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Proteome signatures—how are they obtained
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João Pinto da Costa1,2 & Virginia Carvalhais1,5 & Rita Ferreira1 & Francisco Amado1 &

Manuel Vilanova3,4 & Nuno Cerca5 & Rui Vitorino1,2

Received: 8 May 2015 /Revised: 18 June 2015 /Accepted: 23 June 2015 /Published online: 24 July 2015
# Springer-Verlag Berlin Heidelberg 2015

Abstract The dawn of a new Proteomics era, just over a
decade ago, allowed for large-scale protein profiling studies
that have been applied in the identification of distinctive mo-
lecular cell signatures. Proteomics provides a powerful ap-
proach for identifying and studying these multiple molecular
markers in a vast array of biological systems, whether focus-
ing on basic biological research, diagnosis, therapeutics, or
systems biology. This is a continuously expanding field that
relies on the combination of different methodologies and cur-
rent advances, both technological and analytical, which have
led to an explosion of protein signatures and biomarker can-
didates. But how are these biological markers obtained? And,
most importantly, what can we learn from them? Herein, we

briefly overview the currently available approaches for
obtaining relevant information at the proteome level, while
noting the current and future roles of both traditional and
modern proteomics. Moreover, we provide some consider-
ations on how the development of powerful and robust bioin-
formatics tools will greatly benefit high-throughput proteo-
mics. Such strategies are of the utmost importance in the rap-
idly emerging field of immunoproteomics, which may play a
key role in the identification of antigens with diagnostic and/
or therapeutic potential and in the development of new vac-
cines. Finally, we consider the present limitations in the dis-
covery of new signatures and biomarkers and speculate on
how such hurdles may be overcome, while also offering a
prospect for the next few years in what could be one of the
most significant strategies in translational medicine research.
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Introduction

First used in 1995 (Wasinger et al. 1995), the term proteome
described the PROTEin analog of the genOME. Comparative
studies of the proteomes derived from genomic sequences
have proven to be useful tools in gene identification (Paik
et al. 2012), as well as in prediction of function and structure
(Nabieva et al. 2005), pathways (Pandey and Mann 2000),
identification of protein’s active sites (Marino and Gladyshev
2012), and phylogenetic studies (Ma et al. 2012). Hence, pro-
teomics, defined as the detailed study of the large-scale study
of proteins (Malmström et al. 2005), provides a powerful ap-
proach for identifying and studying multiple molecular
markers. In fact, proteomic technologies have already been
demonstrated to play an important role in diagnostics
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(Kentsis et al. 2013) and drug discovery (Anderson and
Kodukula 2014), due to the fact that the proteome is the link
between genes, proteins, and phenotype. Currently, some of
the best-selling drugs act on specific proteins or are proteins
themselves, and the future holds the promise of proteomic-
based personalized medicine, more effective and with signif-
icantly fewer side effects (Zahedi et al. 2014).

Recent technological advances, as well as the plethora of
available genome sequences available at the National Center
for Biotechnology Information (NCBI), has allowed an in-
depth comparison of single-residue and oligopeptide compo-
sitions of the corresponding proteomes (Pe’er et al. 2004).
However, unlike the genome, which is relatively static, the
proteome changes constantly in response to thousands of intra
and extracellular stimuli. Consequently, the proteome varies in
health and disease and with the nature of each tissue, as well as
with the distinct stage of cell development and in response to
drug treatments and exposure to environmental changes
(Breker and Schuldiner 2014; Vogel and Marcotte 2012).
The proteome is, therefore, similar to a snapshot of the pro-
teins present in one sample at a certain point in time.

Hence, the identification of unique patterns of protein ex-
pression, biological markers (biomarkers) or proteomic
signatures, that are associated with a given condition, is the
most promising and rapidly expanding area of proteomics,
with current focus on the enhancement of the specificity and
sensitivity of these experimental methodologies and assays
(Wilson 2013). These signatures are measurable indicators
of some biological state or condition, and the National Insti-
tutes of Health (USA) defines them as Ba characteristic that is
objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention^ (Biomarkers Defini-
tions Working Group 2001). For microorganisms, however,
proteomics has often been considered as basic and unsophis-
ticated when compared to studies focusing on higher organ-
isms (Otto et al. 2014), and consequently, techniques for bac-
terial proteome annotation (including post-translational chem-
ical modifications, signaling peptides, proteolytic events,
among others) are still in their early years (Gupta et al.
2007). However, this rather narrow view of this field of pro-
teomics is currently shifting and research is not merely limited
to basic in vitro characterization of microorganisms in order to
describe the proteome content of a cell at or to unravel the
physiological implications of stress, such as starvation
(Hecker et al. 2008). Nowadays, we are beginning to resort
to microbial proteomics as sophisticated tools in complex set-
tings, such as host–pathogen interactions (Attia et al. 2013),
antibiotic resistance (Vranakis et al. 2014), mixed microbial
communities (Siggins et al. 2012), antimicrobial properties
(Carvalhais et al. 2015a), and microbial metaproteomics (Otto
et al. 2014). Microbiological systems have also proven to be
adequately suited for the development of workflows in

systems biology. Such strategies allow the combination of
multiple levels of biological information, namely genomics,
transcriptomics, proteomics, and metabolomics (Zhang et al.
2010). Ultimately, this will yield functional systems for the in
silico modeling of cellular processes (Rigoutsos and
Stephanopoulos 2006; Schmidt et al. 2013).

