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Departamento de Matemática, Universidade do Minho, Portugal

Vı́ctor Leiva
Departamento de Estad́ıstica, Universidad de Valparáıso, Chile

Abstract

The Birnbaum-Saunders (BS) model is a life distribution that has been
largely studied and applied. Recently, a new version of the BS distribu-
tion based on extreme value theory has been introduced, which is named
extreme value Birnbaum-Saunders (EVBS) distribution. In this article,
we provide some further details on the EVBS models that can be useful
as a supplement to the already existing results. We use these models to
analyze real survival time data of patients treated with alkylating agents
for multiple myeloma. This analysis allow us to show the adequacy of
these new statistical distributions and identify them as models useful for
medical practitioners in order to obtain a prediction of the survival times
of these patients and evaluate changes in the dose of their treatment.

1 Introduction and preliminaries

The Birnbaum-Saunders (BS) model is a life distribution that was introduced
and studied by Birnbaum and Saunders (1969). This distribution has been
largely applied in recent decades. BS and standard normal random variables
(RVs), now denoted respectively by T and Z, are related by the formula

T = δ(αZ/2 +
√
{αZ/2}2 + 1 )2 i.e., Z = (

√
T/δ −

√
δ/T )/α,

with α > 0 and δ > 0 being shape and scale parameters. Thus, when a RV T
follows a BS distribution with parameters α and δ, the notation T ∼ BS(α, δ) is
used. In addition, let us consider the usual notations φ and Φ for the standard
normal probability density function (PDF) and cumulative distribution function
(CDF), respectively, and let

at = (
√
t/δ −

√
δ/t)/α, so that a′t = dat/dt = (

√
t/δ +

√
δ/t)/(2αt). (1)
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Then, the PDF and the CDF of T are respectively

f
T

(t) = φ(at) a′t and F
T

(t) = Φ(at), t > 0, (2)

with at and a′t defined in (1).

The assumption of a normal RV Z can be obviously relaxed supposing that
it follows any other distribution with PDF f

Z
. We then obtain a general BS

type (BST) RV, denoted by

T ∼ BST(α, δ; f
Z

), with a PDF f
T

(t) = a′t fZ
(at), t > 0,

again with at and a′t given in (1). Among those models, we mention the extreme
value Birnbaum-Saunders (EVBS) distributions, recently introduced by Ferreira
et al. (2012), essentially based on results from extreme value theory (EVT).

In Section 2 of this article, we present a few results on EVT. In Section 3, we
introduce the EVBS models providing information on their moments. In Section
4, we discuss about estimation and model checking for this type of models. In
Section 5, we make some comments on the importance of a hazard analysis. In
Section 6, we provide an application to biometrical data. Finally, in Section 7,
we sketch some concluding remarks.

2 Limiting results in EVT

The main limiting result in EVT dates back to the papers by Fréchet (1927),
Fisher and Tippett (1928), von Mises (1936) and Gnedenko (1943). These au-
thors fully characterized the possible non-degenerate limit laws of the sequence
of maximum values, Xn:n, suitably normalized, as n → ∞, proving the so-
called Gnedenko’s extremal types theorem. More specifically, all possible non-
degenerate weak limit distributions of the normalized partial maxima, Xn:n, of
independent and identically distributed (IID) RVs, X1, . . . , Xn, are generalized
extreme value (GEV) distributions. That is, if there are normalizing constants
an > 0, bn ∈ R and some non-degenerate CDF, G, such that, for all x ∈ C(G),
the set of continuity points of G,

lim
n→∞

P
{
Xn:n − bn

an
≤ x

}
= G(x), (3)

we can redefine the constants in such a way that

G(x) ≡ Gγ(x) :=

 exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, if γ 6= 0

exp(− exp(−x)), x ∈ R, if γ = 0,
(4)

given in the von Mises-Jenkinson form (see von Mises, 1936; Jenkinson, 1955)
and denoted by EVM ≡ EVM(γ) laws. We then say that the CDF F underlying
the RVs X1, X2, . . . , is in the max-domain of attraction (MDA) of Gγ , in (4),
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and use the notation F ∈ DM (Gγ). The limiting CDFs, G, in (3), are then max-
stable (MS), i.e., they are indeed the unique laws S such that the functional
equation Sn(αnx + δn) = S(x), for n ≥ 1, holds for some αn > 0 and δn ∈ R.
The real parameter γ in (4), corresponding to the primary parameter of interest
in EVT, is the so-called extreme value index. This index rules the behaviour
of the right-tail of F . The GEV distribution, a unified version of all possible
non-degenerate weak limits of maxima of sufficiently long sequences of IID or
more generally weakly dependent and stationary RVs, reduces indeed to the
Fréchet (γ > 0), max-Weibull (γ < 0) and Gumbel (γ = 0) CDFs, respectively.
In fact, the GEV distribution in (4), is often separated in the three following
types:

