

1

MULTI-MODE RESOURCE CONSTRAINED PROJECT

SCHEDULING PROBLEM INCLUDING MULTI-SKILL

LABOR (MRCPSP-MS)-MODEL AND A SOLUTION

METHOD

Mónica A. Santos1, Anabela P. Tereso2

Abstract: The problem that we address in this chapter is an extension of the Resource-Constrained

Project Scheduling Problem (RCPSP). It belongs to the class of project scheduling problems with multi-

level (or multi-mode) activities, that permit an activity to be processed by resources operating at

appropriate modes, where each mode belongs to a different resource level and incurs different cost and

duration. Each activity must be allocated exactly one unit of each required resource, and the resource unit

may be used at any of its specified levels. The processing time of an activity is given by the maximum of

the durations that would result from different resources allocated to that activity. The objective is to find

an optimal solution that minimizes the overall project cost, given a delivery date. A penalty is incurred for

tardiness beyond the specified delivery date, or a bonus is accrued for early completion. We present a

mathematical programming formulation as an accurate problem definition. A Filtered Beam Search

(FBS)-based method is used to solve the problem. It was implemented using the C# language. Results of

our experimentations on the use of this method are also presented.

1. Introduction

The Resource-Constrained Project Scheduling problem that we address in this chapter involves multi-

level activities, where each activity can be processed using one of several modes that are available for

each resource, with each mode of a resource belonging to a different skill level and incurring different

cost and duration. This class of problems is an extension of the Resource-Constrained Project Scheduling

Problem (RCPSP), which has been shown to be NP-hard (Blazewicz et al., 1983). Some of the earlier

methods proposed for the solution of the project scheduling problem include: CPM (Critical Path

Method) (Kelley and Morgan, 1959), and PERT (Program Evaluation and Review Technique)

(MacCrimmon and Ryavec, 1964; Clark, 1962), resource allocation method (Davis, 1966), resource

leveling procedures (Bandelloni et al., 1994, Zimmermann and Engelhardt, 1998), Monte-Carlo

simulation-based methods (Metropolis et al., 1953; Ragsdale, 1989), and those based on criticality indices

(Dodin and Elmaghraby, 1985), among others. Ever since, there have been mathematical models

proposed for more complex problems. The search for optimal solutions for the RCPSP has focused on the

use of Integer Programming (IP) (Pritsker et al. 1969, Berthold et al. 2010, Nemhauser and Wolsey 1988),

Dynamic Programming (DP) (Bellman and Dreyfus, 1959, Elmaghraby et al., 1992), and Branch and

Bound (B&B) techniques.

The presence of binary variables in a problem has led researchers to develop B&B-based procedures for

its solution. The success of this technique depends on the branching scheme and on the tightness of the

bound used. Kis et al. (2005) explored the scheduling problem, where the need for resources for each

activity varies in proportion to the intensity of the activity itself. To formalize the problem, they used an

integer linear programming model and proposed a B&B-based algorithm to find an optimal solution.

However, B&B procedures are inadequate for real-size problems, despite their efficiency relative to a

frontal attack on the discrete optimization problem. The need to solve real problems in reasonable CPU

times, have led researchers to develop heuristic procedures.

The heuristics used belong to one of two classes: priority rule-based methods or meta-heuristic

approaches. The priority rule-based methods build a plan by selecting activities from a range of activities

available successively so that all activities are sequenced (Boctor, 1993; Dean et al. 1992; Heilmann,

2000). The meta-heuristic-based methods begin with an initial solution, and then, search for its

1 University of Minho, 4710-057 Braga, Portugal Email: monica.lasalete@gmail.com

2 University of Minho, 4710-057 Braga, Portugal Email:

anabelat@dps.uminho.pt

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55637212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:%20pg13713@alunos.uminho.pt
mailto:anabelat@dps.uminho.pt

2

improvement by defining an appropriate neighborhood. There are still two types of heuristics, series

heuristics where the priority of the activities is predetermined and remains fixed, and parallel heuristics

where the priority is updated each time an activity is scheduled for processing. Other types of heuristics

found in the literature, considered as a sub-field of meta-heuristics, are tabu search (Arroub et al., 2010),

simulated annealing (Mika et al., 2005) and genetic algorithms (Gonçalves et al. 2004). Tseng (2008) has

also discussed the use of genetic algorithms applied to the Multi-Project, Multi-Mode RCPSP.

For the multi-mode RCPSP, it has been shown that, for highly resource-constrained projects with more

than 20 activities and three modes in each activity, it is difficult to find optimal schedules (Hartmann,

2001). The heuristic methods are simple to understand, easy to apply, and are capable of clarifying the

scheduling process. Typically, heuristic methods consider each activity’s impact on a specific objective

by sorting the activities competing for resources and allocating only some of them the resources needed

for scheduling in a period. Besides, meta-heuristic make few or no assumptions about the problem and

have the advantage of performance consistency and the ability to determine global optimal solutions.

However, the search for optimal solution within feasible solutions makes meta-heuristic methods spend

more computational time than heuristic methods (Zhang et al., 2006).

The objective of our study is to minimize the total project cost given a due date that includes a bonus for

early completion or a penalty for tardiness. In several resource-constrained scheduling problem models

found in the literature, there are two important aspects present in any model: the objective and the

constraints. The objective may be based on time, such as minimizing the project duration (Boctor 1990,

Heilmann, 2000, Basnet et al., 2001), or on economic aspects, such as minimizing the project cost (Tereso

et al. 2004, Tereso et al. 2006, Mika et al., 2005). However, time-based objectives are often in conflict

with cost-based objectives. A recurrent situation encountered in practice is the need to complete a project

by its due date and maximize profit. Ozdmar and Ulusoy (1995) reported in their survey of the literature,

studies where the Net Present Value (NPV) is maximized while the due date is a ‘hard’ constraint

(Patterson et al. 1989, 1990). There are several other multi-objective studies in the literature where

efficient solutions regarding time and cost targets are generated. Guldemond et al. (2008) presented a

study related to the problem of scheduling projects with strict deadline jobs, defined as a Time-

Constrained Project Scheduling Problem (TCPSP), where a non-regular objective function is used. The

original RCPSP uses regular objective functions, like minimizing the makespan, but several non-regular

objectives have become popular like maximizing NPV. Vanhoucke et al. 2000 define regular and non-

regular measures of performance: “A regular measure of performance is a nondecreasing function of the

activity completion times, while for a nonregular measure of performance the above definition does not

hold”.

Kazaz and Sepil (1996) have presented a Mixed Integer Linear Program (MIP) formulation with Benders

decomposition for a project scheduling problem where the cash flows do not occur at some event

realization times, but as progress payments at the end of some time periods. In Sepil and Ortaç (1997),

three different heuristic rules were developed to solve the same problem, extended with renewable

resource constraints. Padman and Dayanand (1997) allow the decision-maker to set progress-payment

points and Etgar et al. (1997) incorporate elements of bonus/penalty structures. As the costs incurred

depend on the activities in progress while scheduling is based on non-cost related considerations, the

researchers explicitly included cash-flows-resources-constraints in their formulations. Elmaghraby and

Herroelen (1990) employed the following property of an optimal solution that maximizes the NPV: the

activities with positive cash flows should be scheduled as soon as possible and those with negative cash

flow as late as possible. They argue that the faster completion of the project is not necessarily the optimal

solution with regard to maximizing the NPV. In Mika et al. (2005) study, a positive flow is associated

with each activity. The objective is to maximize the NPV of all cash flows of the project. They used two

meta-heuristics that are widely used in research: Simulated Annealing (SA) and Tabu Search (TS). Our

problem objective is cost-based and we have a bonus/penalty structure, but we do not consider the NPV

objective.

