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Abstract. For given Z,B ∈ Cn×k, the problem of finding A ∈ Cn×n, in some prescribed class W,

that minimizes ‖AZ − B‖ (Frobenius norm) has been considered by different authors for distinct classes W.

Here, we study this minimization problem for two other classes which include the symmetric Hamiltonian,

symmetric skew-Hamiltonian, real orthogonal symplectic and unitary conjugate symplectic matrices. We also

consider (as others have done for other classes W) the problem of minimizing ‖A− Ã‖ where Ã is given and

A is a solution of the previous problem.

The key idea of our contribution is the reduction of each one of the above minimization problems to two

independent subproblems in orthogonal subspaces of Cn×n. This is possible due to the special structures

under consideration. We have developed MATLAB codes and present the numerical results of some tests.
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1. Introduction. Structured matrices appear in many applications and, in general,

exploiting the structure may enable the development of more accurate algorithms. Such algo-

rithms may also be more economic both in computation and storage and, in the application

where such problems do occur, the structured solutions may have a more precise physical

meaning. To mention just a few works related to this topic, the notion of strongly stable

algorithms was introduced in [1] and used in the context of solving Toeplitz linear systems,

eigensolvers for matrices of several special structures have been given in [2], a chart of back-

ward errors for structured eigenvalue problems was presented in [10].

Skew-Hamiltonian matrices and Hamiltonian matrices are two important classes of struc-

tured matrices. In this paper we are interested in certain classes that include symmetric skew-

Hamiltonian matrices and symmetric Hamiltonian matrices. Symmetric skew-Hamiltonian

matrices arise in quantum mechanical problems with time reversal symmetry. Symmetric

Hamiltonian matrices appear in response theory, more exactly in the study of closed shell

Hartree-Fock wave functions, and also in solving algebraic Riccati equations in the context
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of continuous time linear quadratic optimal control problems. See [10] for references dealing

with such applications.

We will be concerned with the following problems in certain structured classes W of

matrices of size n× n (to be defined in the next section):

Problem I. Given Z,B ∈ Cn×k, find

σ = min
A∈W

‖AZ −B‖

and characterize the class

S = {A ∈ W : ‖AZ −B‖ = σ} .

In particular, find necessary and sufficient conditions for the existence of A ∈ W such that

AZ = B and give a general form for A.

Problem II. Given Ã ∈ Cn×n, find

σ̃ = min
A∈S

∥∥Ã−A∥∥
and find A ∈ S such that

∥∥Ã−A∥∥ = σ̃.

The above problems have been studied by many authors in various contexts and different

classes of structured matrices were considered: centrosymmetric matrices [13], centrohermi-

tian matrices [7], hermitian R-symmetric and hermitian R-skew symmetric matrices [11],

matrices which satisfy RAS = A and RAS = −A for R and S nontrivial involutions, i.e.

R2 = S2 = I and R,S 6= ±I (Trench referred to these matrices as (R,S) symmetric and

(R,S)-skew symmetric [12]). Some applications that lead to the above minimization prob-

lems are also described in these references. In [6], Problem II has also been considered for A

in the set W of generalized K-centrohermitian matrices with prescribed spectra.

In section 2 we present the classes of structured matrices to be studied and prove a

fundamental theorem. Some more theoretical results are given in section 3. The derivation

of the explicit solutions for our minimization problems is presented in section 4. In section 5

we exhibit our structure-exploiting algorithms for computing those solutions. In section 6 we

present results of our numerical experiments and finish with some conclusions in section 7.

2. The centralizer and anticentralizer of J . Let J =

[
0 I

−I 0

]
, where I is the

identity matrix of order m. In [2], the sets

(2.1) C =
{
A ∈ C2m×2m | AJ = JA

}
=

{[
D −E
E D

]
| D,E ∈ Cm×m

}
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and

(2.2) C (a) =
{
A ∈ C2m×2m | AJ = −JA

}
=

{[
G F

F −G

]
| F,G ∈ Cm×m

}
are called the centralizer of J and the anticentralizer of J , respectively. Also it was observed

that orthogonal sympletic matrices and unitary conjugate sympletic matrices belong to C .

It can be seen that symmetric skew-Hamiltonian matrices also belong to C and symmetric

Hamiltonian matrices belong to C (a).

The next theorem shows the relation between spaces C2m×2m, C and C (a). We use the

Frobenius inner product, 〈X,Y 〉 = trace(Y HX) for matrices X and Y . An orthogonal direct

sum will be denoted with the symbol ⊕⊥.

Lemma 2.1. We have

C2m×2m = C ⊕⊥ C (a).

Proof. First, we show that every matrix in C2m×2m can be written as a sum of two

matrices, one in C and the other one in C (a). Given A ∈ C2m×2m, let

(2.3) Ac =
A− JAJ

2
and As =

A+ JAJ
2

.

We have A = Ac +As and

JAcJ =
JAJ − J 2AJ 2

2
=
JAJ −A

2
= −Ac,

JAsJ =
JAJ + J 2AJ 2

2
=
JAJ +A

2
= As,

that is, Ac ∈ C and As ∈ C (a). This decomposition is unique since C
⋂

C (a) = {O}. In fact,

if A ∈ C ∩ C (a), then JAJ = −A and JAJ = A, which implies that A = O. So, we have a

direct sum.

Finally, let us see that C⊥C (a). If X ∈ C and Y ∈ C (a), we have JXJ = −X and

J Y J = Y . Since JHJ = JJH = I, we have

〈X,Y 〉 = 〈−JXJ ,J Y J 〉
= − trace[(J Y J )HJXJ ] = − trace(JHY HXJ )

= − trace(Y HX) = −〈X,Y 〉,

which means that 〈X,Y 〉 = 0 and, thus, C⊥C (a).