In higher organisms, immune systems are capable of
distinguishing foreign and/or abnormal cells, eliciting an im-
mune response. Currently, proteomics is contributing to the
study and identification of immune patterns of protein expres-
sion or antigens through immunoproteomics (Tjalsma et al.
2008), thus identifying the immunoproteome, the proteins that
constitute the antigenic repertoire of a given organism
(Kunnath-Velayudhan and Porcelli 2013). Detection of
immunoproteins may provide insights into which proteins
may be directly involved in host immune interaction. Therefore,
the protein immunoreactive profile may contribute to an infec-
tion proteomic signature (Fulton and Twine 2013). Further-
more, analysis of the immunoproteome may improve the un-
derstanding of pathogenesis and unravel novel therapeutic tar-
gets based on the repertoire of immunogens (Brady et al. 2006).

Despite the considerable advances of immunoproteomics
and the vast potential that it has yet to offer, there are
still some technical and experimental limitations that
need to be overcome.

Considering all the potential that can be harnessed from
these biomarkers and proteomic signatures, it is, therefore,
necessary to accurately understand how these can be obtained
and the available technologies for such purposes.

2DE vs. modern proteomics

Among the first published works in two-dimensional gel elec-
trophoresis (2DE) proteomics followed by identification are
those described by Bow and co-workers (1989) and
VanBogelen and Neidhardt (1990). The underlying principles
of 2DE, however, can be traced back to the early 1980s and
the pioneering work developed by Bjellqvist et al. (1982) and
Görg and co-workers (1982). The term “traditional proteo-
mics” refers, therefore, to the use of 2DE gel-based experi-
mental procedures for the identification of proteins.

Two-dimensional gel electrophoresis, although technically
challenging in terms of the skills required by the researcher,
remains, to this day, an unparalleled technique for top-down
proteomics. It exhibits numerous advantages in microbial pro-
teomics, as it allows visualizing fundamental features of bac-
terial life, such as stress and starvation responses (Hecker et al.
2008; Soufi et al. 2015), as well as metabolic pathways (Kim
et al. 2011) and antibiotic resistance mechanisms (Gonçalves
et al. 2014; Monteiro et al. 2012). This technique also offers
additional advantages, such as the possibility for studying the
isoforms of proteins and their modifications. Many proteins
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undergo post-translational modifications (PTM), namely gly-
cosylation, phosphorylation, alkylation, ubiquitination, acety-
lation, methylation, among others (Soufi et al. 2012). These
modifications are essential and known to play a critical role in
maintaining protein function, signaling, regulation, and other
important cellular processes in all domains of life (Soufi et al.
2012), often exhibiting differences between distinct physio-
logical conditions. In other words, one gene may encompass a
large number of protein products and typical 2DE gels allow
for the analysis of these isoforms, as PTM will result in shifts
in relative mass (e.g., truncation or glycosylation) or isoelec-
tric point (pI) (e.g., phosphorylations), with concomitant dif-
ferent mobility on a 2DE gel.

Ideally, the in-gel protein detection methods should be very
sensitive but also linear in response (i.e., should be able to
accurately detect abundance variations) and homogeneous
(all classes of proteins should be detected), but this is not often
the case (Rabilloud 2012). Despite these amply-known con-
straints, a frequently neglected limitation is the performance
of the 2D electrophoresis itself. The overall efficiency of this
system can be severely affected by the quantitative yield of the
2DE, which has been reported to be considerably moderate
(20–40 %) (Zhou et al. 2005). Moreover, 2DE has been dem-
onstrated to result in higher losses for poorly soluble proteins
(Santoni et al. 2000; Van et al. 2014), hence lacking homoge-
neity throughout the tested samples. Difference gel electro-
phoresis (2DIGE) is a variation of 2DE, which allows to vi-
sualize differential protein levels in two protein samples (ex-
periment vs. control) by covalently tagging two protein sam-
ples with two distinct fluorescent emission spectra com-
pounds, but with identical masses and electrophoretic mobility
(Alban et al. 2003). Despite permitting the direct comparison
of two distinct samples in one run, gel-to-gel variation is still
observable in larger samples (Baggerman et al. 2005).

The consistent and careful analysis of the gel’s results is
also of the utmost importance. Gel electrophoresis is the only
proteomic technique that has dedicated bioinformatics tools,
including those that are integrated in the acquisition of 2DE-
related equipments (Palagi et al. 2006), although free, open-
source programs exist (Table S1, Supplementary information).
For other techniques, such as HPLC, the computer programs
are merely considered on the basis of their usefulness with the
vendor’s equipments. These dedicated software packages,
however, still exhibit some limitations, namely the inability
of processing incompletely separated spots (overlapping and/
or less defined spots), as well as weak spots, often impossible
to discern from noise (Rabilloud et al. 2010).

Considering these limitations, gel-free approaches emerged
as an attractive alternative to 2DE-based strategies. These
methods require less laborious procedures, smaller amounts
of sample, exhibit a wider dynamic range, and allow for a
better resolution of low abundant proteins, as well as those
with extreme pI values, molecular weights , and

hydrophobicity, such as membrane proteins (Amado et al.
2013). Such strategies are particularly relevant in bottom-
up—or shotgun—proteomics. In shotgun proteomics, a pro-
tein mixture is digested into peptides that, in turn, are loaded
onto one- or (at least) two-dimensional chromatography-based
separation system. Peptides are then eluted into a tandemmass
spectrometer, resorting to an automated system, and the
resulting tandem mass spectrometry data is analyzed by pow-
erful computational software packages (Sun and Markey
2011). Because peptides are more easily separated by liquid
chromatography than proteins, a peptide-based proteomic
analysis can be carried out considerably faster and cheaper
than complete gel-based studies. Additionally, gel-free prote-
omic methodology yields higher protein coverage than gel-
based methodologies, since detection of low-abundance pro-
teins is favored (Baggerman et al. 2005; Roe and Griffin
2006).

