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Abstract

Background: The inference of complex networks from data is a challenging problem in biological sciences, as well
as in a wide range of disciplines such as chemistry, technology, economics, or sociology. The quantity and quality of
the data greatly affect the results. While many methodologies have been developed for this task, they seldom take
into account issues such as missing data or outlier detection and correction, which need to be properly addressed
before network inference.

Results: Here we present an approach to (i) handle missing data and (ii) detect and correct outliers based on
multivariate projection to latent structures. The method, called trimmed scores regression (TSR), enables network
inference methods to analyse incomplete datasets by imputing the missing values coherently with the latent data
structure. Furthermore, it substitutes the faulty values in a dataset by proper estimations. We provide an
implementation of this approach, and show how it can be integrated with any network inference method as a
preliminary data curation step. This functionality is demonstrated with a state of the art network inference method
based on mutual information distance and entropy reduction, MIDER.

Conclusion: The methodology presented here enables network inference methods to analyse a large number of
incomplete and faulty datasets that could not be reliably analysed so far. Our comparative studies show the
superiority of TSR over other missing data approaches used by practitioners. Furthermore, the method allows for
outlier detection and correction.

Keywords: Network inference, Missing data, Outlier detection, Projection to latent structures, Trimmed scores
regression, Information theory, Mutual information

Background
The problem of inferring complex networks is frequently
addressed in several research areas [1, 2] such as social
sciences (networks between academics, labor relations),
engineering (electric power grid), chemistry (chemical
reaction networks) or biology (ecological or cellular net-
works). In the context of cellular networks the individuals
(network nodes) are biochemical entities such as genes,
proteins, or metabolites. Many different approaches have
been applied to date in this area, none of which can be
singled out as the best one for all problems. Comparisons
often find large discrepancies between the predictions of
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different algorithms, making network inference an open
problem in bioinformatics research [3–7].
Network reconstruction usually begins with collecting

data from each individual that participates in the net-
work. Then, based on the relationships detected among
them, links between the individuals are established.When
no prior knowledge is introduced, the reconstruction of
complex networks depends solely on the available data.
In many cases, the data collection represents a challenge
itself when experimental measurements are involved.
Network inference methods rely on estimating quantities
such as correlation or mutual information, whose cal-
culation requires simultaneous measurements of several
variables.When the data collection in a time point fails for
a particular variable, resulting in an unmeasured value, the
scientist has to decide whether to discard the information
regarding the entire experiment at this time point or to
impute an appropriate value. This problem is also faced in
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process monitoring, for example when sensors fail, when a
particular measurement is outside the range of the instru-
ment, or when a failure is produced between the control
system and the instrumentation [8, 9].
The problem of missing data has been widely studied

using projection to latent structure methods such as prin-
cipal component analysis (PCA) [10]. Several methods
have been developed using PCA in their cores, like the
iterative algorithm (IA) [11], the NIPALS algorithm [12],
and regression-based methods like known data regression
(KDR) and trimmed scores regression (TSR) [13], of which
the latter has been shown to be one of the best perform-
ers [14]. These methods exploit the existing correlations
between variables to impute the missing values coherently
with the latent structure of the dataset. Other meth-
ods commonly applied to impute missing data are based
on clustering algorithms, like the k-nearest neighbor
algorithm and its variants [15].
Projection to latent structure methods, especially PCA,

can also be used for outlier detection [16]. Multi-
variate statistical process control allows the detection
of abnormal situations during process monitoring [17].
Latent structure-based methods allow monitoring a large
number of process variables, reducing the dimension-
ality of the original space to a few latent variables
and statistics that are easy to control using charts.
These methods are able to detect not only univariate
outliers (i.e. values outside the usual range of a par-
ticular variable) but also changes in the latent struc-
ture (i.e. correlation structure) of the original vari-
ables, which classical univariate control charts usually
miss [18]. Latent structure-based monitoring methods
can be easily extrapolated to network inference. In this
context, the outliers would be abnormal behaviors for
certain individuals of the original dataset, or odd mea-
surements for concentrations in time points during an
experiment.
In this work we provide two new functional modules

for curating the data that will be used as input to net-
work inference procedures. The first module is devoted
to handle missing data. If the toolbox detects that the raw
dataset has missing values, the TSR method is applied
in order to fill the holes in the dataset coherently with
the latent structure of data. The second module detects
extreme outliers in the raw dataset, and if there exist,
they are first replaced by missing values and then recal-
culated using TSR. TSR was originally proposed in [14]
for PCA model building with missing data, however,
the application of TSR to correct outliers is new. The
way both preprocessing modules act can be visualized in
Fig. 1. To evaluate the performance of TSR a compari-
son with other missing data methods commonly used by
practitioners is carried out using several network infer-
ence benchmark problems. Likewise, several univariate

and multivariate outliers are included in the datasets
in order to check the ability of the outlier detection
module.
Additionally, to illustrate how a network inference

