
Outubro de 2009

Universidade do Minho
Escola de Engenharia

Nuno Ernesto Salgado Oliveira

Improving Program Comprehension Tools
for Domain Specific Languages

U
M

in
ho

|2
00

9
N

un
o

Er
ne

st
o

Sa
lg

ad
o

O
liv

ei
ra

Im
p

ro
vi

n
g

 P
ro

g
ra

m
 C

o
m

p
re

h
e

n
si

o
n

 T
o

o
ls

 f
o

r
D

o
m

a
in

 S
p

e
ci

fi
c

La
n

g
u

a
g

e
s

Master in Informatics

Supervised by:
Professor Doutor Pedro Rangel Henriques
Professora Maria João Varanda Pereira

Outubro de 2009

Universidade do Minho
Escola de Engenharia

Nuno Ernesto Salgado Oliveira

Improving Program Comprehension Tools
for Domain Specific Languages

É AUTORIZADA A REPRODUÇÃO PARCIAL DESTA TESE APENAS PARA EFEITOS
DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE
COMPROMETE;

Universidade do Minho, ___/___/______

Assinatura: __

Resumo

Desde o início dos tempos a curiosidade e a necessidade de melhorar a qualidade
de vida impeliram o humano a arranjar meios para compreender o que o rodeia
com o objectivo de melhorar. À medida que a habilidade de uns foi aumentando, a
capacidade de compreensão de outros seguiu-lhe os passos. Desmontar algo físico de
modo a compreender as ligações entre as peças e assim perceber como funcionam num
todo, é um acto bastante normal dos humanos. Com o advento dos computadores
e os programas para ele codificados, o homem sentiu a necessidade de aplicar as
mesmas técnicas (desmontar para compreender) ao código desses programas.

Tradicionalmente, a codificação de tais programas é feita usando linguagens
genéricas de programação. Desde logo técnicas e artefactos que ajudam na com-
preensão desses programas (nessas linguagens) foram produzidas para auxiliar o
trabalho de engenheiros de software que necessitam de manter ou alterar progra-
mas previamente construídos por outros. De um modo geral estas linguagens mais
genéricas lidam com conceitos a um nível bastante abaixo daquele que o cérebro hu-
mano, facilmente, consegue captar. Previsivelmente, compreender programas neste
tipo de linguagens é uma tarefa complexa pois a distância entre os conceitos ao nível
do programa e os conceitos ao nível do problema (que o programa aborda) é bastante
grande.

Deste modo, tal como no dia-a-dia foram surgindo nichos como a política, a
justiça, a informática, etc. onde grupos de palavras são usadas com maior regulari-
dade para facilitar a compreensão entre as pessoas, também na programação foram
surgindo linguagens que focam em domínios específicos, aumentando a abstracção em
relação ao nível do programa, aproximando este do nível dos conceitos subjacentes
ao problema.

Ferramentas e técnicas de compreensão de programas abordam, geralmente, o
domínio do programa, tirando pouco partido do domínio do problema. Na presente
tese assume-se a hipótese de que será mais fácil compreender um programa quando
os domínios do problema e do programa são conhecidos, e entre eles é estabele-
cida uma ponte de ligação; e parte-se em busca de uma técnica de compreensão de
programas para linguagens de domínio específico, baseada em técnicas já conhecidas
para linguagens de carácter geral. O objectivo prende-se com aproveitar o conheci-
mento sobre o domínio do problema e melhorar as ferramentas de compreensão de
programas existentes para as linguagens genéricas, de forma a estabelecer ligações
entre domínio do programa e domínio do problema. O resultado será mostrar, vi-
sualmente, o que acontece internamente ao nível do programa, sincronizadamente
com o que acontece externamente ao nível do problema.

i

ii

Abstract

Since the dawn of times, curiosity and necessity to improve the quality of their
life, led humans to find means to understand everything surrounding them, aiming
at improving it. Whereas the creating abilities of some was growing, the capacity
to comprehend of others follow their steps. Disassembling physical objects to com-
prehend the connections between the pieces in order to understand how they work
together is a common human behavior. With the computers arrival, humans felt
the necessity of applying the same techniques (disassemble to comprehend) to their
programs.

