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Melt blending and
characterization of carbon
nanoparticles-filled
thermoplastic polyurethane
elastomers

Sı́lvia M. Cruz and Júlio C. Viana

Abstract
In this work, thermoplastic polyurethane (TPU) elastomers reinforced with carbon
nanosized particles were produced by a special melt blending technique. A TPU was melt
blended with high-structured carbon black and carbon nanofibres (1 wt%). A miniature
asymmetric batch mixer, which applies high shear levels to the melt, ensured good par-
ticles dispersion. The TPU material systems were then thoroughly characterized using
thermogravimetric analysis, differential scanning calorimetry, tensile mechanical testing,
electrical resistance measurements and flammability tests. The different nanofillers
exhibited different influences on the TPU properties, these materials featuring interest-
ing and improved multifunctional behaviours, with high propensity for large deformation
sensors applications.
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Introduction

The outstanding properties resulting from the incorporation of carbon nanofillers into

polymeric matrices (nanocomposites) have generated a high scientific and technical

interest in their research and study. It has been a long time since carbon particles were
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introduced into polymers in the engineering practice (e.g. tyres). More recently,

researchers have reported1–3 that the addition of carbon nanoparticles allows an

adjustment in the properties of polymers, making them a more advantageous and ver-

satile class of materials with extraordinary economical potential. In particular, the study

of carbon nanofilled thermoplastic polyurethane elastomers (TPU) have shown

enhancements upon their mechanical,2 electrical4 and thermal performance,5,6 main-

taining the processability and deformability characteristics of the polymer matrix. In

spite of this, within the reported work, the characterization (mainly morphological) of

nanoparticles-reinforced TPU is scarce.

TPUs are a class of block copolymers that consist of soft rubber segments (conferring

their elastic character) and hard glassy or crystallizable chain segments (acting as

physical cross-link bonds and imparting stiffness and strength).7,8 Under service, TPUs

behave as elastomers and, in contrast to the classical elastomers, they can be processed

by means of the conventional techniques and equipment used for common thermoplas-

tics. The peculiarity of TPU is related to the different nature of cross-linkings in their

structure. One of the monomers develops the hard, or crystalline, regions that function

as a thermally stable component (which softens and flows under shear, as opposed to the

chemical cross-links between polymeric chains in a conventional thermosetting rubber);

the other monomer develops the soft or amorphous regions, which contribute to its rub-

bery characteristic nature (Figure 1).

A key attribute of most TPU is the possibility of tailoring toughness and large strain

elasticity by varying the type of monomers, the ratio of hard/soft fractions and the

lengths of the hard segments (HS) and soft segments (SS).9 Therefore, TPU has been

often used in engineering applications requiring high toughness and large strain elasti-

city, as required in automotive and footwear applications, where conventional elastomers

cannot provide the range of physical properties needed for the products. TPUs are a

subcategory of the thermoplastic elastomers (TPE) and have become a target of great

interest in the past decade10–13 due to their mechanical properties (high elongation at

break, high strength, good abrasion resistance and high modulus) compared to other

elastomers.

Polymers have characteristically a very high electrical resistance.14 When conductive

grades are required, base polymers are modified to prevent unwanted accumulation of

charge or to create conductive pathways. Part of the developed work conducted on carbon

particles-filled composites is motivated, on one side, by the potential performance of

Figure 1. Schematic representation of a segmented TPU copolymer. TPU: thermoplastic
polyurethane.
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these fillers in the TPU reinforcement and, on the other side, by the unique character-

istics of the resulting composite. This makes these composites attractive and of critical

importance for the integration in a wide spectrum of high-performance applications,

where high electrical/thermal conductivity and mechanical performance are the most

important final properties (e.g. polymers for electronics, aerospace structural compo-

nents, military components, medical devices5,15 energy storage and energy conversion

devices, sensors, field-emission displays and radiation sources, nanometer-sized semi-

conductor devices, probes and interconnects etc).16

In the last few years, some systematic studies of the thermophysical17 and electrical

properties3 of composites have been published. Carbon materials also have great

potential to be economically important for thermal management as observed by Zhou

et al.18 The carbon nanofillers, such as high-structured carbon black (HSCB), and carbon

nanofibres (CNF) are excellent candidates for multifunctional nanoreinforcement of