These gel-free techniques are largely centered on a multi-
dimensional system, MudPIT, based on the sequential stack-
ing of strong cation exchange (SCX) beads and reversed-
phase beads on a biphasic column (Washburn et al. 2001).
This ingenious and sophisticated system presents, however,
some limitations. In a typical MudPIT analysis, thousands of
MS/MS spectra are acquired. This number of spectra requires
massive amounts of storage capacity and extremely powerful
data analysis systems. Moreover, peptide samples obtained
from the digestion of a few hundreds of proteins are very
complex and only a fraction of these peptides will be selected
for MS/MS. This selection takes place randomly as the pep-
tides are eluted from the column, which results in severe re-
producibility issues (Baggerman et al. 2005). Hence, some
modifications have been developed to reduce sample com-
plexity and have been reviewed elsewhere (Abdallah et al.
2012; Amado et al. 2013; Baggerman et al. 2005; Titz et al.
2014). It should be noted, however, that all these modified
methodologies are based on the key assumption that a protein
can be identified based on the sequence of a single or multiple
tryptic peptides originating from this protein or that only pep-
tides with a certain amino acid are isolated (Amado et al.
2013). These modifications include isotope labeling (Gygi
et al. 1999), COFRADIC—or combined fractional diagonal
chromatography (Gevaert and Vandekerckhove 2004), N-
teromics (Gevaert et al. 2003), and combinatorial peptidomics
(or peptide arrays) (Soloviev et al. 2003). Other strategies are
also available, including the emerging technology of protein
chips (Fung et al. 2001). A categorization of such techniques
is suggested in Fig. 1. Nonetheless, it is possible to find dif-
ferent classifications as proposed by other authors (Abdallah
et al. 2012; Otto et al. 2014).

The introduction of matrix-assisted laser desorption/
ionization (MALDI) (Karas and Hillenkamp 1988) and
electrospray ionization (ESI) (Fenn et al. 1989) mass spec-
trometry techniques quickly gave rise to a significant increase
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in works related to protein identification (James et al. 1993;
Mann et al. 1993; Pappin et al. 1993; Yates et al. 1993) based
on the enzymatic digestion of proteins and included their iden-
tification following 2D gel electrophoresis separation. Tech-
nological improvements, including the arrival of more accu-
rate instruments, namely the quadrupole time-of-flight mass
spectrometer (Q-TOFMS) (Morris et al. 1996), resulted in the
development of liquid chromatography–mass spectrometry
(LC-MS) methodologies (Yergey 1990). These are powerful
techniques that combine the physical separation capabilities of
liquid chromatography with the mass analysis capabilities of
mass spectrometry and that have consequently allowed for the
identification of protein isoforms, which other gel-free meth-
odologies do not permit (Baggerman et al. 2005; Stastna and
Van Eyk 2012).

Consequently, most bacterial proteomic studies consist of
the use of quantitative tools in the analysis of the changes in
the abundance of proteins under carefully regulated experi-
mental conditions, in order to assess the effect of various pa-
rameters, such as temperature, nutrients, and environmental
stresses (such as exposure to antibiotics) (Carvalhais et al.
2015c; Jain et al. 2011; Hessling et al. 2013). Although these
studies often combine both 2D and MALDI time-of-flight
mass spectrometry (MALDI-TOF MS) for protein identifica-
tion, novel non-gel-based, mass spectrometric methods for
quantitative proteomics are becoming increasingly important.

Advances in liquid chromatography have resulted in the hy-
phenation of nanoscale reversed-phase high pressure liquid
chromatography (RP-HPLC) to a mass spectrometer, due to
the compatibility in solvents, flow rate, high resolution, and
reproducibility (Van Oudenhove and Devreese 2013). Other
advances include hydrophilic interaction liquid chromatogra-
phy (HILIC) (Boersema et al. 2008) or ultraperformance liq-
uid chromatography (UPLC) (Soler et al. 2013), and these
have been thoroughly reviewed elsewhere (Wu et al. 2012;
Xie et al. 2011). Mass spectrometry itself has also undergone
technological advancements. The basic types of mass ana-
lyzers remain the quadrupole (Q), the time-of-flight (TOF)
analyzer, the ion trap, the Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICRMS), and the Orbitrap,
but they have suffered significant enhancements which have
yielded improvements in sensitivity, accuracy, dynamic range,
speed of analysis, and resolution (Thelen and Miernyk 2012).
Ion traps, for example, can easily be coupled to hybrid de-
vices, such as Fourier transform-based mass spectrometers
(FTMS) to increase resolution and sensitivity (Van
Oudenhove and Devreese 2013). Currently, FTMS is domi-
nated by Orbitrap mass analyzers, as these exhibit not only
higher mass resolutions and accuracies but also greater dy-
namic ranges at lower costs than classical FT-ICR instruments
(Hu et al. 2005; Marshall 2000). The Orbitrap technology has
been refined and the current quadrupole Orbitrap instrument
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Genomics
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Fig. 1 From proteomics to biomedicine. How the identification of valid
proteomic signatures and their integration with other omics and
bioinformatic tools can decisively contribute to a better understanding

