
planning when such knowledge is not available
and the presence of obstacles is detected by sen-
sors mounted on the robot.

The nonlinear attractor dynamics approach (NLAD)
is more recent ((Schöner and Dose, 1992), (Engels
and Schöner, 1995)). This approach was developed
initially as a method of planning within represen-
tations of the navigable space. Implementations
requiring extensive computations were not always
realized in close loop with sensory information.
Thus at the time, although interesting, this ap-
proach was a mixture of the classical approach to
path planning and control theory, and it remained
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to be proved how this approach could be used
for on line path planning based on low-level sen-
sory information and modest computational re-
sources (for review see e.g. (Arkin, 1998)). Later,
in ((Bicho and Schöner, 1997), (Bicho et al., 2000),
(Bicho, 2000)), the nonlinear attractor dynamics
approach was extended and it was demonstrated
how it can be made to work based on local and low
level sensory information and with very modest
robot platforms. In this approach, the robot’s tra-
jectory consists of a temporal sequence of attrac-
tor solutions (i.e. asymptotically stable states) of a
dynamical system. The obvious advantage of this
method is the asymptotical stability of the entire
control scheme, making the system concomitantly
robust against perturbations.

It was seen in (Costa e Silva et al., 2005) that
these two approaches produce qualitatively dif-
ferent behaviours for the chosen world scenarios.
The results were obtained in computer simulation
using MatLab and also in implementation in a
real autonomous mobile robot. In this paper we
highlight at theoretical level some of the main
differences of these two approaches.

This paper is organized as follows: In Sections
2 and 3 we given a brief description of the two
approaches. In Section 4, we present their compar-
ison. Finally, the conclusions are given in Section
5.

2. POTENTIAL FIELD METHOD

In the artificial PFM the robot’s position is seen
as a point moving in a field of forces, where tar-
get and obstacles provide attractive and repulsive
forces, respectively. If x denotes the robot’s posi-
tion, the vector force field F (x) is the negative
gradient of a (scalar) potential field U(x), i.e.,
F (x) = −∇U(x). In most cases the potential
function U(x) is a linear combination of a repul-
sive potential, Ur(x), and an attractive potential
Ua(x),

F (x) = F r(x) + F a(x) (1)

=−∇Ur(x)−∇Ua(x) (2)

where F r is the force that induces an artificial
repulsion from the surface of the obstacles pro-
duced by Ur(x) and F a is the attractive force that
guides the robot to the target. The total artificial
potential U(x) must be non negative, continuous
and differentiable and its unique minimum is zero
at the target’s position, xt, and Ur(x) should tend
to infinity as the robot approaches the obstacles’
surface. 2

2 However, the summation of the contributions from tar-
get and obstacles, may result in a minimum other than the
target’s position.

In the case of the existence of n obstacles, the
repulsive force is given by F r =

∑n
i=1 F r,i.

Khatib also proposes that a dissipative force,
proportional to velocity, ẋ, should be added for
asymptotic stabilization of the system. So, the
robot is subjected to the total force

F ∗(x) = F r(x) + F a(x)− kd ẋ (3)

where kd is a positive constant.

2.1 Classical Potential Field Method

The following potential fields are proposed in
(Khatib, 1986)

Ur,i(x) =





1
2
η

(
1

di(x)
− 1

d0

)2

if di(x) < d0

0 otherwise
(4)

Ua(x) =
1
2

ξ (x− xt)
2 (5)

where ξ and η are the constant gains of the
attractive and repulsive potential, respectively,
di(x) is the closest distance to the obstacle and
d0 is the limit distance of the repulsive potential
influence. Then we have

F r,i(x) =





η

(
1
di
− 1

d0

)
1
d2

i

êi if di(x) < d0

0 otherwise
(6)

F a(x) =−ξ (x− xt) , (7)

where êi = ∂di(x)
∂x is an unit vector that indicates

the direction of the repulsive force, F r,i.

2.2 Stability

After computing the attractive and repulsive
forces, F a and F r, the total force is given by

F (x) =−∇[U(x)] = (f1(x), f2(x))> (8)

By Newton’s law and assuming unitary mass

ẍ = F (x)− kd ẋ (9)

This second order system can be reduced to a
system of first order equations as follow

ẋ = v
v̇ = F (x)− kd v

⇐⇒ Ẋ = F(X) (10)

where (x1, x2)> and (v1, v2)> are the cartesian
coordinates of position and velocity, respectively,
and F(X) = (v1, v2, f1 − kd v1, f2 − kd v2)>,
X = (x1, x2, v1, v2)>.



