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1 INTRODUCTION 

Vernacular constructions exist all around the 
world. Many of these constructions, besides their 
cultural and architectural heritage value, in many 
cases, present a pronounced level of degradation, 
urging for the need of conservation and strengthen-
ing actions. 

Portugal may suffer with moderate seismic 
events, as evidenced in historical past events. The 
past seismic activity, particularly in the south of the 
country, have drove the implementation of some ret-
rofitting measures in the built vernacular heritage, 
including the insertion of strengthening elements 
like ties, reinforcing rings, buttresses and other rein-
forcement elements. The insertion of these elements 
contribute to enhance the connection between struc-
tural elements, and to the improvement of the struc-
tural behaviour and performance of the buildings. 

This chapter presents the main results of a nu-
merical study of the influence and effectiveness of 
common seismic improvement measures typically 
found in vernacular constructions. 

In this study, it was selected a building repre-
sentative of the vernacular architecture in certain lo-
calities in the South of Portugal. The building model 
was calibrated with information on material proper-
ties and structural characteristics and, with the cali-
brated model, parametric analyses are performed to 
assess the influence of different retrofitting solutions 
in their behavior and seismic performance. 

The analysis of the numerical results gives a first 
insight on the behaviour of these type of vernacular 
constructions, and point out which retrofitting 
solutions may be more efficient in their seismic 
performance enhancement. The numerical results 
may also contribute for a better understating of the 
structural fragilities of these constructions, namely 
in temrs of demands distribution in the structural 
elements and structural damage distribution, for 
seimic demands. (Vicente et al., 2011) 

2 DESCRIPTION OF THE CASE STUDY 

For the selection of the building studied were tak-
en into account the objectives of the numerical study 
developed under the SEISMIC-V project. The case 
study is located in Alcácer do Sal, district of Setúbal, 
in Portugal. It is a building with eight spaces and the 
vertical structural elements are principally rammed 
earth walls, with some elements in stone/brick ma-
sonry. The walls are 3.0m high in average and have 
a thickness of 0.50m. The building has a regular plan 
(see Figures 1 and 2). The roof is gabled and pos-
sesses a wooden structure coated with ceramic tiles 
(Correia, 2007). 

 

Seismic behavior analysis and retrofitting of a row building 

R. S. Barros & A. Costa 
RISCO - Department of Civil Engineering, University of Aveiro, Portugal 

H. Varum 
CONSTRUCT-LESE, Department of Civil Engineering, Faculty of Engineering, University of Porto, Portugal 

H. Rodrigues 
RISCO - School of Technology and Management, Polytechnic Institute of Leiria, Portugal 

P.B. Lourenço & G. Vasconcelos 
ISISE, Department of Civil Engineering, University of Minho, Guimarães, Portugal 

 

 
ABSTRACT: Rammed earth is one of the oldest building materials in the world and is present in Portugal 
with a particular focus in the South of the country. The mechanical properties and the structural behavior of 
rammed earth constructions have been the subject of study of many researchers in the recent years. This study 
is part of a broader research on vernacular seismic culture in Portugal. Numerical analyzes were carried out to 
assess the influence of different retrofitting solutions in the behavior and seismic performance of an rammed 
earth building representative of the vernacular heritage of Alentejo region. Understating the structural 
fragilities of this type of constructions allowed determining the most appropriate retrofitting solutions.  

 

https://www.researchgate.net/publication/229151249_Evaluation_of_Strengthening_Techniques_of_Traditional_Masonry_Buildings_Case_Study_of_a_Four-Building_Aggregate__ASCEs_Journal_of_Performance_of_Constructed_Facilities_25_202?el=1_x_8&enrichId=rgreq-1aea1b49-9644-4829-bb8a-1de81d718266&enrichSource=Y292ZXJQYWdlOzI4MTYyODEwMztBUzoyNzg1ODMyNjEwNTcwMjdAMTQ0MzQzMDgzMzc1NQ==


Figure 1 – Building studied (Correia, 2007).
 

Figure 2 – Plan and elevation (Correia, 2007).