method can be augmented with these functionalities, we
use them here in combination with a state of the art tech-
nique called MIDER (Mutual Information Distance and
Entropy Reduction) [19]. MIDER is a general purpose
method that exploits information-theoretic concepts such
as entropy and mutual information [20, 21]. Information-
theoretic methods have strengths such as good scalability
and the ability of detecting nonlinear relationships, and
are widely used for the reverse-engineering of biological
networks [22], with examples such as CLR [23], ARACNE
[24], MRNET [25], MI3 [26], or TD-ARACNE [27]. In
[19] the performance ofMIDERwas benchmarked against
these methods, obtaining competitive results. We empha-
size that MIDER is used for demonstration purposes, but
any other network inference method – such as those men-
tioned before – could be used as well. The data curation
modules presented here are of general purpose, and work
on the data independently of the reverse engineering
procedure.
To facilitate their use, a Matlab/Octave implementa-

tion of the two data curation modules is included in
the Additional files section (Additional files 1 and 2).
Additionally, they have been included in a new version of
the MIDER toolbox, MIDERv2 (http://gingproc.iim.csic.
es/~gingproc/mider.html and https://sites.google.com/
site/midertoolbox/).
Network inference studies that take into account the

missing data imputation problem have been more com-
mon in the social sciences than in the biological sciences;
however, some examples of the latter type can also be
found. Thus, the works [28–32] report network inference
results obtained with datasets with missing values. Wu
et al. [28] presented a network inference method with an
interpolation controller, providing three selections of data
interpolation approaches. In [29, 30] missing data is han-
dled with a weighted k-nearest neighbor method. Hurley
et al. [32] illustrated the use of a suite of GRN analysis
tools imputing missing data using the LSImpute miss-
ing value estimation method. It should be noted that the
aforementionedmethods [28–30, 32] are specific for GRN
inference with gene expression data, and the approaches
chosen to handle missing data are not justified nor com-
pared to other alternatives. In [31] a network inference
tool designed for GRNs, NetGenerator, is extended in
several ways in order to predict pathogen-host interac-
tions (PHIs). Remarkably, NetGenerator is applicable to
datasets with missing values, although it requires com-
plete data for the last time point, which means that miss-
ing data imputation procedures may still be needed in
some cases. There are also studies that have addressed the
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Fig. 1Missing data and outlier detection and correction modules. Initially, if there are missing values in the raw dataset, trimmed scores regression
(TSR) method is used to impute the missing data. Then, if the dataset has extreme outliers, first a missing value is generated for the faulty
observation, and secondly the observation is reconstructed using again TSR

issue of missing data in biological applications, but outside
the context of network inference, e.g. [33].
The present contribution differs from the aforemen-

tioned works in that it (i) presents a general method for
handling missing data and outliers, (ii) compares its per-
formance with that of other common approaches, (iii)
provides an implementation of the methodology, and (iv)
combines it with a freely available general-purpose net-
work inferencemethod. In this respect, theremay bemore
resemblances with a recently published paper [34], which
presents a framework for network inference in Cytoscape
and includes the possibility of using three built-in missing
data “apps”: row average, zero imputation, and Bayesian
principal component analysis. The present manuscript is
complementary to [34] since (i) the missing data imputa-
tion methods are different, and (ii) here, outlier detection
and correction is also taken into account.

Methods
This section begins with a description of the methodology
for handling missing data, presenting the different meth-
ods used in the comparative study. Afterwards, the proce-
dure for the detection and correction of outliers is defined.
Then the main features of the MIDER network inference
method are summarized, including an introduction of the
concepts of entropy and mutual information, which are
common to other information-theoretic methods. Finally,
the case studies used for testing the methodology are
described.

Missing data
Two projection to latent structure methods are used in
this paper for imputing missing data: the iterative algo-
rithm (IA) and the trimmed scores regression (TSR).
Since both use principal component analysis (PCA) in
their cores, this method is introduced here. The aim of

PCA is to find the subspace in the variable space where
data vary the most [35]. The original variables, which are
usually correlated, are linearly transformed into a lower
number of uncorrelated variables (the so-called principal
components, PCs). PCA follows the expression:

X = TAPT
A + EA (1)

where X is the data matrix, A is the number of PCs
extracted, TA is the scores matrix containing the projec-
tion of the objects in the A-dimensional subspace, PA is
the loadings matrix containing the weights for the linear
combination of the variables represented in each of the
PCs, and EA is the matrix of residuals.
Recently the TSR method [13] has been adapted to the

PCA model building problem with missing data [14]. TSR
was originally proposed for the PCA model exploitation
problem, i.e. when a PCA model fitted on complete data
is used to process incomplete new observations [13]. In
our context, the model building version of the algorithm
is applied.
Some notation has to be introduced to describe the TSR

method. Let xi be a row of the data matrix X. If this obser-
vation has missing values, the vector can be reordered to
have all missing values, x#i , at the beginning, and all known
values at the end, x∗

i . This induces a partition on the origi-
nal datamatrixXi = [X#

iX∗
i ], corresponding to themissing

and known parts of row vector xi, respectively. Now the
steps of TSR algorithm can be enumerated:

1. Impute 0s for all missing values.
2. Center the data subtracting the mean of all variables.
3. Fit a PCA model.
4. For each row i with missing data:

(a) Fit a regression model between X#
i and the

scores of a new PCA model on X∗
i .
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(b) Estimate the missing values with the
predictions of the regression model.

