brought to you by CORE

Comunicações Geológicas

Comunicações Geológicas (2014) 101, Especial I, 85-88 ISSN: 0873-948X; e-ISSN: 1647-581X

Paragénese e mineroquímica de amazonites de Valença, Norte de Portugal

Paragenesis and mineral-chemistry of amazonites of Valença, Northern Portugal

J. Ferreira^{1*}, C. Leal Gomes¹

© 2014 LNEG - Laboratório Nacional de Geologia e Energia IP

Resumo: Na região de Valença ocorrem pegmatitos miarolíticos intra e exo-graníticos portadores de amazonites verdes, verdeazuladas e enrubescidas (microclinas róseas). O Pb influencia a cromatização verde e a ocorrência de galena inclusa em amazonite é coerente com este facto. A cor das microclinas róseas resulta de um fenómeno metassomático pós-amazonítico, de enrubescimento, que pode evoluir para epissienitização.

Palavras-chave: Pegmatitos miarolíticos, Amazonites, Enrubescimento, Chumbo, Galena.

Abstract: In the region of Valença (Northern Portugal) inner and outer granitic pegmatites, include green and blue-green amazonites, and late rose-colored microcline. Pb is the chromophore constituent responsible for the green color and the inclusion of galena in amazonite is consistent with this fact. The rose-colored microcline results from a pos-amazonitic metassomatic phenomenon, called reddening, which may evolve to epi-sienitization.

Keywords: Miarolitic pegmatites, Amazonites, Flushing, Lead, Galena.

¹CIG-R, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

*Autor correspondente / Corresponding author: <u>nestafacil@hotmail.com</u>

1. Introdução

Na região de Valença ocorre um campo pegmatítico Varisco que é cogenético de granitóides pós-tectónicos relativamente à 3ª fase de deformação (Leal Gomes *et al.*, 1997). Os granitóides parentais são essencialmente granodioritos biotíticos, de grão grosseiro a médio, com ocasional tendência porfiróide.

Os pegmatitos são do tipo NYF e afloram no interior e na periferia de algumas manchas graníticas comagmáticas, que são periféricas relativamente ao maciço granítico de Monção (Guimarães & Leal Gomes, 2010). A ocorrência de feldspatos amazoníticos observa-se em pegmatitos miarolíticos, tabulares, com espessura decimétrica a pluridecimétrica e estrutura interna zonada. O núcleo é constituído por quartzo e a zona intermédia e de bordadura, por quartzo e feldspato e alguma biotite (a moscovite é mais rara e muitas vezes tardia; Leal Gomes *et al.*, 1997).

Propõem-se aqui algumas considerações acerca do constituinte cromóforo e da cromatização verde nos feldspatos amazoníticos, sendo retomados os estudos iniciados por Leal Gomes *et al.* (1987) e desenvolvidos por Leal Gomes & Nunes (1991), Leal Gomes *et al.* (1997) e Leal Gomes (2010), dado que recentemente foi descoberto um pegmatito amazonítico de maiores dimensões na região de Felgueira (no mesmo enquadramento geológico), o qual revela amazonites de cor verde muito mais intensa do que tinha sido observado até então.

Tendo em conta as variações cromáticas, estruturais e paragenéticas que se observam na fase potássica do feldspato, foram seleccionadas para estudo amostras que contemplassem a amplitude de variações cromáticas (indexadas de acordo com o ábaco das cores de Munsell) e a diversidade de modos de ocorrência. Estas amostras foram submetidas a estudos de petrologia e análise química pontual em microssonda electrónica, orientadas por imagens de contraste de fase obtidas em modo, electrões retrodifundidos. Foi também estudada por difractometria de RX a triclinicidade (Δ) de Goldschmidt e Laves nas fases submetidas a análises químicas.

