
 
 

 

Evaluation of Novel 3D Architectures Based on Knitting Technologies for 

Engineering Biological Tissues
*
 

Ribeiro V P
1,2

, Ribeiro A S
3
, Silva C J 

3
, Durães N F

3
, Bonifácio G

4
, Correlo V M 

1,2
, 

Marques A P
1,2

, Sousa R A
1,2

, Oliveira A L
1,2,5†

, Reis R L
1,2 

 

1 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho,  

Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative 

Medicine, Guimarães, 4806-909,Portugal 

2 ICVS/3B's – PT Government Associated Laboratory, University of Minho, Braga/Guimarães, 

4710-057/4806-909, Portugal 

3 CeNTI, Centre for Nanotechnology and Smart Materials, V. N. Famalicão, 4760-034,  Portugal 

4 CITEVE, Technological Centre for Textile and Clothing Industry, V. N. Famalicão, 4760-034, 

Portugal 

5 CBQF – School of Biotechnology, Portuguese Catholic University, Porto, 4200 – 072, Portugal 

Abstract: Textile-based technologies are considered as potential routes for the production of 3D 

porous architectures for tissue engineering applications. We describe the use of two polymers, namely 

polybutylene succinate (PBS) and silk fibroin (SF) to produce fiber-based finely tuned porous 

architectures by weft and warp knitting. The obtained knitted constructs are described in terms of their 
morphology, mechanical properties, swelling ability, degradation behaviour and cytotoxicity. Each 

type of polymer fibers allow for the processing of a very reproducible intra-architectural scaffold 

geometry, with distinct characteristics in terms of the surface physicochemistry, mechanical 
performance and degradation capability, which has an impact on the resulting cell behaviour at the 

surface of the respective biotextiles. Preliminary cytotoxicity screening shows that both materials can 

support cell adhesion and proliferation. Furthermore, different surface modifications were performed 
(acid/alkaline treatment, UV radiation and plasma) for modulating cell behavior. An increase of cell-

material interactions were observed, indicating the important role of materials surface in the first 

hours of culturing. Human Adipose-derived Stem Cells (hASCs) became an emerging possibility for 

regenerative medicine and tissue replacement therapies. The potential of the recently developed silk-
based biotextile structures to promote hASCs adhesion, proliferation and differentiation is also 

evaluated. The obtained results validate the developed constructs as viable matrices for TE 

applications. Given the processing efficacy and versatility of the knitting technology, and the 
interesting structural and surface properties of the proposed polymer fibers, it is foreseen that our 

developed systems can be attractive for the functional engineering of tissues such as bone, skin, 

ligaments or cartilage and also for develop more complex systems for further industrialization of TE 

products. 
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Introduction 

In the biomedical field, tissue engineering (TE) represents a specific area in which textile 
technologies can have an important contribution

[1, 2]
. Maximization of tissue attachment to materials 

requires a highly organized porous structure for tissue integration and a template for cell assembly, 

combined with structural properties analogous to those of the living tissue. Scaffolds developed for 

TE, need to facilitate and promote cellular proliferation and tissue regeneration. The intra-
architectural scaffold geometry, as well as the scaffold material and its surface properties play an 

important role in this process. Many of the conventional fabrication techniques available for scaffold 

production do not yet enable to obtain the desired scaffold properties, as many of the processing 
routes still present slow reproducibility. Several methods have been developed and proposed to 

prepare porous scaffolds for Tissue Engineering, including gas foaming, fiber extrusion and bonding, 

three-dimensional printing, phase separation, emulsion freeze-drying, and porogen leaching or rapid 
prototyping

[3, 4]
. Most of these techniques have been extensively studied using different biodegradable 

polymers, such as polyglycolic acid (PGA), polylactic acid (PLA), polycrapolactone (PCL), starch or 

silk, investigated for cell transplantation and regeneration of various tissues, such as nerve, skin, 

ligament, bladder, cartilage, and bone
[4-6]

. Scaffolds processed by using fiber-based technologies 
represent a wide range of morphological and geometric possibilities that can be tailored for each 

specific tissue-engineering application
[7]

. In fact, fiber networks with high surface area and 

interconnectivity have proven to be particularly interesting in promoting cell attachment and 
proliferation

[8-10]
. Therefore, textile-based technologies are considered as potential routes for the 

production of complex scaffolds for TE applications, as they can present superior control over the 

design, manufacturing precision and reproducibility. 