(c) Incorporate the estimated missing values in
the dataset X.

5. Add the mean of the original variables.
6. Repeat steps 2–5 until convergence, i.e. when the

mean difference between the predicted values for the
missing data in step n and n-1 is lower than a
specified threshold.

Another procedure for building a PCA model from an
incomplete dataset X is IA [11]. This method differs from
TSR in the imputation step. TSR fits a regression model
between the missing values and the scores of the available
data, while IA uses the PCA model calculated using all
data. Since both TSR and IA use PCA internally, the num-
ber of PCs, A, have to be determined a priori. The choice
of the number of PCs depends on the aim of the study
[36, 37]. Here, since we want to carefully reconstruct the
missing values, we need to capture a huge amount of
variability in the PCA model. Therefore, A is here deter-
mined automatically, computing as many PCs as needed
to explain 90 % of correlation in data.
There are other approaches to impute missing data that

are commonly used by practitioners. One of these meth-
ods is the complete case analysis (CC) [9]. This method
consists simply in the elimination of the rows in the
dataset with missing values. Another typical approach is
to impute the mean values of the variables with miss-
ing data, the so-called unconditional Mean Imputation
(MI). These two methods are strongly discouraged by the
authors, since they may involve a huge waste of data in
the former case, and may destroy the correlation struc-
ture of the original data in the latter. However, since these
methods are commonly used as a first (and fast) attempt
to “solve” the problem of missing data, we decided to
include here their results. Additionally, two other meth-
ods are included in the comparative study. The first one
consists of imputing the average value of a linear interpo-
lation (LI) between the previous and the posterior values
of the missing datum. The second fills the missing values
of an observation with the ones of its nearest neighbor
(NN) using the k-nearest neighbors algorithm.
A key comment is due here regarding missing data

pattern and mechanism [9, 38]. All aforementioned meth-
ods are applicable when the pattern, i.e. the positions in
which the missing data appear in the data set, is non-
structured (the missing values are located in a random
fashion in all rows and columns of the data set), uni-
variate (missing data appear only in a single variable), or
block-wise (the missing values appear only for a subset of
variables). Additionally, the missing data mechanism, i.e.
the reason why the missing values are missing, has to be

missing completely at random (MCAR) or missing at ran-
dom (MAR). When the missing value mechanism is not
missing at random (NMAR) (e.g. questions not answered
on purpuse in a survey or values below the detection limit
of a device) these methods are not applicable, since there
is not enough available information to infer the missing
positions in the data. An extended discussion on these
issues can be found in [9].

Outlier detection and correction
As stated in the introduction, projection to latent struc-
ture methods are commonly used within industries to
monitor huge amounts of variables during a process. The
concept of abnormal situation (or fault) in this context can
be extrapolated here to errors during the data acquisition
or mistakes during the data compilation. With this objec-
tive, PCA can be applied to find the latent structure of the
original data, before reconstructing the network, and then
identify these uncommon measurements.
When a PCA model is fitted, two different types of out-

liers can appear [17]. The first type of outlier is detected
via the Hotelling-T2 statistic, which represents the esti-
mated Mahalanobis distance from the center of the latent
subspace to the projection of an observation onto this
subspace [39]

T2 =
A∑

a=1

t2a
λa

(2)

where A is the number of principal components (PCs)
of the PCA model, the ts are the score vectors (columns
of TA matrix), and λ are the values in the (diagonal)
covariance matrix of TA.
The second type of outlier is the Square Prediction Error

(SPE), which measures the euclidean (perpendicular) dis-
tance from an observation to the A-dimensional latent
subspace [39]:

SPE = eTi ei (3)

where ei is the i-th row of the residual matrix, EA, of the
PCA model.
While the first type of outlier usually represents a

change in the process, but still coherent with the actual
correlation structure of the data, the second one breaks
the correlation structure, which is usually associated to
failures in the process. The latter type of outliers should be
removed in order to better understand the true structure
of data. This idea can be extrapolated to network infer-
ence, being the SPE outliers the possible failures when the
dataset is built. According to the previous rationale, these
outliers have to be removed in order to study the relation-
ships between species; otherwise these anomalous values
could mask the true structure of data. Once an observa-
tion is classified as an outlier, contribution plots can be
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used to isolate the original variable responsible of this
abnormal behavior [40].
The present paper proposes a methodology for auto-