TPUs because of their high strength, modulus, high thermal conductivity (higher than

copper and silver), excellent electrical properties and thermal stability. Powers et al.3

have evaluated CNFs as TPE-reinforcing agents. They observed that low amounts of

CNF (1–5% of incorporation) led to TPU mechanical and electrical property improve-

ments. The electrical properties of a composite (in this case a styrene–butadiene–

styrene-filled with carbon black) are determined by the incorporated volume fraction

of the conductive filler, structure properties, orientation in the matrix, porosity and mix-

ing conditions as observed by Khastgir et al..19–21 Homer et al.17 observed that the elec-

trical properties of a composite also depend upon the physicochemical properties of both

polymer and filler (such as particle size, shape, porosity, surface area e.g. smaller and

spherical particles or fibres and longer particles have different effects) as well as the

composite processing conditions, such as temperature .

For a conductor-filled polymer to be electrically conductive, the fillers must either

touch to form conductive paths22 or be sufficiently close to each other to enable conduc-

tance via ‘tunnelling effect’, as observed by Simmons23 and Sheng et al.24 This is usually

defined as the percolation transition, which is characterized by a sharp drop in the elec-

trical resistivity. The critical weight or volume fraction of filler is the threshold separat-

ing the composite into insulator or conductor.17

The HSCB consists on relatively many prime particles of an amorphous form of

carbon with a structure similar to disordered graphite,25 forming small particles orga-

nized in microsized aggregates. The CNFs are cylindrical nanostructures with graphene

layers arranged in a wide range of orientations with respect to fibre axis. However, it is

difficult to disperse homogeneously such nanoparticles into a polymer matrix26 due to

their nature and the existence of synthesis-induced entangled aggregates with high van

der Waals interactions between nanoparticles.27–30 Not much has been reported in the

literature about the use of melt mixing of carbon nanoparticles into TPU. This reveals

a challenging task to obtain a properly dispersion of carbon particles in TPU matrices

in order to achieve the full potential of nanocomposites with improved properties and

multifuncionalities. To disperse nanoreinforcements, melt mixing methods are usually

preferred due to the versatility of the production facilities,31 the reduced environmental

impact of the technology and the compatibility with current industrial processes.27–29
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In order to incorporate these materials into a new polymer material system, laboratory

scale melt mixing devices are essential. It is necessary for the mixer to be capable of

dealing with tiny amounts of materials, to apply enough energy and power to exert the

required mechanical mixing loading, to have the flow patterns essential for obtaining

homogeneous dispersion and uniform structures and to be representative of the flow

encountered in industrial scale equipment.

This work has been undertaken to study the properties of nanofilled TPU with

improved properties with a very small incorporation of reinforcing fillers, in order to

minimize its negative impact on the processability, deformability and surface finish of

the final composite system. For comparison, two types of carbon nanofillers were used.

The focus of the study is on the characterization of the morphology of developed TPU

nanocomposites and their electrical, mechanical, thermal and flame resistance proper-

ties, probing their advantageous multifunctional behaviour.

Experimental

Materials

This experimental work was conducted using two different types of nanoparticles:

� HSCB particles PRINTEX1 XE 2 with 30 nm particle size, 0.13 g cm�3 of density

and 910 m2 g�1 surface area were obtained from from Degussa AG (Germany);

� A polymer-based dust-free nanofibre masterbatch from Electrovac with 20% of

CNF incorporated (CNF with 80–150 nm diameter range and 20–100 m2 g�1 spe-

cific surface area).

