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ABSTRACT 

This paper presents a methodology based on the Bayesian data fusion techniques applied 

to non-destructive and destructive tests for the structural assessment of historical 

constructions. The aim of the methodology is to reduce the uncertainties of the parameter 

estimation. The Young's modulus of granite stones was chosen as an example for the 

present paper. The methodology considers several levels of uncertainty since the 

parameters of interest are considered random variables with random moments. A new 

concept of Trust Factor was introduced to affect the uncertainty related to each test results, 

translated by their standard deviation, depending on the higher or lower reliability of each 

test to predict a certain parameter. 

KEYWORDS: Bayesian, non-destructive methods, minor-destructive methods, 

destructive methods, sonic testing, ultrasonic testing, Young’s modulus 

1 INTRODUCTION 

Characterization of engineering materials usually requires taking samples to laboratory 

in order to evaluate the mechanical properties. Nevertheless, sampling of masonry 

materials is often costly and, generally, prohibited in most historic buildings. 

Additionally, the heterogeneity of the material can lead to misunderstanding results when 
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the sampling operation is not carried out properly and in sufficient number. In this way, 

non-destructive techniques are essential when the overall knowledge of the wall 

characteristics is needed [1]. 

Non-destructive techniques can be used for the following purposes: detection of hidden 

structural elements; cataloguing of masonry and masonry materials, mapping of 

heterogeneities of materials [2]; evaluation of the extent of mechanical damage in cracked 

structures; detection of voids and flaws [3]; evaluation of moisture content and capillary 

rise; detection of surfaced decay; evaluation of mortar, brick and stone mechanical and 

physical properties [4]; masonry durability problems [5]; and masonry creep (long-term) 

damage [6]. Up to now, most of the non-destructive techniques applied to historical 

structures are based in wave propagation and temperature detection [7], generally the 

same applied in concrete. Examples are [8], [9]: infrared thermography, sonic tests [10], 

[11]; and ground penetrating radar [12], [13], [14], [15]. Geoelectrics, which is a 

technique mostly used in the geologic field [16], [17], has been recently put in use for the 

structural diagnosis of old masonry structures [18], [19].  

As most of the non-destructive techniques give only qualitative results, it is desirable to 

test the same locations with more than one technique [8], [20], [21], [22], [23], although 

this requires a large knowledge of the investigator or a team of specialists to help in the 

interpretation of the results.  

It is well known that data available from multiple sources underlying the same 

phenomenon can contain complementary information [3]. The idea of combining 

information from multiple sources is called data fusion [24], [25], [26], which have been 

studied by several researchers in the field of non-destructive testing. The key idea is to 



improve the quality of the non-destructive tests by taking advantage of their advantages 

and trying to overcome their limitations in a particular application. This combination of 

several techniques can give more reliability for the interpretation of results and for the 

detection of irregularities like voids, cracks, the presence of moisture, better estimation 

of mechanical or structural properties, etc.  

The work presented in this paper addresses a methodology to overpass the difficulties of 

choosing the right value for a certain parameter when several non-destructive tests are 

carried out and when the majority of the gathered information is more qualitative rather 

than quantitative. The methodology is based on Bayesian methods [27], [28] and provides 

a consistent and rational approach on the results’ analysis. It starts from a range of values 

given by the literature and takes into account the history of testing, as well as the trust on 

the reliability of the results of each non-destructive method. 

To analyse its applicability, the proposed methodology is applied to a real case study, 

Saint Torcato church, located in a town near Guimarães, Portugal. The historic building 

exhibits moderate to severe damage (including soil settlements and structural cracks), and 

several non-destructive tests have already been carried out in the church to characterize 

the mechanical properties of the materials and the existing damages, along circa ten years. 

The paper is organized as follows: Section 1 introduces the aim of the paper; Section 2 

presents the Bayesian methodology for data fusion applicable to the results analysis of 

different non-destructive tests; Section 3 describes the Saint Torcato church case study, 

including the non-destructive tests carried out with the results to be used as inputs for the 

Bayesian data fusion model to predict the Young’s modulus of the stones used in the 

masonry walls; Section 4 presents the model for the Bayesian data fusion, including the 



introduction of a Trust Factor which was defined based on a survey carried out with 

several experts on inspection and diagnosis of historical constructions; Section 5 presents 

the results of the proposed methodology and its discussion; and finally, in Section 6 

conclusions and future work are presented. 