In Ulusoy and Cebelli’s (2000) approach to payment scheduling problem (using a multi-mode RCPSP),

the amount and timing of the payments made by the client and received by the contractor are determined

so as to achieve an equitable solution. An equitable solution is defined as one where both the contractor

and the client deviate from their respective ideal solutions by an equal percentage. The ideal solutions for

the contractor and the client result from having a lump sum payment at the start and end of the project,

respectively. A double-loop genetic algorithm (GA) is proposed to solve an equitable solution. The outer

loop represents the client and the inner loop the contractor. The inner loop corresponds to a multi-mode

RCPSP with the objective of maximizing the contractor's NPV for a given payment distribution. When

3

searching for an equitable solution, information flows between the outer and inner loops regarding the

payment distribution over the event nodes and the timing of these payments.

Willis (1985) described requirements for modeling realistic resources. These requirements include the

variable need of resources according to the duration of the activity, variable availability of resources over

the period of the project, and different operational modes for the activities. A discrete time/resource

function implies the representation of an activity in different modes of operation. Each mode of operation

has its own duration and amount of renewable and non-renewable resource requirements.

The number of activities in a project determines the size of the project, and also, it contributes to the

complexity of a scheduling problem. Another fact contributing to the complexity of a project is the

precedence relations among the activities. As shown by Elmaghraby and Herroelen (1980), projects with

the same number of activities and the same number of activity relationships can have varying degrees of

difficulty. So, there is not a straightforward association between project complexity and problem

difficulty. Meanwhile, many project complexity measures have been proposed (Herroelen, 2006).

Boctor (1993) presented a heuristic procedure for the scheduling of non-preemptive resource-constrained

projects, where the resource is renewable from period to period. Each activity is assumed to have a set of

possible durations and resource requirements. The objective is to minimize the project duration. The

heuristic used belongs to the class of priority rule-based methods. This class builds a plan by selecting

activities from a range of activities available successively so that all activities are sequenced. A general

framework to solve large-scale problems was suggested. The heuristic rules that can be used in this

framework were evaluated, and a strategy to solve these problems efficiently was designed. Heilmann

(2000) also worked with the multi-mode case in order to minimize the duration of the project. In his

work, besides the different modes of execution of each activity, a maximum and minimum delay between

activities is specified. He presented a priority rule-based heuristic. Basnet et al. (2001) presented a

“filtered beam” search technique to generate makespan minimizing schedules, for multi-mode single

resource constrained projects, where there is a single renewable resource to consider and the multi-mode

consists essentially of how many people can be employed to finish an activity.

The problem presented here also belongs to the class of project scheduling problems with multi-level (or

multi-mode) activities, with each activity processed by resources operating at appropriate modes, where

each mode belongs to a different resource skill level, which implies different cost and duration. Usually,

multi-mode RCPSP defines an explicit set of modes for each activity, with a specific activity duration and

resource requirements. Our approach, however, defines a set of resource levels. Each activity may elect a

level for each one of the resources required. The combination of all possible levels of each resource,

required for the execution of the activity, provide the alternative modes of execution for each activity.

Santos and Tereso (2010) have presented a formal MRCPSP-MS model and a breadth-first search

procedure. Consequently, Santos and Tereso (2011a, 2011b) presented an adaptation of a FBS scheme to

this problem and reported result of a preliminary computational investigation. In this chapter, we present

further analysis on the results obtained for networks of different sizes.

In a Breadth First Search (BFS) scheme, all the nodes (partial solutions) in the search tree are evaluated at

each stage before going any deeper, subsequently realizing an exhaustive search that visits all nodes of

the search tree. The branch and bound search technique can be seen as a polished breadth first search,

since it applies some criteria in order to reduce the BFS complexity. Usually, it consists of keeping track

of the best solution found so far, discarding a node if it cannot offer a better solution. A FBS is a heuristic

B&B procedure that uses BFS but only the top best nodes are kept. At each stage of the tree, all

successors for the selected nodes at the current stage are generated, but it only stores a preset number of

descendent nodes at each stage, called the beam width.

The B&B and the Beam Search (BS) procedures have been typically applied to the RCPSP (Basnet et al.,

2001; Demeulemeester and Herroelen, 1996; Kis, 2005). The differentiating aspects of our approach are:

(i) the definition of a set of states followed by the activities; (ii) the priority rules used to solve resource

conflicts; and (iii) the alternative evaluation rules used to discard undesirable “branches”.

Our approach allows determination of a project solution using the BFS scheme or the FBS scheme. We

implemented the proposed approach using C# language.

4

2. Problem description

Consider a project network in the activity-on-arc (AoA) representation: 𝐺 = (𝑁, 𝐴), with |𝑁| = 𝑛

(representing the events) and |𝐴| = 𝑚 (representing the activities). Each activity may require the

simultaneous use of several resources with their consumption dictated by the selected execution mode -

each resource may be deployed at a different level. The objective is to determine the optimal allocation of

resources to the activities in order to minimize the total cost incurred (due to resources + penalty for

tardiness + bonus for earliness). We follow the dictum that an activity should be initiated as soon as it is

sequence-feasible.

There are |𝑅| = 𝜌 resources. A resource has a capacity of several units (say w workers or machines) and

may be used at different levels, such as a ‘resource’ of electricians of different skill levels, or a ‘resource’

of milling machines but of different capacities and ages. A level might be the power of usage of a

machine: high, medium or low, or the amount of hours used by a resource: half-time, normal time or

extra-time. Another example would be a ‘resource’ of routes where the levels could be: easy, short, fast,

or economic.

The different levels of a resource 𝑟 ∈ 𝑅 may be represented as 𝐿(𝑟) = {𝑟1, … 𝑟𝐿(𝑟)}; the number of

levels varies with the resource. If resource 𝑟 is utilized at level 𝑙 for activity 𝑗 then the processing time

shall be denoted by 𝑝(𝑗, 𝑟, 𝑙). An activity normally requires the simultaneous utilization of more than one

resource for its execution, but each activity must be allocated exactly one unit of each resource.

To better visualize the problem, one can summarize its characteristics in a matrix format as shown in

Table 1. For illustrative purposes, we assume that any resource may have at most three levels: low (level

1), average or normal (level 2), and high (level 3). A cell entry in the matrix is the processing time

𝑝(𝑗, 𝑟, 𝑙) for activity 𝑗 of resource 𝑟 at level 𝑙. Due to space limitations, Table 1 exhibits the information as

(𝑗, 𝑟, 𝑙); the symbol “𝑝” is forfeited. If an activity does not require a resource; this is indicated in the

matrix by the symbol ∅ (null). The symbol 𝑏𝑟 gives the number of units available of resource 𝑟.

Table 1: Problem characteristics with three levels.

The processing time of an activity is given by the maximum of the durations that would result from a

specific allocation of various resources. To better understand this representation, consider the miniscule

project of Figure 1 with three-activities. Assume that the project requires the utilization of four resources.

Figure 1. A project with three activities.

Activities

Resources Processing time (𝑗, 𝑟, 𝑙)

1 (
1b) … … |𝑅| = 𝜌 (

b)

1 (1, 1, 1) (1, 1, 2) (1, 1, 3) … (1, 𝜌, 1) (1, 𝜌, 2) (1, 𝜌, 3)

2 (2, 1, 1) (2, 1, 2) (2, 1, 3) … (2, 𝜌, 1) (2, 𝜌, 2) (2, 𝜌, 3)
.
.
.