The minimization problems that we are tackling here have not been considered in [2]. As

compared to the work in [12], for (R,S) symmetric and (R,S)-skew symmetric matrices, we
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emphasize that matrices in C and C (a) do not fall into these classes as J is not an involution

(J 2 6= I). The key idea of our contribution is the reduction of each one of the minimization

problems under consideration to two independent subproblems in orthogonal subspaces of

C2m×2m.

3. Preliminary results. The following result has been given in [2, Lemma 2.5].

Lemma 3.1. Let P ∈ C2m×2m be the unitary matrix given by

(3.1) P =
√
2
2

[
I I

iI −iI

]
,

where I is the identity matrix of order m. We have:

(i) if A ∈ C (as defined in (2.1)), then

(3.2) PHAP =

[
M1

N1

]
,

where M1 = D − iE and N1 = D + iE;

(ii) if A ∈ C (a) (as defined in (2.2)), then

(3.3) PHAP =

[
M2

N2

]
,

where M2 = G− iF and N2 = G+ iF .

Using Lemma 3.1 and Lemma 2.1, for any matrix Ã ∈ C2m×2m we have

PHÃP = PH(Ac +As)P =

[
M1

N1

]
+

[
M2

N2

]
,

where Ac and As are as defined in (2.3). For the sake of convenience, we will use M to

represent either M1 or M2 if there is no danger of ambiguity. The same applies to N , N1 and

N2.

To tackle Problem I, we now define two new subspaces

(3.4) C2m×kJ = {X ∈ C2m×k : iJX = X} =

{[
X̂

−iX̂

]
| X̂ ∈ Cm×k

}
and

(3.5) S2m×kJ = {Y ∈ C2m×k : iJ Y = −Y } =

{[
Ŷ

iŶ

]
| Ŷ ∈ Cm×k

}
.

Any matrix B ∈ C2m×k can be expressed as the sum of one matrix in C2m×kJ and another in

S2m×kJ .
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Lemma 3.2. We have

C2m×k = C2m×kJ ⊕⊥ S2m×kJ .

In fact, any matrix B ∈ C2m×k can be written as

B =
B + iJB

2
+
B − iJB

2
,

where the first matrix in the right hand side belongs to C2m×kJ and the second to S2m×kJ .

The rest of the proof is similar to the one given for the previous result. This theorem plays

a major role in Problem I. Furthermore, we have the following lemma.

Lemma 3.3. Let P be the unitary matrix defined in (3.1). If X ∈ C2m×kJ and Y ∈ S2m×kJ ,

then

(3.6) PHX =
√
2

[
O

X̂

]
and PHY =

√
2

[
Ŷ

O

]
.

The proof is straightforward if we perform the matrix products. It is also straightforward

to prove the following result concerning the invariance (and swapping) of the subspaces C2m×kJ
and S2m×kJ under A ∈ C (and A ∈ C (a)).

Lemma 3.4. Let X ∈ C2m×kJ and Y ∈ S2m×kJ .

1. For A ∈ C , we have AX ∈ C2m×kJ and AY ∈ S2m×kJ .

2. For A ∈ C (a), we have AX ∈ S2m×kJ and AY ∈ C2m×kJ .

4. The minimization problems. In this section we recall two results concerning the

minimization problem for the general case, that is, given matrices Z ∈ Cq×k and B ∈ Cp×k,

we seek minA∈Cp×q ‖AZ − B‖, when there is no constraint on A. We also give a different

interpretation of the known necessary and sufficient condition for such minimum to be zero.

Then we turn to the problem with A ∈ C and A ∈ C (a), exploiting the structure properties

of these matrices.

4.1. General case. For a matrix Z ∈ Cq×k, we will use the standard notation Z† for

the Moore-Penrose inverse. We recall that throughout the paper we use the Frobenius norm,

the norm induced by the Frobenius inner product.

Lemma 4.1. [12, Lemma 2] If Z ∈ Cq×k and B ∈ Cp×k, then

(4.1) min
A∈Cp×q

‖AZ −B‖ =
∥∥B (I − Z†Z)∥∥ ,

and this minimum is attained if and only if

(4.2) A = BZ† +K
(
I − ZZ†

)
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with K ∈ Cp×q arbitrary. Moreover, A0 = BZ† is the unique matrix of this form with

minimum norm.

In particular, we have AZ = B if and only if B
(
I − Z†Z

)
= O ([12, Lemma 3]). For

q ≥ k, if Z is full rank1 then Z†Z = I and the previous condition holds. More generally, we

have the following result.

Theorem 4.2. Given Z in Cq×k, with q ≥ k, and B in Cp×k, we have B
(
I − Z†Z

)
= O

if and only if the null space of Z is contained in the null space of B, that is,

null(Z) ⊆ null(B).

Proof. To conclude that the given condition is necessary, note that from

B
(
I − Z†Z

)
= O we get that Zx = 0 implies Bx = 0. Conversely, assume that

null(Z) ⊆ null(B). Then, row(Z) and row(B) are the orthogonal complements of null(Z)

and null(B), respectively, and satisfy row(B) ⊆ row(Z) [5, Theorems 3.12 and 3.11]. Thus,

there is a matrix M such that B = MZ and, since ZZ†Z = Z,

B
(
I − Z†Z

)
= MZ −MZZ†Z = MZ −MZ = O.

In the proofs of the results concerning Problem II we will use the following

Lemma 4.3. [12, Lemma 4] Suppose that L ∈ Cp×q and Γ ∈ Cq×q where Γ2 = Γ = ΓH .

Then the unique matrix of the form L − MΓ with minimum Frobenius norm is

L− LΓ = L(I − Γ).