2 BAYESIAN METHODOLOGY FOR DATA FUSION 

Data fusion is applied in different fields, such as civil, medicine, management, 

transportation systems, security and military, to mention a few of them. Among others, 

the purpose of application in each area ranges from surveillance and reconnaissance to 

wildlife habitat monitoring, including sensor networks management, robotics, detection 

of environment hazards, video and image processing [24], [25], [26]. 

Several methodologies have been proposed in the literature for the purpose of multi-

sensor fusion and/or merging results coming from different testing methods. However, 

few applications were devoted to the evaluation of civil engineering structures and 

materials, especially to concrete structures [29] [30] [31], and non to historical masonry 

constructions.  

These most common techniques applied for data fusion are: artificial intelligence [32], 

pattern recognition [33], statistical methods [34], fuzzy sets and neural networks [35], 

Kalman Filters [36], and probabilistic methods such as the Bayesian approach [29] [37]. 

In the next section only the Bayesian approach will be discussed because it was the chosen 

technique to fuse data in the present paper. 



2.1 Bayesian data fusions and uncertainty 

Uncertainties may be represented in terms of mathematical concepts from the 

probabilistic theory [29] [32]Sungbin Cho, Seung Baekb, Jonathan S. Kim, Exploring 

artificial intelligence-based data fusion for conjoint analysis, Expert Systems with 

Applications, Vol.24(3), pp. 287-294, (2003). 

[33] S. Dormido-Canto, G. Farias, R. Dormido, J. Vega, J. Sánchez, N. Duroa, H. 

Vargas, G. Rattá, A. Pereira, A. Portas, Structural pattern recognition methods 

based on string comparison for fusion databases, Fusion Engineering and Design, 

Vol.83(2-3), pp. 421-424 (2008). 

[34] Shengli Wu, Applying statistical principles to data fusion in information retrieval, 
Expert Systems with Applications, Vol.36(2), pp. 2997-3006 (2009). 

[35] Shao-Fei Jiang, Chun-Ming Zhang, Shuai Zhang, Expert Systems with 

Applications, Vol.38(1), pp. 511-519 (2011). 

[36] Gao, J.B.; Harris, C.J., Some remarks on Kalman filters for the multisensor fusion, 
Information Fusion, Vol.3(3), pp. 191-201 (2002). 

[37]. In many cases it is enough to model the uncertain quantities by random variables 

with given distribution functions and parameters estimated on the basis of statistical 

and/or subjective information [38]. The principles and methodologies for data analysis 

and fusion that derive from the subjective point of view are often referred to as Bayesian 

statistics. In this approach the knowledge about an unknown parameter is described by a 

probability distribution function which means that probability is used as the fundamental 

measure of uncertainty.  

Bayesian techniques allow fusing or updating random variables when new data is 

available using a mathematical process to deal with uncertainties.  

In a Bayesian approach, the data fusion process starts with a given probability 

distribution. Its parameters may be chosen or estimated based on previous experimental 

results, experience and professional judgement. This distribution is called prior 



distribution and translates the uncertainty about the parameter value. When additional 

data becomes available it can be integrated to update this prior distribution into a posterior 

distribution using the Bayes theorem which weighs the prior information with the 

evidence provided by the new data. The posterior distribution is a compromise with 

reduced uncertainty between the prior information and the one contained in the new data 

[39]. Figure 1 resumes this overall process. 

The prior distribution represents a population of possible parameter values and should 

include all plausible ones. The parameters of the prior distribution can be chosen or 

calculated in such a way that the prior reflects: (a) known initial observations of the 

random variables (for instance test results) and (b) subjective knowledge (for instance 

professional judgment) [21]. It is possible to choose a prior distribution, which reflects a 

range of situations from very good prior knowledge (small standard deviation) to limited 

knowledge (large standard deviation) or even no knowledge.   

The property that the posterior distribution follows the same parametric form as the prior 

distribution is called conjugacy. Conjugate distributions present computational 

advantages since they simplify calculations and can be often translated in analytical form. 

For example, if the prior and likelihood functions are Gaussian this will ensure a Gaussian 

posterior. This happens to all members of the exponential family. 