Type I (Gumbel) : Λ(x) = exp(− exp(−x)), x ∈ R,

Type II (Fréchet) : Φα(x) = exp(−x−α), x ≥ 0,

Type III (max-Weibull) : Ψα(x) = exp(−(−x)α), x ≤ 0,

with γ = 0, γ = 1/α > 0 and γ = −1/α < 0, respectively. We have Λ(x) =
G0(x), Φα(x) = G1/α(α(1− x)) and Ψα(x) = G−1/α(α(x+ 1)), with Gγ being
the GEV distribution given in (4). For a recent overview of similar topics in the
field of EVT, see Gomes et al. (2008).

Remark 1. All results developed for maxima can easily be reformulated for
minima since X1:n := min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}. If we are
interested in the left-tails, i.e., on the limiting behaviour of the sequence of
minimum values, we have for a linearly normalized minimum, a limiting CDF,
G∗γ(x) = 1−Gγ(−x), with Gγ(·) provided in (4), often referred to as a EVm ≡
EVm(γ) law, i.e.,

G∗γ(x) =

 1− exp(−(1− γx)−1/γ), 1− γx > 0, if γ 6= 0,

1− exp(− exp(x)), x ∈ R, if γ = 0.
(5)

We then say that F belongs to the min-domain of attraction of G∗γ , in short
F ∈ Dm(G∗γ). The parameter γ, in (5), determines the left-tail behavior of F ,
such as the parameter γ, in (4), determines the right-tail behavior of F , being
so both crucial parameters in EVT.

In Figure 1, we represent the right-tails of truncated positive EVM and nor-
mal PDFs, as well the BS(1,1) PDF. If γ < 0, we have the so-called Weibull
MDA, i.e., light right-tails, with a finite right endpoint. In addition, γ = 0 cor-
responds to the Gumbel MDA (exponential right-tails). And if γ > 0, we have
the Fréchet MDA corresponding to heavy right-tails (polynomial tail decay, with
an infinite right endpoint). Moreover, as proved in Ferreira et al. (2012), the
BS CDF, F

T
(·), given in (2), belongs to DM(G0), and this can be heuristically

inferred from Figure 1.
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Figure 1: right-tails of positive truncated EVM PDFs for γ = −0.5, γ = 0 and
γ = 1.5, jointly with the right-tails of positive truncated normal and BS(1,1)
PDFs.

3 Moments in EVBS models

The EVBSM (and EVBSm) distributions based on limiting EV models for max-
ima, EVM, (and for minima, EVm), have been introduced in Ferreira et al.
(2012). Specifically, consider that the RV Z follows the EV distribution for max-
ima given in (4), i.e., Z ∼ EVM(γ). Then, we use the notation EVBSM(α, δ, γ)
for the RV

T = δ(αZ/2 +
√
α2Z2/4 + 1 )2. (6)

Analogously, if we consider that Z follows the EV distribution for minima given
in (5), i.e., Z ∼ EVm(γ), and the same expression for T , i.e., that given in (6),
we use the corresponding notation T ∼ EVBSm(α, δ, γ).

The shapes for the EVBSM and the EVBSm PDFs are quite diverse. As
expected, the parameter α can modify drastically the shapes of these distribu-
tions. In the case of the parameter γ, we detect changes in the kurtosis and tail
heaviness, as also expected. The EVBS models are thus very flexible and with
extremely diversified left and right-tails; see Ferreira et al. (2012).

The following result comes directly from Theorem 2.6 of Vilca and Leiva
(2006), which allows us to state the moments of the RV T given in (6).