These particles were mixed with an amorphous-semicrystalline TPU (polyester

based), AVALON 65 AE from Huntsman (Salt Lake City, Utah, USA) with a melt flow

index of 21.30 g/10 s (200�C; 2.16 kg) according to ASTM D 1238-04 standard (65 Shore

A of hardness and 1.18 g cm�3 of density).

Samples preparation

The composite TPU/nanoparticles systems were prepared by melt blending using an

ultrahigh shear laboratory-scale miniature mixer (Figure 2(a)) similar to the method pro-

posed by Breuer.32

The mixer design consists of a rotor with a unique asymmetric shape, spinning at high

velocity (hundreds of revolutions per minute) within a heated cup (Figure 2(b)). This

rotor has a length of 50 mm. The cup has an inner diameter of 26 mm and a height of

48 mm. The clearance between the tips of the rotor and the cup wall enable the material

to be iteratively squeezed and stretched at high shear. A heating band is placed around

the mixer and a thermocouple is inserted in the outer cup for temperature measurement

and control, so that a steady temperature can be maintained. In this study, grinded TPU

was previously dried at 100�C for 2 h. The TPU nanocomposites systems were prepared

using a total of 20 g per sample and 1 wt% of particles. Melt blending was performed at

4 Journal of Elastomers & Plastics
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190�C and 220 r min�1 for 3 min. The blended TPU was discharged on a metallic mould

spacer with dimensions of 145 � 106 � 0.7 mm3 and then sandwiched between two

stainless steel plates covered with Teflon foil at a pressure of 774 MPa. This procedure

takes 5 min in order to ensure that the plaques would be free of air bubbles and with a

uniform 0.7 mm thickness. Afterwards, the plaques were quenched in water at room

temperature (23�C). The pure TPU and the two composite systems specimens were kept

in a controlled temperature room (23�C) for at least 3 weeks before performing any

experimental test according to ASTM D618-00 standard.

Morphological characterization

Scanning electron microscopy. The nanocomposites morphology, the fillers dispersion,

agglomeration and the adhesion between the nanofillers and the TPU were observed

using a scanning electron microscopy (SEM), in a Leica/Cambridge S360 electronic

microscope, Cambridge, UK, under an operation voltage of 10–15 kV. Cross-

sections of the composites were prepared by fracturing the TPU composites in liquid

nitrogen to produce an intact fractured surface morphology. In order to avoid elec-

trostatic charging, the fractured surface specimens were previous gold coated (sput-

ter coater SC502, Fisons Instruments, UK).

Properties characterization

Mechanical characterization. Tensile test specimens were cut in the shape of dog bone

(50 � 8 � 4 mm3 with 0.7 mm thickness) from the compression-moulded plates. The

Figure 2. Design scheme of miniature mixer device. (a) Assembly and (b) cylindrical rotor.
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mechanical tests were conducted according to the ISO527-2:1993 standard. Tests

were performed in a universal testing machine, Instron 4505 (Norwood, Massachu-

setts, USA), in a controlled environment (at 23�C and 55% relative humidity (RH)),

at a crosshead velocity of 10 mm min�1 (corresponding to a nominal strain rate of

6.7 � 10�1 s�1) until break. Engineering stress was calculated as s ¼ F/A0, where

F is the force and A0 is initial specimen cross section. The engineering strain was

determined by e ¼ DL/L0, where DL is grip displacement and L0 is the initial refer-

ence length. From the stress–strain curves, several point properties were calculated.

E1 is the secant modulus at 1% strain and modulus 2 (E2) and modulus 3 (E3) were

determined by the tangent method (see Figure 9 for graphical representation). The

yield stress (sy) and strain (ey) were assessed by the intersection of the stress–strain

curve with a line parallel to the initial slope of the curve with the tangent to curve in

the initial deformation zone also used to determine E2. The stress (sb) and strain at

break (eb) were obtained directly from the measured curves. At least six specimens

per measurement were used. After tensile tests, the deformed area of the specimens

was also observed using SEM.