Being computer assisted, textile technologies have potential for the production of pre-designed 
architectures with highly controlled and predictable properties according to the final requirements. In 

this sense, textiles have found their way into a variety of medical applications, ccording to the patient 

need
[11]

, such as the augmentation and reconstruction of knee
[12]

 and shoulder
[13]

 ligaments, tendon
[14]

 
and intervertebral disc replacement

[15]
. In the therapy of cardiovascular diseases, fabrics have been 

utilized for cardiac support devices
[16]

, tissue regenerative vascular grafts
[17]

 and prosthetic heart 

valves for percutaneous implantation
[18]

. In the repair and regeneration of the peripheral nerves, 
woven tubular shaped guides were used

[19]
. Skin is a very compliant tissue that constitutes one of the 

most obvious applications for biotextiles, as in the case of wound dressings or tissue engineering 

products
[2]

. The optimal design of such textile implants requires a multi- and interdisciplinary 

combination of skills
[1, 2, 11]

.Despite the fact that some of the traditional textiles have fulfilled primary 
quality requirements such asbiocompatibility, flexibility or strength, there is a need for further 

develop new systems to meet more demanding and specialized functions. Moutos et al.
[20]

 have 

designed a biomimetic 3D woven composite scaffold for functional tissue engineering of cartilage. 
Chen et al.

[21]
 developed a new practical ligament scaffold based on the synergistic incorporation of a 

plain knitted silk structure and a collagen matrix. Liu et al.
[22]

 fabricated a combined scaffold with 

web-like microporous silk sponges formed in the openings of a knitted silk mesh. Subsequently, Fan 
et al.

[23]
rolled combined silk scaffold around a braided silk cord with Mesenchymal Stem Cells  

(MSCs) to regenerate anterior cruciate ligament in a pig model. These few cases reveal the versatility 

of biotextiles and the rapid advancements in this field. 

The aim of this work is to evaluate the potential of recently developed biotextile structures as 
scaffolds for tissue engineering

[24, 25]
. Polybuthylene succinate (PBS) is originally proposed as a viable 

extruded multifilament fiber to be processed by a textile-based technology. A comparative study is 

established using a SF fiber with similar linear density. Knitting technologies are used to fabricate the 
biodegradable textile matrices. The rational for using these technologies is that the knitted textile 

substrates are known to exhibit better extensibility or compliance as compared to other woven 

substrates, with an enhanced porosity/volume although with limited thickness
[26]

. To overcome this, 

natural silk yarns were also processed for the first time into different 3D structures using a warp-
knitting technology to increase the scaffold’s tridimensionality. In the latter case two knitted silk 



 
 

 

layers are assembled and spaced by a monofilament of polyethylene terephthalate (PET). Each type of 

polymer fiber can allow for the generation of constructs with distinct characteristics in terms of the 
surface physicochemistry, mechanical performance and degradation capability, which has an impact 

on the resulting cell behaviour at the surface of the respective biotextiles. Preliminary cytotoxicity 

screening shows that both materials can support cell adhesion and proliferation after processing. 

Furthermore, different surface modifications were performed (acid/alkaline treatment, UV radiation 
and plasma) for modulating cell behavior. Human Adipose-derived Stem Cells (hASCs) became an 

emerging possibility for tissue replacement therapies. The potential of recently the developed silk-

based biotextile structures to promote hASCs adhesion, proliferation and differentiation was also 
evaluated. 

1 Experimental 

1.1 Materials 

Granulated polybutylene succinate (PBS) was obtained from Showa Highpolymer Co. Ltd., 

Tokyo, Japan. Silk derived from silkworm Bombyx Mori in the form of cocoons was obtained and 

spun into yarns at the sericulture of APPA-CDM (Portuguese Association of Parents and Friends of 

Mentally Disabled Citizens), Portugal. 