For a given fixed point X0 = (x̃, 0, 0)> of (10),
where x̃ = (x̃1, x̃2)> is a critical point of U(x),
the jacobian of F(X) at X0 is

DF(X0) =




0 0 1 0
0 0 0 1
−A −B −kd 0
−B −C 0 −kd


 (11)

where A = ∂2U
∂x2

1
, B = ∂2U

∂x1 ∂x2
and C = ∂2U

∂x2
2

evaluated at X0. The eigenvalues of DF(X0) are

µ1,2 =
−kd ±

√
k2

d − δ1 + δ2

2
(12)

µ3,4 =
−kd ±

√
k2

d − δ1 − δ2

2
(13)

where δ1 = 2(A+C) and δ2 = 2
√

(A− C)2 + 4B2.

We have that:

(i) if x̃ is a minimum of U(x) and
- kd = 0, i.e. when no dissipative term is

added, the eigenvalues µi, i = 1, . . . , 4
are two pairs of complex-conjugate, pure
imaginary, so X0 is a stable but not
asymptotically stable fixed point of (10);

- kd > 0, Re(µi) < 0, i = 1, . . . , 4, then
X0 is a sink of (10);

(ii) if x̃ is a maximum of U(x), Re(µi) > 0,
i = 1, 3, and Re(µi) < 0, i = 2, 4, then X0 is
a saddle of (10).

From the Stable Manifold Theorem and the
Hatman-Grobman Theorem, any sink of (10) is
an asymptotically stable fixed point and any
source or saddle of (10) is an unstable fixed point
(Perko, 2001).

2.3 Control

In the PFM, an artificial potential field (of forces)
is created, defined by the localization of the robot
with relation to obstacles and targets. We want
the robot to react locally to this field. According
to (Ge and Cui, 2002), the force can be directly
used as a control input or part of a control input
for the low level controller of the robot, or it can
be used just to control the navigation direction.

Let ψF = arctan(f2/f1) be the direction of the
total force, F , and F its magnitude. The heading
direction, φ, can be controlled by the following
system, where k is a positive constant,

φ̇ = −k (φ− ψF ) (14)

as proposed e.g. in (Koren and Borenstein, 1991)
and (Ge and Cui, 2002). Or by

φ̇ = −k F sin(φ− ψF ) (15)

as proposed, for e.g, in (Khatib, 1996).

For the control of the velocity, this can be con-
sidered constant, as in (Koren and Borenstein,
1991), or proporcional to the projection of the
velocity vector in the direction of the negative
gradient.

3. NONLINEAR ATTRACTOR DYNAMICS

The basic ideas for the NLAD approach to robot-
ics are: (i) the behavioral patterns are described
and parameterized by a set of behavioral variables;
(ii) desired behavioral patterns are designed as
attractors and undesired behavioral patterns are
designed as repellers of the dynamics; (iii) the
transitions between qualitatively different behav-
iours are achieved by exploiting bifurcations in the
dynamics.

So, the robot’s behaviour will be generated by
evaluating ordinary differential equations in time.
For the navigation of a robot in the plane, and to
the behaviours avoid obstacles and go to target,
the heading direction φ (0 ≤ φ < 2π) in an
external referential and the path velocity v, are
suitable behaviour variables. The direction ψt in
which the target is seen by the robot in relation
to its present position, specifies a desired value
for the heading direction. On the other hand, the
directions ψi (i = 1, . . . , n), in which the obstacles
lie, specifies values that the heading direction
must avoid.

The heading direction, φ ≡ φ(t), and path ve-
locity, v ≡ v(t), are governed by time-continuous
dynamical systems,

φ̇ = f(φ, γ) (16)

v̇ = g(v, γ) (17)

where γ ≡ parameters. These dynamical systems
define the temporal rate of change of the heading
direction and path velocity as a function of their
current values.

The behavioural dynamics is build up from in-
dividual contributions, which are added to shape
the complete vector field. Each of these individual
contributions represents a constraint on the be-
haviour that we are designing. By design we make
the system to be at all times in, or very near,
an attractor so that the overt behaviour is really
generated by attractor solutions of the dynamical
system. The time scale of each elementary behav-
iour, modelled by each force-let, determines how
strongly that behaviour contributes to the vector
field of the behavioral variables. Thus the hierar-
chy of time scales also determines the hierarchy
of behaviours. Prior behaviours have smaller time
scales.