4.2. A ∈ C (centralizer of J ). We first consider Problem I.

Let Z,B ∈ C2m×k (m ≥ k). Write Z = Z1 + Z2 with

(4.3) Z1 =
Z + iJZ

2
, Z2 =

Z − iJZ
2

,

and B = B1 +B2 with

(4.4) B1 =
B + iJB

2
, B2 =

B − iJB
2

,

where Z1, B1 ∈ C2m×kJ and Z2, B2 ∈ S2m×kJ .

From Lemma 3.4, for A ∈ C , (AZ1 − B1) ∈ C2m×kJ and (AZ2 − B2) ∈ S2m×kJ . The

orthogonality of these subspaces implies

‖AZ −B‖2 = ‖(AZ1 −B1) + (AZ2 −B2)‖2 = ‖AZ1 −B1‖2 + ‖AZ2 −B2‖2 .

1Since q ≥ k, by full rank we mean full column rank.
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According to (3.4) and (3.5),

(4.5) Z1 =

[
Ẑ1

−iẐ1

]
, Z2 =

[
Ẑ2

iẐ2

]
, B1 =

[
B̂1

−iB̂1

]
, B2 =

[
B̂2

iB̂2

]
,

where Ẑ1, Ẑ2, B̂1, B̂2 ∈ Cm×k.

For A ∈ C , the invariance of the Frobenius norm under unitary multiplication, (3.2) and

(3.6) imply that

‖AZ1 −B1‖2 =
∥∥PHAPPHZ1 − PHB1

∥∥2 = 2

∥∥∥∥∥
[
M

N

][
O

Ẑ1

]
−

[
O

B̂1

]∥∥∥∥∥
2

= 2
∥∥∥NẐ1 − B̂1

∥∥∥2.
Similarly,

‖AZ2 −B2‖2 = 2
∥∥∥MẐ2 − B̂2

∥∥∥2.
Therefore, our problem is reduced to two independent subproblems of the same type in

the orthogonal subspaces, one for the pair (Z1, B1) and the other for the pair (Z2, B2). Thus,

with respect to Problem I, we have the following result.

Theorem 4.4. Let Z,B ∈ C2m×k. Consider P as given in (3.1) and Ẑ1, Ẑ2, B̂1, B̂2 in

(4.5). Then

(4.6) min
A∈C
‖AZ −B‖ =

√
2

(∥∥∥B̂1

(
I − Ẑ†1Ẑ1

)∥∥∥2 +
∥∥∥B̂2

(
I − Ẑ†2Ẑ2

)∥∥∥2)1/2

and this minimum is attained if and only if

A =P

[
M

N

]
PH = 1

2

[
M +N −(M −N)i

(M −N)i M +N

]
,(4.7)

where M = B̂2Ẑ
†
2 + K2

(
I − Ẑ2Ẑ

†
2

)
and N = B̂1Ẑ

†
1 + K1

(
I − Ẑ1Ẑ

†
1

)
with arbitrary

K1,K2 ∈ Cm×m. Moreover, A = P

[
B̂2Ẑ

†
2

B̂1Ẑ
†
1

]
PH is the unique matrix of this form

with minimum norm.

The relations (4.6) and (4.7) follow from the application of Lemma 4.1 to ‖NẐ1 − B̂1‖
and ‖MẐ2 − B̂2‖.

Now we consider Problem II.
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Let σc = min
A∈C
‖AZ −B‖ and Sc = {A ∈ C : ‖AZ −B‖ = σc} .

For Ã ∈ C2m×2m, using Lemma 2.1, there exists a unique pair of matrices Ã1 ∈ C ,

Ã2 ∈ C (a) such that Ã = Ã1 + Ã2 with

(4.8) Ã1 =
Ã− J ÃJ

2
and Ã2 =

Ã+ J ÃJ
2

.

Using Lemma 3.1, we write

(4.9) PHÃ1P =

[
M1

N1

]
and PHÃ2P =

[
M2

N2

]
.

Theorem 4.5. Assume the conditions of Theorem 4.4. Let Ã ∈ C2m×2m and

M1, N1,M2, N2 given in (4.9). Then

(4.10) min
A∈Sc

∥∥Ã−A∥∥ =

(
‖M2‖2 + ‖N2‖2 +

∥∥∥(M1Ẑ2 − B̂2

)
Ẑ†2

∥∥∥2 +
∥∥∥(N1Ẑ1 − B̂1

)
Ẑ†1

∥∥∥2)1/2

,

and this minimum is attained if and only if

(4.11) A = 1
2

[
M3 +N3 −(M3 −N3)i

(M3 −N3)i M3 +N3

]
,

where M3 = B̂2Ẑ
†
2 +M1

(
I − Ẑ2Ẑ

†
2

)
and N3 = B̂1Ẑ

†
1 +N1

(
I − Ẑ1Ẑ

†
1

)
.