PBS fibers with 36 filaments were processed and optimized in a multicomponent extruder in 

mono-component mode (Hills, Inc., West Melbourne, FL, USA). The Melt Flow Rate (MFR) was 

determined in order to obtain the adequate processing window. Modular Melt Flow equipment with 
automatic cutter was used according to the ASTM D1238 standard. The test was performed at 190 ºC 

with application of a 2.160 kg force. The results allowed to define the optimal parameters for the 

extrusion process: pre-drying of two hours at 60 ºC; thermal profile: 120-130 ºC; draw ratio: 2; speed: 
300 to 600 m/min. 

1.2 Fibers characterization 

The SF and PBS fibers were characterized in terms of linear density, tenacity and elongation. 
The linear density (tex) is defined as the mass in grams per 1000 meters and was determined 

according to EN ISO 2060 standard. The tests were performed using three samples of 10 meters each 

in conditioned atmosphere 20 ± 2ºC and 65 ± 4% of relative humidity. The tenacity and elongation 
were measured according to EN ISO 2062 standard. For these tests samples with size of 250 mm were 

used and 50 replicates were performed. A pre-tension of 0.5 cN/tex and a velocity of 250 mm/min in 

conditioned atmosphere 20 ± 2ºC and 65 ± 4% of relative humidity were applied. 

1.3 Development of the textile constructs 

2D constructs were produced through weft knitting using PBS and raw silk fibers (Tricolab 

machine, Sodemat, SA, Germany). All constructs were washed in a 0.15% (w/v) natural soap aqueous 
solution for 2 hours and then rinsed with distilled water. Silk structures underwent a subsequent 

purification process; Bombyxmori silkworm fibers are composed by a core protein called fibroin that 

is naturally coated by sericin, which is known to be cytotoxic
[27, 28]

. Thus, SF constructs were boiled 

for 60 minutes in a 0.03 mol/L Na2CO3 solution and rinsed with distilled water to ensure the full 
extraction of sericin.  

3D spacer knitted structures with different porosity, permeability and mechanical behaviour, 

were manufactured through the technology of warp knitting on a double needlebar high speed Raschel 
machine (Germany). 

1.4 Surface treatments 

Etching with NaOH: Constructs were immersed in 0.5 M NaOH solution for 60 min at 30 
ºC.UV/O3 treatment: the UV/O3 treatment was performed in a commercial UV/O3 chamber (Jelight 

Company, Inc., model 42) using a standard fused quartz lamp that emits a continuous radiation of 254 

nm with an intensity of 28 mW/cm
2
 (O3 purity: 99.995%, total pressure of 5 mbar).  Plasma grafting: 



 
 

 

the substrates were subjected to a previous treatment in an atmospheric-pressure plasma equipment 

(by Dielectric Barrier Discharge - DBD), in the following conditions: reactive gas oxygen at 3% in a 
stream of Argon, speed of 10 m/min, and power of discharge of 9 kW, for 15 min. Immediately after 

plasma treatment the activated surfaces were immersed a solution with 10% (v/v) of vinyl sulfonic 

acid (VSA) for 2 h at RT, in order to introduce sulfonic groups. Solutions were previously degassed 

by nitrogen (N2) bubbling. After the treatments samples were washed with distilled water for 48 h at 
50 ºC and dried for 24 min at 37 ºC. 

1.5 Scaffolds characterization 

The surface morphology of the produced textile constructs was analysed before and after the 

different surface treatments using a Leica Cambridge S-360 (UK) Scanning Electron Microscope 

(SEM)at different magnifications (15 kV).All samples were previously sputter-coated with gold 

(Fisons Instruments, Sputter Coater SC502, UK). Microcomputed tomography (μ-CT, SkyScan, 
Belgium) was used as a nondestructive technique for a detailed analysis of the 3D morphology of the 

developed textile constructs. A μ-CT analyser and a μ-CT Volume Realistic 3D Visualization were 

used as image processing tools for both μ-CT reconstruction and to create/visualize the 3D 
representation. 

The surface roughness was determined by Atomic Force Microscopy (AFM). The analysis was 

performed for three regions per sample (5x5 µm) using tapping mode (Veeco, USA) connected to a 
NanoScope III (Veeco, USA) with non-contacting silicon nanoprobes (about 300 kHz, set point 2-3 

V) from Nanosensors (Switzerland). The surface roughness was calculated as Ra (mean absolute 

distance from mean flat surface).  