Thermal characterization

Thermogravimetric analysis. Thermogravimetric analysis (TGA) was performed under

nitrogen atmosphere using a thermogravimetric analyzer (model Q500; TA Instruments,

New Castle, Delaware, USA). The sample was heated from 30�C to 800�C at a heating

rate of 5�C min�1. The initial temperatures of weight loss for the first and second

steps (Figure 3.) were denoted Td1 and Td2, and the corresponding temperatures at the

maximum rate of weight loss of were denoted DTG1max and DTG2max, respectively.

Figure 3. A two-step TGA characteristic curve of a thermal decomposition reaction. TGA:
thermogravimetric analysis.
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Differential scanning calorimetry. The SS glass transition temperature (TgSS), the HS glass

transition temperature (TgHS), the HS melting point (TmHS) and respective melting

enthalpies of the neat and TPU composites were determined using differential scanning

calorimetry (DSC) using a DSC Q20 (TA Instruments). The DSC specimens have

approximately the same weight (+10 mg), and 40 ml aluminium pans were used. An

empty pan was used as the reference. The test began with an initial temperature of

�80�CC up to 200�CC, at a heating rate of 20�C min�1 under nitrogen atmosphere (first

heating). Then, the samples were cooled down to �80�C (cooling) and reheated at the

same rate to 200�C (second heating).

Electrical characterization

Surface and volume resistivity measurements were performed using the two-point

contact method, at 23 + 2�C and 50 + 5% of RH. The surfaces of the specimens

were cleaned according to ISO 3915:1981 standard. Afterwards, chemical vapour

deposition was used to create two golden layers with glued copper wires, thus ensur-

ing a good electrical contact. For the surface measurements configuration, the elec-

trodes have 6 � 2 mm length and 1 mm distance apart (Figure 4(a).). For volume

measurements configuration, the electrodes have 2.5 mm radius (Figure 4(b)) and

0.75 mm distance (sample thickness).

A constant voltage was applied, and an automated Keithley 487 picoammeter

(Cleveland, Ohio, USA)/voltage source was used to measure the low currents. The

voltage was varied and the current intensity measured, being obtained intensity-

applied voltage plots, I-V. The resistance, R, was calculated through the slope of

I-V curves, with Ohm’s law: R ¼ V
Ie
,where V is the applied voltage and Ie is the current

flowing through the specimen. The surface resistivity (rs) was calculated by:

rs ¼
RW

d
ð1Þ

where W is the width of the electrodes and d is the distance between them. The volume

resistivity (rv) was calculated by:

Figure 4. Electrical measurements (a) surface electrode configuration and (b) volume electrode
configuration.
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rv ¼
RA

d
ð2Þ

where R is the bulk resistance, A is the cross-sectional area of specimen and d is the fixed

distance between measuring points of the probes.33–36

Flammability tests

To evaluate the effect of reinforcing fillers on the burning properties, the specimens were

tested in a horizontal burn according to ASTM D 635-03 standard. The method consists

on measuring the burning rate in a horizontal position, when subjected to a pilot flame.

The burning rate, in millimetre per minute, between reference lengths of 25 and 100 mm

was measured. Tests were conducted at 23�C and 50% RH. The dimensions of the speci-

mens were length ¼ 125 mm; breadth ¼ 13 mm; diameter ¼ +0.7 mm. The results are

intended to serve as a preliminary indication of their acceptability with respect to flamm-

ability for a particular application. The linear burning rate (Vb) for each specimen, where

the flame front reaches the 100 mm reference mark, was calculated by Vb ¼ 60L=t,
where L is the burned length and t is the time.

Results and discussion

Dispersion of the nanofillers in the TPU matrix

The nanocomposites morphology was observed by SEM in order to evaluate the dis-

persion level of the nanofillers and its adhesion to the polymer matrix. SEM images

showed that the adopted mixing procedure induces a good dispersion of the nanofillers

in the TPU matrices. The HSBC particles are very small and fairly well distributed

(Figure 5(a)).