3 FINITE ELEMENT MODEL AND 
STRENGTHENING SOLUTIONS

To understand the structural behaviour of this trad
tional building typology, the selected building was 
modelled with a finite element tool. The results of 
the analyses with the numerical models will help in 
the vulnerability evaluation, on the identification of 
fragile parts of these buildings, and in the efficiency 
assessment of different retrofitting measures.
Numerical analyses were performed in the finite 
element program MIDAS FEA. The simplified 
model was developed based on the available info
mation on the selected building case study. The 
building model is symmetric in one direction, and 
has an irregular geometry in plan define
terior partition walls, as represented in Figure 3. The 
walls have 3.0m height and 0.5m of thickness, as i
dicated in the case study presented in the previous 
section. 
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assessment of different retrofitting measures. 

ere performed in the finite 
element program MIDAS FEA. The simplified 
model was developed based on the available infor-
mation on the selected building case study. The 
building model is symmetric in one direction, and 
has an irregular geometry in plan defined by four in-
terior partition walls, as represented in Figure 3. The 
walls have 3.0m height and 0.5m of thickness, as in-
dicated in the case study presented in the previous 

Figure 3 – Model developed in MIDAS FEA software.
 
In the model, all walls were considered as made 

of rammed earth. To define the material properties, 
it was made a literature survey to obtain reference 
values (see Table 1). Based on the survey, the pro
erties of the rammed earth adopted in the numerical 
models developed in this study are presented in T
ble 2. 

 
Table 1 - Values adopted by other authors
RISCO). 
Reference E (MPa) 
Limón et al. 
(1998)* 

922 

Gomes et al. 
(2011)* 

200 

Silva (2013)* 300 
Gallego and 
Arto (2015)* 

250 

Miccoli et al. 
(2014) 

4207 

* Obtained experimental values
 
Table 2 – Adopted values for the mechanical prope
ties of the rammed earth in the numerical model
(credits: RISCO). 

E (MPa) ft (MPa)

300 0.05 

 
For the finite element model, it was considered 

solid elements and a mesh with elements dimensions 
of 300mm approximately, having the walls two solid 
elements in their thickness (see Figure 3). As boun
ary conditions were restricted the horizontal transl
tional displacements of all nodes at the base of the 
model, simulating the foundations. In the model was 
not considered the roof structure, due to its wea
ness, but their weight was simulated with an equiv
lent distributed load of 0.001N/mm
roofs with wooden structure and ceramic tiles as 
cover - Reis et al., 2005) applied on the top of the 
walls. 

The demands are applied in two phases, first the 
vertical dead load, and then the lateral demand sim
lating the seismic loading. The seismic loading is 
imposed as an equivalent horizontal distributed load, 
proportional to the element mass, for increasing 
seismic levels (0.2g to 1.0g), applied in two ind
pendent directions (X and Y).

 
Model developed in MIDAS FEA software. 

walls were considered as made 
of rammed earth. To define the material properties, 
it was made a literature survey to obtain reference 
values (see Table 1). Based on the survey, the prop-
erties of the rammed earth adopted in the numerical 

this study are presented in Ta-

Values adopted by other authors (credits: 

 ft (MPa) fc (MPa) ν 

0.29 2.45 0.30 

0.13 0.67 0.35 

0.10 1.00 0.30 

0.29 2.00 --- 

0.37 3.70 0.27 

* Obtained experimental values 

Adopted values for the mechanical proper-
ties of the rammed earth in the numerical model 

(MPa) fc (MPa) ν 
1.0 0.1 

For the finite element model, it was considered 
solid elements and a mesh with elements dimensions 
of 300mm approximately, having the walls two solid 
elements in their thickness (see Figure 3). As bound-

restricted the horizontal transla-
tional displacements of all nodes at the base of the 
model, simulating the foundations. In the model was 
not considered the roof structure, due to its weak-
ness, but their weight was simulated with an equiva-

load of 0.001N/mm2 (benchmark for 
roofs with wooden structure and ceramic tiles as 

Reis et al., 2005) applied on the top of the 

The demands are applied in two phases, first the 
vertical dead load, and then the lateral demand simu-

eismic loading. The seismic loading is 
imposed as an equivalent horizontal distributed load, 
proportional to the element mass, for increasing 
seismic levels (0.2g to 1.0g), applied in two inde-
pendent directions (X and Y). 