2. Estrutura e paragénese

De acordo com Guimarães (2012), os pegmatitos implantaram-se num campo de tensões dilatacional e apical associado a delaminação incipiente nas cúpulas de *stocks* graníticos pós-tectónicos em locais sujeitos a relaxação interna da cúpula ou colapso do encaixante contíguo. Na primeira situação originaram-se corpos intra-graníticos essencialmente tabulares a irregulares e na segunda situação, aplito-pegmatitos exo-graníticos mais tipicamente tabulares.

Na região de Taião, os pegmatitos amazoníticos mais típicos são exo-graníticos, sendo o migmatito com porfiroblastos a rocha encaixante (Fig. 1A). Relativamente às regiões de Felgueira e Alto dos Teares, os pegmatitos são intra-graníticos e a rocha encaixante é o granito biotítico pós-tectónico (Fig. 1B, 1C e 1D).

Artigo Curto Short Article Na figura 2 apresenta-se um quadro paragenético que sintetiza os dados da análise petrológica referente aos diversos tipos de ocorrências, onde os estádios principais estão expressos em unidades diferenciadas das estruturas internas e discriminados pela sucessão de minerais acessórios. De acordo com a figura 1, a amazonitização do feldspato afecta crescimentos cristalinos gráficos da zona intermédia externa e desenvolve-se nos cristais automórficos da zona intermédia interna, seguindo-se uma precipitação hidrotermal da amazonite no núcleo de quartzo. Tardiamente a amazonite é enrubescida, perdendo a cromatização verde, gradualmente substituída por tons róseos a cor de tijolo, com diferentes níveis de saturação.

Fig. 1. Esquemas tridimensionais representativos da ocorrência de amazonites: A- Em pegmatitos amazoníticos exo-graníticos na região de Taião; B – Em pegmatitos amazoníticos intra-graníticos na região de Felgueira; C - Em pegmatitos amazoníticos intra-graníticos na região de Alto dos Teares Norte; D - Em pegmatitos amazoníticos intra-graníticos na região de Alto dos Tares Sul.

Fig. 1. 3D sketches illustrating the diversity of amazonite occurrence: A – Exo-granitic amazonite pegmatite of Taião; B - Intra-granitic amazonite pegmatite of Alto dos Teares N; D – Intra-granitic Amazonite pegmatite of Alto dos Teares S.

Fig. 2. Análise paragenética dos pegmatitos miarolíticos amazoníticos filiados em granitos biotíticos pós-tectónicos. MMI – Minerais magmáticos primários, AMT – Amazonitização, PAM – Amazonite de precipitação, R – Enrubescimento dos feldspatos potássicos, EP – Epissienitização, ZM – Zona Marginal, ZIE – Zona intermédia externa, ZII – Zona intermédia Interna, NQZ – Núcleo de Quartzo, CM – Cavidade Miarolítica, MT – Unidades Metassomáticas.

Fig. 2. Paragenetic analyses of miarolitic pegmatites affiliated in posttectonic biotitic granites. MMI - Primary magmatic minerals, AMT – Amazonite coloring, PAM - Precipitation of amazonite, R - Reddening of potassium feldspars, EP - Epissienitization, ZM – Border zone, ZIE -External intermediate zone, ZII - Internal Intermediate Zone, NQZ -Quartz Core, CM – Miarolitic cavities, MT – Metasomatic units.

3. Estudo da coloração

As cores mais contrastantes podem agrupar-se em cores amazoníticas (verde) e cores de enrubescimento (cor-derosa claro a cor de tijolo). Estas últimas são o resultado de um fenómeno metassomático tardio, pós-amazonítico, mas que afecta a generalidade dos feldspatos potássicos e que tem generalizada dispersão regional, mas diferentes magnitudes e combinações de microclinas metassomáticas (Leal Gomes *et al.*, 1987; Leal Gomes *et al.*, 1997).