Occasionally, agglomerates of HSCB particles with 90 nm size were detected. The

size variation of the HSCB particles reveals that the input process energy was not

capable of breaking all the HSCB aggregates, but well dispersed small particles were

Figure 5. SEM-fractured surface images of (a) TPU þ HSCB and (b) TPU þ CNF. SEM: scanning
electron microscopy; TPU: thermoplastic polyurethane; HSCB: high-structured carbon black.
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obtained. Figure 5(b) shows a uniform dispersion of the CNF in the TPU matrix, with

absence of agglomerates. Measured nanofibres diameters are between 120 and 400 nm,

much higher than the average diameter of 80–150 nm indicated by the supplier. This

higher diameter suggests that some polymer covers the nanofibre surface, indicating

good interaction at the fibre polymer interface resulting in a good adhesion between the

polymer and the CNF. The adhesion between the nanofillers and the polymer matrix is

fairly good, with no voids and no particle decohesion seen in the SEM images.

DSC analysis

DSC was used to investigate the thermal transitions on heating and cooling of neat and

filled TPU composites. The presence of fillers could not only modify the Tg but also

could interfere on the melting and crystallization processes. DSC traces of the first

melting and cooling sweeps of neat and TPUs composites are shown in Figure 6. The

thermal parameters are listed in the Table 1.

These curves show two glass transitions at around �48 and 60�C attributed to the

Tg of TgSS and TmHS, respectively, and a very small and broad melting peak centred at

140–150�C, corresponding to TmHS. The amorphous soft phase of the filled TPU shows a

TgSS around�48�C, which is close to the TgSS of the pure TPU, indicating the absence of
interactions between the nanofillers and the SS phases. The effect of addition of HSCB

and CNF on the TPU is clearly seen on TgHS and TmHS. The incorporation of the fillers

increased the HS’s TmHS and the melting enthalpy (DHmHS), which may reflect bigger

HS domains (rich phase) and an increment upon their degree of crystallinity. CNF

particles have the highest effect on the TPU thermal transitions.

DSC traces of the second melting sweep (after erasing the processing history) of the

neat TPU and its composites are shown in Figure 7. DSC data are listed in Table 2.

For neat and filled TPU, TgSS is around�43�C, slightly lower than in the first scan, so
no major changes in the TgSS were registered. The effect of the nanoparticles incor-

poration into the TPU is clearly seen on the increment of TmHS and DHmHS. Once again,

Figure 6. Thermal transitions of neat and nanofilled TPU at (a) first melting sweep and (b) cooling
sweep. TPU: thermoplastic polyurethane.
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the addition of CNF shows a remarkable enhancement of the thermal properties, inter-

acting with the TPUs’ HS domains. Furthermore, for the TPU composites, the first sweep

evidences stronger thermal transitions as compared to the second sweep, revealing a

significant effect of the processing thermomechanical conditions on the developed

morphology.

Table 1. Main thermal transitions of neat and nanofilled TPU (first melting and cooling sweep).

Sample TgSS (
�C) TgHS(

�C) TmHS(
�C) DHmHS(J g

�1) TC(
�C) DHC (J g�1)

TPU �48.02 66.20 143.65 0.22 60.59 0.63
TPU þ HSCB �47.47 63.09 153.54 2.16 59.38 0.30
TPU þ CNF �48.04 76.70 152.64 3.48 60.65 0.45

TPU: thermoplastic polyurethane; HSCB: high-structured carbon black; CNF: carbon nanofibre; TgSS: soft

segment glass transition temperature; TgHS: hard segment glass transition temperature; TmHS: hard segment

melting point; DHmHS: hard segment melting enthalpy; TC: crystalline temperature; DHC: crystalline enthalpy.

Figure 7. Thermal transitions of neat and nanofilled TPU (second melting sweep). TPU:
thermoplastic polyurethane.