If the prior distribution of a parameter θ, with k possible outcomes (θ1, …,θk), is 

continuous and new information x is available, then the Bayes theorem is translated by: 
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where, p(θ) is the prior distribution of  θ  which summarizes the prior beliefs about the 

possible values of the parameter, p(x|θ) is the conditional probability (or likelihood) of 

the data given θ and p(θ|x) is the posterior distribution of θ given the observed data x. 

The prior and posterior distributions of θ are represented by density functions. The joint 

probability distribution of the data and the parameter is given by p(x|θ) which is called 

the likelihood and is defined by: 

     
i

ixpLxp  ||
 (2) 

where i is the number of outcomes of the new data. Bayes theorem is applied multiplying 

the prior by the likelihood function and then normalizing, to get the posterior probability 

distribution, which is the conditional distribution of the uncertain quantity given the data. 

The posterior density summarizes the total information, after considering the new data, 

and provides a basis for posterior inference regarding θ. 

2.2 Bayesian fusion model 

The adopted Bayesian fusion model uses a normal likelihood together with a conjugate 

prior. The data is modelled as a random variable with variable moments which means that 

the mean (µ) and the variance (σ2) were also considered random unknown variables in 

order to introduce several uncertainty levels in the model [40]. In the fusion model these 

parameters are updated as new data is gathered which allows new inferences about the 

parameter of interest with reduced uncertainty. 

In the case of conjugate prior distribution, the joint distribution of µ and σ2 has the 

following form [28]: 
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where n0 is the size of the initial sample, S0 is the initial sum of the squared differences 

between the values and their mean, and µ0 and σ0 are the initial mean and standard 

deviation. 

This means that the prior is the product of the density of an inverted Gamma distribution 

with argument σ2 and ν0 degrees of freedom and the density of a normal distribution with 

argument µ, where the variance is proportional to σ2. It is the density of the so-called 

normal-gamma distribution. Therefore, the prior for µ conditional on σ2 is a normal with 

mean µ0 and variance σ2/n0: 
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The prior for the precision (1/σ2) is a gamma distribution with hyperparameters ν0/2 and 

S0/2: 
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The appearance of σ2 in the conditional distribution of µ|σ2 means that µ and σ2 are 

interdependent. Since this formulation considers conjugate distributions, the posterior 

distributions for the parameters will follow the same form as the priors. The conditional 

posterior density of µ, given σ2, is then given by: 















1

2

1
2 ,~,|

n
Nx




 (6) 

where, 

x
nn

n

nn

n








0

0

0

0
1 

 (7) 

nnn  01  (8) 



where µ1 is the posterior mean, n is the size of the new data sample, and 𝑥̅ is the mean of 

the new data sample. The parameters of the posterior distribution combine the prior 

information and the information contained in the data. For example, µ1 is a weighted 

average of the prior and the sample mean, with weights determined by the relative 

precision of the two pieces of information. The marginal posterior density of 1/σ2 is 

gamma: 
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where s is the standard deviation of the new data. The posterior sum of squares (S1) 

combines the prior and the sample sum of squares, and the additional uncertainty given 

by the difference between the sample and the prior mean. 

To infer values from the probability distributions of the parameters it is normally 

necessary to use simulation methods. There are several simulation algorithms and one of 

the most popular is the Markov Chain Monte Carlo (MCMC). Markov chain simulation 

is a general method based on a [41] sequence of random draws θ1, θ2,…,θn for which, for 

any time t, the distribution of θt depends only on the most recent value,   θt-1. 

The Gibbs sampler is the most used MCMC algorithm and was applied in this work. It is 

normally chosen for simulation in conditionally conjugate models, where it is possible to 

directly sample from each conditional distribution. 



3 CASE STUDY 

Saint Torcato church is located in a small village near Guimarães, Portugal (see Figure 

2). The church built in stone granite masonry walls reveals significant dimensions: central 

nave has 57.5 m of length, 17.5 m of width, and an average height of 26.5 m; transept has 

37.0 m of length and 11.5 m of width; the towers have 7.5 m length, 6.5 m width, and 50 

m height. The masonry walls have 1.3 m of thickness in the lateral walls, 1.45 m in the 

towers, and between 1.7 and 2.5 m in the main façade [42]. 