of key biological questions. A categorization of gel-free and gel-based
proteomic strategies is also proposed
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(Q-Exactive) greatly exceeds other configurations regarding
the number of peptide/protein identifications (Van Oudenhove
and Devreese 2013), as evidenced by the study carried out by
Kelkar and co-workers, in which approximately 250 novel
peptides were identified in Mycobacterium tuberculosis
(Kelkar et al. 2011). Recently, a new Orbitrap hybrid mass
spectrometer equipped with a mass filter, a collision cell, a
high-field Orbitrap analyzer, and a dual-cell linear ion trap
analyzer (Q-OT-qIT) allowed for the comprehensive analysis
of the yeast proteome in just over 1 h of optimized analysis
(Hebert et al. 2014), underlying the current technological
achievements in mass spectrometry. Additionally, absolute
quantification is now within reach of researchers, with the
recent introduction of SYNAPT (Waters), which allows for
an extensive characterization of complex mixtures, adding
an extra dimension of separation, based not only on chroma-
tography and mass resolution but also on molecular size and
shape as well (Wang and Hanash 2015).

Ultimately, this suggests that the thorough analysis of
mammalian proteomes within several hours is now within
technical reach.

A different approach is targeted proteomics. In this approach,
the MS instrument is operated in a selected reaction monitoring
(SRM) mode. The sample is queried not only for the presence
but also for the quantity of a given set of peptides that are spec-
ified prior to data acquisition (Marx 2013). Targeted proteomics
can, hence, be used in studies that rely on quantitatively accurate
and reproducible measurement of proteins, across multiple sam-
ples (Rosenberger et al. 2014). However, SRM is currently lim-
ited to measurements of only a few thousands transitions per LC-
MS/MS run (Perez-Riverol 2014). To overcome such limitation,
unbiased data-independent acquisition (DIA) strategies have
been developed, which do not rely on the detection or knowledge
of the precursor ion (Gillet et al. 2012). These methods are based
on the cyclic recording of consecutive survey scans and fragment
ion spectra for all precursors contained in pre-arranged isolation
windows (swaths), throughout the LC time range. This has re-
sulted in SWATH-MS, an alternative approach to proteome
quantification that stems from the combination of highly specific
DIA methods with novel-targeted data extraction strategies to
mine the resulting fragment ion data sets (Perez-Riverol 2014).
The concomitant development of OpenSWATH, a software that
enables the automated, targeted analysis of data-independent ac-
quisition MS data (Rost et al. 2014), is believed to have the
potential to greatly contribute in an unprecedented manner in
the qualitative and quantitative probing of proteomes.

So, when searching for relevant proteomic signatures,
which methodology is better? What is the best-suited strategy
for these studies? Although many opinions—often diver-
gent—have been cast (Abdallah et al. 2012; Baggerman
et al. 2005; Hecker et al. 2008; Monteoliva and Albar 2004;
Otto et al. 2014), it is becoming increasingly clear that the
advantages and drawbacks of both techniques seem to render

them complementary. Their use must take into consideration
not only each one’s inherent advantages and limitations but
also the biological question being addressed. Ultimately, the
combined use of multiple strategies will yield more accurate
and relevant information. When used in parallel, these meth-
odologies provide a broader understanding of the biological
question asked. In fact, works focusing on the elucidation of
the proteomes of multiple organisms are based on a combina-
tion of such strategies, ensuring a thorough and more com-
plete coverage of the proteins present (Majumder et al. 2011;
Wang et al. 2014a; Wolff et al. 2007).

No matter the technique used, it is obvious that these rev-
olutionary techniques yielded a plethora of information that
required new, powerful tools. As such, computer-based re-
sources, capable of dealing and keeping up with the wealth
of data generated, became necessary.

Bioinformatics and high-throughput analysis

Understanding the sequence, structure, dynamics, and interac-
tions of proteins has been at the heart of biomedical research
since its foundation. Mass spectrometry has emerged as a
powerful technique to study proteins on a large-scale fashion
(Richards et al. 2015), and combined with highly powerful
computational methods and experimental strategies (Kumar
and Mann 2009), MS-based proteomics now allows for a
comprehensive charting of both the intracellular and the ex-
tracellular proteomes (Shabbiri et al. 2013; Wendler et al.
2013; Zhou et al. 2014). Consequently, a multitude of quanti-
tative and qualitative data has arisen and the need for
computer-based data analysis is of the utmost importance.
Therefore, bioinformatics is a crucial component of any pro-
teomic strategy, but none more than quantitative analysis. An
adequate combination of proteomics and bioinformatics can
be highly synergistic, yielding a truly high-throughput plat-
form (Goh and Wong 2014).

The internet has also allowed for collaborations and data
sharing that would have not been previously possible. As a
result, many databases, tools, and full-fledged software pack-
ages are currently available online, accounting, frequently,
with contributions from all over the world.

There are numerous databases, online resources, and deposi-
tories that aim at making proteomic data accessible, enabling the
integration, mining, and reuse of the data by and to the scientific
community. An extensive review of the current state of such
databases and resources has been recently published (Perez-
Riverol et al. 2015), but some of the most commonly used tools
are summarized in Table S2 (Supplementary information).