Proof. Let Ã = Ã1 + Ã2, with Ã1, Ã2 given in (4.8), and A ∈ Sc given by (4.7). Since

the Frobenius norm is invariant under unitary transformations, we have∥∥Ã−A∥∥2 =
∥∥∥(Ã1 −A

)
+ Ã2

∥∥∥2
=
∥∥∥PH

(
Ã1 −A

)
P + PHÃ2P

∥∥∥2
=

∥∥∥∥∥
[
M1 − B̂2Ẑ

†
2 −K2

(
I − Ẑ2Ẑ

†
2

)
M2

N2 N1 − B̂1Ẑ
†
1 −K1

(
I − Ẑ1Ẑ

†
1

)]∥∥∥∥∥
2

= ‖M2‖2 + ‖N2‖2 +
∥∥∥M1 − B̂2Ẑ

†
2 −K2

(
I − Ẑ2Ẑ

†
2

)∥∥∥2 +

+
∥∥∥N1 − B̂1Ẑ

†
1 −K1

(
I − Ẑ1Ẑ

†
1

)∥∥∥2 .
Observe that only K1,K2 ∈ Cm×m are free. Thus,

min
A∈Sc

∥∥Ã−A∥∥2 = ‖M2‖2 + ‖N2‖2 + min
K2∈Cm×m

∥∥∥M1 − B̂2Ẑ
†
2 −K2

(
I − Ẑ2Ẑ

†
2

)∥∥∥2 +

+ min
K1∈Cm×m

∥∥∥N1 − B̂1Ẑ
†
1 −K1

(
I − Ẑ1Ẑ

†
1

)∥∥∥2 .
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For X ∈ Cm×k, the properties of the Moore-Penrose inverse imply that (I − XX†)2 =

(I −XX†) = (I −XX†)H . Thus, we can apply Lemma 4.3 to each of the two minimization

problems on the right side of the previous equation. The minimum values are attained if and

only if

K2 = M1 − B̂2Ẑ
†
2 and K1 = N1 − B̂1Ẑ

†
1

which give

K2

(
I − Ẑ2Ẑ

†
2

)
=
(
M1 − B̂2Ẑ

†
2

)(
I − Ẑ2Ẑ

†
2

)
= M1

(
I − Ẑ2Ẑ

†
2

)
− B̂2Ẑ

†
2 + B̂2Ẑ

†
2Ẑ2Ẑ

†
2

= M1

(
I − Ẑ2Ẑ

†
2

)
and

K1

(
I − Ẑ1Ẑ

†
1

)
=
(
N1 − B̂1Ẑ

†
1

)(
I − Ẑ1Ẑ

†
1

)
= N1

(
I − Ẑ1Ẑ

†
1

)
.

Hence, the minimum values are∥∥∥M1 − B̂2Ẑ
†
2 −M1

(
I − Ẑ2Ẑ

†
2

)∥∥∥2 =
∥∥∥(M1Ẑ2 − B̂2

)
Ẑ†2

∥∥∥2
and ∥∥∥N1 − B̂1Ẑ

†
1 −N1

(
I − Ẑ1Ẑ

†
1

)∥∥∥2 =
∥∥∥(N1Ẑ1 − B̂1

)
Ẑ†1

∥∥∥2 .
This shows that min

A∈Sc
‖Ã−A‖ is given by (4.10) and it is attained if and only if A takes the

form (4.11).

4.3. A ∈ C (a) (anticentralizer of J ). For A ∈ C (a) the results are entirely analogous

to the ones just presented for A ∈ C and therefore we will omit the proofs. In view of the fact

that for A ∈ C (a), (AZ2 − B1) ∈ C2m×kJ and (AZ1 − B2) ∈ S2m×kJ are orthogonal, we may

use arguments similar to those used in the previous subsection to get the following results.

Theorem 4.6. Let Z,B ∈ C2m×k. Consider P as given in (3.1) and Ẑ1, Ẑ2, B̂1, B̂2 in

(4.5). Then

(4.12) min
A∈C (a)

‖AZ −B‖ =
√

2

(∥∥∥B̂2

(
I − Ẑ†1Ẑ1

)∥∥∥2 +
∥∥∥B̂1

(
I − Ẑ†2Ẑ2

)∥∥∥2)1/2

and this minimum is attained if and only if

A =P

[
M

N

]
PH = 1

2

[
M +N (M −N)i

(M −N)i −(M +N)

]
,(4.13)

where M = B̂2Ẑ
†
1 + K2

(
I − Ẑ1Ẑ

†
1

)
and N = B̂1Ẑ

†
2 + K1

(
I − Ẑ2Ẑ

†
2

)
with arbitrary

K1,K2 ∈ Cm×m. Moreover, A = P

[
B̂2Ẑ

†
1

B̂1Ẑ
†
2

]
PH is the unique matrix of this form

with minimum norm.
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Let σs = min
A∈C (a)

‖AZ −B‖ and Ss =
{
A ∈ C (a) : ‖AZ −B‖ = σs

}
.

Theorem 4.7. Assume the conditions of Theorem 4.6. Let Ã ∈ C2m×2m and

M1, N1,M2, N2 given in (4.9). Then

(4.14) min
A∈Ss

∥∥Ã−A∥∥ =

(
‖M1‖2 + ‖N1‖2 +

∥∥∥(M2Ẑ1 − B̂2

)
Ẑ†1

∥∥∥2 +
∥∥∥(N2Ẑ2 − B̂1

)
Ẑ†2

∥∥∥2)1/2

,

and this minimum is attained if and only if

(4.15) A = 1
2

[
M4 +N4 (M4 −N4)i

(M4 −N4)i −(M4 +N4)

]
,

where M4 = B̂2Ẑ
†
1 +M2

(
I − Ẑ1Ẑ

†
1

)
and N4 = B̂1Ẑ

†
2 +N2

(
I − Ẑ2Ẑ

†
2

)
.

4.4. Further results on residuals. The conditions for the existence of solutions A ∈ C

and A ∈ C (a) such that ‖AZ − B‖ = 0 are clear from (4.6) and (4.12), respectively. So, for

Z = Z1 + Z2 with Z1 ∈ C2m×kJ and Z2 ∈ S2m×kJ , if Z1 and Z2 have full rank, a null residual

is achieved with matrices given by (4.7) and (4.13). Now, it also follows from Theorem 4.2

that consistency will be achieved for A ∈ C even when Z1 and/or Z2 are not full rank if the

null spaces of Ẑ1 and Ẑ2 are contained in the null spaces of B̂1 and B̂2, respectively. For

A ∈ C (a), the conditions are null(Ẑ1) ⊆ null(B̂2) and null(Ẑ2) ⊆ null(B̂1). Observing that

null(Ẑ1) = null(Z1), null(Ẑ2) = null(Z2), null(B̂1) = null(B1) and null(B̂2) = null(B2),

the previous conditions may be stated in terms of the null spaces of Z1, Z2, B1 and B2.