The building exhibits moderate to severe damage due to soil settlements mainly under the 

towers and main façade. As a result, cracks can be easily observed on the main and the 

lateral façades in the areas close to the towers and from inside the temple (see Figure 2b 

to d). The bell-towers are leaning apart from each other, and the arches in the nave exhibit 

a failure mechanism with cracks and vertical deformations. These phenomena are 

progressing and a structural intervention is planned by the owner. More information about 

the church and its damages can be found in [42]. 

On the church several non-destructive tests have already been carried out. The tests were 

concentrated on the bottom of the west tower. Additionally, a monitoring system was 

installed in 2009 to control the current condition and to assess the success of the structural 

intervention to stabilize the soils settlements [43]. Among the different tests carried out 

on church and as the Bayesian methodology proposed in this work for data fusion will 

only be focused to predict the Young’s Modulus (Ec) of the granite stones, only the results 

of sonic tests, ultrasonic tests, and direct compression tests on stones collected from the 

same possible quarry of the church will be used. In this process, literature values for the 

same parameter will be also used as a first input. The following sections summarize the 

tests and the results taken into account in the presented methodology. 



3.1 Values from the Literature knowledge 

Since no historical data is available on the mechanical characteristics of the granite used 

to construct the Saint Torcato church, a range of values for the Young’s Modulus was 

firstly established. The range of values for Ec in granites found in literature was 20-50 

GPa [44]. This interval was used to establish the prior parameters, namely, mean (µ) = 35 

GPa and standard deviation (σ) = 7.5 GPa. The mean is the central point of the interval 

and the standard deviation was set in order that the overall range was within the interval 

of the mean plus and minus two standard deviations.  

3.2 Sonic tests 

Sonic Pulse Velocity tests were performed on the bottom of the west tower. Direct tests 

were carried out with the purpose to determine the sonic velocity directly through the 

granite with no voids or joints between the two external surfaces. This velocity can be 

used as a basis for determining if there are voids in the walls of the Saint Torcato church. 

Figure 3 presents the location of the measuring points inside the North bell tower were 

ten consecutive tests were carried out on each measuring point (P1 to P5) with two 

transmission configurations, and Table 1 presents the results obtained for the average 

velocity and coefficient of variation (CoV) for all the tests carried out. 

Since the results from sonic tests only gives the velocity of P-waves the estimation of the 

Young’s Modulus can be made indirectly by the estimation of the dynamic elastic 

modulus Ed (based on vibration and wave propagation, and assuming that the dynamic 

modulus is close to the Young’s modulus of the Material Ec) by using Eq. (12): 

𝐸𝑑 = 𝑉𝑝
2 (1+𝜗)(1−2𝜗)𝜌

(1−𝜗)
  (12) 



where 𝜗 is the Poisson ratio, ρ is the density and Vp is the P-wave velocity. A range of 

values between 0.2 and 0.3 and  2600 and 2800 kg/m3 were considered for the ν and ρ, 

respectively [44]. These ranges of values and the variability on the sonic velocity translate 

the variability and uncertainty concerning the parameter Ec. They were transformed in 

normal probability distribution functions and using the Monte Carlo simulation method 

10.000 draws of each distribution were sampled and applied in Eq.(12) to obtain the same 

amount of Ec values from which it was possible to compute the mean and standard 

deviation. With this approach, the final results for the mean and standard deviations of Ec 

obtained via sonic testing were equal to 31.51 GPa and 5.06 GPa, respectively.  

3.3 Ultrasonic tests 

Semi-direct ultrasonic tests were performed on four corner stones in the west tower in the 

closest position of the sonic tests and at the same height. The interior corners of the 

entrance to the tower from the outside and from the opposite draped entrance side were 

tested at the height of the second course of stones up from the ground floor. A diagram 

of the test locations (corners) is shown in Figure 4 and the results are presented in Table 

2. Semi-indirect tests with two transmission configurations were carried out between 

points 1-1, 2-2, 3-3, 4-4, 5-5, and 6-6 with 54 kHz transducers. 

As carried out before for the sonic tests, the ultrasonic velocities were transformed into 

the Young’s modulus by using the Monte Carlo method together with Eq. (12), varying 

randomly over their specified range. As final results, the mean and standard deviations of 

Ec were equal to 32.20 GPa and 2.16 GPa, respectively.  