matically detecting and correcting outliers. Some related
approaches have been published in the past focusing on
fitting PCAmodels with missing data and/or outliers [41].
Here, since the goal is to cure the dataset, we use TSR to
correct for the outliers, thus allowing the exploitation of
all the data available for the network inference task.
The outlier detection and correction procedure is as

follows. The first step consists of calculating the PCA
model of data. As in TSR, the number of PCs is here
determined automatically, extracting all the PCs whose
associated eigenvalue, in the singular value decomposition
[42], is higher than one. It is worth noting that the number
of PCs determined here may be different than the num-
ber of PCs extracted by TSR, since in the outlier scheme
we want to detect deviations from the main directions of
variability, i.e. deviations from the PCs with the highest
eigenvalues.
Once the PCA model is fitted, the next step consists of

calculating 95 % upper control limit of SPE in order to
detect possible faults. Different ways of computing control
limits have been proposed in the literature [40]. How-
ever, when dealing with real data, which do not fulfill the
theoretical constraints, the outliers may not be correctly
detected in this way. Hence in this study we calculate the
control limits using a cross validation scheme [43] as fol-
lows: a thousand data subsets are randomly selected to
compute “real” 95 % control limits, i.e. leaving 5 % of the
observations above the limit. Then, the median of all the
limits is computed to take it as the reference limit. Values
above this limit are considered outliers.
From the set of outliers, another classification has to

be done. Any control limit based on a confidence inter-
val has intrinsically a false alarm rate, corresponding to
the confidence level. In the present case, 5 % of the obser-
vations are likely to fall above the control limit without
necessarily being outliers. If more observations appear,
they can be considered as faults. To distinguish between
both types of “outliers” we follow an outlier classifica-
tion recently proposed in [44]. Firstly, the outliers are
ordered in decreasing order. Secondly, the admissible false
alarm rate, corresponding to 5 % of the observations,
are no longer considered as outliers. Finally, each value
above two times the control limit is considered an out-
lier. Additionally, a data point is considered an outlier
if its distance to the control limit exceeds 10 times the
distance between the lowest false alarm and the control
limit.
Once the extreme outliers have been identified it is

needed to determine the variable responsible for the fault.
For this purpose, contribution plots can be used to deter-
mine which variable k of the i-th observation has the

highest Square Prediction Error (SPE) [39]:

Cont(SPE, xi,k) = e2i,k (4)

Once the responsible variable is identified, a missing
value is generated for that value. And finally, TSR is again
used to reconstruct the faulty observation following the
latent structure of data.

Network inference: using mutual information distance and
entropy reduction (MIDER)
Here we briefly introduce some concepts relevant for
information-theoretic network inference, which will be
later needed for describing the MIDER method used to
demonstrate our approach.
The theoretical foundation of network inference meth-

ods such as [19, 23, 25–27] is information theory, which
is based on the concept of entropy as defined by Shannon
[20]. The entropy of a discrete variable X with alphabet χ

and probability mass function p(x) is:

H(X) = −
∑

x∈χ

p(x) log p(x) (5)

where the logarithm to the base 2 is usually chosen. For
continuous variables the

∑
is replaced by

∫
. It is possible

to calculate the joint entropy of a pair of variables (X,Y )

as H(X,Y ) = − ∑
x
∑

y p(x, y) log p(x, y). Another impor-
tant quantity, conditional entropy H(X|Y ), can be calcu-
lated as the entropy of a random variable Y conditional to
the knowledge of a second one, X:

H(Y |X) =
∑

x
p(x)H(Y |X = x)

= −
∑

x
p(x)

∑

y
p(y|x) log p(y|x) =

= −
∑

x

∑

y
p(x, y) log p(y|x) (6)

The relation between joint and conditional entropy is
expressed as H(X,Y ) = H(X) + H(Y |X). A related
concept is the relative entropy, which measures the dis-
tance between two distributions p and q and is defined as
D(p||q) = − ∑

x p(x)log
p(x)
q(x) . It has two important prop-

erties: it is always non-negative, and it is zero if, and only
if, p = q. The relative entropy between the joint distribu-
tion p(x, y) and the product distribution of two variables,
p(x)p(y), is called mutual information, I, that is:

I(X,Y )=
∑

x

∑

y
p(x, y) log

p(x, y)
p(x)p(y)

=H(X)−H(X|Y ) =

= H(X) + H(Y ) − H(X,Y ) (7)