Considering the vast offer of online tools and resources, it
may be tempting to forego laboratory techniques carried out in
a wet lab. Nonetheless, bioinformatics should not be consid-
ered as a replacement for actual experimental work. For
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example, one might use TargetP (Emanuelsson et al. 2007)
and other tools (such as Cello (Yu et al. 2006), PSORTb
(Nancy et al. 2010) or SignalP (Petersen et al. 2011)), to pre-
dict the subcellular location of a given protein or cleavage
sites, but such hypothesis should be experimentally con-
firmed. The prediction of the protein’s location, however,
can provide an indication of where to start and, consequently,
allow for significant time saving. Although most of the now
readily available information, in microbiology, is related to
Escherichia coli (Agostini et al. 2014; Cotten and Reed
2013; Keseler et al. 2005), the current focus on links between
microbial community disequilibria (dysbiosis) and human dis-
ease (Del Chierico et al. 2012; Fritz et al. 2013), oncology
(Sears and Garrett 2014), environmental microbial communi-
ty studies (Segata et al. 2013), among others, is a clear indi-
cator of the role that bioinformatics will play in the near future.

Ultimately, the role of bioinformatics is to allow the pro-
cessing of data, offering the possibility of annotating, cluster-
ing, and integrating information gathered from all omic stud-
ies—meta-omics.

Multi-resistance (genomics-based assays)

Currently, it is generally considered that the analysis of the
proteome is more meaningful, from a functional point of view,
than the analysis of the genome or transcriptome (Southan
2004). Consequently, the development of proteomic studies
has increased exponentially due to the suggestion that the
genome sequence is not sufficient to elucidate the biological
functions of an organism (Aggarwal and Lee 2003). Follow-
ing the advances in whole-genome sequencing, which pro-
vides information regarding pathogen detection and identifi-
cation, genotyping, determination of virulence factors, and
antibiotic-resistant determinants (Fournier et al. 2014),
transcriptomic and proteomic methodologies have been wide-
ly used to investigate microbial global expression. In order to
obtain the quantitative protein expression profile, methodolo-
gies such as isobaric tags for relative and absolute quantitation
(iTRAQ), stable isotope labeling by amino acids in cell culture
(SILAC), area under the curve (AUC), and isotope-coded af-
finity tags (ICAT) are frequently employed (Abdallah et al.
2012; Otto et al. 2014; Roe and Griffin 2006). Therefore,
protein expression profile is not only revealed by the pattern
of proteins which are expressed in a certain condition but may
also show to what extent every single protein is expressed.

One question remains: how closely messenger RNA
BmRNA^ levels relate to their corresponding proteins? At
the beginning, most studies looked at gene, mRNA, or protein
independently. In an attempt to determine the relation between
protein and mRNA levels, some studies have shown that,
often, the correlation is surprisingly low and differs widely
among organisms (Maier et al. 2009; Vogel and Marcotte

2012). Correlation coefficients varied from 0.09 to 0.46 in
multi-cellular organisms, from 0.34 to 0.87 in yeasts, whereas
in bacteria, the correlations ranged from 0.20 to 0.47
(reviewed in (Vogel and Marcotte 2012)). However, different
bacteria growth conditions may affect the concentration of
proteins in growing cell populations, changing the correlation
between mRNA and protein abundance (Maier et al. 2009;
Maier et al. 2011). Organism phenotype may alter due to
modifications after transcription and translational biological
processes. For instance, PTM were shown to be involved in
the regulation and structural stabilization of eukaryotic pro-
teins, molecular localization, protein–protein interaction, and
gene regulation (Michard and Doublet 2015; Minguez et al.
2013; Pisithkul et al. 2015; Silva et al. 2013), which contribute
for an increased complexity of the proteome.

Nowadays, a combination of omics is becoming an impor-
tant way to characterize a condition (Carvalhais et al. 2015c;
Ghazalpour et al. 2011; Resch et al. 2006). For instance,
DNA-sequencing technologies and mass spectrometry are be-
ing used to identify microorganisms and test for antimicrobial
susceptibility (Didelot et al. 2012), to distinguish commensal
from virulent strains (Savijoki et al. 2014), and to identify
resistance markers to antimicrobials based on transcriptomic
and proteomic profiles (Fischer et al. 2011; Scherl et al. 2006).
These types of studies help to determine the antibiotic resis-
tance mechanisms, contributing to unravel potential drug tar-
gets or markers that are constitutively expressed by resistant
strains regardless of their genetic background, with concomi-
tant potential application as diagnostic targets. More particu-
larly, membrane and extracellular proteins are likely to be of
interest for drug development strategies as these proteins are
often directly involved in host–pathogen interactions. Howev-
er, a high number of proteins in all bacteria species remain
uncharacterized in relation to function and cellular localiza-
tion. Additionally, the number of identified proteins is sub-
stantially lower than the number of detected transcripts. In
opposite, proteomics provides both quantitative and function-
al data to complement genomics and transcriptomic profiles,
since proteomic mass spectrometry is a powerful tool for
quantifying changes in global protein expression patterns.
For example, the description of the proteome of the inner
membrane of Pseudomonas aeruginosa has provided func-
tional insights into membrane-spanning and membrane-
associated protein complexes that may play a role in multi-
resistance (Casabona et al. 2013). Marti and co-workers
(2006) identified elongation factors and outer membrane pro-
teins that constituted the platform for the study of antimicro-
bial resistance in Acinetobacter baumannii. More recently,
Ramos et al. described the identification of 14 differentially
expressed proteins in vancomycin-exposed Enterococcus
strains (Ramos et al. 2015), thus correlating the expression
of these proteins to resistance mechanisms. Similar correla-
tions were established by Piras and co-workers, who described
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the differential expression of proteins under multidrug resis-
tance conditions for E. coli (Piras et al. 2012).

We can assume that a combined analysis may yield a com-
prehensive understanding of a particular physiological state or
condition, providing useful insights that may not be
deciphered from individual analysis of gene, transcript, or
protein expression.