Table 2. Main thermal transitions of neat and nanofilled TPU (second melting sweep).

Sample TgSS (
�C) TgHS (

�C) TmHS (
�C) DHmHS (J g

�1)

TPU �43.12 77.12 143.37 0.25
TPU þ HSCB �42.71 76.53 145.78 1.96
TPU þ CNF �43.30 76.13 149.72 1.30

TPU: thermoplastic polyurethane; HSCB: high-structured carbon black; CNF: carbon nanofibre; TgSS: soft

segment glass transition temperature; TgHS: hard segment glass transition temperature; TmHS: hard segment

melting point; DHmHS: hard segment melting enthalpy.

10 Journal of Elastomers & Plastics
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Thermogravimetric analysis

The effect of the reinforced particles on the thermal stability of TPU was evaluated by

TGA. The mass loss variations with temperature for neat and reinforced TPUs are shown

in Figure 8.

No expressiveweight losswas registered between30�Cand 200�C.The first degradation
process corresponds to the release of the little molecules or unstable side chains, which will

degrade at lower temperature.37 Thermal degradation of TPUs is an intricate process. It has

been found that the thermal degradation of TPUs occurs in two stages,38,39 since HS and SS

respond differently at high temperatures. In the first step, decomposition of the HS occurs,

involving dissociation of urethane from the original polyol and isocyanate. In the second

step, condensation and polyol degradation of the SS take place. Therefore, first stage can be

associated with Td1 of HS, whilst the second stage can be related to Td2 of SS.
39–41 Table 3

shows the thermal stability improvement of the TPU nanocomposites. The first degradation

of the neatTPUoccurredat 192�Cand the seconddegradation at 342�C.As it canbenoticed,
both HSCB and CNF appear to affect differently TPUs hard and soft domains degradation.

The incorporation of the HSCB did not change Td1 significantly (approximately 3�C),
but improved Td2, delaying it by approximately 12�C. The CNF presence delayed

slightly the first degradation temperature by approximately 4�C, whilst Td2 is reduced by
approximately 34�C. During degradation, the nanoparticles interact preferably with the

SS in polyurethane structure. Also, these results suggest that the CNF interacted more

with HS and SS domains than HSCB particles. Expectantly, the thermal stability is

improved with the incorporation of more thermally stable fillers such as the HSCB and

the CNF, as already reported elsewhere.42 This was interpreted by the adsorption of free

radicals by the carbon fillers surface39, the uniformly dispersed carbon nanofillers pre-

sumably providing higher thermo-oxidative stability to the polymers in the vicinity of

Figure 8.Weight loss from TGA analysis under N2 atmosphere of neat and nanofilled TPU. TGA:
thermogravimetric analysis; N2: nitrogen; TPU: thermoplastic polyurethane.
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the fillers surfaces43 and the enhancement of the thermal conductivity of the composite

that can facilitate heat transport and thus increase its thermal stability.44

Mechanical properties analysis

The effect of the type of filler on the composites’ mechanical properties was analyzed.

For each TPU system, a representative curve was selected and plotted for comparison as

depicted in Figure 9. The two composite systems show similar behaviour, but with much

higher deformation and stress levels as compared to the unreinforced TPU. These results

clearly reveal that the added nanosized particles increased dramatically the TPUs

mechanical properties. Table 4 shows the mechanical properties of the neat and nano-

filled TPU.

The nanocomposites have higher modulus (TPU þ CNF) and superior strength

(mainly at break) when compared with the neat TPU. The highest modulus, E1, of the

TPU þ CNF nanocomposites reflects the good adhesion of the CNF to the TPU matrix

Table 3. TGA results of neat and nanofilled TPU.