3.4 Compressive tests 

Since sampling of the granite from the historical church was not possible, two separate 

granite blocks, thought to have come from the same quarry as the Saint Torcato granite, 

were tested using both non-destructive and destructive tests. The same non-destructive 

tests were used on the blocks to confirm that the two granites were similar, namely the 

direct sonic and semi-indirect ultrasonic. The average velocity for sonic waves of the 

blocks was equal to 3801 m/s (Cov 16.2%) while for indirect-ultrasonic the average 

velocity was equal to 3729 m/s (CoV 3.6%). Since the results do not significantly differ 

from the in situ tests results, it can be assumed the similarity of the two granites. 

Therefore, destructive tests were performed on the granite blocks to determine the 

mechanical characteristics. 

Six cores were drilled in the granite block labeled Stone 2 (Figure 5a and b). These cores 

had a diameter of approximately 75 mm and were cut to a height of approximately 155 

mm. The cylinders were dried at 70 degrees Celsius for two days before testing. In the 

test set-up a hinge was placed below the specimen. For the compression tests, the test 

speed was 2 micrometers per second.  For the Young’s Modulus test three linear variable 

differential transformers (LVDTs) were placed on the specimen using rings at 

approximately one third and two thirds of the specimen’s height, as shown in Figure 5c. 

In order to determine the range for the load cycles the first cylinder was crushed to find 

the compressive strength of the granite (Figure 5d). The results of the compression tests 

on the granite cylinders are shown in Table 3.  

Finally, by using the Bayesian model with the Monte Carlo method the compressive test 

on granite blocks provided a mean (µ) equal to 31.87 GPa and standard deviation (σ) of 

1.83 GPa. 



4 BAYESIAN DATA FUSION MODEL 

The Bayesian methodology was applied to the characterization of the Young’s modulus 

(Ec) of the granite masonry stones. The prior distribution of Ec was set based on literature 

information [44]. This prior is subsequently combined with the data from indirect tests 

(sonic and ultrasonic) and direct tests (compressive strength) using the presented 

Bayesian model (Figure 6). The data fusion is carried out stepwise, i.e. with two data 

sources at a time and then combining them into a single data source. This methodology 

simulates the gathering of the tests results in different points in time. 

In order to fuse the data from the different sources the results of each test has to be 

transformed into a probability distribution of Ec in the same format as the prior 

distribution [43], [45], [46]. All the distributions were considered to be normally 

distributed in order to be possible to apply the Bayesian model. Care was taken to avoid 

negative values for Ec. Concerning the results of the compressive strength tests, the 

distribution parameters (mean and standard deviation) were computed using directly the 

tests results. 

Flowchart shown in Figure 7 represents the different stages of the data fusion process. 

At Stage 1, information from literature which is subjective in nature is combined with an 

indirect source data to arrive to a posterior 1. This posterior 1 acts as a prior for the second 

stage of the fusion process and it is combined with indirect data source 2 to get posterior 

2. Again, posterior 2 acts as a prior and is combined with the direct source data to arrive 

to a final posterior distribution that gathers all available data. As stated, this procedure 

simulates the gathering of data at different stages. The final results depend on the order 

of the stepwise procedure, since the updating model is non-linear. 



The proposed model deals with many kinds of uncertainties at different levels of fusion 

from different types of data sources (Figure 8). They are managed and included into the 

proposed Bayesian model of data fusion. 

However, despite uncertainty (and variability) is dealt with in the scope of the 

methodology, the reliability of the different sources is not taken into account. To consider 

this aspect a new concept named as Trust Factor (TF) was introduced. To each source a 

value of TF was assigned. The methodology to obtain TF and how it influences the 

probability distribution functions is explained in the next section. 

4.1 Trust Factor (TF) 

The concept of TF is intended to introduce the subjective concept of different confidence 

levels in the results of some tests than others to determine a certain parameter. For 

example the direct compression test is a much more reliable test than the Schmidt hammer 

to determine the compressive strength of rocks but the simple statistical determination of 

parameters for the probability distributions function does not takes this matter into 

account. In some cases the data from the indirect tests can be less spread than that from 

the direct tests and this would be translated in the Bayesian data fusion process in more 

confidence in the indirect test results. TF tries to address this question. 

In this sense, the idea of the TF was to translate these different levels of reliability into 

the Bayesian process, namely by scaling the standard deviation (σ) of the parameter of 

interest derived from each test, that translates the variability of the results, by a factor that 

is higher or lower than the unit in the case of lower or higher confidence on the test, 

respectively.  