.

.

.

.

.

.

.

.

.

|𝐴| = 𝑚 (𝑚, 1, 1) (𝑚, 1, 2) (𝑚, 1, 3) … (𝑚, 𝜌, 1) (𝑚, 𝜌, 2) (𝑚, 𝜌, 3)

𝑏𝑟= the number of units available of resource 𝑟.
(𝑗, 𝑟, 𝑙) = the processing time 𝑝(𝑗, 𝑟, 𝑙) for activity 𝑗 of resource 𝑟 at level 𝑙.

5

Let 𝛾(𝑟, 𝑙) be the unitary cost of resource 𝑟 at level 𝑙. Then, in each cell, there shall be a 2 ×
 |𝐿(𝑗, 𝑟)| matrix in which the first row gives the duration 𝑝(𝑗, 𝑟, 𝑙) and the second row the cost 𝑐(𝑗, 𝑟, 𝑙).

The total cost of a resource, at each level, is obtained as the product of the resource unitary cost with the

activity processing time.

Table 2: Project resource requirements, processing times and resource costs.

For brevity, Table 2 gives only the processing times and costs at each level of the resources; the identity

of the activity and the resource are suppressed.

The top row indicates that there are 4 resources with varying availability: resources 1 and 4 have 𝑏1 =
 𝑏4 = 2 units each, resource 2 has only one unit (𝑏2 = 1), and resource 3 has 𝑏3 = 3 units. The

following row specifies a cost rate for each level of the resource. A positive entry in the row

corresponding to activity 𝑗 indicates the resource(s) required by the activity-each activity must be

allocated exactly one unit of each resource. However, the resource may be utilized at any of its specified

levels. For instance, resource 2 has only 1 unit available, which can be utilized at any of its 3 levels: if, for

activity 2, it is utilized at level 1 (the lowest level), then the processing time is 7 (i.e.; 𝑝 (2, 2, 1) = 7)

and the cost is 14 (i.e.; 𝑐 (2,2, 1) = 14); if it is utilized at level 2 (the intermediate level), then the

processing time is 5 and the cost is 25; finally, if it is utilized at level 3 (the highest level), then the

processing time is 3 and the cost is 30; etc.

Suppose that all four resources are allocated at their respective level 2 (normal intensity). Letting 𝑝𝑗

denote the duration of activity 𝑗 and 𝑐𝑗 the total cost of activity 𝑗, we get:

 activity 1 shall take 𝑝1 = 𝑚𝑎𝑥{6, 8, 12} = 12 time units; 𝑐𝑗 = 18 + 24 + 48 = 90 monetary

units;

 activity 2 shall take 𝑝2 = 𝑚𝑎𝑥{5, 5} = 5 time units; 𝑐𝑗 = 25 + 20 = 45 monetary units;

 activity 3 shall take 𝑝3 = 𝑚𝑎𝑥{12, 16} = 16 time units; 𝑐𝑗 = 36 + 80 = 116 monetary units;

and the project shall consume 𝑚𝑎𝑥 {12 + 5, 16} = 17 time units to complete. However, due to

resource restrictions, activities 2 and 3 cannot be executed at the same time since resource 2 has only one

unit which must be allocated to either activity. So, if allocated first to activity 2, the project should

consume 𝑚𝑎𝑥 {12 + 5, 17 + 16} = 33 time units; if allocated first to activity 3, the project should

consume 𝑚𝑎𝑥 {16 + 5, 16} = 21 time units. The latter decision should be the preferred one. So, the

total resource cost of the project shall be 251 monetary units and will be finished at time 𝑇 = 21

(assuming the project started at time 𝑇 = 0). We also consider lateness costs and earliness gains

(negative costs). If the project specified due date is 𝑇𝑠 = 24, the project will finish early. If the unitary

cost for earliness is equal to −10, the total cost will be 251 − 10 ∗ 3 = 221.

3. Mathematical Model

Briefly, the constraints of this problem are:

• Precedence relationships among the activities.

• A unit of a resource is allocated to at most one activity at any time (the unit of the resource may be

idle during an interval) at one level.

• Capacity of each resource: the number of units allocated for processing at any time should not

↓Act
Resources (availability)

→
1 (2) 2 (1) 3 (3) 4 (2)

𝜂𝑗
Res. Unit cost for each level (1,3) (2,5,10) (1,3,5) (2,4,6)

1
𝑝(𝑗, 𝑟, 𝑙) (14,6)

Ø
(12,8,5) (18,12,7)

3
𝑐(𝑗, 𝑟, 𝑙) (14,18) (12,24,25) (36,48,42)

2
𝑝(𝑗, 𝑟, 𝑙)

Ø
(7,5,3)

Ø
(8,5,4)

2
𝑐(𝑗, 𝑟, 𝑙) (14,25,30) (16,20,24)

3
𝑝(𝑗, 𝑟, 𝑙) (20,12) (22,16,10)

Ø Ø 2
𝑐(𝑗, 𝑟, 𝑙) (20, 36) (44,80,100)

𝑝(𝑗, 𝑟, 𝑙) = the processing time 𝑝(𝑗, 𝑟, 𝑙) for activity j of resource 𝑟 at level 𝑙.
𝑐(𝑗, 𝑟, 𝑙) = the total cost for activity j of resource 𝑟 at level 𝑙.
𝜂𝑗= count of resources required for activity 𝑗.

6

exceed the capacity of the resource to which these units belong.

• An activity can be started only when it is sequence-feasible and all the requisite resources are

available, each perhaps at its own level, and must continue at that level for all the resources without

interruption or preemption.

The objective is to find an optimal solution that minimizes the overall project cost, while respecting a

specified delivery date. A penalty is incurred for tardiness beyond the specified delivery date, or a reward

is secured for early completion.

Consider the following variables:

Input variables

𝐺(𝑁, 𝐴): Project network in AoA representation with a set N of nodes and a set A of activities.

𝑛: number of nodes; 𝑛 = |𝑁|.
𝑚: number of arcs or number of activities; 𝑚 = |𝐴|.
(𝑖, 𝑗): activity, represented by arc (𝑖, 𝑗).

𝑟: resource 𝑟 ∈ 𝑅.
𝐿𝑟: set of levels for resource 𝑟.

𝜂𝑖,𝑗: the count of resources required by activity (𝑖, 𝑗).

𝜌: number of resources, 𝜌 = |𝑅|.
𝑏𝑟: capacity of resource 𝑟.

𝛾(𝑟, 𝑙): marginal cost of resource 𝑟 at level 𝑙 ($/period).

𝛾𝐸: marginal gain from early completion of the project ($/period).

𝛾𝐿: marginal loss (penalty) from late completion of the project ($/period).

𝑝(𝑖, 𝑗, 𝑟, 𝑙): the processing time of activity (𝑖, 𝑗) when resource r is allocated at level 𝑙 (time period).

𝑇𝑠: target completion time of the project (time period).

State variables

𝐶𝑘: the kth uniformly directed cutset (udc) of the project network that is traversed by the project

progression (i.e., a set of on-going activities); 𝑘 = 1, … , 𝐾.

𝑡𝑖 : time of realization of node 𝑖 (AoA representation), where node 1 is the “start node” of the project and

node 𝑛 its “end node” (time period).