For a detailed description of the elements of informa-
tion theory, see [21]. The concept of mutual information
can be used to detect relationships between variables of
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any kind, since it is a measure of the amount of infor-
mation that one random variable contains about another.
Indeed, it has been used as the basis of many inference
methods, e.g. the aforementioned [19, 23, 25–27], among
others. Mutual information is a symmetric measure that
does not assume any property of the dependence between
variables, such as linearity or continuity. Hence it is more
general than linear measures such as the correlation coef-
ficient, and it has been shown that it is capable of inferring
more interactions [23]. Intuitively, if two components of
a network interact strongly, their mutual information will
be large; if they are not related, their mutual information
will be (theoretically) zero, or (in practice, when estimated
from data) very small.
In this work we have built on the network inference

method named MIDER [19], which uses information-
theoretic concepts to infer relationships between vari-
ables, and to discriminate between direct and indirect
interactions. Its core feature is entropy reduction, which
consists of calculating the reduction of the entropy of a
variable Y caused by other variables in the network. The-
oretically, if a variable Y is completely independent of
a set of variables X, then H(Y |X) = H(Y ); otherwise
H(Y |X) < H(Y ). Therefore, if a subset of variables X
reduces the entropy of Y to the minimum (i.e. if adding an
additional variable to X does not produce further reduc-
tions in the entropy of Y ), we have found the complete set
of connections between Y and the remaining variables in
the network.
TheMIDERmethodology uses the aforementioned con-

cepts in the following procedure (for further details read-
ers are referred to [19]):

1. Based on the estimation of time-lagged
multidimensional entropies and mutual information,
MIDER estimates the distance between variables and
then projects the distance matrix onto a 2-D space
using multidimensional scaling.

2. Then the links between variables are established
based on the first, second and third order conditional
entropies.

3. The strength of a link between two variables is
calculated from the relative reduction of the entropy
of the first variable caused by the addition of the
second variable.

4. Finally, directionality is assigned to the inferred links.
The direction of a link connecting two variables X
and Y is the one that gives the maximum transfer
entropy. The transfer entropy from X to Y is
calculated as:

TX→Y = H(Y t|Y t−τ ) − H(Y t|Y t−τ ,Xt−τ ) (8)

where t indicates the lag - obtained in the first step -
for the X − Y pair.

Case studies
In order to validate the usefulness of the proposed
methodology five well-known benchmark problems are
selected, four from [19] and one new test case from the
DREAM5 Network Inference challenge1. Additionally, to
test the performance of the TSR method against the other
approaches, a comparative study is also performed. The
first benchmark problem (BM1) is a small chain of three
reactions between four species (W, Y, X and Z) proposed
in [45, 46] (see BM1 in Fig. 2). In this network the reaction
betweenW and Y is muchweaker than the other reactions
Y − X and X − Z.
The second benchmark problem (BM2) is the so-called

IRMA (In vivo Reverse-engineering andModeling Assess-
ment) [47]. It corresponds to a yeast synthetic network
for benchmarking reverse-engineering approaches. IRMA
consists of five genes that regulate each other through sev-
eral interactions. It is particularly interesting as a bench-
mark because it is an engineered system, which means
that the true network is known, and at the same time the
system outputs can be measured in vivo, instead of just
simulated in silico. A dataset consisting of time series and
steady-state expression data after multiple perturbations
is available; for network inference purposes the time-
series data was used. Figure 2 shows the reconstruction of
the network by MIDER.
BM3 models the first steps of a glycolytic pathway. The

reconstruction of this network is shown in Fig. 2. The
problem of reverse-engineering this system – a chemi-
cal reaction network of realistic size – was chosen in [48]
as a way of demonstrating the feasibility of the Correla-
tionMetricMethod (CMC).With that aim, an experiment
was carried out in a continuous-flow, stirred-tank reactor.
Experimental time-series data were obtained for the con-
centrations of ten chemical species: Pi, G6P, F6P, F16BP,
F26BP, and DHAP, as well as the input and reactor con-
centrations of citrate and AMP. The sampling period was
13 minutes, and the overall number of sampling instants
was 57. The data is publicly available online2 as part of the
Deduce software package.
The fourth benchmark problem (BM4) was generated

for the DREAM4 in silico network challenge3. This chal-
lenge aimed at reverse engineering genetic networks.
The artificial network presented here was generated as
reported in [49, 50]. It consists of 10 nodes and 13 links.
The MIDER reconstruction of this network is shown in
Fig. 2.
Finally, the last benchmark problem (BM5) is an in-

silico network produced for the DREAM5 network infer-
ence challenge. Specifically, we used the problem referred
to as “Network 1”, which is an in silico network with
1643 nodes (genes), of which 195 are transcription fac-
tors. The challenge consisted in reporting an ordered list
of 100000 predicted interactions. We used MIDER to
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Fig. 2 Case studies. MIDER reconstructed networks with the original data for benchmark problems BM1 (small chain of 4 reactions), BM2 (In vivo
Reverse-engineering and Modeling Assessment), BM3 (first steps of a glycolytic pathway) and BM4 (DREAM4 in silico network challenge)

establish this list from the conditional entropies, repro-
ducing the original network with AUROC = 0.756, AUPR
= 0.181. As a comparison, other information-theoretic
methods used by the participants in the DREAM5
challenge reported solutions in the ranges AUROC =
[0.625 - 0.773], AUPR = [0.106 - 0.255], showing that
MIDER performed well when compared to other con-
tenders. The reconstruction of the network is not shown
here.