To define the values of the TF, the opinions of professionals and senior researchers in the 

field of historical constructions were gathered with a survey in which they had to compare 

the different tests and rate them in terms of reliability to obtain the Ec. The comparison 

was made by pairs of methodologies and a value within a scale from 1 to 9 or the inverse 

(1/9 to 1) had to be given depending on how higher was the confidence on the 

methodology to obtain Ec in relation to the other. Table 4 presents the matrix of responses 

of the survey. 

A total of 11 surveys were filled. One of them had to be rejected due to non-conformity 

in the factors attributed to each test (values outside the proposed range). The results were 

treated using an AHP (Analytical Hierarchy Process) [47] approach in which a final 

weight is attributed to each test with higher values meaning higher reliability. The AHP 

uses a fuzzy set methodology to obtain the weights from the answers of the survey. The 

results can be found in Figure 9. 

The responses of the survey were found to be mainly biased on direct compressions test 

results as it was expected. The final weight (w) of this test was 0.6275 which translates 

almost 2/3 of the total weight. It is interesting to notice those literature values (0.1195), 

sonic (0.1080) and ultrasonic (0.1149) results were placed almost at the same level of 

reliability. A deeper look at these results show that there are very different opinions 

concerning the reliability of the tests which led to balanced weights between them. 

The next step was to define how to transform these weights in the different TF and how 

to integrate them into the Bayesian fusion process. Since TF is a new empirical concept 

a maximum impact of 30% on uncertainty was set, i.e. the range of TF was defined 

between 0.7 and 1.3. In this sense, TF will increase the standard deviation of the 

distribution of Ec in the cases when the weightage is lower and decrease it in cases which 



weightage is higher. A linear variation of TF between those extreme values was set for 

the conversion scheme (TF = 1.3 – 0.6w). 

To integrate TF into the Bayesian fusion approach Eq. (11) was modified to Eq. (8) to 

take it into account. 

2 2

1mod 1 2 0( 1) (x )o
ified o

o

n n
S T S T n s

n n
    


 (13) 

where T1 and T2 are the TF for two methodologies which can increase/decrease the 

standard deviation depending on their reliability. If one does not want to incorporate the 

concept of TF it simply has to be set as one and the basic Bayesian methodology is 

applied. 

5 RESULTS AND DISCUSSION 

A Matlab [48] toolbox (NDT_FUSION_TRUST) was created to apply the Bayesian 

fusion methodology [49]. A screenshot of the Graphical User Interface (GUI) is shown 

in the Figure 10.   

The developed data fusion toolbox has the following characteristics: (1) combines 

information from different ND tests (direct and indirect) and other possible sources (direct 

tests, literature, empirical experience, etc.) to fuse it into a single uniform format; (2) 

includes the TF which weights the importance of each test on the basis of user trust in the 

testing procedure. The TF values are editable by the user; (3) presents the final parameter 

in a numerical format easy to interpret by practitioners; (4) allows fast completion of 

parametric tests to analyse the sensitivity of the results to input parameters; (5) draws 

both prior and posterior distributions for comparison purposes; and (6) comes with a MCR 

installer which makes non obligatory to install Matlab [48] to run the program. 



The Bayesian fusion process was established stepwise to simulate the integration of data 

at different times. In a first stage, the prior distribution based on the literature is fused 

with the results of the sonic tests (1st update). Then, the data from the ultrasonic tests was 

integrated (2nd update). Finally, the fusion of the direct compression test data was carried 

out (3rd update). Figure 11 resumes the overall process and the main results and Table 5 

presents the detailed ones. 

The results show that the mean value of E did not change significantly through the 

process. It varied from 35.00 to 32.26 GPa which mean a 8% variation, approximately. 

The main aspect to focus is the considerable reduction of the uncertainty, translated by 

the standard deviation, in every step and in different levels of uncertainty. In general, the 

uncertainty indicators (i.e. the different standard deviation measures) underwent a 

reduction between 33% to 36% and this was carried out through a mathematical and 

rational approach which is less user dependent than traditional In Figure 12 the probability 

distribution functions of Ec for the different fusion steps are presented. It is clearly 

observed the impact of the Bayesian updating process since the uncertainty concerning 

the value of Ec is clearly reduced in each step of the process translated by the narrowing 

of the probability distribution functions.  