Decision variables

𝑥(𝑖, 𝑗, 𝑟, 𝑙) : a binary variable, of value 1 if resource 𝑟 is allocated to activity (𝑖, 𝑗) at level 𝑙, and 0

otherwise.𝑙 is the level at which a resource is applied to an activity 𝑙 ∈ 𝐿𝑟.

Output variables

𝑐𝐸: earliness cost ($).

𝑐𝑇: tardiness cost. ($).

𝑐𝐸𝑇: earliness-tardiness cost. ($).

𝑐𝑅 : total resource cost for all project activities ($).

𝑇𝐶: total cost of the project ($).

Next, we present the relevant constraints.

We begin by defining the processing time of an activity as the maximum of the processing times imposed

by the different resources. These processing times will be a function of the levels at which the resources

required by the activity are allocated, and an activity cannot start before all the preceding activities have

finished, we have

𝑡𝑗 − 𝑡𝑖 ≥ max {𝑝(𝑖, 𝑗, 𝑟, 𝑙) ∗ 𝑥(𝑖, 𝑗, 𝑟, 𝑙)} , ∀ 𝑖, 𝑗 ∈ 𝑁, ∀ 𝑟 ∈ 𝑅, ∀ 𝑙 ∈ 𝐿𝑟 . (1)

The total units of a resource allocated at any time to all the activities should not exceed the capacity of the

resource to which these units belong. This restriction is applicable to the activities that are concurrently

active (i.e., on-going), which must lie in the same uniformly directed cutset (udc).

The total allocation of resource r to the active activities in the “current” udc 𝐶𝑘 cannot exceed its

available capacity

7

 ∑ 𝑥(𝑖, 𝑗, 𝑟, 𝑙) ≤ 𝑏𝑟 , ∀ 𝑟 ∈ 𝑅,𝑖,𝑗 ∈ 𝐶𝑘 ∀ 𝑙 ∈ 𝐿𝑟 , 𝑘 = 1, … , 𝐾 . (2)

A unit of a resource is allocated to an activity at only one level (the unit of the resource may be idle

during an interval of time):

∑ 𝑥(𝑖, 𝑗, 𝑟, 𝑙) = 1, ∀ 𝑖, 𝑗 ∈ 𝑁 , ∀ 𝑟 ∈ 𝑅𝑙 ∈ 𝐿𝑟
 . (3)

An activity must be allocated all the resources it needs at some level, at which time it can be started and

must continue at the same level for all the resources without interruption or preemption. This requirement

is represented as follows:

𝜂𝑖,𝑗 − ∑ ∑ 𝑥(𝑖, 𝑗, 𝑟, 𝑙) = 0, ∀ 𝑖, 𝑗 ∈ 𝐶𝐾
 𝑙 ∈ 𝐿𝑟 𝑟∈𝑅 . (4)

The difficulty in implementing this constraint set stems from the fact that we do not know a priori the

identity of the udc's that shall be traversed during the execution of the project, since that depends on

resource allocation. The allocation of the resources is bounded by their availabilities at each udc, but the

latter cannot be known until after the allocation of resources has been determined. Enumerating all the

udc’s and constraining the resources usage at each one would over-constrain the problem (see

Ramachandra and Elmaghraby, 2006). There are several ways to resolve this difficulty, formal as well as

heuristic. The formal ones are of the integer programming genre, which, when combined with the

nonlinear mathematical programming model presented above, present a formidable computing burden.

On the other hand, the heuristic approaches are more amenable to computing.

The objective function is composed of two parts: the cost of use of the resources, and the gain or loss due

to earliness or tardiness; respectively, of the project completion time (𝑡𝑛) relative to its due date.

Earliness and tardiness (delay) are defined by:

𝑒 ≥ 𝑇𝑠 − 𝑡𝑛 , (5)

𝑑 ≥ 𝑡𝑛 − 𝑇𝑠 , (6)

𝑒, 𝑑 ≥ 0. (7)

The costs may be evaluated as follows:

a) the cost of resource utilization in the selected level, for each activity is:

𝑐𝑅(𝑖, 𝑗) = ∑ ∑ 𝑐(𝑖, 𝑗, 𝑟, 𝑙) ∗ 𝑥(𝑖, 𝑗, 𝑟, 𝑙) 𝑙 ∈ 𝐿𝑟 𝑟 ∈𝑅 . (8)

𝑐(𝑖, 𝑗, 𝑟, 𝑙) = 𝛾(𝑟, 𝑙) ∗ 𝑝(𝑖, 𝑗, 𝑟, 𝑙).

(9)

b) the earliness-tardiness costs are:

𝑐𝐸𝑇 = 𝑐𝐸 + 𝑐𝑇 = 𝛾𝐸 ∙ ℯ + 𝛾𝐿 ∙ 𝑑.

(10)

c) total resources cost for all activities of project:

𝑐𝑅 = ∑ 𝑐𝑅(𝑖, 𝑗)𝑖,𝑗∈𝑁 .

(11)

d) total cost of project:

𝑇𝐶 = 𝐶𝑅 + 𝐶𝐸𝑇 (12)

The desired objective function may be written simply as:

min 𝑇𝐶 (13)

8

4. Solution method

Our initial approach to solve the problem on hand relies on a BFS scheme. In the BFS scheme, all the

nodes (partial solutions) in the search tree are evaluated at each stage, before going any deeper (Figure 2),

subsequently realizing an exhaustive search that visits all nodes of the search tree. The B&B search

technique can be seen as a polished BFS, since it applies some criteria in order to reduce the complexity

of the BFS scheme. Usually, it consists of keeping track of the best solution found so far and checking if

the solution given by that node is greater than the best known solution. So, if that node cannot offer a

better solution than the solution obtained so far, the node is fathomed. The B&B approach is more

efficient if the bounds are tight.

Figure 2. BFS traversal.

The B&B process consists of two procedures:

i) Subset generation;

ii) Subset elimination;

The former (subset generation) is accomplished by branching, where a set of descendent nodes is

generated, thereby creating a tree-like structure. The latter (subset elimination) is realized through either

bounding, where upper and lower bounds are evaluated at each node, or via feasibility checking, where

the extension of a partial solution is deemed infeasible, and the branch is fathomed. A bound can be

strong, which is usually harder to calculate but it accelerates finding an optimal solution, or it can be

weak, which is easier to calculate but makes it slower to find the desired solution.

In our case, the objective is to minimize the total cost encountered, that is based on the bonus achieved or

the penalty cost incurred while respecting or exceeding the specified due date, respectively. As a result,

finding a bound depends on the following three project parameters cited: the penalty cost, bonus cost and

due date. As noted above, a bound helps in reducing the search while not discarding potentially desirable

branches.

A “filtered beam” search is a heuristic B&B procedure that uses breadth-first search but only the top

“best” nodes are kept. At each stage of the tree, it generates all successors for the selected nodes at the

current stage, but only stores a predetermined number of descendent nodes at each stage, called the beam

width.

Figure 3. A beam search tree with beam width = 3.

In the proposed procedure, we have the option of using either the BFS or the FBS scheme. For the latter,

we need to specify an appropriated beam width.

We consider the activities to be in one of four states: “to begin”, “pending”, “active” (i.e., on-going) and

“finished”. To get the first activities with which to initiate the process, we search all activities that do not

have any predecessors. These activities are set to the state “to begin”. All others are set to the state

“pending”.

Activities in the state “to begin” are analyzed in order to check resources availability. If we have enough

resources, all activities in the state “to begin” are modified to the state “active”; otherwise, we apply, in

sequence, the following rules, until the resources conflicts are resolved:

9

a) Give priority to activities that are precedents to a larger number of “pending” activities.

b) Give priority to activities that use fewer resources.

c) Give priority to activities in sequence of arrival to the state “to begin”.