Immunoproteomics

The term Bimmunoproteomics^ was first introduced in 2001
by Jungblut (2001). Immunoproteomics encompasses the sub-
set of proteins that may be specifically recognized by immune
system components and elicit an immune response. It is based
on the ability of higher organisms being capable of discrimi-
nating foreign or altered-self cells or molecules from self or
healthy ones (Tjalsma et al. 2008). Bacteria, virus, fungi, and
parasites carry non-self-proteins. However, altered self-
proteins may arise in the course of specific diseases, such as
cancer, and can also be targeted by immune responses (de
Verteuil et al. 2012). In this case, the immunogenicity may
be enhanced by abnormal protein expression levels and/or
biomolecule modifications, such as misfolding, mutation, or
glycosylation. In some circumstances, such as in autoimmune
diseases, self-proteins can also induce the generation or be
recognized by antibodies (Tjalsma et al. 2008). In other
words, the diverse setting of the adaptive immune response
is determined by the peptides presented by immune cells,
which are derive from pathogens, whether viral, microbial,
or cancerous cells (Fulton and Twine 2013). Ultimately, the
goal of immunoproteomics is to visualize what is Bseen^ by
the immune system during disease and under normal condi-
tions (Tjalsma et al. 2008). Classical methodologies studying
immunological proteins and antigens have been used for
many years, such as enzyme-linked immunosorbent assay
(ELISA) (Yin et al. 1995), agglutination (D’Hallewin and
Baert 1996), and Western blotting (Olson et al. 1990). Tradi-
tionally, ELISA has been the most used method for targeted
protein quantification and remains the gold standard to date
(Pan et al. 2009), providing good specificity and sensitivity. If
high-quality antibodies exist, the validation of these unique
patterns of protein expression can be a relatively straightfor-
ward process (Köhler and Seitz 2012; Petzold et al. 2010),
although it remains, to this day, the bottleneck in biomarker
research (Diamandis 2012a). However, for many of the most
recently discovered candidates in proteomic studies, ELISA is
still limited by the lack of availability of highly specific anti-
bodies. Targeted protein quantification relying on mass
spectrometry-based approaches can provide an alternative
and complementary methodology, capable of precisely detect-
ing a wide variety of proteins via high mass accuracy and/or
peptide sequencing (Pan et al. 2009). Comprising a rapidly

growing collection of approaches that aim at identifying and
measuring antigenic peptides or proteins, immunoproteomics
includes gel-based, array-based, mass spectrometry, DNA
based, or in silico methodologies (Fulton and Twine 2013)
that are actively contributing to a better understanding of
health, disease and disease progression, patterns of protein
expression, and vaccine candidates.

Immunoproteomics: a doorway into new vaccines?

The growing resistance to antibiotics and the shortage of new
antimicrobials has been the focus of increasing concern in the
past decade. The development and spread of antibiotic resis-
tance in bacteria is a universal threat to both humans and
animals and, generally, not preventable (Bush et al. 2011;
Megraud et al. 2013). Recently, the World Health Organiza-
tion (WHO) published an alarming report compiling data from
114 countries named BAntimicrobial Resistance - Global Re-
port on surveillance^ (2014). High levels of resistance in all
regions of theWorld and significant gaps in tracking antibiotic
resistance were found. Additional data included the report of
over 450,000 new cases of multi-resistant tuberculosis in
2012, the widespread resistance to earlier generation of anti-
malarial drugs in most malaria-endemic countries, a high per-
centage of nosocomial infections caused by methicillin-
resistant Staphylococcus aureus (MRSA), and treatment fail-
ures due to resistance to last-resort treatments of gonorrhea in
10 countries (WHO, Antimicrobial resistance—fact sheet No
194, updated April 2015).Moreover, theWHO alerted that we
may be heading towards a post-antibiotic era, in which com-
mon infections can once again kill. Hence, prophylactic ther-
apies to prevent infection by bacterial pathogens, such as vac-
cination, become of paramount importance.

However, there are many pathogens for which there are no
vaccines and some are not effective among all demographics,
namely age groups and immunocompromised individuals
(Dennehy and McClean 2012).

Immunoproteomics has emerged as a powerful technique
for the identification of potential vaccine candidates against
multiple pathogenic bacteria, such as Neisseria meningitidis
(Hsu et al. 2008), Bordetella pertussis (Altındiş et al. 2009),
S. aureus (Harro et al. 2010), among others (Li et al. 2010;
Twine et al. 2006; Zhai et al. 2013). Combining proteomics
with the detection of antigens that show immunoreactivity
allows for the identification of immunogenic proteins/
peptides expressed during infection (Dennehy and McClean
2012). Most studies have been focused on either cell surface
or outer membrane proteins (Montero et al. 2014; Newcombe
et al. 2014; Wu et al. 2008b; Zhou et al. 2009), as these are the
de facto interface for host–pathogen interactions. Additional-
ly, secreted proteins could also be of special interest (Barh
et al. 2013; Campbell et al. 2015; Enany et al. 2012; Wang
et al. 2014b; Wu et al. 2008a), as these are also primary

Appl Microbiol Biotechnol (2015) 99:7417–7431 7423



antigen targets of the host immune response and include many
virulence factors (Dennehy and McClean 2012). Collectively,
their exposure to the host immune system marks these sets of
proteins as a rich source of vaccine potential candidates.