When the robot is moving around, the sensorial
information changes, and the individual contribu-
tions to the vector field change in time. Conse-
quently, the attractors of the resulting dynamical
system move. To keep the system near a stable
state (an attractor) at all times, the rate with
which the attractors move must be controlled
so that the system is able to track the moving
attractors. This is accomplished by making the
relaxation time of the dynamics much faster than
the time associated with the moving attractors.
One way to do this is to control the path velocity,
v, of the robot, making the relaxation time of the
dynamics much faster than the time associated
with the moving attractors (Bicho, 2000).

As we can see, the system (16)-(17) depends on
parameters. In such dynamical systems, it may
happen that, after a parameter changes its value,
the qualitative behaviour of the dynamical system
also changes. This bifurcation of the dynamical
system is exploited to switch to more appropriate
behaviours if necessary.

3.1 Robot control

The vector field (16) is constructed by a certain
number of additive forces where each force speci-
fies a desired or undesired value to the heading
direction. To attract the system for a desired
value, which corresponds to the target’s direction,
it’s given an attractive force, ftar, while to avoid
undesired values of the system, which corresponds
to the obstacles’ directions, a repulsive force is
used, fobs. This results, in general, in a nonlinear
system.

In (Bicho, 2000) this approach is used to control
robot platforms with very modest computational
power based on local and low level sensory in-
formation. So, if the robot is equipped with n
distance sensors, we assume that each sensor i
(i = 1, . . . , n) specifies a virtual obstacle in the
direction ψi if an obstruction is detected in that
direction. The repulsive force due to each obstacle
i is given by

fobs,i(φ) = λi(φ− ψi) e
− (φ−ψi)

2

2σ2
i (18)

The magnitude, λi, of this repulsive force is

λi = β1 e−
di
β2 (19)

where β1 controls the maximum repulsive magni-
tude and β2 is the decrease rate, with the increase
of distance di, measured by the sensors. The an-
gular range of the repulsive force is given by

σi = arctan
[
tan

(
∆θ

2

)
+

R

R + di

]
(20)

where ∆θ=const is the sensibility angle of the
sensors and R is the robot’s radius. The repulsive
force is

fobs(φ) =
n∑

i=1

fobs,i(φ) (21)

The attractive force is exercised in the complete
circle and given by

ftar(φ) = −λt sin(φ− ψt) (22)

where λt specifies the intensity of the attractive
force.

To guarantee that the system escapes from a
repeller 3 within a limited time, a stochastic force,
fstoch, is added. The resulting heading direction
dynamics is

φ̇ = f(φ, γ) = ftar(φ) + fobs(φ) + fstoch (23)

Because the velocity with which the fixed points
shift is determined by the relative velocity of
the robot with respect to its environment, by
controlling the path velocity we can keep the
system stable, i.e., in or near an attractor at all
times. Deriving the maximal rate of shift, ψ̇max,
of the fixed points as a function of the vehicle’s
velocity, we can compute the desired path velocity
as a function of distance with ψ̇max as parameter,
that can be tuned to obtain good tracking. We
compute the desired velocity separately for each
of the two constraints. The desired velocities are
imposed through the following dynamical system

v̇ = g(v, γ) = −c1(v − Vtar)− c2(v − Vobs) (24)

This system specifies two attractors that attract
the robot’s velocity to the values Vtar or Vobs, with
intensity c1 and c2, that are adjusted such that in
the presence of strong obstacle contributions the
obstacle, c2, term dominates and in the absence
of such contributions the target’s term, c1, domi-
nates.

To guarantee that the system relaxes to the at-
tractors and that the obstacles avoidance has
precedence over the target contribution, the fol-
lowing hierarchy of relaxation rates must be
obeyed

λt << c1 β1 << c2 λt << β1 (25)

3.2 Stability

The analysis of the stability is quite simple. For
the nonlinear dynamical system (16) that governs
the heading direction, φ, we can consider the
following Lyapunov function

3 This situation may occur when an attractor in which the
system was sitting in becomes a repeller when a bifurcation
occurs.



V (φ) =−λt cos(φ− ψt) +
n∑

i=1

λ1σ
2
i e
− (φ−ψ1)2

2σ2
i + K

where K ∈ R. Choosing appropriate values to λt,
λi and K, we have V (φ) > 0, ∀φ ∈ [0, 2π[. On the
other hand,

V̇ (φ) =
dV (φ)

dt
= − [f(φ)]2 < 0, ∀φ ∈ [0, 2π[\{φ̃}

where φ̃ are the fixed points of f(φ). So, by the
Lyapunov direct method, the dynamical system is
asymptotically stable.