Tomando como padrões visuais as *colors chips* das *rock color charts* de Munsell, as cromatizações amazoníticas situam-se entre 2.5BG e 10BG, variando entre o verde e verde-azulado, tipicamente amazoníticos. Na variável *chroma* de Munsell, observam-se os índices 6 a 12, sendo 6 o menos saturado e 12 o mais saturado. O valor de *value* é 5.

Os índices de Munsell para as microclinas róseas situam-se entre 5R e 2.5YR. O *value* varia entre 6 e 8 e o *chroma* aproximado é 8.

4. Composição química

Algumas análises químicas pontuais seleccionadas encontram-se na tabela I. Na figura 3, imagens de contraste de fase em electrões retrodifundidos, mostram que às maiores saturações cromáticas correspondem texturas mais homogéneas dos feldspatos e também os maiores teores de Pb na amazonite, até 1028 ppm. Deduz-se, igualmente, que à medida que o parâmetro *HUE* de Munsell se afasta da cor verde e surgem as cores rubras, o teor de chumbo diminui de forma significativa (até 15 ppm; Fig. 3B).

Na figura 3 estão inscritos alguns valores de triclinicidade (Δ) medidos em diferentes domínios

estruturais dos feldspatos (referenciáveis em electrões retrodifundidos pela prevalência da pertitização). Todos os valores encontrados correspondem a microclinas triclínicas mais ou menos ordenadas, mas com vestígios muito variáveis de presença de albite pertítica. As microtexturas e os valores de triclinicidade sugerem uma distinção ente a amazonite metassomática de substituição (amazonitização) com valores de Δ situados entre 0,70 e 0,80 e uma amazonite de precipitação tardia com valores da ordem dos 0,90. O feldspato potássico enrubescido apresenta valores de triclinicidade sistematicamente mais elevados que 0,95.

Fig. 3. Imagens de contraste de fase em electrões retrodifundidos: A- Intercrescimento de MPII e PII com feldspato enrubescido; B – amazonite homogénea; C – minerais com elementos de terras raras; D – galena em amazonite homogénea. PII – pertite II, CPI – criptopertite I, MPII – micropertite II, M – Índice colorimétrico de Munsell, Δ – triclinicidade de Goldschmidt e Laves, R – feldspato potássico enrubescido, AMT h – amazonite homogénea, GL – galena, ABP – albite poicilítica, XT – xenotima, MT – monazite, ZR – zircão, TV – tortveitite, BI – biotite.

Fig. 3. SEM-BE images: A – MPII and PII intergrowth with reddish feldspar, B - Homogeneous amazonite; C - Minerals with Rare Earth Elements; D - galena in homogeneous amazonite. PII - Pertitie II, CPI - Criptopertitie I, MPII - Micropertite II, M - Munsell colorimetric index, Δ - triclinicity Goldschmidt and Laves, R - reddish potassium feldspar, AMT h - homogeneous amazonite, GL - galena, ABP - Poicilithic Albite, XT - xenotime, MT - monazite, ZR - zircon, TV - torthveitite, BI – biotite.

Tabela 1. Análises químicas seleccionadas de amazonites típicas e enrubescidas.

Table 1. Selected chemical analyses of typical amazonites and flushed or reddened microcline.