To simulate the rammed earth walls, the total 
strain crack model was adopted in the non-linear 
analyses. For the material behavior in tension was 
considered the Hordijk function (Figure 4a), and the 
parabolic law for compression (Figure 4b). 

 

Figure 4 – Behaviour laws for the rammed earth: a) Hordijk 
function in tension; b) Parabolic function in compression (cred-
its: MIDAS FEA). 

 
It was intended to analyze the influence of the 

most common strengthening measures applied in the 
typical vernacular buildings of Alentejo region. 
Therefore, three seismic reinforcement strategies 
were studied (see Figure 5), two different configura-
tions of buttresses distribution and one solution 
based on the use of tie rods. For the buttresses, ideal-
ized with a composition similar to the rammed earth 
walls, the same material properties were considered 
in the numerical analyses. 

 

a) 

b) 

c) 
Figure 5 – Reinforcement solutions studied: a) Buttresses only 
at building corners (B); b) Buttresses along the longer walls 
(BLW); c) Rods (R) (credits: RISCO).  

 

The strengthening with buttresses only at the 
building corners (B), shown in Figure 5a), is the 
most common solution in the rammed earth con-
structions of the south of Portugal. It was also stud-
ied a distribution of buttresses along the long walls 
(BLW) and a retrofitting solution based on the use of 
tie rods (R) perpendicular to the long walls, to im-
prove the structural behavior. With the latter retrofit-
ting solutions, it is intended to reduce the potential 
of development of out-of-plane mechanism of the 
longer walls. 

4 RESULTS AND ANALYSIS 

The results obtained with the numerical models 
are presented and discussed in three phases. Firstly, 
are analyzed the results for the static vertical loads 
and the first natural mode is discussed. Then, is ana-
lyzed the response of the structure for increasing 
seismic demands in each direction. Finally, are pre-
sented the results of the seismic vulnerability reduc-
tion with the retrofitting solutions studied. 

From the analysis of the results obtained with the 
non-linear model for the vertical static loads it was 
observed, as expected, that the maximum vertical 
strain reaches reduced values (approximately 
0.115MPa, see Figure 6a). From the modal analysis, 
it was observed that the first mode presents domi-
nantly transversal displacements of the long external 
walls, highlighting the potential for the development 
of out-of-plane mechanisms of the façade walls (see 
Figure 6b). 

 

 a) 

 b)  
Figure 6 – Results: a) response for the vertical loads; b) 1st 
mode of the structure (credits: RISCO). 

 
From the analysis of the results corresponding to 

an equivalent horizontal seismic demand of 1g im-
posed in the X direction, it is observed a maximum 



displacement in this direction of 73.1mm (Figure 7). 
The maximum strain and damage develops at the 
base of the walls perpendicular to the direction of 
the applied force, as well as in the connection be-
tween walls. 

When imposing the horizontal load (1g) in the Y 
direction, a maximum displacement in this direction 
of 304.3mm is reached. For the seismic demand in Y 
direction, the maximum strain and damages devel-
ops also in the base of the walls perpendicular to the 
direction of the applied force, and also in corners 
and in the regions of connection between walls. 

 

  
  
Figure 7 – Response in terms of maximum strain distribution 
for the seismic demand (1g) in X direction. 

 
The damage evolution is presented in Figures 8 

and 9, for increasing seismic demands in the X and 
Y direction, respectively. For the seismic demands 
in the X direction, the damage start in the base and 
central areas of the longitudinal walls. Then, the 
damage evolves towards the perpendicular walls, un-
til the collapse of the region connecting perpendicu-
lar walls (Figure 8 and Figure 9). For the demands in 
the Y direction, it was observed that damage start in 
the connection between the inner and outer walls. 
With the increasing of the seismic demand, the dam-
ages develop towards the interior walls until the col-
lapse of the walls perpendicular to the seismic load-
ing imposed (Figure 10 and Figure 11). 

 

0.2g 

 

0.4g 

 
Figure 8 – Damage distribution evolution for seismic demands 
in X direction (credits: RISCO). 

 

0.6g 

 

0.8g 

 

1.0g 

 
 
Figure 9 – Damage distribution evolution for seismic demands 
in X direction (credits: RISCO). 