In general, of course, it may exist a matrix A ∈ Cn×n that maps Z onto B and no solution

be possible with A ∈ C or A ∈ C (a). In particular, if Z is in C2m×kJ and is full rank, that is,

Z1 = Z and Z2 = O, then no Ac ∈ C can map Z onto B2 6= O and no As ∈ C (a) can map Z

onto B1 6= O. In this case, again from (4.6) and (4.12), we have

(4.16) min
A∈C
‖AZ −B‖ =

√
2
∥∥B̂2

∥∥ = ‖B2‖

and

(4.17) min
A∈C (a)

‖AZ −B‖ =
√

2
∥∥B̂1

∥∥ = ‖B1‖.

Analogously, if Z is full rank and is in S2m×kJ , that is, Z1 = O and Z2 = Z, then, from (4.12)

we have

(4.18) min
A∈C
‖AZ −B‖ = ‖B1‖ and min

A∈C (a)
‖AZ −B‖ = ‖B2‖.

Obviously, it is always the case that rank(Z1) ≤ rank(Z) and rank(Z2) ≤ rank(Z). For

the particular case of these ranks being equal, we have
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Theorem 4.8. If Z, Z1 and Z2 have the same rank then min ‖AZ −B‖ is the same for

A ∈ C , A ∈ C (a) or general A.

Proof. From Zv = 0 ⇒ Z1v = 1
2 (Z + iJZ)v = 0 we conclude that null(Z) ⊆ null(Z1);

this and the hypothesis rank(Z1) = rank(Z) allows us to state that those null spaces are the

same. Similarly, we may say that null(Z) = null(Z2). Therefore, the right singular vectors

corresponding to null singular values of Z, Z1 (or Ẑ1) and Z2 (or Ẑ2) are the same. This

implies (see Section 5.5) that

(4.19)
(
I − Z†Z

)
=
(
I − Ẑ†1Ẑ1

)
=
(
I − Ẑ†2Ẑ2

)
and the residuals expressed in (4.6) and (4.12) are the same. Now, for a general A we write

‖B
(
I − Z†Z

)
‖2 = ‖P (B1 +B2)

(
I − Z†Z

)
‖2

= 2

∥∥∥∥∥
[
B̂2

B̂1

] (
I − Z†Z

)∥∥∥∥∥
2

= 2

(∥∥∥B̂2

(
I − Z†Z

)∥∥∥2 +
∥∥∥B̂1

(
I − Z†Z

)∥∥∥2)
and, again from (4.19) conclude that the residual is equal to those in (4.6) and (4.12).

We end this section observing that when Z and B are real, the ranks of Z, Z1 and Z2 are

always the same and the previous theorem applies, i.e., there are always real matrices in C

and in C (a) that attain the same minimum residual as a general matrix. This will be shown

in Section 5.3.

5. Algorithms. In this section, we propose algorithms for computing the solutions of

Problems I and II, first the case of A ∈ C and then the case of A ∈ C (a). We also present an

algorithm to compute the solutions of Problems I and II for an arbitrary matrix A ∈ C2m×2m,

the unstructured minimization problem.

5.1. Unstructured minimization. An essential part of the computation of A in (4.2)

and the minimum value in (4.1) is the full SVD computation of Z ∈ Cq×k, with q ≥ k,

(5.1) Z =
[
U1 U2

] [Σ O

O O

] [
V1 V2

]H
where, for rank(Z) = r < k, U1 ∈ Cq×r, U2 ∈ Cq×(q−r), V1 ∈ Ck×r, V2 ∈ Ck×(k−r) have

orthonormal columns and Σ = diag(σ1, . . . , σr), with σi > 0, i = 1, . . . , r, the nonzero

singular values of Z. When Z is full rank (r = k), (5.1) gives

(5.2) Z =
[
U1 U2

] [Σ

O

]
V H
1 ,
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if q > k, and gives place to

(5.3) Z = U1ΣV H
1 ,

if q = k. Thus, in the full rank case, V2 does not exist and, if p = k, U2 does not exist either.

The following expressions are always valid if we make the convention that in the full rank case

V2V
H
2 and V H

2 V2 are null matrices and, if p = k, U2U
H
2 is also a null matrix. This convention

will be used throughout Section 5, including the structured cases.

The Moore-Penrose inverse of Z is

(5.4) Z† = V1Σ−1UH
1 .

We have

(5.5)
(
I − Z†Z

)
= (I − V1Σ−1UH

1 U1ΣV H
1

)
= (I − V1V H

1

)
= V2V

H
2

and

(5.6)
(
I − ZZ†

)
=
(
I − U1ΣV H

1 V1Σ−1UH
1

)
= (I − U1U

H
1

)
= U2U

H
2 .

Entering (5.6) in (4.2) we get

A = BV1Σ−1UH
1 +KU2U

H
2 ,(5.7)

with K ∈ C2m×2m arbitrary. Using (5.5) in (4.1) we get

min
A∈C2m×2m

‖AZ −B‖ = ‖BV2V H
2 ‖.(5.8)

Denoting this value by σ and defining

S =
{
A ∈ C2m×2m : ‖AZ −B‖ = σ

}
,

in Problem II, for a given Ã ∈ C2m×2m, we want to compute

min
A∈S

∥∥Ã−A∥∥ = min
K∈C2m×2m

‖Ã−BV1Σ−1UH
1 −KU2U

H
2 ‖.