Results and discussion
The performance of the two data preprocessing modules
presented in this work has been assessed in two stud-
ies, whose results are reported in this section. The first
one addresses the missing data imputation, in which a
comparative study is performed among trimmed scores
regression (TSR) and other methods commonly used by
practitioners. The second one addresses the outlier detec-
tion, in which a set of outliers are simulated in case
studies in order to be detected and corrected by the out-
lier module. A 2.9 GHz Intel Core i7 computer with
8 Gb RAM has been used to obtain all results in this
section.

Missing data: comparative study
In this section we show the results of the tests of the miss-
ing data module. The performance of the TSR method
for the imputation of missing data is compared against
another multivariate projection method, the iterative

algorithm (IA), and other fast approaches used by prac-
titioners, like the complete case analysis (CC), the mean
imputation (MI), the linear interpolation (LI) between
known time points and the nearest neighbor imputation
(NN). The study is performed as follows. The five bench-
mark problems (BM1–BM5) described in the previous
section are chosen as case studies. In BM1–BM4, 7 differ-
ent percentages of missing data are generated, from 5 % to
35 %, and for each percentage, 100 datasets are simulated.
For BM5 the same percentages of missing data were gen-
erated; however, only one dataset was simulated for each
of them, due to the much higher computational cost of
reverse engineering such a large-scale network compared
to BM1–BM4.
In the original TSR paper [14], the mean square pre-

diction error (MSPE) was used to assess the performance
of each imputation method. However, in the present
study the application is different: the aim is to use the
imputed data for network inference. Hence, since differ-
ent imputations may lead to the same inferred network,
we use here instead the precision (P) and recall (R) of each
method as the performance criteria to evaluate the results.
P and R are defined as follows:

P = TP
TP + FP

R = TP
TP + FN

(9)

where TP are the true predicted links with respect to the
reconstruction of the network without missing values, FP
the false positives, and FN the false negatives.
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a) b)

c) d)

e) f)

g) h)

i) j)
Fig. 3 Results of the missing data comparative study. The results of the different methods are shown by rows: complete case analysis (CC), linear
interpolation (LI), nearest neighbor algorithm (NN), mean imputation (MI), iterative algorithm (IA) and trimmed scores regression (TSR). By columns,
the asterisks mark methods with a statistically worse performance, compared to TSR, in each percentage of missing values

The mean results of P and R, for each BM problem,
are shown in color scale maps in Fig. 3. In each of
the subplots, the rows correspond to the six imputation
methods under study (CC, LI, NN, MI, IA and TSR) and
the columns correspond to the percentages of missing
values simulated on the complete dataset. Thus, each col-
umn permits to compare the results of TSR against the
other approaches for a particular percentage of missing

data. An absolute zero value, on either P or R, in Fig. 3
implies that the method is unable to impute the miss-
ing values for that particular percentage. To determine
whether the differences in P and R obtained among
TSR and the other methods, for each percentage, are
significant or not, a mixed-effects three-way ANOVA is
applied on the results. The first factor corresponds to
the method, the second one to the percentage and the
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third one to the simulated dataset with missing values.
Method and percentage are fixed-effects factors, while
simulated dataset is a random-effects factor. The sta-
tistically significant differences between pairs are estab-
lished using the 95 % LSD (least significance difference)
intervals.
The asterisks on the color maps in Fig. 3 mark the

statistically significant differences (p-values < 0.05)
with respect to TSR. In this way, if a method,
with certain percentage, has an asterisk implies that
TSR has significantly better results. When no sym-
bols are placed on a method it implies that there are
no statistically significant differences with respect to
TSR.
Figure 3 shows that CC, LI and NN are not able to

impute the missing data for medium-high percentages.
CC is the worst method: for small networks (BM1 and
BM2) CC can deal with up to 10–15 % of missing data,
but for more complex networks (BM3 and BM4) it can
only perform an imputation with 5 % of missing values.
LI and NN are slightly better, but they fail to reach 30 %
of missing data for all BMs. The TSR performance in all
BMs is statistically better than CC, LI and NN. TSR results
are superior to MI in most of the percentages of all BMs.
Regarding IA, TSR attains statistically better results for
most percentages in BMs 2–4. In the large network (BM5)
no statistical differences can be computed, however, none
of the aforementioned methods seems to outperform TSR
in this case study. CC and NN are not applicable in BM5
since, even considering only 5 % of missing values, all rows
in the data set have missing data. Furthermore, the results
in this DREAM5 network are similar to the mean val-
ues obtained in DREAM4 network (BM4). Since no single
method is statistically better than TSR for any percentage
of any dataset, it is sensible to choose this method to
implement the missing data module of network inference
procedures.
The missing data imputation is achieved in around 1–2