 

0.2g 

 

0.4g 

 

0.6g 

 
Figure 10 – Damage distribution evolution for seismic de-
mands in Y direction (credits: RISCO). 

 



0.8g 

 

1.0g 

 
Figure 11 – Damage distribution evolution for seismic de-
mands in Y direction (credits: RISCO). 

 
Based on this prior analyses, it is clear that for the 

building studied, the out-of-plane collapse mecha-
nism of the longer walls is one of the major vulnera-
bilities of the studied buildings. Thus, the strength-
ening solutions studied, and presented next, 
correspond to the scenario of the seismic action in 
the Y direction. 

 

a) 

b) 

c) 
Figure 12 – Maximum stress distribution and deformed shape 
for accelerations of 1g, for the models simulating the retrofit-
ting solutions: a) B; b) BLW; c) R (credits: RISCO). 

 
With the implementation of buttresses (B), for the 

horizontal seismic demand in Y direction, an in-
crease in the maximum displacement in this direc-
tion is observed. In fact, the local stiffening of the 
building corners with buttresses, deformation de-
mands tend to concentrate in the walls in the central 
part of the building. This retrofitting solution leads 
to a maximum displacement of 90.6mm, while for 
the non-retrofitted model a maximum displacement 
of 73.1mm was observed, for 1g seismic demand. 

With the solution corresponding to the use of but-
tresses in the longest walls (BLW), the out-of-plane 
displacements decreases to 21.1mm, and the dis-
placement in these points is reduced to 7.3mm in the 
model simulating the retrofitting with ties (R). 

In terms of maximum stress, for the B model a 
maximum stress of 13.7MPa is observed, while for 
the BLW model the maximum stress decreases to 
1.5MPa, and for the R model to 0.4MPa. 

In Figure 13 and Figure 14 are presented the 
curves with the evolution of horizontal displacement 
with the seismic demand, for three critical points, at 
the top of the walls, representative of the building 
response, that allow comparing the efficiency of the 
studied retrofitting solutions. Analyzing the response 
of the walls' midpoint, it is observed that the BLW 
and R solutions improves largely the performance of 
these walls. At the building corners, all the rein-
forcement solutions improved the behavior, either 
for the seismic demand in X and Y direction. 

 

a) 

b) 
Figure 13 – Evolutions of the horizontal displacement for in-
creasing seismic load; a) Central point; b) Middle point (cred-
its: RISCO). 



a) 

b) 
Figure 14 – Evolutions of the horizontal displacement for in-
creasing seismic load; a) Corner X direction; b) Corner Y di-
rection (credits: RISCO). 

 
In Figure 15 are presented the damage distribu-

tions for two levels of seismic demand, for the three 
retrofitting solutions studied. Model R represent the 
solution that more reduces the damage up to an 
equivalent seismic demand of 0.6g. A retrofitting so-
lution commonly adopted in the rammed earth con-
structions in the south of Portugal was the installa-
tion of buttresses (model B). 

 
 0.4g 0.6g 

B 

  

BLW 

  

R 

  
Figure 15 – Damage distribution (credits: RISCO). 

5 FINAL COMMENTS 

The south of Portugal, and in particular the 
Alentejo region, is a region with potential moderate 
seismic activity. Through the results obtained in this 
study, it was possible to observe that the rammed 
earth vernacular existing constructions commonly 
found in the south of Portugal can suffer substantial 

damages when subjected to earthquakes with accel-
erations up to 0.4g. For seismic demand with larger 
peak accelerations, the collapse of principal structur-
al elements may occurs, especially associated to out-
of-plane collapses of the outer walls. 
A common strengthening solution founded in ver-
nacular constructions in the South of Portugal, the 
use of buttresses in the building corners, may not re-
duce significantly the seismic vulnerability of these 
buildings. In fact, for buildings with long walls, the 
out-of-plane mechanism may control their seismic 
performance. 
In these buildings, the adoption of buttresses or ties 
on the walls in mid-points of the long walls may im-
prove the seismic behavior and safety. These struc-
tural strengthening solutions, if located in the points 
where maximum displacements tends to develop, 
and if properly connected to the building structure 
can significantly reduce the displacement demand 
and damage. 
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