Nonetheless, although immunoproteomics is a powerful
technique for the identification of candidate antigens, it is only
the first step in a long process for the successful development
of a protective vaccine and many additional considerations
should be made. For example, several immunogenic proteins
identified resorting to proteomic approaches for Burkholderia
pseudomallei (BipB) (Druar et al. 2008), S. aureus (IsdB and
ClfA) (Pier 2013), or N. meningitidis (EF-Tu and GroEL)
(Mendum et al. 2009) have failed to confer protection against
infection in subsequent animal model studies. Also, attention
must be paid to the specificity of strains, as it has been dem-
onstrated that different bacterial strains may elicit different
immune responses (Advani et al. 2011), and consequently,
vaccine efficiency may vary greatly across strains (Holst
et al. 2014). Additionally, it was demonstrated, in vitro, that
the Streptococcus pneumoniae antigen profile is affected by
the mode of bacterial growth (Blanchette-Cain et al. 2013),
which may represent an additional concern in how to obtain
an effective vaccine. More importantly, in vitro experimental
conditions may not represent the real in vivo situation
(Abdelhady et al. 2013; Coenye and Nelis 2010; Nishitani
et al. 2015). It is therefore necessary to have a comprehensive
insight into the host immune response in order to successfully
develop a functional, effective vaccine.

Host–pathogen response

The future efficacy of a given vaccine may be undercut by
phenomena such as serotype replacement (an increase in the
incidence of invasive disease caused by non-vaccine serotypes
following vaccine introduction (Weinberger et al. 2011)) and
serotype switching (a change of serotype of a single clone
(Wyres et al. 2013)). Consequently, harnessing the host–path-
ogen response can be of significance in two distinct and equal-
ly key aspects of vaccine development: (a) identification of
novel vaccine antigens by determining the immunogenic bac-
terial proteins from vaccinated, colonized, or convalescing
individuals and (b) the enhancement of efficacy of already
identified immunogens (Dennehy andMcClean 2012). Table 1
summarizes some of the most recent works carried out in both
the identification of new antigens as well as on the improve-
ment of identified ones.

Hurdles and shortcomings

Biomarker research has been continuously expanding, with dif-
ferent combinations of proteomic-based approaches, which de-
pend on the specific clinical context of use. Furthermore, the

recent technological and analytical advances have led to an
expansion of candidates already being identified and evaluated,
and therefore, there is no doubt that mass spectrometric tech-
niques will play a significant role in biomarker research (Frantzi
et al. 2014). Regarding immunoproteomics, major progresses
are taking place in the development of antigen-profiling meth-
odologies, as antigen profiles that reflect antibody responses are
expected to provide an enhanced predictive and diagnostic val-
ue when compared to individual antigens (Tjalsma et al. 2008).
Unfortunately, multiple candidates have failed in reaching clin-
ical use. This may be due to lack of a gold standard, since no
well-performing test can be used to compare potential bio-
markers, opening the way to biased observations. Such limita-
tions may be overcome resorting to mathematical models that
account for covariate adjustment, as proposed by Li and collab-
orators (Liu and Zhou 2013), but other constraints are still pres-
ent, as disease heterogeneity (Lopez et al. 2012) and biomarker
development workflow (Diamandis 2012b). In the latter case,
this sometimes (rarely) results in fraudulent claims (Samuel
Reich 2011), but mostly results in false discoveries that exhibit
pre-analytical, analytical, and/or post-analytical shortcomings
and whose original performance claims could not be indepen-
dently reproduced in subsequent validation studies (Diamandis
2010). There are, naturally, true discoveries that have been val-
idated by using robust and reliable techniques, with reproduc-
ible and concordant results among different, independent stud-
ies that, nonetheless, fail to Breach the clinic.^ This may be due
to failure in decisively contributing to patient care, except for
providing some incremental, but clinically not essential infor-
mation (Kantelhardt et al. 2011). Additional reasons include the
insufficient strength of the marker’s predictive value (Simon
et al. 2006) and the existence of too many false positives/
negatives (limited sensitivity and/or specificity), that often lead
to unnecessary invasive confirmatory procedures (Scholler and
Urban 2007) or the simple lack of profitability (Diamandis
2012b). However, instead of only extending the conventional
approaches that have been used historically, a different ap-
proach may be required to overcome such restraints, with the
participation of clinicians for the identification of realistic, in-
teresting, and practical proteomic signatures.

Additionally, correlation of proteomic data with other omics
still remains a difficult task. However, the exponential advances
observed in computer processing power, database technology,
and statistical algorithms are successfully contributing to over-
come these hurdles. Lastly, sample consumption and sensitiv-
ity, namely for the proteomic analyses of biopsy samples, have
not yet been fully optimized, although some techniques have
been developed to address this issue, such as laser capture
microscopy coupled with tandem MS. Absolute quantification
will allow researchers to thoroughly standardize and validate
data on biomarker candidates across different experimental
techniques, platforms/equipment, and laboratories, which, to
this day, remains a major challenge in proteomic studies.
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Considerable efforts (and funds) have been dedicated to
proteomics towards the discovery of revolutionary bio-
markers. Nonetheless, only a few have yielded benefits to
patients. Although proteomics holds exciting and promising
prospects, it still does not offer a robust and high-throughput
system. Most MS techniques are based on a combination of
multiple sample preparation—namely, LC separation or im-
munoaffinity and/or solid phase extraction—that severely im-
pairs a truly high-throughput platform. Hence, in order to im-
prove the prospects of biomarker research, well-defined study
designs need to be established. Discovery, verification, and
validation phases must encompass multiple checkpoints that,
if passed, offer a high probability of establishing valid bio-
markers. Furthermore, the participation of clinicians, offering
key concurrent clinical background, is of the utmost impor-
tance, if we intend to develop clinically relevant biological
markers (Diamandis 2012b; Prensner et al. 2012).