Coloração		5BG 5/10	10BG 5/10	7.5R 7/8	2.5BG 5/12	7.5BG 5/8	10R 7/8	7.5BG 5/6	5BG 5/6	7.5R 8/8	5R 8/8	10R 8/8
% peso	SiO ₂	63.35	65,52	65,69	64,55	65,38	66,17	66.24	65,55	65,71	65,33	64,80
	Al ₂ O ₃	17,38	18,61	18,37	17,98	18,44	18,79	17,93	18,18	17,80	17,76	17,56
	FeO	0,01	0,01	-	0,11	0,11	0,03	-	0,15	0,02	0,05	0,13
	MnO	0.03	-	0.08	-	-	-	0,01	0.02	-	-	0,05
	MgO	-	-	-	-	0,02	-	-	0,00	-	-	-
	CaO	-	0,01	0,02	-	-	0,02	-	-	-	0,01	0,02
	Na ₂ O	0,27	0,19	0,38	0,50	0,22	0,15	0,46	1,24	0,10	0,38	1,05
	K ₂ O	15,31	15,93	16,05	15,57	16,18	16,35	15,78	14,98	16,34	15,60	14,79
	T iO ₂	-	0,01	-	-	-	-	vst	0,04	0,02	0,03	0,04
	P_2O_5	0,01	0,01	-	0,01	-	-	-	0,03	-	0,01	0,02
	T ota l	96,36	100,28	100,59	98,72	100,36	101,51	100,42	100,20	99,98	99,16	98,45
ppm	Rb	9681	5668	6677	628	4112	2293	2275	2036	417	1591	175
	Cs	1392	7	-	-	92	-	-	199	106	-	-
	Pb	868	175	45	1028	459	96	329	355	28	15	-
	Ba	1038	1091	852	869	1132	937	746	928	1523	902	878
Nº catiões 8 Oxigénios	Si	3,02	3,00	3,01	3,01	3,00	3,00	3,03	3,01	3,03	3,03	3,02
	Al	0,98	1,01	0,99	0,99	1,00	1,01	0,97	0,98	0,97	0,97	0,97
	Fe	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00
	Na	0,02	0,02	0,03	0,05	0,02	0,01	0,04	0,11	0,01	0,03	0,09
	K	0,93	0,93	0,94	0,93	0,95	0,95	0,92	0,88	0,96	0,92	0,88
	Rb	0.03	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.01

5. Discussão

É cada vez mais constante a dedução de que a cor verde das amazonites está de algum modo relacionada com maiores concentrações de Pb, em especial nas fases mais saturadas do ponto de vista cromático (Stevenson & Martin, 1986; Evangelista et al., 2000). Porém, o Pb no seu estado oxidado Pb^{2+} não deve proporcionar a cor característica às amazonites na medida em que a transição electrónica e absorção cromática ocorrem no domínio ultravioleta do espectro (Evangelista et al., 2000). Hofmeister & Rossman (1983, 1985) sustentam que a cor verde é o resultado da presença de Pb¹⁺ em associação com a água de cristalização. Em microssonda e no varrimento das amostras em electrões retrodifundidos foi detectada a presença de galena na "amazonite homogénea" (Fig. 3D), considerada como de precipitação pós-metassomática no quadro paragenético da figura 1. Este facto é consistente com a influência do Pb sobre a cromatização da amazonite, em concordância com o exposto por Hofmeister & Rossman (1983, 1985).

Cada vez mais se pondera a hipótese de que a indução verde ocorre pela geração de color centers por efeito da presença de pares diméricos [PbO.(OH)], mais prováveis em estruturas com ordenamento médio a elevado, mas não excessivamente elevado. Os valores mais altos de Δ são típicos de microclinas enrubescidas que manifestam a lixiviação de todos os elementos vestigiais, incluindo o Pb cromóforo, lixiviação esta que é típica, de forma generalizada, destes processos metassomáticos gradativos observados em feldspatos e que se situam entre enrubescimento, epissienitização e fenitização (esta última, mais típica de complexos alcalinos situados em outros enquadramentos geológicos). A disponibilidade do Pb, nestas circunstâncias, poderá estar relacionada com o decaimento radioactivo do ²³⁸U, presente nos minerais de terras raras que surgem no estádio magmático precoce os quais são ilustrados na figura 2C. Ainda a respeito da figura 3C, é de notar que o conjunto paragenético ilustrado é típico da assinatura NYF, o que reforça a ideia de que o fenómeno amazonítico também caracteriza esta família de pegmatitos graníticos.