Traditionally, these programs are written resorting to general-purpose program-
ming languages. Hence, techniques and artifacts, used to aid on program compre-
hension, were built to facilitate the work of software programmers on maintaining
and improving programs that were developed by others. Generally, these generic
languages deal with concepts at a level that the human brain can hardly understand.
So understanding programs written in this languages is an hard task, because the
distance between the concepts at the program level and the concepts at the problem
level is too big.

Thus, as in politics, justice, medicine, etc. groups of words are regularly used
facilitating the comprehension between people, also in programming, languages that
address a specific domain were created. These programming languages raise the
abstraction of the program domain, shortening the gap to the concepts of the problem
domain.

Tools and techniques for program comprehension commonly address the program
domain and they took little advantage of the problem domain. In this master’s thesis,
the hypothesis that it is easier to comprehend a program when the underlying prob-
lem and program domains are known and a bridge between them is established, is
assumed. Then, a program comprehension technique for domain specific languages,
is conceived, proposed and discussed. The main objective is to take advantage from
the large knowledge about the problem domain inherent to the domain specific lan-
guage, and to improve traditional program comprehension tools that only dealt, until
then, with the program domain. This will create connections between both program
and problem domains. The final result will show, visually, what happens internally
at the program domain level, synchronized with what happens externally, at problem
level.

iii

Acknowledgements

“Love and work are the cornerstones of our humanness”

Sigmund Freud

Love and work are the cornerstones of our humanness, said Freud! I could not
agree more. Is it possible to do a good work if you are not surrounded by friends
who really love and care for you? I am afraid not! So, I relied on my friends and
took advantage of their love to accomplish this master’s work. Now it is time to
write some words acknowledging them, one by one, expressing my deepest feeling of
friendship and thankfulness. Long time I’ve waited for this moment. The possibility
to thank someone would be the greatest thing in a person’s life!

First of all I would like to thank Professor Pedro Henriques for the magnificent
and patient time he devoted supervising me, advising me personally when we were
together, and writing or whispering comforting words on the chat or on the phone,
when we were apart. Perhaps calling him supervisor or professor is meaningless. . .
friend for life would suit best and would made a better combination with his friendly
beards.

He played a very intensive and important role both in my professional and per-
sonal life. I am glad I could become a friend of him, being introduced to his family
and other friends, and also for being invited to feel the warmness of his home. Muito
obrigado, Rocas!

Second, I would like to thank Professora Maria João Varanda Pereira, for all
the time she spent traveling all the way from Bragança to Braga to lend me her
hand and guide me through the stormy days of this thesis. I would never forget the
amazing times she, her husband, Rolando, and daughter, Patrícia, offered me when
I spent some days in Bragança, introducing me to nice and unforgettable persons.
Muito obrigado, Zinha!

Third, I would like to thank Daniela da Cruz, for being by my side whenever I
needed. She was my pillar! I can’t classify her help on this thesis because such help
provoked an enormous stack-overflow in my memory and, principally, in my heart.
I am really glad to have a friend like she is! Muito Obrigado, Ni!

Specially, I want to thank these three individuals for our friendship during the
previous three years, where we worked together in an unrealistic but terrific envi-
ronment.

v

Improving Program Comprehension Tools for DSLs

I would like to thank also the Slovenian team members Marjan Mernik, Matej
Črepinšek and Tomaž Kosar, for the constant help and the fruitful discussions in
the bilateral project’s meetings. Za vse, moj hvala!

Me gustaria, también, dar mis reconocimientos a mi grand amigo Mario Berón
por su constant amistad aunque la distancia, y también por los debates sobre com-
prensión de programas y la prestación de material en este campo de la investigacíon.
Gracias amigazo!

For pointing some bibliographic references to complete and improve the state of
the art of this thesis, I would like to thank Professor Vasco Amaral and Professor
Ivan Lukovic.

I must thank also all the participants in the experiment I needed to perform to
complete this thesis: Alice Marques, Ana Sofia, Bruno Costa, Carlos Pereira, Dave
Moderno, Fábio Lima, Francisco Cruz, Francisco Maia, João Granja, João Tiago,
Jorge Abreu, Miguel Lopes, Miguel Nunes, Miguel Pires, Nélio Guimarães, Ricardo
Vilas Boas, Rui Pedro, Susana Silva, Nuno Vasco and Zé Luis. To all of you, my
sincere acknowledgments.