An “event” represents the starting time of one or more activities, and the project begins at event 0 in

which no activity has started yet. Each activity must be allocated exactly one unit of each resource. For

each active activity, we calculate all the possible combinations of levels of resources. Then, we aggregate

all these combinations to get the initial combinations of allocation modes for all “active” activities. These

initial combinations form branches through which we will get possible solutions for the project. All

combinations have a copy of the resource availability information, and activities’ current state.

If the FBS scheme is selected to obtain a solution, then:

1. If the number of combinations is less than the beam width value, all combinations are kept.

2. Otherwise, the set of combinations must be reduced to the beam width value, so some

combinations need to be discarded. To evaluate the best combinations, we may pick one of the

following rules:

Select the top best combinations that have:

- Minimum Duration.

- Minimum Cost.

- Minimum Cost/Duration.

Not all combinations of the set can be directly compared because the number of activities that

have been scheduled in each combination may differ. So, the combinations are grouped by the

number of activities that have already been scheduled.

Then, the combinations are compared with the others that belong to the same group. The final set

is composed by a share of combinations of each group formed before.

The ratio of each group in the final combinations set is calculated by:

ratio = groupCount / totalCombinations (14)

In either case, we continue applying the following procedure to each combination:

3. To all activities in progress, we find the ones that will be finished first, and set that time as the

next event.

4. We update activities found in step 1 to state “finished”, and release all the resources being used

by them.

5. For all activities in the state “to begin”, we seek the ones that can begin, the same way we did

when initiating the project. Activities in the state “to begin” are analyzed in order to check

resource availability. If no resource conflict exists, all activities in the state “to begin” are set to

state “active” and resources are set as being used; otherwise, we apply in sequence, the rules

described above.

6. For all activities in the state “pending”, we check for precedence relationships. For all activities

that are precedence-feasible, their state is updated to state “to begin”. These activities are not

combined with the previous set of “to begin” activities to give priority to activities that entered

first in this state.

7. If there are resources available and any pending activities were set “to begin”, we apply step 5

again.

8. For all new “active” activities, we set their start time to the next event found in step 3, and

determine all the possible combinations of its resource levels. Then we join all found

combinations for these activities, getting new combinations to add to the actual combination

being analyzed. This generates new branches for investigation.

9. We continue by applying step 1 (or 3) to each new combination until all activities are set to state

“finished”.

10. When all activities reach the “finished” state, we obtain a valid solution for the problem.

We evaluate the project completion time and the total cost incurred for all complete solutions, and choose

the best among them.

A flowchart of the proposed solution method is shown on Figure 4.

10

Figure 4. A flowchart of the proposed solution method.

11

5. Computational results and analysis

The proposed solution method was implemented in C#, an Object-Oriented Programming (OOP)

language, using Visual Studio 2010. To construct the project network (in AoN), we used Graph#, an open

source library for .Net/WPF applications that is based on a previous library QuickGraph. These libraries

support GraphML that is an XML-based file format for graphs, although we defined our own particular

xml format.

The following computational tests were performed on an Intel® Pentium® M @1.20GHz 1.25GB RAM.

5.1. Three-activity network

Consider a three-activity network for 4 resources, one with 2 levels and the others with 3 different levels,

respectively. Assume the following parameter values for earliness and lateness costs: 𝛾𝐸 = −10,

𝛾𝐿 = 20, and the due date, 𝑇𝑆 = 24.

Table 3: Three-activity network solution values obtained using the BFS scheme.

tn CE CT CR TC Runtime (ms)

16 80 0 230 150 44

Table 4: Three-activity network solution values obtained using the FBS scheme.

B
ea

m
 W

id
th

Evaluation Type

Cost Duration Cost/Duration

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(m
s)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(m
s)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(m
s)

2
0

25 0 20 200 220 8 16 80 0 230 150 2 29 0 100 196 296 11

5
0

24 0 0 205 205 14 16 80 0 230 150 4 28 0 80 193 273 22

2
0

0

20 40 0 218 178 51 16 80 0 230 150 68 26 0 40 201 241 61

4
5

0

16 80 0 230 150 198 16 80 0 230 150 319 24 0 0 205 205 177

7
0

0

16 80 0 230 150 162 16 80 0 230 150 112 22 20 0 213 193 116

9
0

0

16 80 0 230 150 431 16 80 0 230 150 134 19 50 0 225 175 197

The BFS scheme generates 972 combinations for the three-activity network. We used a beam width

between 20 and 900. As we can see by the results exhibited in Table 4, the “Duration” evaluation type

was the best for this network, achieving the same result that was obtained for the BFS scheme, even for

the smaller beam width. The evaluation type “Cost” performed better than the “Cost/Duration”, which did

not achieve the best solution even with a beam width of 900. However, “Cost/Duration” evaluation gave

the lowest project cost when the bonus or penalty, 𝐶𝑅 = 193 was not considered.

12

Figure 5. Variations of 𝑇𝐶 and 𝐶𝑅 values versus beam width for evaluation types cost, duration, and

cost/duration.

As can be observed from the figure above, the quality of the solutions achieved increases, i.e., the value

of the 𝑇𝐶 decreases or remains equal with increase in the beam width value. This does not happen for the

project cost 𝐶𝑅. On the contrary, this variable is highest for the best solutions. The reason for this

difference has to do with the bonus and due date specified. These values make us achieve best solutions

with unprofitable 𝐶𝑅 values, because these complete the project earlier. If the earliness and lateness costs

where: 𝛾𝐸 = 0, 𝛾𝐿 = 0, the best solution would be 𝐶𝑅 = 189, 𝑇𝐶 = 189 and 𝑡𝑛 = 30.

5.2. Five-activity network

Consider a five-activity network with the same resources as the three-activity network above. Assume the

following parameter values for earliness and lateness costs: γE = −10, γL = 20, and the due date

TS = 30.

Table 5: Five-activity network solution values, obtained using the BFS scheme.

tn CE CT CR TC Runtime (s)

36 0 120 400 520 18

Table 6: Five-activity network solution values obtained using the FBS scheme.

B
ea

m
 W

id
th

Evaluation Type

Cost Duration Cost/Duration

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

5
0

63 0 660 323 983 0.03 36 0 120 400 520 0.02 68 0 760 315 1075 0.03

5
0
0

58 0 560 333 893 0.3 36 0 120 400 520 0.31 65 0 700 319 1019 0.24

5
0
0
0

52 0 440 353 793 3.6 36 0 120 400 520 4.4 60 0 600 329 929 3.71

1
0
0
0
0

48 0 360 363 723 5.3 36 0 120 400 520 8.0 58 0 560 333 893 6.2

5
0
0
0
0

37 0 140 395 535 17.0 36 0 120 400 520 17.8 51 0 420 360 780 14.7

1
0

0
0

0
0

36 0 120 400 520 19.3 36 0 120 400 520 25.3 42 0 240 383 623 20.0

0

100

200

300

400

20 50 450 900

TC

Beam Width

Cost

Duration

Cost/Duration

0

100

200

300

400

20 50 450 900

C
R

Beam Width

Cost

Duration

Cost/Duration

13

The BFS scheme generates 104,976 combinations for the five-activity network. We varied beam width

between 50 and 100,000. As we can see by the results exhibited in Table 6, the “Duration” evaluation

type was faster in reaching results similar to the ones obtained for the BFS scheme. The other evaluation

types are far from the solution obtained for the BFS algorithm using lowest beam widths, but achieved

better 𝐶𝑅 (project cost without bonus or penalty) values, 𝐶𝑅 = 323 for “Cost” and 𝐶𝑅 = 315 for

“Cost/Duration” type.