The wettability was assessed by contact angle (θ) measurements. The static contact angle 
measurements were obtained by the sessile drop method using a contact angle meter OCA15+ with 

high performance image processing system (DataPhysics Instruments, Germany). H2O was added by 

a motor-driven syringe at room temperature. Two samples of each material were used and five 
measurements were carried out for each sample.  

X-ray Photoelectron Spectroscopy (XPS) analysis was performed to characterize the surface 

elemental composition of the modified and unmodified samples using a Thermo Scientific K-Alpha 
ESCA instrument. 

1.6 Cell Culture 

For the cell culture studies, the materials were cut into 16 mm diameter discs, and immobilized 
into the bottom of 24-well culture plates (BD Biosciences, USA) using CellCrown® inserts (Scaffdex, 

Finland). Tissue culture polystyrene (TCPS; Sarstedt, USA) coverslips and SF membranes were used 

as control. 

A mouse fibroblast cell line (L929), acquired from the European Collection of Cell Cultures 
(ECACC UK), was used to assess the eventual cytotoxicity of the developed constructs, as described 

elsewere
[24]

. Cells were seeded at the surface of the materials at a density of 3x104 cells/sample. The 

seeded constructs were incubated at 37ºC, 5% CO2 and 95% humidity, for 1, 5 and 24 hours, 3, 7 and 
14 days. The textile constructs were analysed in terms of cell adhesion and proliferation through SEM 

analysis and DNA quantification. 

hASCs cells were replated and culture after cryopreservation and then seeded after confluence on 
the materials at a density of 2000cell/cm

2
 for 14, 21 and 28 days instandard osteogenic conditions

[29]
. 

The textile constructs were analysed in terms of cell adhesion, proliferation and differentiation 

potential through SEM analysis and preliminary biological assays: alkaline phosphatase (ALP), DNA 

and Ca
2+

 quantification. 

 

 

 



 
 

 

 

2 Results and Discussion 

2.1 Linear density, tenacity and elongation of the fibers 

The applied textile processing methodology is highly demanding in terms of mechanical 

properties of the used fibers and filaments. Therefore, the linear density, tenacity and elongation of 
the produced fibers were optimized and are presented in Table 1.  

 

Table 1 Linear density, tenacityand elongation of the PBS fibers and raw silk fibers 

 PBS fibers Raw silk fibers 

Linear density/tex 77.3 77.4 

Tenacity/(cN/tex) 15.2 45 

Elongation/% 120 30 

 

The linear density of PBS fibers was designed to match the value obtained for the silk fibers (77.4 
tex) so that both systems could be comparable after knitting. Although PBS fibers presented a lower 

specific strength to rupture, both fibers presented mechanical properties in the processing window that 

allowed for an effective knitting of the textile matrices. The obtained elongation values for PBS fibers 
were considerably higher demonstrating its great capacity for deformation. 

2.2 Development, modification and in vitro cytotoxicity of the knitted scaffolds 

Figure 1 presents details about the morphology of the obtained PBS and SF weft knitted 
constructs. 

 

Fig. 1 SEM micrographs showing the morphology of the PBS (a) and SF (b) 2D weft knitted constructs: fibers top view (a, b) and  

respective cross-sections (c, d) 

Both matrices present a very regular and well-controlled pattern with similar morphology. PBS 

fibers (Fig. 1(a)) present filaments with a circular cross-section having an average diameter of 
(48.9±0.3) µm. In case of silk (Fig. 1(b)) the filaments show an irregular cross-section, typical for this 

naturalfiber, with a lower average cross-section, (9.1 ± 2.2) µm. The number of filaments, however, is 

much higher for SF than for PBS. Therefore, although both fibers have the same linear density they 
are structurally different, as their filaments differ in number and size. In the SF matrices some 

filaments of the fibers are loose in the textile structure due to some physical wear during the 

degumming process to eliminate sericin. The measured thickness of the PBS knit was about 0.7 mm 

while the silk matrix was ~0.8 mm.  