Theorem 1. Let the RV T be as given in (6). Then, the rth moment of T
exists if E[Zk+l

(
{αZ}2 + 4

)(k−l)/2] < ∞, with k = 0, . . . , r and l = 0, . . . , k,
and we have

E[T r] = δr
r∑

k=0

(
r

k

) k∑
l=0

(
k

l

)
2kE

(αZ
2

)k+l({
αZ

2

}2

+ 1

)(k−l)/2
 . (7)
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Particular moments of T that are of interest correspond to the mean,
µ[T ] = E[T ], the variance, σ2[T ] = V[T ], the standard deviation (SD),
σ[T ] =

√
V[T ], and the coefficients of variation (CV), δ[T ] = σ[T ]/µ[T ], of

skewness (CS), β1[T ] = E[({T − µ[T ]}/σ[T ])3] and of kurtosis (CK), β2[T ] =
E[({T − µ[T ]}/σ[T ])4], as well as the excess kurtosis (EK), α4[T ] = δ2[T ]− 3.

In order to obtain these moments for the EVBSM and EVBSm RVs, we need
to have information on moments of the EVM and EVm models given in (4) and
(5), respectively, to be sketched next.

For an RV, XM, with an EVM(γ) distribution, we have

µ[XM] =

 {Γ(1− γ)− 1}/γ, if γ < 1 ( 6= 0),

−ψ(1), if γ = 0,

σ2[XM] =

 (l2 − l21)/γ2, if γ < 1/2 ( 6= 0),

π2/6, if γ = 0,

where lk = Γ(1 − kγ), for k = 1, . . . , 4, and −ψ(1) is the Euler constant, with
ψ = Γ′/Γ being the digamma function, i.e., the logarithmic derivative of the
gamma function, denoted as usual by Γ, with Γ′ being its derivative. In addition,

β1[XM] =


(l3 − 3l1l2 + 2l31)/(l2 − l21)3/2, if γ < 1/3 ( 6= 0),

12
√

6 ζ(3)/π3, if γ = 0,

α4[XM] =

 {l4 − 4l1l3 + 6l21l2 − 3l41}/(l2 − l21)2, if γ < 1/4 ( 6= 0),

27/5, if γ = 0,

where

ζ(k) =
∞∑
j=0

j−k

is the Riemann zeta function, for k > 1.

Similarly, given the relation G∗γ(x) = 1 − Gγ(−x) mentioned in Remark 1,
if we consider Xm, with an EVm(γ) distribution, we have

E[Xk
m] = (−1)kE[Xk

M] for all k ≥ 1.

Values of the mean, SD, CS and EK for EVBSM and EVBSm distributions can
be seen in Table 1.

Example. The Pareto distribution is very popular in the domain of heavy-
tailed models, i.e., models in the Fréchet MDA, necessarily with γ > 0. Let
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Table 1: values of mean, SD, CS and EK for the indicated distributions when δ = 1.

EVBSm distribution EVBSM distribution
γ α µ[T ] σ[T ] β1[T ] α4[T ] µ[T ] σ[T ] β1[T ] α4[T ]

1.50 0.05 0.850 0.272 -1.964 2.789 – – – –
0.10 0.800 0.320 -1.385 0.610 – – – –
0.50 0.693 0.472 -0.217 -1.471 – – – –
1.00 0.709 0.618 0.288 -1.418 – – – –
1.50 0.776 0.787 0.599 -1.101 – – – –

1.00 0.05 0.898 0.205 -2.535 6.419 – – – –
0.10 0.850 0.263 -1.696 2.115 – – – –
0.50 0.740 0.463 -0.183 -1.294 – – – –
1.00 0.767 0.658 0.449 -1.094 – – – –
1.50 0.860 0.893 0.841 -0.501 – – – –

0.50 0.05 0.943 0.122 -2.927 11.913 – – – -
0.10 0.905 0.186 -1.842 3.942 – – – –
0.50 0.804 0.452 0.003 -0.983 – – – –
1.00 0.852 0.735 0.803 -0.213 – – – –
1.50 0.989 1.096 1.311 1.099 – – – -

0.25 0.05 0.961 0.084 -2.177 8.277 1.052 – – –
0.10 0.930 0.145 -1.459 3.074 1.121 – – –
0.50 0.843 0.449 0.233 -0.651 2.443 – – –
1.00 0.910 0.803 1.126 0.872 6.236 – – –
1.50 1.083 1.272 1.706 2.953 12.496 – – –