Figure 6. Variations of 𝑇𝐶 and 𝐶𝑅 values versus beam width for evaluation types cost, duration, and

cost/duration.

Again, we obtain better 𝑇𝐶 for worst 𝐶𝑅 values, but in this case, the bonus is never materialized. For this

project, our method could not find a solution with a completion time less than or equal to the due date, 30;

the earliest time for completion is 36. If the earliness and lateness costs where: 𝛾𝐸 = 0, 𝛾𝐿 = 0, the best

solution would be 𝐶𝑅 = 315, 𝑇𝐶 = 315 and 𝑡𝑛 = 68.

A plot of the 𝑇𝐶 and 𝐶𝑅 values obtained for the BFS scheme, and 𝛾𝐸 = −10, 𝛾𝐿 = 20, against several

due dates, is shown in Figure 7.

Figure 7. Variation of 𝑇𝐶 and 𝐶𝑅 values versus due dates for the BFS scheme.

Note that starting from 𝑇𝑆 = 36, the total project cost takes advantage of the bonus, independent of the

particular bonus and penalty cost parameter values. So, for this project, it would be profitable to adjust the

due date specified first, to a value higher than 36.

5.3. Ten-activity network

Now, consider a ten-activity network for 5 different resources, three of them with 2 possible levels, one

having 5 levels and the last one with 3 elective levels. Assume the following rates for earliness and

lateness costs: γE = −15, γL = 20, and the due date, TS = 36.

A solution could not be achieved in a reasonable time for the BFS scheme.

0

200

400

600

800

1000

1200

5
0

5
0

0
0

1
0

0
0

0

5
0

0
0

0

1
0

0
0

0
0

TC

Beam Width

Cost

Duration

Cost/Duration

0

200

400

600

800

1000

1200

5
0

5
0

0
0

1
0

0
0

0

5
0

0
0

0

1
0

0
0

0
0

C
R

Beam Width

Cost

Duration

Cost/Duration

0

200

400

600

30 36 50 60 70
Due Date

TC

CR

14

Table 7: Ten-activity network solution values obtained using the FBS scheme.

B
ea

m
 W

id
th

Evaluation Type

Cost Duration Cost/Duration
t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

5
0

29 15 0 406 391 0.2 24 90 0 508 418 0.2 45 0 340 456 796 0.16

5
0
0

29 15 0 406 391 3.2 26 60 0 468 408 4.1 45 0 300 444 744 3.3

1
0
0
0

29 15 0 406 391 4.9 26 60 0 468 408 6.6 45 0 300 444 744 5.6

5
0
0
0

27 45 0 417 372 17.2 26 60 0 468 408 31.3 44 0 320 447 727 19.4

1
0
0
0
0

27 45 0 417 372 40.5 24 90 0 490 400 50.8 44 0 280 440 720 38.1

5
0

0
0
0

27 45 0 405 360 723 23 90 0 480 375 635 42 0 250 451 691 355

We observed a performance decrement in runtime values. This project, besides having more activities

than the previous ones, also has more resources and resources levels. Therefore, it is of higher complexity

than the previous ones. The evaluation type “Cost” provides the best solutions, with a TC = 360 for a

beam width of 50,000. We achieved reasonable solutions for “Duration”. However, weak solutions were

obtained for “Cost/Duration”.

As can be observed in Figure 8, there is no significant difference between the 𝑇𝐶 and the 𝐶𝑅 values.

However, the “Cost/Duration” values are worse, as the penalty cost for all beam width values was applied

to this one.

Figure 8.Variations of 𝑇𝐶 and 𝐶𝑅 values versus beam width.

Let’s analyze the TC and CR, obtained for different due dates, using the same γE, and γL. The beam width

analyzed is the 50,000, for the “Cost” and the “Duration” evaluation types.

0

200

400

600

800

1000

5
0

5
0

0

1
0

0
0

5
0

0
0

1
0

0
0

0

5
0

0
0

0

TC

Beam Width

Cost

Duration

Cost/Duration

0

200

400

600

800

1000

5
0

5
0

0

1
0

0
0

5
0

0
0

1
0

0
0

0

5
0

0
0

0

C
R

Beam Width

Cost

Duration

Cost/Duration

15

Figure 9. Variation of 𝑇𝐶 and 𝐶𝑅 values versus due dates for evaluation types cost and duration.

For both evaluation types, there is a due date from which the total project cost takes advantage from the

bonus; this due date is greater than 27 for “Cost” and greater than 23 for “Duration”.

5.4. Twenty-activity network

Consider a twenty-activity network for the 4 resources with 3 different levels each, with the following

parameter values for earliness and lateness costs: 𝛾𝐸 = −10, 𝛾𝐿 = 20, and the due date TS = 70.

Table 8: Twenty-activity network solution totals obtained using FBS scheme.

B
ea

m
 W

id
th

Evaluation Type

Cost Duration Cost/Duration

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

5
0

135 0 1300 846 2146 2.34 70 0 0 1502 1502 1.9 135 0 1300 846 2146 1.34

5
0

0

110 0 800 902 1702 3.17 70 0 0 1502 1502 10.4 129 0 1180 865 2045 4.34

1
0

0
0

110 0 800 902 1702 15.9 70 0 0 1492 1492 26.2 129 0 1180 865 2045 13.7

2
0

0
0

110 0 800 902 1702 25.0 70 0 0 1479 1479 164 129 0 1180 865 2045 23.2

3
0

0
0

110 0 800 902 1702 31.9 70 0 0 1479 1479 257 129 0 1180 864 2044 35.4

5
0
0
0

110 0 800 902 1702 57.3 - - - - - - 129 0 1180 864 2044 51.7

1
0
0
0
0

110 0 800 902 1702 79.0 - - - - - - 129 0 1180 864 2044 84.2

The proposed method could not achieve a solution using “Duration” evaluation type and beam widths of

5,000 and 10,000, because of computing memory limitations. However the best solutions were achieved

by the “Duration” evaluation type, TC = 1479. Once again, the “Cost/Duration” type performed poorly,

and the “Cost” type, even with a twenty times higher beam width, did not achieve a better solution than

the one obtained by beam width of 500. The bad performance of the “Cost” type is directly related to the

due date specified, 70. For a due date, TS = 135, we would get a TC = 846, which is identical to the CR

obtained for a beam width of 50.

0

200

400

600

20 25 30 40

Due Date

Cost

TC

CR

0

200

400

600

20 25 30 40

Due Date

Duration

TC
CR

16

In Figure 10, we depict variations of the 𝑇𝐶 and 𝐶𝑅 values, over different due dates, using the same 𝛾𝐸,

and 𝛾𝐿 values. The beam width used is 3,000, for the “Cost” and the “Duration” evaluation types.

Figure 10. Variations of 𝑇𝐶 and 𝐶𝑅 versus different due dates for evaluation types cost and duration.

The due dates, for which the total project cost takes advantage of the bonus, are 110 and 70, for “Cost”

type and “Duration” type evaluations, respectively.

For 𝛾𝐸 = 0, 𝛾𝐿 = 0, the solution obtained for “Cost” evaluation type is 𝑇𝐶 = 𝐶𝑅 = 846 and 𝑡𝑛 = 135.
For the “Duration” evaluation type we have 𝑇𝐶 = 𝐶𝑅 = 1479 and 𝑡𝑛 = 70. So, according to the penalty

and bonus values, there is the possibility for adjusting the due date in order to get the advantage of the

best of these solutions.