seconds in BM1-BM4, for all methods; however, most of
them are unable to impute withmedium-high percentages
of missing data. In BM5, LI maintains the computation
time of BM1-BM4, the mean imputation (MI) is achieved
in 48 seconds, and the most accurate methods in terms
of P and R (IA and TSR) perform the imputation in 1
hour by truncating the number of PCs to 50 (to accelerate
convergence).
Regarding the reconstruction of the network, TSR,

when used in combination with MIDER, is able to recover
more than 90 % of the links inferred with the complete
dataset in small networks with low percentages of missing
data. For higher percentages, 30–35 % of MD, it can infer
80 % of the links. Furthermore, for more complex net-
works with low percentages ofMD, it is able to reconstruct
nearly 70 % of the links inferred with complete data.When

the % of MD increases in these networks, it can recover
40–50 % of the links.

Outlier detection and correction: a simulated study
A simulated study is described here to assess the per-
formance of the outlier detection and correction scheme.
Two types of outliers are simulated on the benchmark
problems: univariate and multivariate outliers. The first
group involves outliers in the usual sense, i.e. values
3 times the interquartile range above (below) the 3rd
(1st) quartile. The second group involves outliers that
do not satisfy the aforementioned condition, i.e. they are
not outliers in a univariate sense, but nonetheless alter
the data correlation structure. This means that values
above (below) the mean plus (minus) 1.5 times the stan-
dard deviation are moved to the other side of the mean
value, e.g. if a variable has mean 0 and standard devia-
tion 1, a value of 2 is moved to –2. This latter group of
outliers requires a multivariate approach to be detected
since they are not univariate outliers, i.e. they can not
usually be detected using, for example, a box-whiskers
plot.
Three percentages of outliers are simulated in each

dataset: 1 % (with a minimum of 2 outliers), 5 % and
10 %. 100 rounds of univariate and multivariate out-
liers are simulated for each benchmark problem. A
paired t-test with α Type-I risk = 0.05 is used to
determine if the solution provided by MIDER is signif-
icantly improved by the inclusion of the detection and
correctionmodule.
Table 1 shows the results of the simulated study using

univariate outliers. The precision (P) and recall (R) of the
network reconstruction of MIDER and MIDER + outlier
scheme are shown by rows. It is worth noting that the
MIDER reconstruction of BM1 with univariate outliers
has exactly the same links as MIDER with the original
data set. However, the inclusion of the outlier detection
and correction scheme presents no significant differences
among the results. In BM2-BM3, the performance of
MIDER + the outlier scheme is statistically superior to
the results of MIDER on the faulty data. In this way, the
network reconstructed correcting the detected outliers is
more similar to the one inferred by MIDER using the
original data. The results for BM4 are not statistically sig-
nificant. Regarding BM5, no statistical differences can be
computed among methods, since only one simulation per
case is performed. However, the P and R results are coher-
ent with the mean values obtained for BM4. The outlier
detection and posterior imputation in BM1-BM4 is per-
formed in 2–3 seconds. This procedure takes 2 minutes in
the large network (BM5).
Table 2 shows the results of the simulated study using

multivariate outliers. In this case, MIDER + the out-
lier scheme performed statistically better than MIDER in
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Table 1 Univariate outliers simulated study

Outliers Method
BM1 BM2 BM3 BM4 BM5

P R P R P R P R

1 % MIDER 100 % 100 % 84.4 % 89.7 % 89.3 % 85.22 % 92.0 % 91.3 % 99.9 % 99.9 %

MIDER+OS 100 % 100 % 96.9 %∗ 97.0 %∗ 94.6 %∗ 91.3 %∗ 90.6 % 90.8 % 99.8 % 99.8 %

5 % MIDER 100 % 100 % 85.1 % 87.7 % 90.7 % 84.6 % 88.7 % 88.3 % 99.8 % 99.8 %

MIDER+OS 99.7 % 99.7 % 91.0 %∗ 92.3 %∗ 93.1 %∗ 88.1 %∗ 87.6 % 87.9 % 98.9 % 98.9 %

10 % MIDER 100 % 100 % 85.7 % 88.0 % 86.9 % 79.8 % 84.4 % 86.4 % 99.4 % 99.5 %

MIDER+OS 99.7 % 99.7 % 88.2 %∗ 89.7 %∗ 90.2 %∗ 81.8 %∗ 82.7 % 85.4 % 99.4 % 99.5 %

Precision and recall of the network inference of MIDER and MIDER + the outlier scheme (MIDER+OS)
The asterisks mark the statistically better results of MIDER+OS (p-value < 0.05)

BM1-BM4 for all percentages of outliers. The differences
are bigger when the network is simpler, e.g. BM1-BM2,
however there is also a significant improvement in the
quality of the solution in BM3-BM4 when MIDER is
used with this module. Finally, as in the univariate out-
liers study, no statistical differences can be computed
in BM5.