Td1 (
�C) DTG1max (

�C) Td2 (
�C) DTG2max (

�C)

TPU 191.82 229.73 342.13 380.04
TPU þ HSCB 188.78 218.68 354.25 379.82
TPU þ CNF 195.71 222.09 307.67 361.52

TPU: thermoplastic polyurethane; HSCB: high-structured carbon black; CNF: carbon nanofibre; Td1: initial

weight loss temperature for the first step; Td2: initial weight loss temperature for the second step; DTG1max:

temperature at the maximum rate of weight loss for the first step; DTG2max: temperature at the maximum rate

of weight loss for the second step.

Figure 9. Engineering stress–strain curves of neat and nanofilled TPU (inset graph). TPU: ther-
moplastic polyurethane.
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that allows a larger contribution of the stiffer particles to the modulus. Also, the higher

interfacial area and aspect ratio of the CNF allows the formation of a kind of a more rigid

network that withstands the initial deformations. All nanocomposites sustain very high

stress and strain levels when compared with the neat TPU. This enhancement on the

mechanical properties is thought to be associated with:

� a good nanofiller adhesion to the TPU matrix, resulting in higher modulus and

strength;

� the increased number of molecular entangled regions that allow sustaining higher

stress levels and

� the progressive disentanglement and easier sliding of macromolecules allowing a

high deformation capability.

Further evidence of the significant mechanical behaviour improvement of TPU

composites is provided by the SEM images of deformed specimens, as illustrated in

Figure 10. Figure 10(a) shows a massive local matrix deformation of TPU filled with

HSCB. This appears to be originated by the well-dispersed HSCB nanofillers.

In Figure 10(b), it is evident that the nanofibres have a good adhesion to the polymeric

matrix, showing novoids at the interfacewith theTPU, even for the highdeformation levels.

Furthermore, the nanofibres are highly oriented in the stretchingdirection. This is extremely

interesting, being evidenced, besides the strong adhesionof the nanofibre to theTPUmatrix,

that the CNFs are forced to align on the stretching direction by the external stress field.

Electrical resistivity measurements

The variations of the surface and volume electrical resistivity measurements with the

different nanofillers incorporation is shown in the Table 5.

As expected, the incorporation of the conductive fillers decreases the electrical

resistivity of the composites, mainly for the CNFs that reduce surface resistivity by two

orders of magnitude (just for 1 wt% of incorporation). The variations of the volume

Figure 10. SEM-fractured surface images of specimens after tensile tests in (a) TPU þ HSCB and
b)TPU þ CNF. SEM: scanning electron microscopy; TPU: thermoplastic polyurethane; HSCB:
high-structured carbon black; CNF: carbon nanofibre.
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resistivity are much higher, being reduced by six and seven orders of magnitudes for

reinforcement with the HSCB and the CNF, respectively. In conductive composites,

aggregated and agglomerated phases can form a conductive three-dimensional network

of conductive particles through the system, and electrical conductivity is achieved. As

shown in the SEM images of the HSCB and the CNF composites (Figure 5(a) and

(b)), these fillers have a high level of dispersion, thus reducing the decrement on the elec-

trical properties. Although using a melt blending process and only 1 wt% of incorpora-

tion of conductive nanoparticles, the studied nanocomposites achieved a significant drop

in their electrical resistivity, mainly for the case of the CNF-reinforced TPU. It is

expected that an increment upon the amount of incorporation will reduce further the

electrical resistivity. The smaller drop on the surface resistivity as compared to the

higher reduction on the volume resistivity suggests that a superficial layer rich of insu-

lated TPU is developed. This layer is formed due to the lower viscosity of neat TPU

that promotes filler segregation during samples manufacturing and the flow of the low

viscosity matrix into the surface of the compression-moulded plates.

Flame resistance

Numerous studies have shown that the introduction of nanoparticles into polymers can

greatly improve their properties such as flame resistance, reducing the heat released and

improving fire retardancy.42 Table 6 shows the variations of Vb with filler addition for

both composite systems.