5.5. Thirty-activity network

Next, we considered a thirty-activity network for 4 different resources, 3 of them with 2 possible levels

and one having 4 levels. Assume the following rates for earliness and lateness costs: 𝛾𝐸 = −10, 𝛾𝐿 = 10,

and the due date TS = 100.

Table 9: Thirty-activity network solution values obtained using the FBS scheme.

B
ea

m
 W

id
th

Evaluation Type

Cost Duration Cost/Duration

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

t n

C
E

C
T

C
R

TC

R
u

n
ti

m
e

(s
)

5
0

87 130 0 696 566 1.2 94 60 0 668 608 1.2 101 0 10 731 741 1.3

5
0

0

87 130 0 687 557 4.2 87 130 0 746 616 2.6 100 0 0 725 725 3.3

1
0
0
0

87 130 0 687 557 8.0 87 130 0 746 616 12.9 100 0 0 725 725 6.8

2
0
0
0

87 130 0 687 557 47.6 87 130 0 746 616 51.8 99 10 0 688 678 4.9

5
0
0
0

87 130 0 687 557 160 87 130 0 746 616 163 95 50 0 719 669 135

1
0
0
0
0

87 130 0 687 557 242 87 130 0 746 616 346 95 50 0 697 647 178

The best solution found for this network was 𝑇𝐶 = 557 with evaluation type “Cost”. In the solutions

achieved using the “Duration” type, we obtain a better solution for the minimum beam width than that for

0

1000

2000

3000

50 70 100 130 135

Due Date

Cost

TC

CR
0

1000

2000

3000

50 70 100 130 135

Due Date

Duration

TC

CR

17

the higher ones. For a beam width of 50, the algorithm was able to preserve lowest cost solutions, even

though with a small range of branches in the search tree. The higher beam width values gave best

solutions in terms of project duration, but they were inferior in terms of total project cost calculations.

Again, the “Cost/Duration” type achieved worst solutions than for the other two evaluation types. The

variations of 𝑇𝐶 and 𝐶𝑅 values over different beam widths for each of the evaluation types are depicted in

Figure 11.

Figure 11. Variation of 𝑇𝐶 and 𝐶𝑅 versus beam width for evaluation types cost, duration and

cost/duration.

With 𝛾𝐸 = 0, 𝛾𝐿 = 0, the best solution for “Cost” is 𝑇𝐶 = 𝐶𝑅 = 668 and 𝑡𝑛 = 94. For the “Duration”

evaluation type we have is 𝑇𝐶 = 𝐶𝑅 = 746 and 𝑡𝑛 = 87.

Observing the graphics of the 𝑇𝐶 and 𝐶𝑅 values, obtained for different due dates, using 𝛾𝐸 = −10,

𝛾𝐿 = 10, and beam width of 5,000, note that they both have the same due date from which a bonus or a

penalty is applied TS = 87.

Figure 12. Variation of 𝑇𝐶 and 𝐶𝑅 versus different Due Dates for evaluation types cost and duration.

5.6. Remark

The performance of an evaluation type seems to be intrinsically reliant on project characteristics, and

especially, on the defined values of bonus, penalty and due date. For complex project networks, an

increase in beam width until it is computationally feasible to obtain a solution, does not offer, necessarily,

better solutions. For each project, there exists a specific due date, beyond which the bonus or the penalty

is realized. Knowing the recommended solution for a project (obtained using different evaluations types)

without considering the bonus, penalty or due date, can be useful, especially when there is a possibility of

negotiating their values.

6. Conclusions and Further Research

The RCPSP belongs to the class of NP-hard problems (Blazewicz et al., 1983). However, this problem

becomes more difficult to solve when practical issues such as multi-objective, multi-mode, and multi-

project are included. A heuristic-based approach is the best approach to use in such a case.

0

200

400

600

800

5
0

5
0

0

2
0

0
0

5
0

0
0

1
0

0
0

0

TC

Beam Width

Cost

Duration

Cost/Duration

0

200

400

600

800

5
0

5
0

0

2
0

0
0

5
0

0
0

1
0

0
0

0

C
R

Beam Width

Cost

Duration

Cost/Duration

600
700
800
900

1000

70 80 90

Due Date

Cost

TC

CR
600
700
800
900

1000

70 80 90

Due Date

Duration

TC

CR

18

In this chapter, we have addressed a RCPSP with multiple resource modes available at different levels.

Given a due date, the objective is to allocate resources to all activities of the project so as to minimize the

total cost encountered because of resource utilization, plus the net gain (bonus) accrued from finishing the

project earlier or the penalty incurred for finishing the project late. We have presented a mathematical

formulation for this problem, and have developed a filtered beam search-based method for its solution.

This is essentially a branch-and-bound-based method except for a limited number of branches that are

kept at a node.

Different criteria were used to evaluate a node, namely, cost, duration, and cost/duration. A cost-based

criterion was found to generate better solutions, as expected. However, we observed that even the

duration-based criterion generated good solutions (lowest cost values) for smaller beam width. The

cost/duration evaluation criterion was found to always give inferior results. Although we have developed

an effective procedure for the solution of this problem, yet it requires further investigation to study the

problem’s inherent properties, which can further aid in obtaining solutions of better quality in reasonable

CPU times.

19

References

1. Arroub, M., Kadrou, Y., Najid, N. (2010) ‘An efficient algorithm for the multi-mode resource constrained

project scheduling problem with resource flexibility’, International Journal of Mathematics in Operational

Research, 2:6,748 – 761.

2. Bandelloni, M., Tucci, M., Rinaldi, R. (1994) ‘Optimal resource leveling using non-serial dynamic

programming’, European Journal of Operational Research, 78: 2, 162-177.

3. Basnet, C., Tang G. e Yamaguchi T. (2001) ‘A Beam Search Heuristic for Multi-Mode Single Resource

Constrained Project Scheduling’, In proceedings of 36th Annual Conference of the Operational Research

Society of New Zealand , Christchurch, NZ, Nov-Dec, 1-8.

4. Bellman, R., Dreyfus, S. (1959) ‘Functional approximations and dynamic programming’, Mathematical

Tables and Other Aids to Computation, 13, 247-251.

5. Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J. (2010) ’A constraint integer

programming approach for resource-constrained project scheduling’, In proceedings of CPAIOR 2010,

LNCS, June, Andrea Lodi, Michela Milano, Paolo Toth (eds), Springer, 6140, 51-55.

6. Blazewicz, J., Lenstra, J.K. e Rinnooy Kan, A.H.G. (1983) ‘Scheduling subject to resource constraints:

classification and complexity’, Discrete Applied Mathematics, 5:1, 11-24.

7. Boctor, F.F. (1990) ‘Some efficient multi-heuristic procedures for resource constrained project scheduling’

European Journal of Operational Research, 49, 3-13.

8. Boctor, F.F. (1993) ‘Heuristics for scheduling projects with resource restrictions and several resource-

duration modes’, International Journal of Production Research, 31, 2547-2558.

9. Clark, C.E. (1962) ‘The PERT Model for the Distribution of an Activity Time’, Operations Research, 10:3,

405-406.

10. Davis, E.W. (1966) ‘Resource allocation in project network models - a survey’, Journal of Industrial

Engineering, 17: 4, 17, 177-188.

11. Dean, B.V., Denzler, D.R., Watkins, J.J. (1992) ‘Multiproject staff scheduling with variable resource

constraints’, IEEE Transactions on Engineering Management, 39, 59-72.