Future perspectives

Despite all the technological advances, robust assay platforms
operating under standardized protocols are still lacking, and

currently, no single immunoproteomic technology is optimal,
with studies rather focusing on a combination of experimental
methods. However, clinically useful and validated proteomic
markers can be identified resorting to such strategies.

For diagnostic purposes, most of the discovered antigens
are presently transferred to ELISA-based assays, despite
ELISA’s limitations for the testing of extended antigen panels.
Hence, it is foreseeable that specialized antigen arrays, such as
fluid-phase systems, may replace ELISA-based studies for the
clinical use of multiplexed antigen assays in clinical laborato-
ries in the future (Selvaraju and El Rassi 2012; Tjalsma et al.
2008). Regardless of these challenges, antigen-profiling ad-
vances will be of great clinical value for screening, diagnosis,
prognosis, and monitoring not only infection but also thera-
peutic intervention in autoimmune diseases and cancer.

Consequently, the potential of immunoproteomics will
quickly unravel, and concerting efforts towards testing of mul-
tiple biological markers in the same sample may greatly con-
tribute to overcome one of the major problems in proteomic
research, sample availability (Vlahou 2013). There is also the
need to bridge the gap between bench research and clinical
application—similarly to many other fields of research (Rob-
erts et al. 2012), and regulatory requirements need significant

Table 1 Exploitation of the host-response in the identification of new antigens and the enhancement of the efficacy of already identified bacterial
antigens

Strategy Organism Results/targets Observations References

Identification
of new antigens

Neisseria meningitidis 17 new antigens Different subcellular localizations Tsolakos et al. 2014

3 antigens identified All outer membrane proteins
(OMP)

Williams et al. 2014

Streptococcus pneumoniae 6 immunogenic proteins
identified

Secreted protein Gsp-781 showed
high immunogenicity

Choi et al. 2012

Burkholderia pseudomallei 12 immunogenic proteins
identified

9 showed to be outer membrane
proteins

Harding et al. 2007

New antigen OMP85 Putative outer membrane protein Su et al. 2010

Campylobacter jejuni 14 vaccine candidates CadF and CadF cleaved Fn-binding
polypeptides showed high potential

Hu et al. 2013

Helicobacter pylori 155 immunoreactive
proteins identified

Discerned different H. pylori disease
phenotypes; 3 OMP

Lahner et al. 2011

Staphylococcus epidermidis 19 immunoreactive
proteins identified

Reactivity differences in biofilm
dormancy

Carvalhais et al. 2015b

Klebsiella pneumoniae 134 potential
immunoreactive
proteins

All OMPs Bednarz-Misa et al. 2014

Vibrio parahaemolyticus 4 immunogenic
proteins identified

Low-abundance OMPs; VP0802 is
highly conserved in Vibrio species

Li et al. 2014

Enhancement of
existing vaccines

Neisseria meningitidis Surface lipoprotein FHbp Provided broad protection against
serogroup B

Granoff 2014

Mycobacterium tuberculosis DNA vaccine candidate
Rv3407

Improved the vaccine efficacy of BCGa Mollenkopf et al. 2004

Purified exosomes carrying
mycobacterial antigens

Boosted BCGa immunization; may
yield cell-free vaccines

Cheng and Schorey 2013

Mycobacterium bovis Hlyb-secreting recombinant
M. bovis

Conferred greater BCGa protection Grode et al. 2005

aM. bovis Bacille Calmette-Guérin, an attenuated vaccine for tuberculosis
bMembrane-perforating listeriolysin of Listeria monocytogenes
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improvement and simplification, in order to enable a timely
implementation of the efforts towards better medicine and
patient care (Frantzi et al. 2014).

Conclusion

The advances in mass spectrometry-based strategies for pro-
tein quantification have opened new, broad applications for
drug development, clinical diagnosis, and personalized medi-
cine. Conceptually, when complemented with other tech-
niques, such strategies pave the way towards the discovery
of proteomic signatures and accurate validation, as well as
personalized medicine and therapies.

MS-based techniques have undoubtedly provided a surge of
novel protein marker candidates for a wide variety of diseases.
These can potentially be validated prior significant investments
in both time and resources in pre-clinical testing are made.

Technical improvements in this rapid evolving technology
anticipate that the currently observed limitations may be
ephemeral. The development of an absolute quantitative plat-
form, with high sensitivity and specificity, capable of detect-
ing multiple proteins/peptides and endowed with the capabil-
ity of monitoring PTMwill provide us an exquisitely powerful
tool for the development of better medicine.

Bioinformatic tools will play a key role in this endeavor,
although some restrictions still exist, namely data manage-
ment of the wealth of information obtained. Nonetheless, the
ever-expanding computational power may decisively contrib-
ute to overcome such limitations in the near future.

Proteomics, and, more specifically, immunoproteomics, is
the new promising omics. It is yielding a better understanding
of health, disease, and disease progression, offering routes to
the discovery of new vaccines, proteomic signatures, and bio-
markers. There are, however, limitations that need to be
surmounted and the development of a roadmap, identifying
the key steps in the discovery of biological markers and val-
idation, is essential. In the end, such proteomic signatures will
teach us about disease mechanisms and will grant us useful,
actionable information that will yield undeniable benefits for
both patients and clinicians and, ultimately, society as a whole.
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