Table 6 presents the results of the Bayesian data fusion process including the Trust 

Factors. It can be observed that the mean values of Ec are almost the same as in the 

previous approach which was expected since the TF affects only the uncertainty related 

to the reliability of each test. The main difference is the uncertainty levels which are in 

this case higher. This was due to the weights attributed to each methodology by the panel 

of experts. By assigning low weights to the literature values, sonic and ultrasonic tests in 

comparison to the direct compression test results it means that the first three 



methodologies have low reliability levels to predict Ec and that is translated in a higher 

uncertainty related to these tests. 

Applying the established relation between TF and the weights, one gets a TF around 0.92 

for the direct tests and about 1.23 for the remaining. This means that the uncertainty 

related to the first tests is reduced in about 8% but for the remaining it is increased in 

23%, approximately. This fact explains the higher values of the standard deviations and 

the higher diminishment of these parameters in the last fusion step when the data from 

the direct compression tests was introduced. Obviously, since it is a new concept TF must 

be calibrated. However, it is thought that the inclusion of this parameter leads to a more 

realistic approach since it allows assigning different reliability levels to the considered 

methodologies.  

6 CONCLUSIONS 

In the scope of masonry structures survey it is recommended the combination of different 

test techniques to evaluate parameters of interest. NDT and destructive techniques are 

many times used which allow producing a considerable amount of results. These results 

are used to establish values for the parameters in a highly user dependent process 

normally carried out based on experience. 

In this work, a Bayesian data fusion methodology was established to allow incorporating 

data from different tests in the scope of masonry structures survey. The methodology 

developed involves data fusion at different levels and from subjective, indirect and direct 

sources of data which is a new concept. It is based on normal conjugate distributions and 

for sampling from them a MCMC technique with the Gibbs sampler was implemented. 

The methodology considers several levels of uncertainty since the parameters of interest 

are considered random variables with random moments, i.e. their mean and standard 



deviations are also considered random variables with given probability distribution 

functions. This methodology was applied to the results of the surveys performed at the 

Saint Torcato church in the North of Portugal in order to obtain a reliable distribution of 

the elastic modulus of the granite blocks. Data from literature, sonic, ultrasonic and direct 

compression tests were fused. 

The results show a small variation of the mean values of elastic modulus in the different 

fusion steps. The most important feature was the uncertainty reduction at the different 

levels considered in the Bayesian methodology. 

To cope with the reliability issues, more specifically the question of the tests having 

different reliabilities in the elastic modulus prediction not covered simply by the statistical 

analysis of the data, a new concept of Trust Factor (TF) was introduced. This TF affects 

the uncertainty related to each tests, translated by their standard deviation, depending on 

the higher or lower reliability of each test to predict this parameter. To establish the TF 

for each test a survey was carried out with experts in the field which allowed obtaining 

weights which were subsequently transformed into the TF with an empirical expression. 

To limit the impact of the TF, due to the lack of experience on its application, it was 

decided to vary it only within the range of 0.7-1.3.  

With the introduction of this parameter the mean values maintained very similar values 

in comparison to the previous results. However, uncertainty increased with the 

consideration of reliability of the tests since the TF increased uncertainty in three 

methodologies (literature data, sonic and ultrasonic tests) and decreased in only one 

(direct compression tests). 
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Figure 1 – Scheme of the fusion process (adapted from [34]) 
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Figure 2 – Saint Torcato church: (a) general view; (b) main façade; (c) plan; end (d) longitudinal cross section. 
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Figure 3 – Sonic Test Setup: (a) Marking the locations for the sonic tests on the interior northwest wall of the west tower, 
and (b) test locations, P1 through P5 

  



  

Figure 4 – In-situ ultrasonic test: (a) Locations of the corners; and (b) measuring points at each corner 
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Figure 5 – Cylinder Compression Tests: (a) Stone 2; (b) drilling the cores; (c) Young’s modulus test set-up; and (d) failure of 

the cylinder during the compression test 

  



 

Figure 6– Illustration of Data Fusion system using Bayesian approach for Saint Torcato church 

  



 

Figure 7 – Illustration of Data Fusion system using Bayesian approach 

  



 

Figure 8 – Various types of uncertainties addressed while calculating Elastic Modulus E 

  



 

Figure 9 – Weighing factors for the methodologies used to determine Ec 

  



 

Figure 10 – Graphical User Interface (GUI) for updating Ec using trust factors T1 and T2 [50] 

  



 

Figure 11: Bayesian data fusion for updating the elastic modulus (Ec) using data from literature, sonic, ultrasonic and 
compressive strength data 

  



 

Figure 12: Probability density functions for Ec during the different fusion steps. 