In general, both constructs (PBS and SF) present a relatively high porosity and an 

interconnectivity of 100%, meaning that all of the pores are interconnected. Although the same fiber 

linear densities and processing parameters were used for building both knitted structures, SF matrices 
present significantly lower porosity (68.4±3.7 for SF and 78.4±2.3 for PBS) and pore size than of 

those of PBS (54.5±9.4 for SF and 72.4±13.0 for PBS). These differences can be justified with the 



 
 

 

differences on the respective filaments’ thickness. The mean pore size of both SF and PBS matrices is 

suitable for applications in TE
[30]

. When considering skin regeneration and wound healing, for 
example, a study by O’Brien et al.

[31]
has shown that the critical range of pore size of collagen-based 

scaffolds was between 20 and 120 µm for allowing optimal cellular activity and simultaneously 

blocking of the wound contraction. In case of bone tissue engineering the minimal pore size has been 

considered approximately 75-100 μm
[30]

. This is due to cell size and migration, and nutrient/oxygen 
transport requirements. This pore size has been also associated with ability for vascularisation. By the 

present knitting technology it is possible to adjust with precision the space interloop of the textile 

matrices so that the final porosity (and pore size) can be tailored according with the specific need. 

The mechanical properties of the obtained textile constructs were also investigated by 

performing quasi-static tensile tests and Dynamic Mechanical Analysis  (DMA) analysis, as presented 

elsewhere
[32]

. In the dry state, when comparing both structures, the average tensile modulus of PBS 
matrices (7.9 MPa) is significantly lower than the one determined for SF (31.6 MPa). As expected, SF 

matrices presented a considerable higher strength and stiffness when compared to PBS. SF fibers are 

known for their extraordinary mechanical properties that rival most of the high performance synthetic 

fibers. This behaviour results from their unique molecular structure and protein conformation
[31]

.In the 
hydrated state the mechanical properties of SF constructs have shown to be more affected than PBS. 

This result is related with the effect of water molecules incorporated in amorphous regions of SF 

fibers, which will contribute for the softening of the structure, leading to an increase in ductility
[49]

. 

As a starting surface, PBS and SF are known to be very biocompatible substrates
[24]

. 

Nevertheless we also investigate the possibility of further improving these native properties by 

performing different surface modifications (ex: acid/alkaline treatment, UV radiation and plasma) for 
increasing cell adhesion and proliferation and also for further surface immobilization of biomolecules 

of interest. In Table 2 the surface carbon and oxygen composition, contact angle and roughness of the 

PBS knitted constructs are presented after different surface treatments and its relationship with cell 

morphology after 24 h and 14 d of culturing. 

 

Table 2 Surface carbon and oxygen composition, contact angle, roughness and cell morphology after 24 hours and 14 days of culturing for 

PBS knitted constructs after different surface treatments 

 

 

The differences in cell morphology were relevant in the first hours of culturing, indicating that 

the surface played a role on the first cell-material interactions. NaOH treatment has induced the 
highest changes in the surface with a great increase of oxygen, decrease of contact angle and 

significant increase in the average roughness. After 24 h of cell culture, extensive cell colonization 

can be observed for all studied fiber surfaces. Cells still presented a round morphology in case of 



 
 

 

surfaces untreated and treated with NaOH and UV/O3, showing a higher degree of spreading with 

some extended lamellipodia over the surface in the first two cases. For surfaces treated with 
plasma/VSA a great amount of cells presented already the typical spindle-like fibroblast morphology. 

This effect can be justified by the presence of sulfonated moieties in the surface that can better mimic 

the natural extracellular environment and modulate cell adhesion mediated through the adsorbed 

proteins from the culture medium
[33]

.After 14 days of culture all proposed silk and PBS knitted 
constructs have shownto support cell adhesion and proliferation throughout the fibers. 

2.3 Suitability of 3D warp knitted scaffolds for a bone TE approach 

Natural silk yarns were processed into 3D spacer structures using warp knitting technology. The 

obtained complex 3D architectures are composed of two silk knitted layers assembled and spaced by a 

polyethylene terephthalate (PET) monofilament to increase the tri-dimensionality and robustness of 

the scaffold. Figure 2 presents the 3D morphology of the obtained scaffolds and calculated porosity 
by µ-CT analysis (a) and SEM micrographs showing hASCs morphology and attachment to the fibers 

(b-d). 