Since
(
U2U

H
2

)2
= U2U

H
2 =

(
U2U

H
2

)H
, we can apply Lemma 4.3 to conclude that the unique

matrix K which gives the minimum norm is

K = Ã−BV1Σ−1UH
1 .

Thus, minA∈S
∥∥Ã−A∥∥ is attained for

A =BV1Σ−1UH
1 +

(
Ã−BV1Σ−1UH

1

)
U2U

H
2 = BV1Σ−1UH

1 + ÃU2U
H
2 .

Notice that this is the expression in (5.7) with K = Ã.

The following algorithm computes the solutions for Problem I (steps 1 and 2) and Problem

II (steps 1 and 3) for an arbitrary matrix A ∈ C2m×2m.
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Algorithm 1

Given Z, B, K and Ã, compute:

1. the full SVD of Z,

Z =
[
U1 U2

] [Σ O

O O

] [
V1 V2

]H
;

2. A = BV1Σ−1UH
1 + KU2U

H
2 and the minimum residual ‖(BV2)V H

2 ‖, according to

(5.8);

3. A = BV1Σ−1UH
1 + ÃU2U

H
2 and the minimum value

∥∥∥Ã−A∥∥∥ .
To give an estimate of the number of complex arithmetic operations involved in the

algorithm we will assume that m is significantly larger than k. In step 1 the number of flops

for the complete SVD is about 16m2k + 22k3 and 12mk2 + 20k3 if U2 is not required (using

the R-SVD) [4, p.254]. In step 2, the first term in the expression for A requires about 8m2r

and the second term is more expensive since it requires about 16m3 flops. Therefore the

solution A of minimal norm for unstructured Problem I, which occurs for the choice K = O,

is the cheapest to compute, requiring a total of 12mk2 +8m2r+20k3 flops. The computation

of the residual costs an extra 8mk(k − r) flops, approximately, which is rather cheap when

r is close to k. A direct computation of ‖AZ − B‖ is more expensive (it costs about 8m2k

flops) and in our numerical experiments we did not find significant differences in the size of

the computed residuals.

The cost of computing A in step 3 is equal to the corresponding cost of step 2 when

K 6= O. When Problem II is to be solved after Problem I we may reuse the first term in the

expression for A in step 2, which is the same in both problems, and also the product U2U
H
2 ,

if it has been computed before. The computation of the minimum value ‖Ã−A‖ costs about

8m2 flops.

5.2. Minimization for A ∈ C and A ∈ C (a). Let Z,B ∈ C2m×k and P be given in

(3.1). Consider Ẑ1, Ẑ2, B̂1, B̂2 given in (4.5). Let r1 = rank(Ẑ1) and the full SVD of Ẑ1 be

(5.9) Ẑ1 =
[
Û1 Û2

] [Σ̂ O

O O

] [
V̂1 V̂2

]H
= Û1Σ̂V̂ H

1 ,

where Û1 ∈ Cm×r1 , Û2 ∈ Cm×(m−r1), V̂1 ∈ Ck×r1 , V̂2 ∈ Ck×(k−r1) have orthonormal columns

and Σ̂ = diag(σ̂1, . . . , σ̂r1), with σ̂i > 0, i = 1, . . . , r1, the nonzero singular values of Ẑ1.

Analogously, let r2 = rank(Ẑ2) and the SVD of Ẑ2 be

(5.10) Ẑ2 =
[
Ũ1 Ũ2

] [Σ̃ O

O O

] [
Ṽ1 Ṽ2

]H
= Ũ1Σ̃Ṽ H

1 ,
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where Ũ1 ∈ Cm×r2 , Ũ2 ∈ Cm×(m−r2), Ṽ1 ∈ Ck×r2 , Ṽ2 ∈ Ck×(k−r2) have orthonormal columns

and Σ̃ = diag(σ̃1, . . . , σ̃r), with σ̃i > 0, i = 1, . . . , r2, the nonzero singular values of Ẑ2. Then,

the Moore-Penrose inverses of Ẑ1 and Ẑ2 are

Ẑ†1 = V̂1Σ̂−1ÛH
1 and Ẑ†2 = Ṽ1Σ̃−1ŨH

1 .

If both Ẑ†1 and Ẑ†2 are rank-deficient (r1, r2 < k), we have

(5.11)
(
I − Ẑ†1Ẑ1

)
= V̂2V̂

H
2 ,

(
I − Ẑ†2Ẑ2

)
= Ṽ2Ṽ

H
2

and, according to Theorem 4.4 and (5.11),

(5.12) min
A∈C
‖AZ −B‖ =

√
2

(∥∥∥B̂1V̂2V̂
H
2

∥∥∥2 +
∥∥∥B̂2Ṽ2Ṽ

H
2

∥∥∥2)1/2

.

In the full rank case (r1 = r2 = k),
(
I− Ẑ†1Ẑ1

)
=
(
I− Ẑ†2Ẑ2

)
= O and we have a null residual.

In both cases,

(5.13)
(
I − Ẑ1Ẑ

†
1

)
= Û2Û

H
2 ,

(
I − Ẑ2Ẑ

†
2

)
= Ũ2Ũ

H
2

and, using (4.7) in Theorem 4.4, this minimum is attained with

(5.14) A = 1
2

[
M +N −(M −N)i

(M −N)i M +N

]
,

where

(5.15) M = B̂2Ṽ1Σ̃−1ŨH
1 +K2Ũ2Ũ

H
2 and N = B̂1V̂1Σ̂−1ÛH

1 +K1Û2Û
H
2 ,

with K1,K2 ∈ Cm×m arbitrary.