I can not forget the group of special friends with whom I share interesting time
on the most sacred part of the day (the lunch), and with whom I spent some free
time playing football and discussing whatever we desired: Carlos, Granja, Fábio,
Chico, Maia, Miguel Lopes, Miguel Pires, João Tiago and Giovan.

During the two years of this master degree I met other incredible persons who
really helped me a lot in several moments. Besides those acknowledge before, I really
want to thank Pedro Lemos for the incredible friendship that we built together; Bas-
tian Cramer, for helping me getting to grips with his amazing tool, DEViL; Cristina
Pereira, for the hours she spent translating technical german text into portuguese,
specially for me; and Alberto Simões, for the conversations in the corridor and the
help he gave me on solving several issues concerning my thesis and work around
it. . . I would say that if there is a solution for your problem, he knows the answer!
To finish this group of acknowledgments, I really want to thank two other amazing
persons: Professor José João and Professor Jorge Sousa Pinto; not only for the
conversations we had, but also for the friendly support they gave me, which is the
most valuable value in the world!

A special acknowledgement I would like to express to all my friends living in
other countries or distant cities with whom I could only exchange some comforting
words, during this degree, by chat, email, mobile phone messages, phone calls, and
so on. I will not name all of you, folks, but you know who you are. Friendship and
love can always break the distance!

Finalmente quero agradecer aos meus pais, Arlindo e Teresa, irmã, Patrícia,
e seu namorado, Ibraim, por todo o apoio que me deram nas horas mais compli-
cadas deste mestrado, e o suporte nos momentos das decisões importantes da vida.
Peço desculpa pelas muitas horas de ausência e de silêncio passados em devoção
ao trabalho ou pelos momentos de mau humor provocados pelo cansaço ou stress.
Obviamente, este agradecimento não é só por estes dois anos; inclui também todos
os outros anos de estudos que os antecederam, os quais me guiaram a sucessos a
todos os níveis. Sem este constante apoio, nada seria possível. Muito Obrigado Pai,
Mãe e Irmã!

vi

Contents

Figures xii

Tables xiii

Listings xv

Acronyms xvii

1 Introduction 1
1.1 Overview . 1
1.2 Problems and Doubts . 3
1.3 Goals to Achieve . 4
1.4 Outline . 6

2 Domain-Specific Languages 9
2.1 Characteristics . 11

2.1.1 Cognitive Dimensions . 11
2.1.2 Cognitive Dimensions Applied to DSLs 13

2.2 Dichotomies . 14
2.2.1 Abstractness and High-level versus Concreteness and Low-level 14
2.2.2 Expressiveness versus Computational Power 15

2.3 Pros and Cons . 16
2.3.1 On DSLs Usage Perspective 16
2.3.2 On DSLs Development Perspective 17

2.4 Developing DSLs . 18
2.4.1 Complete Language Design Approaches 19
2.4.2 Languages Extension Approaches 21
2.4.3 COTS Products-based Approach 21

2.5 Application Domains . 22
2.6 Summary . 23

3 Program Comprehension 25
3.1 Fundamental Definitions . 28

3.1.1 Program Reader . 28
3.1.2 Problem Domain . 28
3.1.3 Program Domain . 28
3.1.4 Domain Concepts . 29

vii

Improving Program Comprehension Tools for DSLs

3.1.5 Mental Model . 29
3.1.6 Information Extraction . 29

3.2 Software Visualization . 30
3.2.1 Software Visualization Systems — Categorizations 30
3.2.2 Visual Representations and Their Requirements 31

3.3 Cognitive Models . 33
3.3.1 Top-Down Model . 33
3.3.2 Bottom-Up Model . 34
3.3.3 Hybrid Cognitive Models . 35

3.4 Program Comprehension Tools . 36
3.4.1 The Tools . 36
3.4.2 Tool’s Output Characterization 38

3.5 Domain-Oriented Program Comprehension 40
3.5.1 Approaches for Connecting Domains in DSL Comprehension . 40
3.5.2 Tools for DSLPs . 42
3.5.3 Discussion . 45