0.00 0.05 0.974 0.060 -0.863 1.242 1.031 0.069 1.461 4.219
0.10 0.952 0.114 -0.624 0.519 1.068 0.148 1.828 6.937
0.50 0.889 0.453 0.630 0.125 1.606 1.370 4.652 45.629
1.00 0.985 0.911 1.624 3.160 2.994 4.766 5.920 69.648
1.50 1.208 1.546 2.285 6.588 5.243 10.380 6.299 77.338

-0.25 0.05 0.983 0.050 0.046 -0.249 1.020 0.052 0.219 -0.204
0.10 0.968 0.098 0.181 -0.192 1.044 0.107 0.349 -0.106
0.50 0.941 0.476 1.257 2.230 1.353 0.693 1.260 1.864
1.00 1.081 1.092 2.402 8.428 2.093 1.981 1.935 4.586
1.50 1.379 1.993 3.146 14.199 3.264 4.017 2.248 6.150

-0.50 0.05 0.990 0.047 0.763 0.591 1.013 0.046 -0.506 -0.028
0.10 0.982 0.094 0.903 1.020 1.027 0.093 -0.389 -0.238
0.50 0.998 0.538 2.205 8.156 1.229 0.501 0.338 -0.607
1.00 1.211 1.412 3.629 21.511 1.699 1.223 0.877 0.032
1.50 1.623 2.760 4.439 31.184 2.425 2.284 1.173 0.663

-1.00 0.05 1.001 0.053 2.331 8.969 1.001 0.048 -1.728 4.029
0.10 1.005 0.112 2.728 13.369 1.005 0.092 -1.505 2.695
0.50 1.151 0.940 6.519 89.537 1.100 0.383 -0.546 -0.664
1.00 1.654 3.144 8.746 152.367 1.346 0.755 -0.028 -1.235
1.50 2.535 6.760 9.507 175.900 1.715 1.223 0.258 -1.252

-1.50 0.05 1.014 0.080 5.598 73.340 0.991 0.060 -2.888 11.851
0.10 1.033 0.190 8.346 200.962 0.986 0.109 -2.366 7.009
0.50 1.456 2.706 20.475 1130.34 1.027 0.358 -0.988 -0.069
1.00 2.749 10.369 22.496 1317.63 1.181 0.610 -0.458 -1.157
1.50 4.929 23.121 22.958 1361.20 1.413 0.893 -0.180 -1.435
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Z ∼ Pareto(γ), i.e., F
Z

(x) = 1− x−1/γ , with x ≥ 1. Then, for s non-null and if
γ < 1/(s+ 1),

E[Zs
√

(αZ)2 + 4 ] =
α 2F1

(
− 1

2 ,−
1
2

(
s+ 1− 1

γ

)
, 1−γ(s+1)

2γ ,− 4
α2

)
1− γ(s+ 1)

,

where 2F1 is the hypergeometric function (see Abramowitz and Stegun, 1972)
given by

2F1(a, b, c, x) =
∞∑
k=0

a(a+ 1) · · · (a+ k − 1)b(b+ 1) · · · (b+ k − 1)
c(c+ 1) · · · (c+ k − 1)

xk

k!
.

The computations of the moments given in (7) of an associated BST RV are
then much simpler.

4 Estimation and validation in EVBS models

Estimation aspects and model checking for EVBS distributions have been dealt
with in Ferreira et al. (2012). The system of likelihood equations does not
produce an explicit solution so that a numerical procedure is necessary. An R
package named evbs to analyze data from EVBS models is being developed, and
its “in progress” version is already available through the authors. This package
contains diverse indicators, as well as methodologies useful for EVBS distribu-
tions, as for example, maximum likelihood (ML) estimation of the unknown
parameters of this distribution.

Once the EVBS distribution parameters have been estimated, a natural ques-
tion that arises is checking how good is the fit of the model to the data. In order
to compare the EVBS distributions to other distributions, we can use model se-
lection criteria based on loss of information, such as Akaike (AIC) and Schwarz’s
Bayesian (BIC) information criteria. These criteria are given by

AIC = −2`(θ̂) + 2d and BIC = −2`(θ̂) + d log (n),

where `(θ) is the log-likelihood function for the parameter θ associated with the
model, θ̂ is its ML estimate, n is the sample size and d is the dimension of the
parameter space.