  



 

Table 1 – Results from the direct sonic tests 
Measuring 

Points 
Sonic Velocity 

[m/s] 
CoV 
[%] 

P1 2073 1.84 

P2 2073 1.84 

P3 4220 4.54 

P4 3244 2.39 

P5 3821 3.38 

Minimum value 2073 – 

Maximum value 4220 – 

Average 3336 2.91 

 

  



Table 2 – Results from the semi-direct ultrasonic tests 

Measuring 
Points 

Ultrasonic 
Velocity 

[m/s] 

CoV 
[%] 

1 3836 5.6 

2 3885 10.1 

3 3694 9.8 

4 3849 11.7 

Minimum value 3694 – 

Maximum value 3885 – 

Average 3816 8.7 

 

  



Table 3– Granite cylinder compression test results 

Core Number 
Compressive Strength Young's Modulus 

MPa GPa 

1 79.6 - 

2 87.2 31.4 

3 85.2 29.8 

4 66.9 32.1 

5 77.8 32.8 

6 73.8 31.4 

Average 78.4 31.5 

CoV (%) 9.5 3.5 

 

  



Table 4 – All acceptable responses for survey 

Test method 
Literature 

Knowledge 
Sonic test Ultrasonic test 

Direct compressive 
test 

Literature 
Knowledge 

1 
(1/2, 2, 1/5, 1/2, 
3, 7, 3, 1/3, 1/5, 

1) 

(1/3, 1/2, 1/5, 1/5, 
5, 9, 4, 1/3, 1/3, 

1/2) 

(1/7, 1/7, 1/8, 1/9, 
1/8, 1/3, 1/8, 1/5, 

1/3, 1/8) 

Sonic test 
Positive 

reciprocal 
1 

(1/2, 1/3, 1, 1/2, 3, 
5, 1/4, 1, 1/5, 1/2) 

(1/6, 1/8, 1/5, 1/8, 
1/8, 1/9, 1/5, 1/9, 

1/3. 1/7) 

Ultrasonic test 
Positive 

reciprocal 
Positive 

reciprocal 
1 

(1/5, 1/5, 1/5, 1/5, 
1/8, 1/9, 1/6, 1/9, 

1/3, 1/6) 

Direct 
compressive test 

Positive 
reciprocal 

Positive 
reciprocal 

Positive 
reciprocal 

1 

 

  



Table 5: Prior and Posterior estimates of Ec (in GPa) considering Literature, sonic, ultrasonic and compressive strength test 
data 

Parameter Literature 1st Update 2nd Update 3rd Update 

  - 33.20 32.70 32.28 

( )   - 0.66 0.54 0.44 

  - 6.59 5.33 4.35 

( )   - 0.47 0.38 0.31 

95% CI for 
population mean 

- 32.12-34.29 31.82-33.59 31.57-33.00 

pop  35.00 33.21 32.70 32.26 

population  7.50 7.25 5.89 4.80 

95% CI for 
population mean 

20.30-49.70 21.28-45.14 23.00-42.39 24.37-40.15 

 - mean value of the mean; ( )   - standard deviation of the mean;  - mean value of the standard deviation; ( )  - 

standard deviation of the standard deviation; CI – confidence interval; pop
 - mean value of the population values of Ec; 

population
 - standard deviation of the population values of Ec

 

  



Table 6: Prior and Posterior estimates of Ec (in GPa) considering Literature, sonic, ultrasonic and direct tests data including 
Trust Factors. 

Parameter Literature 1st Update 2nd Update 3rd Update 

  - 33.25 32.72 32.30 

( )   - 1.42 1.36 1.27 

  - 6.89 6.58 6.19 

( )   - 1.03 0.98 0.91 

95% Cl for 
population mean 

- 30.91-35.59 30.49-34.95 30.20-34.40 

pop  35.00 33.24 32.73 32.32 

population  7.50 8.38 8.00 7.52 

95% CI for 
population mean 

20.30-49.70 19.44-47.04 19.56-45.89 19.95-44.68 
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