3.6 Summary . 46

4 An Idea to Comprehend DSLs 47
4.1 Choosing One Suitable Approach . 48
4.2 DAST — The Initial Approach . 49
4.3 DapAST — The Improved Approach 51

4.3.1 DAST versus DapAST . 52
4.3.2 Inside Animation Nodes . 52
4.3.3 Traversing the DapAST — Theoretical Approach 54

4.4 Summary — Answering Question One 55

5 Alma2 57
5.1 Developing the System . 58

5.1.1 Architecture . 59
5.1.2 Internal Structure . 61
5.1.3 Traversing the DapAST — Practical Approach 64

5.2 Using the System . 68
5.2.1 The Expert does. 69
5.2.2 The Program Reader does. 74

5.3 Summary — Answering Question Two 75

6 Case Studies 77
6.1 Karel’s Language . 77

6.1.1 Problem Domain Definition 78
6.1.2 Language Formal Definition 78
6.1.3 Conception: Mappings, Visualization and Animation 80
6.1.4 Animation Using Alma . 84

6.2 The Lavanda Language . 87
6.2.1 Problem Domain Definition 88
6.2.2 Language Formal Definition 88
6.2.3 Conception: Mappings, Visualization and Animation 89

viii

CONTENTS

6.2.4 Animation Using Alma . 92
6.3 Summary . 95

7 Approach Assessment 97
7.1 Experiment Preparation . 98

7.1.1 Team Know-how . 98
7.1.2 Related Work . 99
7.1.3 Objective of the Experiment 100
7.1.4 Questionnaire Design . 101
7.1.5 Participants Identification . 103

7.2 Experiment Execution . 104
7.3 Final Results . 105

7.3.1 Results and Discussion . 105
7.3.2 Threats to Validity . 111

7.4 Summary — Theorem Validation . 112

8 Conclusion 115
8.1 Discussion and Conclusions . 118
8.2 Future Work . 119

Bibliography 121

A AnimXXXNode Family of Classes 139

B Experiment Questionnaires 141

ix

Improving Program Comprehension Tools for DSLs

x

Figures

1.1 Method to Proof the Theory . 5

2.1 Overview of Compiler Tasks . 20

3.1 Reengineering - A Maintenance Methodology 26
3.2 Gap Between Program and Problem Domain 27
3.3 Framework for Debugging DSLs . 44

4.1 Answering Question 1 . 47
4.2 DAST . 50
4.3 Processing a DAST . 51
4.4 DapAST . 53
4.5 Processing the DapAST . 54

5.1 Answering Question 2 . 57
5.2 Alma2 Architecture . 59
5.3 Alma2 Internal Structure . 61
5.4 Animation Pattern Workflow . 64
5.5 Process of Drawing Actors . 67
5.6 The Alma2 Users . 68
5.7 State Initialization . 72
5.8 Initial state of Alma2. 74

6.1 Problem Domain associated with the Karel’s Language 79
6.2 Sequence to move the robot . 82
6.3 Sequence to rotate the robot . 83
6.4 Sequence to pick an object . 83
6.5 Sequence to drop an object . 84
6.6 Label as a Resource for Visualization 84
6.7 Visualization after executed the first turnright instruction 86
6.8 Visualization after executed the first move instruction 86
6.9 Visualization of a frame of the picking object sequence 87
6.10 Problem Domain associated with the Lavanda Language 89
6.11 Initial Visualization of a Lavanda Language specificaiton 93
6.12 Visualization of the contents in the first bag 94
6.13 Problem Domain Visualization of the second Bag 94
6.14 Final Visualization of the Lavanda Language specification 95

xi

Improving Program Comprehension Tools for DSLs

7.1 Theorem Proof Schema . 98
7.2 Main Structure for the Experiment Tasks 102
7.3 Distribution of Questions . 102
7.4 Comprehension Tasks — History and Expertise of the Participants . . 104
7.5 Time Results . 106
7.6 Correctness Results . 108
7.7 Importance Results . 110