Os conteúdos de Fe (determinado como FeO), obtidos em análise pontual, são pouco afectados pela variabilidade cromática. A petrografía da fase rubra mostra um incremento de áreas impregnadas por poalhas hematíticas e maior diversidade de impregnações criptocristalinas nas fracções mais enrubescidas, sugerindo que a cor se relaciona com uma pigmentação de tipo mineralógico.

6. Conclusões

Os pegmatitos miarolíticos amazoníticos intra e exograníticos possuem microclinas de várias tonalidades, agrupáveis em amazonites verdes a verdes - azuladas e microclinas enrubescidas (microclinas róseas).

A cor verde parece resultar da presença de centros cromóforos induzidos pelo ião Pb^{+1} , proporcionado, por sua vez, por decaimento do ²³⁸U. A água de cristalização e a formação dos pares diméricos [PbO.(OH)] parece decisiva para conferir cor verde. A presença de galena na amazonite homogénea – de precipitação – é coerente com aquele facto e deve representar o Pb em excesso após culminar o desempenho do papel cromóforo.

As cores enrubescidas são o resultado de um fenómeno metassomático pós-amazonítico que provoca lixiviação generalizada de elementos vestigiais (purificação) e aumento da triclinicidade. A cromatização rubra relaciona-se com impregnações de poalhas hematíticas, fenómeno que pode ser designado genericamente como hematitização.

Referências

- Evangelista, H.J., Mendes, J.C., Lima, A.L.C., 2000. Amazonitização em granito resultante da intrusão de pegmatitos. *Revista Brasileira de Geociências*, **30**, 693 - 698.
- Guimarães, D., 2012. Cinemática da mobilidade pegmatítica em enxames epi a mesocorticais – Modelos conceptuais aplicados à prospecção. Tese de mestrado, Universidade do Minho (não publicada), 104 p.
- Guimarães, D., Leal Gomes, C.A., 2010. Evolução de forma e implantação de pegmatitos intra - graníticos Variscos – Norte de Portugal. I – dispositivos ascensionais. *e-Terra*, **11**, 1-4.
- Hofmeister, A., Rossman, G., 1983. Color in Feldspars. *In*: R.H. Ribbe, (Ed.). *Feldspar Mineralogy* (2ed), Rev. Mineral, Mineralogical Society of America, Washington, 2, 271 – 280.
- Hofmeister, A., Rossman, G., 1985. A spectroscopic study of irradiation coloring of amazonite: structurally hydrous, Pb-bearing feldspar. *American Mineralogist*, **70**, 794 - 804.
- Leal Gomes, C., 2010. A Qualificação Gemológica de algumas variedades de minerais pegmatíticos e hidrotermais em Portugal. In: Ciências Geológicas- Ensino e Investigação e sua História, Volume I, Capitulo I – Cristalografia e Mineralogia, 55-67.
- Leal Gomes, C., Neves, L.J.P.F., Lopes Nunes, J.E., Godinho, M.M., 1997. Caracterização das amazonites pegmatíticas de granitos póstectónicos do norte de Portugal. I – Modo de ocorrência, estado estrutural e geoquímica. Actas da XIV Reunião de Geologia do Oeste Peninsular, Vila Real, 6 p.
- Leal Gomes, C., Nunes, J.L., 1991. Estrutura e paragénese de unidades pegmatíticas tardias (Exemplos do Minho). *Resumo do III Congresso Nacional de Geologia*, Coimbra, 1 p.
- Leal Gomes, C.A., Nunes, J.E. Lopes, Salgado, J.L.F., 1987. Amazonites em pegmatitos do granito de Felgueira (Valença, N Portugal). Actas da VII Semana de Geoquímica/I Reunião Ibérica de Geoquímica, Aveiro, 2 p.
- Stevenson, R.K., Martin, R.F., 1986. Implications of the presence of amazonite in the Broken Hill and Geco metamorphosed sulfide deposits. *Canadian Mineralogist*, 24, 729 - 745.