Remark 2. AIC and BIC are based on a penalization of the likelihood function
that allows us to compare models with different numbers of parameters, because,
as is known, models with more parameters provide always a better fit. Thus, a
model whose AIC or BIC has the smallest value is better; see Sanhueza et al.
(2008) and Ferreira et al. (2012). This is an important point, because the EVBS
distribution has more parameters than the more close competitors, such as BS
and EV distributions.
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Because, in general, differences between two values of the BIC are not very
noticeable, the Bayes factor (BF) can be used to highlight such differences, if
they exist. An interpretation of a transformation of the BF (B12), denoted by
2 log (B12), which allows us to detect the degree of superiority of one model
(Model 1) with respect to another Model 2, is displayed in Table 2. For details,
see Ferreira et al. (2012) and references therein.

Table 2: interpretation of 2 log(B12) associated with the BF.

2 log (B12) Evidence in favor of M1

< 0 Negative (M2 is accepted)
[0, 2) Weak
[2, 6) Positive
[6, 10) Strong
≥ 10 Very strong

5 Hazard analysis in EVBS models

A hazard may be considered as a dangerous event that can lead to an emergency
or disaster. A hazard analysis can be statistically conducted by the hazard rate
(HR), also known as chance function, failure rate, intensity function, or risk
rate, among other names. A nice property of the HR is that it allows us to
better characterize the behavior of statistical distributions, and to differentiate
models with very similar CDFs. For example, the HR may have several different
shapes such as increasing (IHR), constant (exponential distribution), decreas-
ing (DHR), bathtube (BT), inverse bathtube (IBT) approaching to a non-null
constant or IBT approaching to zero. The HR of T is given in general by

h
T

(t) :=
f

T
(t)

1− F
T

(t)
, t > 0, 0 < F

T
(t) < 1,

where f
T

and F
T

are the PDF and the CDF of T .

A simple manner for exploring the shape of the HR of a RV T is by its
corresponding scaled total time on test (TTT) function given by

W
T

(u) =
∫ F−1

T
(u)

0

(1− F
T

(y)) dy/H−1
T

(1), 0 ≤ u ≤ 1,

which can be empirically approximated, allowing to construct the empirical
scaled TTT curve by plotting the consecutive points

[
k/n,Wn(k/n)

]
, where

Wn(k/n) = {
∑k
i=1 Ti:n + (n − k)Tk:n}/

∑n
i=1 Ti:n, for k = 1, . . . , n, with Ti:n

being the corresponding ith ascending order statistic, for 1 ≤ i ≤ n. From
Figure 2, we detect several theoretical shapes for the scaled TTT curve. Thus,
a TTT curve that is concave (or convex) is related to the IHR (or DHR) class.
A concave (or convex) and then convex (or concave) TTT curve is related to a
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BT (or IBT) HR. Finally, a TTT curve expressed by a straight line corresponds
to the exponential distribution.

W
T
 (

u)

1.0

1.00.0
u

in
cr

ea
si

ng

decreasing

co
ns

tan
t

ba
th

tu
b

inverse bathtub

Figure 2: theoretical scaled TTT curves for a general model with the indicated
HR shape.

The EVBSM and EVBSm distributions provide very rich models, in the sense
that they can attain all types of TTT curves given above. For more details,
about a hazard analysis for EVBS models, see Ferreira et al. (2012).

6 An application to Biometry

For illustration purposes, we consider the uncensored part of a data set analyzed
by Leiva et al. (2007) corresponding to the survival times (T , in months) of 48
patients who were treated with alkylating agents for multiple myeloma. These
data (that we call from now on myeloma) are: 1, 1, 2, 2, 2, 3, 5, 5, 6, 6, 6, 6, 7,
7, 7, 9, 11, 11, 11, 11, 11, 13, 14, 15, 16, 16, 17, 17, 18, 19, 19, 24, 25, 26, 32,
35, 37, 41, 42, 51, 52, 54, 58, 66, 67, 88, 89, 92.