Since path velocity is governed by a linear dyna-
mical system (17), and Dg|ṽ = −c1 − c2 < 0, we
can conclude that this system is also asymptoti-
cally stable.

4. COMPARISON

In this section we will do a theoretical comparison
of the two approaches. Since the NLAD is written
is polar coordinates, we will start by writing the
PFM in polar coordinates.

4.1 Potential Field Method in polar coordinates

Since the velocity vector v = (v1, v2)> has always
the direction of the movement, φ ∈ [0, 2π[, let
φ = arctan (v2/v1) and v2 = v2

1 + v2
2 . Let us also

do F =
√

f2
1 + f2

2 and ψF = arctan (f2/f1), i.e,
F is the magnitude and ψF is the direction of the
total force F . We have, for v > 0

φ̇ =−1
v
F sin(φ− ψF ) (26)

v̇ = F cos(φ− ψF )− kd v (27)

Let us define G as

G(φ, v) =

(
−1

v
F sin(φ− ψF )

F cos(φ− ψF )− kd v

)
(28)

The fixed point of (26)-(27) is (φ̃, ṽ) = (ψF , F/kd),
i.e., the fixed point is such that it has the direction
of the total force, ψF , and velocity proporcional
to the magnitude of the force, and consequently
depends on the distance to obstacles and target.
To analyse the nature of this fixed point, let us
define the jacobian of G

DG =

(
−a

v

b

v2

−b −kd

)
(29)

where a = F cos(φ− ψF ) and b = F sin(φ− ψF ).
The eigenvalues of DG are

µ1,2 = − 1
2 v

(
a + kd v ±

√
(a− kd v)2 − 4b2

)

For (φ̃, ṽ) = (ψF , F/kd), µ1 = µ2 = −kd < 0, so
this is an asymptotically stable point - an attrac-
tor. Note that, if kd = 0 asymptotical stability is

not guaranteed. Thus, for the PFM, the dynam-
ical system that controls heading direction and
path velocity has an unique fixed point.

Note that, for the NLAD the dynamical system for
controlling the path velocity has also an unique
asymptotically stable fixed point. On the other
hand, the dynamical system that controls the
heading direction may have several fixed points,
attractors or repellers.

For this reason, in the next subsection we will con-
centrate our attention in the dynamical systems
responsible for the control of heading direction in
both approaches.

4.2 Control of Heading Direction

Let us study the fixed points of the dynamical
systems used in the control of heading direction
in the two approaches.

4.2.1. Potential Field Method As we have men-
tioned before, two of the possible ways to control
the heading direction are (14) and (15). Using the
linear system

φ̇ = h(φ, γ) = −k (φ− ψF ) (30)

we can see that it has only one fixed point,
φ̃ = ψF , which is asymptotically stable - an at-
tractor, since Dh|φ̃ = −k < 0 (Fig. 1 - top). Sup-
pose that φ is controlled by

φ̇ = h(φ, γ) = −k sin(φ− ψF ) (31)

This dynamical system has two fixed points
φ̃ = ψF and φ̄ = ψF + π. We have Dh|φ̃ = −k < 0
and Dh|φ̄ = k > 0. So, φ̃ is asymptotically stable -
an attractor, and φ̄ is unstable - an repeller (Fig. 1
- bottom).

dφ/dt

φπ/2 π 3π/2 2πψ
F

Attractor

φπ/2 π 3π/2 2πψ
F

dφ/dt

Attractor

Repeller

Fig. 1. Phase plot for the system Eq. 30 (top) and
for the system Eq. 31 (bottom), where ψF is
the direction of the total force, F .

4.2.2. Nonlinear Attractor Dynamics Using the
dynamical system (23) for the control of heading
direction, the fixed points are obtained by solving
the nonlinear equation f(φ, γ) = 0. Because ana-
lytical solutions are not, in general, available we
resort to numerical methods. In this case we use
the secant method. Note that we may get multiple
fixed points, as we will see next.



4.2.3. Bifurcations As it was mentioned before,
changes in the parameters, γ ≡ γ(x), may lead
to bifurcations. Next we will analyse the effects
on changes in the parameters. More precisely,
we will analyse the changes in the number and
nature of the fixed points for different distances
to the closest obstacle for the situation displayed
in Fig. 2.