Now we will consider the computation of the solution for problem II. Consider Ã ∈
C2m×2m, Ã1, given in (4.8) and M1 and N1 given in (4.9). Then, according to Theorem 4.5,

A is given by (5.14), where in (5.15) K2 = M1 and K1 = N1.

The following algorithm computes the solutions for Problem I (steps 1, 2 and 3) and

Problem II (steps 1, 2, 4 and 5) for A ∈ C .

Algorithm 2

Given Z, B, K1, K2 and Ã, compute:

1. Ẑ1, Ẑ2, B̂1 and B̂2, in (4.5);

2. the full SVD’s of Ẑ1 and Ẑ2, in (5.9) and (5.10);

3. M and N in (5.15), for the given K1 and K2, A in (5.14) and the residual with (5.12);

4. M1 and N1 given in (4.9);

5. M , N and A (as in step 3) for K1 = M1 and K2 = N1 and the minimum value∥∥∥Ã−A∥∥∥.
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For A ∈ C (a), the algorithm is similar to Algorithm 2 and we just point out the differences

in the expressions to be used in this case. In step 3, we use

M = B̂2V̂1Σ̂−1ÛH
1 +K2Û2Û

H
2 ,

N = B̂1Ṽ1Σ̃−1ŨH
1 +K1Ũ2Ũ

H
2 ,

A = 1
2

[
M +N (M −N)i

(M −N)i −(M +N)

]
,

min
A∈C (a)

‖AZ −B‖ =
√

2

(∥∥∥B̂2V̂2V̂
H
2

∥∥∥2 +
∥∥∥B̂1Ṽ2Ṽ

H
2

∥∥∥2)1/2

.

In step 4, use (4.9) for M2 and N2. In step 5, compute M , N and A as in step 3 for K1 = N2

and K2 = M2.

The costs of steps 1 and 4 are relatively inexpensive. In step 2 the number of flops for

each one of the two complete SVD’s is about 4m2k+ 22k3 and 6mk2 + 20k3 if Û2 and Ũ2 are

not required. In step 3, to compute M and N we need 2m2r1 and 2m2r2 flops, respectively,

if K1 = K2 = O which, as in the unstructured case, produce the minimal norm solution.

Since r1 + r2 ≤ 2r, the total cost to compute M and N , in this case, is not larger than 4m2r

flops and this is half the cost of computing A in the unstructured case. For general matrices

K1 and K2, the computation of M and N requires in addition 4m3 extra flops in contrast

to 16m3 flops in the general case. The explicit construction of A requires 2m2 flops. The

computation of the residual costs an extra 4mk(k − r1) + 4mk(k − r2) flops, approximately.

If r1 = r2 = r, this equal the corresponding cost in the unstructured case; however, if r1 � r

or r2 � r, this cost may be larger in the structured case (the extreme situation occurs when

r = k and r1 or r2 are equal to zero).

The cost of computing M , N and A in step 5 equals the corresponding cost in step 3 when

K1,K2 6= O. As in the unstructured case, when Problem II is to be solved after Problem

I, we may reuse the first terms in the expressions for M and N in step 3, which are the

same in both problems, and also the products Û2Û
H
2 and Ũ2Ũ

H
2 , if computed before. The

computation of the minimum value ‖Ã−A‖ costs about 8m2 flops.

In conclusion, to produce structured solutions for Problems I and II, our algorithm re-

quires less arithmetic than the algorithm for the general case. As noted before, to compute

the minimal norm solution for Problem I, our algorithm is about half as expensive as the

general algorithm. For solutions with general matrices K, K1 and K2 (which is always the

case in Problem II), our algorithm requires approximately 1/4 of the number of flops of the

general algorithm.

5.3. The real case. Although Algorithm 1 and Algorithm 2 have been presented for

complex matrices, there are situations where one may be interested in producing a real solution

A (we noted before that real orthogonal sympletic matrices belong to C ). When Z and B
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are real, Algorithm 1 produces necessarily real matrices A since all the arithmetic involved

is real. This is not the case in Algorithm 2. From (5.14) it follows that A is real if and

only if M and N in (5.15) are complex conjugate. This happens whenever Z and B are

real and we take K1 and K2 in (5.15) with K1 = K2. Because (Z1, Z2) and (B1, B2), in

(4.3) and (4.4), respectively, are pairs of conjugate matrices, the same is true for Ẑ1 and Ẑ2

and the corresponding factors in their decompositions in (5.9) and (5.10), respectively. As a

consequence of this, Algorithm 2 gets the following simplifications when Z and B are real: in

step 2, one single complex SVD (either of Ẑ1 or Ẑ2) is required and in step 3 only one of M

and N is computed. Furthermore, in Problem II, for a real Ã, M1 and N1 in step 4 are also

conjugate (see Lemma 3.1). The amount of computation is also reduced in step 5 similarly

to step 3.

6. Numerical examples. We implemented our algorithms in Matlab 7.5.0342

(R2007b), with rounding error unit equal to 2−53 ≈ 1.1×10−16. For Problem I, we computed

the minimum norm solutions with null matrices K,K1 and K2. In Table 6.1 we summarize

the numerical results obtained with our codes for 15 given pairs (Z, B). Here, as before,

Ac ∈ C , As ∈ C (a) and A is a general matrix. The residuals O(10−12), O(10−13) and

O(10−14) are due to rounding errors since they correspond to cases for which null residuals

are expected, in accordance with Theorem 4.2 and our analysis in section 4.4.