For analyzing myeloma data, we use the implementation in R code of the
EVBS models considered in Ferreira et al. (2012). An exploratory data analysis
(EDA) of such data is first produced and then estimation and EVBS model
checking are carried out. The EDA of myeloma, based on descriptive summary
presented in Table 3 and in Figure 3, allows us to detect a positively skewness
distribution with a moderate to high kurtosis level and a shape for the HR, all
of which can be modeled well by a EVBS distribution. Thus, we propose this
distribution for describing myeloma data.

Table 3: descriptive statistics for myeloma data (in months).
Median Mean SD CV CS CK Range Min. Max. n
15.500 24.440 24.672 100% 1.364 6.220 18 1 92 48
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Figure 3: histogram (left) and indicated boxplots (center) and TTT plot (right)
for myeloma.

As the EVBSm distribution based on the Gumbelmin model, Λ∗(x) = G∗0(x),
given in (5), belongs to the Gumbel min-domain of attraction, we apply a semi-
parametric EV test to analyze whether myeloma data belongs to this domain
or not. We test H0: F ∈ Dm(G∗γ), with γ ≥ 0, against H1: F 6∈ Dm(G∗γ),
with γ ≥ 0. From Figure 4, we see the sample path of the test statistic as a
function of the k largest order statistics and the critical value (horizontal line)
above which we reject H0. For myeloma, we do not reject the null hypothesis for
1 ≤ k ≤ 48, which is a credible result in EVT to keep such a hypothesis. Note
also that we cannot have γ > 0 due to the fact that a infinite left endpoint does
not make sense for these data. We have just restricted to the EVBSm(α, δ) ≡
EVBSm(α, δ, 0) model.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

k

Figure 4: sample path of the EV condition test applied to myeloma (horizontal line:
critical value above which we reject F ∈ Dm(G∗

γ), with γ ≥ 0).

Once we have detected the type of EVBS model to be used, we estimate
the model parameters using the evbs package and myeloma data. These results
along with the negative value of the log-likelihood function and values for AIC,
BIC and BF are displayed in Table 4.

We do a comparison among the EVBSm and BS, EVM(µ, σ, γ) := µ +
σEVM(γ) and generalized Pareto (GP) models using these criteria. The
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GP(σ, γ) CDF is related with the GEV CDF, in (4), through Pγ(x;σ) =
1 + lnGγ(x/σ), 1 + γx/σ > 0, x > 0. This comparison indicates us that the
EVBSm model is strongly superior to the GEV model for these data and with
a positive evidence in its favor in relation to BS and GP models. The excellent
agreement between the EVBSm distribution and the myeloma data can be ob-
served in Figure 5 by the histogram of the data with estimated EVBSm PDF
(left), by the empirical CDF plot with estimated EVBSm CDF (center) and by
the QQ plot (right).

Based in this analysis, we can use the EVBSm model for obtaining different
indicators useful in survival analysis, such as the hazard rate and survival func-
tion, in order to predict times of survival and evaluate changes in the dose of
the treatment.

Table 4: ML estimates, AIC, BIC and BF for the indicated models using myeloma.

Distribution bθ1 bθ2 bθ3 −` AIC BIC 2 log (B12)

EVBSm(α, δ) 1.115 23.684 – 199.981 403.962 409.469 –
EVM(µ, σ, γ) 10.182 10.202 0.612 203.364 412.728 420.989 11.520
GP(σ, γ) – 24.467 -0.001 201.414 406.828 412.335 2.866
BS(α, δ) 1.323 12.719 – 201.494 406.988 412.495 3.026
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Figure 5: histogram with estimated EVBSm (Gumbelmin) PDF (left), empirical
CDF plot with estimated (theoretical) EVBSm CDF (center) and QQ plot (right)
for myeloma.

7 Concluding remarks

We have dealt with extreme value versions of the Birnbaum-Saunders distri-
bution, which were introduced by Ferreira et al. (2012). A description of the
moments and hazard analysis of extreme value Birnbaum-Saunders distributions
has been carried out. We have used the R package initiated in Ferreira et al.
(2012) and have used it for analyzing a real data set corresponding to survival
times of patients who were treated with alkylating agents for multiple myeloma.
Such an analysis has allowed us to show the adequacy of these new statistical
distributions, in a pure parametric framework, and identify them as models that
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can be useful for diverse medical practitioners in order to obtain a prediction
of times of survival of these patients and evaluate changes in the dose of their
treatment.
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