 

Fig. 2 Novel silk fibroin 3D spacer structures. (a) µ-CT 3D reconstruction. (b-d; f) SEM micrographs showing  the hASCs behavior over the 

28 days of culture.(e) EDS typical spectrum showing the chemical elements detected in the surface of the fibers after 28 days of culture. 

Human Adipose-derived Stem Cells (hASCs) became an emerging possibility for tissue 
replacement therapies. Due to their osteogenic differentiation potential, easy isolation, expansion and 

in vitro proliferation, they have demonstrated promising prospects in bone regeneration. SEM analysis 

(Fig. 2) revealed that at an early time point hASCs adhered to the SF scaffolds presenting their typical 
fibroblastic morphology, with a higher degree of spreading over the constructs surface (Fig. 2(b)).  

After 14 days in culture, an extensive cell colonization can be observed (Fig. 2(c)). After 28 days a 

mineralized matrix was deposited over the textiles surface (Fig. 2(d)), as confirmed by the calcium 

and phosphorous peaks detected by Energy-dispersive X-ray spectroscopy (EDS) analysis (Fig. 2(e)). 
When analyzing the cross-section of the scaffold it is possible to observe that cells were able to 

penetrate deeply into the scaffold and colonize the PET monofilament (Fig. 2(f)) with great evidences 

of extracellular matrix (ECM) mineralization. 

  



 
 

 

Fig. 3 Biochemical characterization of (a) DNA, (b) ALP and (c) Ca2+ for hASC cells cultured on silk fibroin textile scaffolds for 7, 14, 21 

and 28 days. Data are shown as mean ± standard deviation from n=4 samples (**p<0.01, ***p< 0.001) 

DNA quantification results showed that hASCs were able to proliferate on the silk fibroin 
scaffolds, although the DNA amount achieved after 7 days of culture was maintained until day 28 (Fig. 

3(a)). ALP activity was also determined for up to 28 d of culture (Fig. 3(b)). This biochemical assay is 

a marker of early osteogenic differentiation and as expected a gradual and significant increase (p<0.01 
and p<0.001) in ALP activity was observed over the culture period. A significant increase in calcium 

content (p<0.001) obtained from day 14 until day 28 of culture is observed (Fig. 3(c)), indicating that 

cells were able to produce and deposit mineralized matrix on the SF textile constructs, which is in 

agreement with previous SEM data(Figs. 2(d), (e) and (f)).These results reflect the suitability of the 
presented polymeric material and scaffolding strategy towards a bone TE strategy. The efficiency and 

high level of control of the warp-knitting technology together with the interesting structural properties 

of the resulting constructs makes this a very versatile system and easily adaptable to the specific bone 
tissue anatomy and function. 

In the literature, knitted structures from synthetic or biological materials have been already 

proposed, either alone
[34]

or in a synergistic combination with other types of biomaterials/structures for 

the construction of functional 3D scaffolds, applicable in the repair/replacement and regeneration of 
tissues or organs such as the vascular

[35-37]
, tendons and ligaments

[21-23, 35, 38-40]
, cartilage

[41-43]
 and 

skin
[44]

. As this is a new field of application for knitting technologies most of these applications are 

still in exploratory stages. Using the herein presented strategies it is possible to produce fiber-based 
3D architectures that can be tuneable in terms of degradation, mechanical behaviour or chemical and 

surface properties maximizing the biological performance. The control can be taken to the nano-level 

by investigating new formulations and changing the surface properties through immobilization of 
bioactive agents. 

 

3 Conclusions 

Silk and PBS biodegradable polymers are promising materials for developing new biotextiles to 

be applied in the engineering of biological tissues. Silk fibers and yarns have been widely validated 
for the biomedical field. Nevertheless, this natural fiber is far from being fully explored, which makes 

the present silk-based biotextiles good candidates to rival with existing systems. Also, the validation 

of new polymeric systems, such as PBS, as a viable fiber and textile matrix constitute new 
opportunities with high potential in the biomedical area. The proposed silk and PBS textile matrices 

demonstrated to have mechanical properties and tailorable surfaces that can easily fit in different TE 

scenarios. Preliminary in vitro biological assessment has shown that the materials can support cell 

adhesion, proliferation and differentiation towards neotissue genesis and ECM formation. The 
versatility and reproducibility of knitting technologies can open room to the further industrialization 

of TE products. 
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