Table 6.1

Minimal residuals for problem I

m, k ‖AZ −B‖ ‖AcZ −B‖ ‖AsZ −B‖ ‖A‖ ‖Ac‖ ‖As‖
1 10, 10 4.9× 10−14 3.3× 10−14 3.2× 10−14 4.37 19.02 19.96

2 100, 20 6.7× 10−14 1.1× 10−13 1.2× 10−13 4.73 7.09 7.06

3 1000, 200 1.0× 10−12 1.2× 10−12 1.2× 10−12 18.26 44.57 45.00

4 10, 10 6.8× 10−14 7.88 8.39 11.45 8.34 7.84

5 100, 20 5.7× 10−14 36.39 36.40 7.01 4.93 4.99

6 1000, 200 1.6× 10−12 365.42 365.14 22.38 15.82 15.83

7 100, 10 1.6× 10−14 1.4× 10−14 26.14 2.47 2.47 0

8 10, 10 3.80 3.80 3.80 3.56 8.45 8.76

9 50, 10 8.31 18.82 18.83 4.76 3.38 3.35

10 100, 20 11.76 11.76 11.76 4.60 6.85 6.79

11 1000, 200 36.93 366.41 365.73 22.32 15.77 15.80

12 20, 20 3.35 3.35 3.35 4.95 13.12 34.13

13 50, 10 1.4× 10−14 18.03 17.96 3.76 2.64 2.68

14 100, 20 6.4× 10−14 2.3× 10−13 2.5× 10−13 4.13 6.16 6.10

15 100, 20 2.1× 10−13 32.55 32.67 6.08 4.22 4.38

In the first 3 cases, matrices Z and B are generated with Matlab function rand. The
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produced matrix Z, as well as the projections Z1 and Z2 are full rank and consistency is

always expected.

In cases 4-7, Z has full rank and is either in the subspace C2m×kJ (Z2 = O) or in the

subspace S2m×kJ (Z1 = O). Here, matrices Z were generated according to (4.5) from random

(m× k) matrices Ẑ1 and Ẑ2. The computed residuals are in accordance with (4.16) - (4.18).

In particular, in case 7 we used Z2 = B2 = O and Algorithm 1 produced the same Ac ∈ C

as Algorithm 2. This is because the general solution with minimum norm in this case is

necessarily in C . With A = Ãc + Ãs, Ãc ∈ C and Ãs ∈ C (a), we have

‖AZ −B‖2 =
∥∥∥(Ãc + Ãs

)
(Z1 + Z2)− (B1 +B2)

∥∥∥2
=
∥∥∥ÃcZ1 + ÃsZ2 −B1

∥∥∥2 +
∥∥∥ÃcZ2 + ÃsZ1 −B2

∥∥∥2
=
∥∥∥ÃcZ1 −B1

∥∥∥2 +
∥∥∥ÃsZ1

∥∥∥2

and the minimum residual is attained with Ãs = O and A = Ãc that minimizes
∥∥∥ÃcZ1 −B1

∥∥∥.

That As = O also minimizes ‖AsZ −B‖2 in this case (Z2 = B2 = O) is a consequence of its

expression in Theorem 4.6.

Cases 8 to 11 are examples of Z being rank-deficient (by making copies of random

columns) and B full rank. The problem is never consistent since AZ can not be full rank.

In cases 12 to 15, Z and B are both rank deficient and the condition null(Z) ⊆ null(B)

in Theorem 4.2 only fails in case 12. In case 14, we also have null(Z1) ⊆ null(B1) and

null(Z2) ⊆ null(B2). We adopted a simple method to generate rank deficient consistent

problems. For instance, in case 13 the first 6 independent columns of Z and B have been

generated randomly and then, for i = 7, ..., 10, the ith column of Z and B is computed using

the same linear combination of the first six columns of Z and B, respectively.

In cases 8, 10, 12 and 14, the ranks of Z, Z1 and Z2 are the same and, in accordance

with Theorem 4.8, we have equal residuals with A, Ac and As.

The next table shows results for Problem II with matrix Ã generated randomly.

When the smallest residual ‖AZ −B‖ for unstructured A is also attained for structured

Ac (As) it is obvious that ‖Ã − A‖ ≤ ‖Ã − Ac‖ and ‖Ã − A‖ ≤ ‖Ã − As‖ because the set

of solutions Ac (As) is contained in the set of general solutions A. In case 2 the problem is

consistent for A but not for Ac or As. In case 3, Ã ∈ C but does not belong to the set of

solutions Ac which give minimum residual ‖AcZ −B‖ (otherwise, ‖Ã−Ac‖ would be zero).

In case 5, Ã ∈ C (a) and a similar observation can be made.
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Table 6.2

Minimal residuals for problem II

m, k ‖Ã−A‖ ‖Ã−Ac‖ ‖Ã−As‖
1 10, 10 15.47 21.97 21.62

2 50, 50 92.89 86.68 88.11

3 100, 10 71.91 98.90 115.25

4 100, 20 141.96 153.67 153.66

5 1000, 200 758.97 1201.40 1001.82

7. Conclusions. The problems addressed have been studied before by other authors for

different types of structured matrices. We have extended the previous work to other structures

which are exhibited by certain matrices that occur in applications. More precisely, for given

complex matrices Z and B, we proposed algorithms to compute A ∈ C (centralizer of J ) or

A ∈ C (a) (anti-centralizer of J ) that minimize ‖AZ−B‖. We proved several new theoretical

results and illustrated them with numerical examples. Also, for such solutions A and for a

given matrix Ã, we have considered the problem of minimizing ‖Ã−A‖. The key idea of our

work has been the use of special orthogonal subspaces that allow the decomposition of each

one the minimization problems into two independent subproblems. As a consequence of this,

our algorithms not only deliver solutions which are of the required type but they need less

arithmetic than previous algorithms for unstructured matrices.
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