12. Demeulemeester, E.L., Herroelen, W.S. (1996) ‘An Efficient Optimal Solution Procedure for the

Preemptive Resource-Constrained Scheduling Problem’, European Journal of Operational Research, 90,

334-348.

13. Dodin, B.M, Elmaghraby, S.E. (1985) ‘Approximating the Criticality Indices in the Activities in PERT

Networks’, Management Science, 207-23.

14. Elmaghraby, S.E. (1992) ‘Resource allocation via dynamic programming in activity networks’, European

Journal of Operational Research, 88, 50-86.

15. Elmaghraby, S.E., Herroelen, W.S. (1980), 'On the measurement of complexity in activity networks',

European Journal of Operational Research, 5:4, 223–234.

16. Elmaghraby, S.E., Herroelen, W.S. (1990) ‘The scheduling of activities to maximize the net present value

of projects’, European Journal of Operational Research, 49, 35-40.

17. Etgar, R., Shtub, A., LeBlanc, L.J. (1997) ‘Scheduling projects to maximize net present value - the case of

time-dependent, contingent cash flows’, European Journal of Operational Research, 96, 90-96.

18. Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C. (2004) ‘A Genetic Algorithm for the Resource

Constrained Multi-Project Scheduling Problem’, Technical ReportTD-668LM4, AT&T Labs Research.

19. Guldemond, T., Hurink, J., Paulus J., Schutten, J. (2008) ‘Time-constrained project scheduling’, Journal of

Scheduling, 11: 2, 137-148.

20. Hartmann, S. (2001) ‘Project scheduling with multiple modes: a genetic algorithm’, Annals of Operational

Research, 102 111-135.

21. Heilmann, R. (2000) ‘Resource–constrained project scheduling: a heuristic for the multi–mode case’, OR

Spektrum 23, 335–357.

22. Herroelen, W. (2006), ‘Project scheduling–theory and practice’, Production and Operations Management,

14:4, 413–432.

23. Kazaz, B., C. Sepil. 1996. Project scheduling with discounted cash flows and progress payments. Journal of

the Operational Research Society 47, 1262-1272.

24. Kelley, J.E., Morgan, R., Walker (1959) ‘Critical Path Planning and Scheduling’, In proceedings of Eastern

Joint Computer Conference, Boston, December 1-3, 1959, NY 1960, 160-173.

25. Kis, T. (2005) ‘A branch-and-cut algorithm for scheduling of projects with variable-intensity activities’,

Mathematical Programming, Springer Berlin / Heidelberg, 103:3, 515-539.

26. MacCrimmon, K.R., Ryavec, C.A. (1964) ‘An Analytical Study of the PERT Assumptions’, Operations

Research, 12:1, 16-37.

20

27. Metropolis, N., Rosenbluth, A., Rosenbluth,M., Teller,A., Teller,E. (1953) ‘Equation of state calculations

by fast computing machines’, Journal of Chemical Physics, 21, 1087–1092.

28. Mika M., Waligora G., Weglarz G. (2005) ‘Simulated annealing and tabu search for multi-mode resource-

constrained project scheduling with positive discounted cash flows and different payment models’,

European Journal of Operational Research, 164:3, 639-668.

29. Nemhauser, G. L., Wolsey, L. A. (1988) Integer and Combinatorial Optimization, Wiley-Interscience,

Hoboken, NJ, USA.

30. Ozdamar, L., Ulusoy, G. (1995) ‘A Survey on the Resource-Constrained Project Scheduling Problem’, IIE

Transactions, 27, 574-586.

31. Padman, R., Dayanard, N. (1997) ‘On modelling payments in projects’, Journal of the Operational

Research Society, 48, 906-918.

32. Patterson, J.H., Slowinski, R., Talbot, F.B., Weglarz, J. (1989) ‘An algorithm for a general class of

precedence and resource constrained scheduling problems’, In Slowinski, R. and Weglarz, J. (eds)

Advances in project scheduling, Elsevier, Amsterdam, pp. 3-28.

33. Patterson, J.H., Slowinski, R., Talbot, F.B., Weglarz, J. (1990) ‘Computational experience with a

backtracking algorithm for solving a general class of precedence and resource constrained scheduling

problems’, European Journal of Operational Research, 49, 68-7.

34. Pritsker, A., Watters, L., Wolfe, P. (1969) ‘Multi-project scheduling with limited resources: a zero-one

programming approach’, Management Science, 16, 93-108.

35. Ragsdale, C. (1989) ‘The current state of network simulation in project management theory and practice’,

Omega: The International Journal of Management Science, 17, 21-25.

36. Ramachandra, G., Elmaghraby, S.E. (2006), ‘Sequencing precedence-related jobs on two machines to

minimize the weighted completion time’, International Journal of Production Economics, 100 (1), 44-58.

37. Santos, M.A., & Tereso, A.P. (2011b) ‘On the Multi-mode, Multi-skill Resource Constrained Project

Scheduling Problem - A Software Application’, In A. GasparCunha, R. Takahashi, G. Schaefer & L. Costa

(eds) Soft Computing in Industrial Applications, 96, 239-248.

38. Santos, M.A., Tereso A.P. (2010a) ‘On the Multi-Mode, Multi-Skill Resource Constraint Project

Scheduling Problem (MRCPSP-MS)’, In proceedings of 2nd International Conference on Engineering

Optimization (EngOpt 2010), Lisbon – Portugal, September 6-9.

39. Santos, M.A., Tereso, A.P. (2011a) ‘On the multi-mode, multi-skill resource constrained project scheduling

problem – computational results’, In proceedings of ICOPEV - International Conference on Project

Economic Evaluation, Guimarães – Portugal, April 28-29.

40. Sepil, C., Ortac N. (1997) ‘Performance of the Heuristic Procedures for Constrained Projects with Progress

Payments’, Journal of the Operational Research Society, 48, 1123-1130.

41. Tereso A.P., Araújo M.M., Elmaghraby S.E. (2004). Adaptive Resource Allocation in Multimodal Activity

Networks. International Journal of Production Economics 92,1-10.

42. Tereso A.P., Mota J.R., Lameiro R.J. (2006). Adaptive Resource Allocation Technique to Stochastic

Multimodal Projects: a distributed platform implementation in JAVA. Control Cybern 35, 661-686.

43. Tseng, C. (2008) ‘Two Heuristic Algorithms for a Multi-Mode Resource-Constrained Multi-Project

Scheduling Problem’, Journal of Science and Engineering Technology, 4:2, 63-74.

44. Ulusoy, G., Cebelli, S. (2000) ‘An equitable approach to the payment scheduling problem in project

management’, European Journal of Operational Research, 127, 262–278.

45. Vanhoucke, M., Demeulemeester, E. and Herroelen, W., (2000), ‘An exact procedure for the resource-

constrained weighted earliness-tardiness project scheduling problem’, Annals of Operations Research, 102,

179-196.

46. Willis, R.J. (1985) ‘Critical path analysis and resource constrained project scheduling theory and practice’,

European Journal of Operational Research, 21, 149-155.

47. Zhang H., Li H. and Tarn CM. (2006) 'Heuristic scheduling of resource-constrained', multiple-mode and

repetitive projects', Construction Management and Economics 24, 159-169.

48. Zimmermann, J. and H. Engelhardt (1998) ‘Lower Bounds and Exact Algorithms for Resource Levelling

Problems’, Technical Report WIOR-517, University of Karlsruhe.