Fig. 2. The robot is facing an obstacle and behind
this obstacle there is a target to be reached.

Let us start with the PFM. In Fig. 3 and Fig. 4 we
can see the attractors and repellers using (30) and
(31), for the control of heading direction. We can
observe that the number of fixed points doesn’t
change if we change the distance to the obstacle.
For the case of the nonlinear system (31), we have
two fixed points - an attractor and a repeller.

10 20 30 40 50 60 70 80
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distance to closest obstacle (cm)

φ 
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es
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Attractor

Fig. 3. Bifurcation diagram for PFM using the
linear system (30).
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Fig. 4. Bifurcation diagram for PFM using the
nonlinear system (31).

For the NLAD approach, we can see that as the
distance to the obstacle changes there are changes
in the number and nature of the fixed points
(Fig. 5). When distance is greater than 65 cm the
dynamics presents an attractor and an repeller.
From 65 cm to 20 cm the dynamics exhibits two

attractors and two repellers. Finally, from 20 cm
to 10 cm we have one attractor and one repeller.
A pitch-fork (supercritical) bifurcation occurred,
i.e., an attractor (stable fixed point) became a
repeller (unstable fixed point) and two new at-
tractors appear. These two attractors correspond
to the two possibilities for the motion of the robot,
turning right or left. The decision of turning right
or left depends on the basin of attraction in which
the heading direction lies.
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50
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Attractor
Repeller

Fig. 5. Bifurcation diagram for the NLAD ap-
proach using Eq. 23.

In Fig. 6 phase spaces for different distances to
the obstacle are presented, which confirm the
existence and nature of the fixed points.

Fig. 6. Phase spaces for system (23), for distances
to closest obstacle. Target’s contribution -
green line; obstacle’s contribution - red line;
resulting dynamics - black line.

We have that, for the situation displayed in Fig. 5,
the fixed point of f(φ, γ) is φ̃ = ψt = ψ1. And,

∂f

∂φ
(φ̃, γ) =−λt + λ1 = −λt + β1 e−

d1
β2

So γ∗ = d1 = −β2 e−
λt
β1 is the parameter value for

which a pitchfork bifurcation occurs.

In Fig. 7 we show the temporal evolution of hea-
ding direction (black line) and attractors (green
diamonds) using NLAD. As we can see the hea-
ding direction is in, or very close to, an attractor
at all times.
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Fig. 7. Temporal evolution of heading direction
(black line) and attractors (green diamonds)
using NLAD. The color of the diamonds
give us information of the strength of the
attractors: the darker they are, more stable
are.

5. CONCLUSIONS

In this paper we have pointed out the main dif-
ferences, at a theoretical level, of two approaches
to the path planning and control of autonomous
mobile robots: (i) the (artificial) potential field
method, and (ii) the nonlinear attractor dynam-
ics.

Although both approaches represent obstacles and
target as repellers and attractor, respectively, the
two approaches are quite different. These diffe-
rences are evident, in particular, in the number
and nature of fixed points present by the dynam-
ical systems used in each approach. In the PFM
approach at each moment the robot must follow
the direction of the force (negative gradient of the
potential field) which is unique, thus the systems
presents only an attractor. On the other hand, the
NLAD approach may present, at each moment,
more than one attractor. Each attractor repre-
sents a different possibility for the motion of the
robot (e.g., turning right, turning right, go strait
ahead). The decision of which of the attractors
to follow depends on the basin of attraction in
which the heading direction lies. These different
attractors lead to distinct trajectories of the robot
(see (Costa e Silva et al., 2005)).

In the PFM approach the gradient of a scalar
potential field is used to generate the robot’s
trajectory. Thus, the path is generated by the
transient solutions of a dynamical system. On the
other hand, in the NLAD approach the path is
generated by a sequence of attractor solutions.
Thus the transient solutions of the PFM approach
are replaced by a sequence of attractor solutions
(i.e., asymptotically stable states) of a dynamical
system.
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representation on an autonomous vehicle with
low-level sensors. The International Journal
of Robotics Research 19(5), 424–447.

Connolly, C.I., J.B. Burns and R. Weiss (1990).
Path planning using laplace’s equation. IEEE
Conference on Robotics and Automation
pp. 2102–2106.

Costa e Silva, E., E. Bicho and W. Erlhagen
(2005). Real time trajectory generation meth-
ods: A comparative study. Revista Robótica
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