The addition of HSCB decreased greatly the TPU’s Vb. This enhancement is thought

to be associated with the creation of carbon barrier that delays the combustion. Inter-

estingly, the incorporation of the CNF particles had a small effect on the flammability of

the TPU. It has been observed that at low carbon contents (1 wt%), the thermal stability

Table 6. Vb results of neat and nanofilled TPU.

Sample Thickness (mm) Vb (mm/min�1))

TPU 0.50 79.21 + 15.26
TPU þ HSCB 0.56 62.50 + 17.68
TPU þ CNF 0.56 73.90 + 33.80

Vb: linear burning rate; TPU: thermoplastic polyurethane; HSCB: high-structured carbon black; CNF: carbon

nanofibre.

Table 5. Surface and volume electrical resistivity measurements results of neat and nanofilled
TPU.

TPU TPU þ HSCB TPU þ CNF

Surface resistivity (O) 5.00E þ 11 1.20E þ 11 6.00E þ 09
Volume resistivity (O cm) 3.00E þ 16 7.85E þ 10 2.09E þ 09

TPU: thermoplastic polyurethane; HSCB: high-structured carbon black; CNF: carbon nanofibre.
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of the nanofilled TPU is facilitated; this property is attributed to the enhancement of

thermal conductivity of the TPU composite.45 For higher levels of incorporation, the

thermal stability is improved (thermal degradation is delayed).

Conclusion

The blending procedure adopted in this work makes possible to obtain well-dispersed

conductive nanofillers in a TPUmatrix. A good adhesion between the TPU and the nano-

fillers was evidenced. Well-dispersed fillers provided larger contact surface and a strong

interfacial interaction between the filler and the polymer matrix, avoiding local stress

concentrations, which is translated in an enhancement on the TPU nanocomposites

mechanical properties. The incorporation of such fillers strongly influence the polymer

chain mobility, clearly revealing improvements in the modulus, sustained stress level

and strain at break, especially for the CNF fillers. Different types of nanoparticles exhibit

distinct influences on the properties of the nanofilled TPU.

The incorporation of the nanoparticles had a great effect on the crystallization of the

TPU nanocomposites. TmHS and DHmHS increase significanty, reflecting bigger HS

domains and an increment upon their degree of crystallinity. The nanoparticles interact

strongly with the HSs of the TPU, their TgHS and TmHS. Conversely, there is an absence

of interactions with the SS. CNFs have the highest effect on the TPU thermal transitions.

The effect of processing thermomechanical conditions on the developed morphology of

the TPU is rather important.

The thermal degradation of the TPU occurs in two stages, which can be related to the

response of the HS and SS. Both nanofillers appear to affect differently TPUs hard and

soft domains degradation. During thermal degradation, the nanoparticles interact pre-

ferably with the SS and more strongly for the CNF-filled TPU. The thermal stability of

the nanocomposites is improved significantly.

A small drop in electrical resistance was observed when compared with pure TPU, but

clearly the percolation limit was not reached for 1 wt% of incorporation of the nanofillers.

The reductions on the volume resistivity are higher (six to seven orders ofmagnitude) than

the surface resistivity (only two orders of magnitude), suggesting the formation of a

superficial layer rich on neat TPU that was formed during the plates manufacturing

process. The variations on the electrical resistivity are higher for the CNF-filled TPUs.

The incorporation of the HSCB into the TPU also led to a major decrement upon

flammability of the samples. This was associated with the creation of carbon barrier that

delays the combustion. But, for the case of incorporation of CNF particles, the

flammability has only diminished slightly, which was attributed to the enhancement of

the thermal conductivity of the composite TPU.

This work also evidenced that the incorporation of carbon-based nanofillers results in

a mulfunctional behaviour of the TPU, with a concomitant and significant improvements

on their mechanical, thermal, electrical and flame resistance behaviour, without compro-

mising its deformability. These thermoplastic elastomers reinforced with nanosized par-

ticles show improved performance and added functionalities that make then promising

materials for several applications.
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