Remark on computation times
The computational cost associated to these procedures is
relatively modest, compared to that of performing net-
work inference. For the benchmark problems used in this
work, the cost of the TSR-based approach is of only a
few seconds for networks of moderate size (BM1-BM4),
while for the very large one (BM5, including thousands of
genes) it is of two minutes for outlier detection and cor-
rection and one hour for missing data imputation. These
values do not represent a significant increase in the com-
putation times of the network inference procedure, which
means that the proposed methodology is appropriate for
problems of realistic size.

Conclusions
This work has presented an enhancement of net-
work inference methods consisting of two prepro-
cessing modules for handling incomplete and faulty

datasets. The first one is capable of imputing values
for lost measurements coherently with the latent struc-
ture of data. The second module detects univariate and
multivariate outliers and replaces the faulty measure-
ments with new values coherently with the available
data.
A comparison of different methodologies for han-

dling missing data has led to two main conclu-
sions. First, traditional approaches used by practition-
ers, like complete case analysis (CC), linear interpola-
tion (LI), nearest neighbor algorithm (NN) and uncon-
ditional mean imputation (MI), have problems when the
datasets have high percentages of missing values and
when the complexity of the network increases. Second,
since trimmed scores regression (TSR) performs signif-
icantly better than the previous methods in BM1-BM4,
including the iterative algorithm (IA), it represents the
best approach to deal with missing values in network
inference.
Likewise, the module for detecting and correcting out-

liers proposed here also applies TSR for replacing faulty
observations. The good performance of this approach has
been shown by means of simulations with five bench-
mark problems. The results of the network inference
in four benchmarks with simulated multivariate outliers
are statistically better when the new module is used

Table 2 Multivariate outliers simulated study

Outliers Method
BM1 BM2 BM3 BM4 BM5

P R P R P R P R P R

1 % MIDER 66.7 % 66.7 % 84.9 % 88.2 % 86.9 % 82.0 % 88.3 % 88.8 % 99.9 % 99.9 %

MIDER+OS 100 %∗ 100 %∗ 91.6 %∗ 94.6 %∗ 90.8 %∗ 88.6 %∗ 91.5 %∗ 91.2 %∗ 98.6 % 98.6 %

5 % MIDER 65.7 % 65.7 % 83.7 % 86.8 % 83.0 % 74.7 % 79.6 % 83.1 % 98.6 % 98.6 %

MIDER+OS 91.0 %∗ 91.0 %∗ 86.9 %∗ 90.5 %∗ 85.6 %∗ 80.2 %∗ 82.8 %∗ 85.1 %∗ 97.3 % 97.3 %

10 % MIDER 64.0 % 64.0 % 80.6 % 83.2 % 70.1 % 69.7 % 70.4 % 77.3 % 98.8 % 98.8 %

MIDER+OS 73.0 %∗ 73.0 %∗ 82.6 %∗ 85.8 %∗ 72.8 %∗ 71.1 %∗ 73.0 %∗ 79.2 %∗ 98.2 % 98.2 %

Precision and recall of the network inference of MIDER and MIDER + the outlier scheme (MIDER+OS)
The asterisks mark the statistically better results of MIDER+OS (p-value < 0.05)
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as a preprocessing step; results obtained with univari-
ate outliers in the fourth benchmark are not statistically
significant.
Due to the long computation time required to anal-

yse the fifth benchmark, a single simulation is performed
in this large-scale network. Therefore, no statistical dif-
ferences are computed in this case study. However, the
results of TSR in the comparative study and the outlier
detection and correction are coherent with the results of
BM4.
By extending MIDER with these new functionalities

we have combined two different approaches for data
analysis: information-theoretic and variance-based. The
joint use of both methodologies increases significantly
the number of datasets that can be used for network
inference.
Crucially, both MIDER and the new preprocessing

modules are general-purpose methods, which may be
applied to networks of any kind – not only biological,
but also from other areas of science – without requiring
prior knowledge from the user. Furthermore, the missing
data and outlier detection and correction modules can be
used as a preprocessing step for other network inference
methods.

Software availability
Both data curation modules, trimmed scores regression
(TSR) for missing data imputation and the outliers detec-
tion and correction scheme, have been included in a
new version of the MIDER toolbox, MIDERv2 (http://
gingproc.iim.csic.es/~gingproc/mider.html and https://
sites.google.com/site/midertoolbox/).

Endnotes
1http://wiki.c2b2.columbia.edu/dream/index.php/

D5c4.
2http://genomics.lbl.gov/?pageid=44.
3http://wiki.c2b2.columbia.edu/dream/index.php/

D4c2.

Additional files

Additional file 1: TSR. The source code of trimmed scores regression
(TSR) algorithm for missing data imputation is provided ready to be used in
MATLAB. (M 2 kb)

Additional file 2: OUTLIERS. The source code of the outlier scheme for
detection and correction is provided ready to be used in MATLAB. (M 3 kb)
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