8.1 Final Theorem . 117

B.1 Participant Identification Form . 142
B.2 Questionnaire — Page 1 . 143
B.3 Questionnaire — Page 2 . 144
B.4 Questionnaire — Page 3 . 145
B.5 Questionnaire — Page 4 . 146
B.6 Questionnaire — Page 5 . 147

xii

Tables

2.1 Sample of DSLs Application Domains 22

3.1 Information Provided by the PCTools Examined 39

6.1 Connection of concepts to images in Karel’s Language 82
6.2 Connection of concepts to images in Lavanda Language 91

7.1 Average of Time Spent in Solving the Questions 106
7.2 Average of Time Spent per Type of Question 107
7.3 Average Correctness of the Questions 108
7.4 Average of Correctness per Type of Question 109
7.5 Average Importance of Problem Domain Visualizations and Views

Synchronizations per Question . 110
7.6 Summary of the Experiment’s Results 113

xiii

Improving Program Comprehension Tools for DSLs

xiv

Listings

5.1 Fundamental Packages to Import . 70
5.2 Toy Language Syntax . 70
5.3 Example of a Tree Injection Method 71
5.4 Creation of an Animation Node . 71
5.5 Semantic Rules for the Robot Movement 73
5.6 Definition of Animation Nodes for one Instruction 73
6.1 Formal Definition of Karel’s Language 80
6.2 The code for the Harvest Problem . 85
6.3 Formal Definition of the Lavanda Language 88
6.4 Specification in Lavanda Language 92

xv

Improving Program Comprehension Tools for DSLs

xvi

Acronyms

A

ADT Abstract Data Type, p. 42.

AG Attribute Grammar, p. 20.

API Application Programming Interface, p. 21.

AST Abstract Syntax Tree, p. 49.

B

BE Back-End, p. 50.

BNF Backus-Naur Form, p. 19.

BORS Behavioral-Operational Relation Strategy, p. 42.

C

CD Cognitive Dimension, p. 11.

CDF Cognitive Dimensions of Notations Framework, p. 11.

CFG Context Free Grammar, p. 70.

COTS Commercial Off-The-Shelf, p. 21.

D

DapAST Decorated with animation patterns Abstract Syntax Tree, p. 52.

DARE Domain Analysis and Reuse Environment, p. 18.

DAREp Domain Analysis and Reverse Engineering Project, p. 40.

DAST Decorated Abstract Syntax Tree, p. 49.

DDF DSL Debugging Framework, p. 43.

DSL Domain-Specific Language, p. 1.

xvii

Improving Program Comprehension Tools for DSLs

DSLP Domain-Specific Language based Program, p. 2.

DSLpc Slovenian-Portuguese Bilateral Project on Program Comprehension for
Domain Specific Languages, p. 1.

DSML Domain-Specific Modeling Language, p. 10.

DsPCTools Domain-Specific Program Comprehension Tools, p. 3.

DSSA Domain Specific Software Architectures, p. 18.

E

EBNF Extended Backus-Naur Form, p. 19.

F

FAST Family-Oriented Abstractions, Specifications and Translations, p. 18.

FE Front-End, p. 50.

FODA Feature Oriented Domain Analysis, p. 18.

G

GPL General-Purpose Language, p. 2.

GPLP General-Purpose Language based Program, p. 2.

I

IDE Integrated Development Environment, p. 43.

IT Identifier Table, p. 31.

J

JVM Java Virtual Machine, p. 63.

M

MDSE Model-Driven Software Engineering, p. 10.

O

ODE Ontology-based Domain Engineering, p. 18.

ODM Organization Domain Modeling, p. 18.

xviii

ACRONYMS

P

PC Program Comprehension, p. 1.

PCTools Program Comprehension Tools, p. 2.

PR Program Reader, p. 28.

R

RE Regular Expression, p. 80.

S

SV Software Visualization, p. 2.

SVS Simultaneous Visualization Strategy, p. 42.

V

VL Visual Language, p. 69.

VMTS Visual Modeling Transformation System, p. 43.

X

XML Extensible Markup Language, p. 10.

xix

Improving Program Comprehension Tools for DSLs

xx

To Ni, Zinha and Rocas,
for being such incomparable friends.

Chapter 1

Introduction

We don’t see things as they are, we see them as we are.

Anaïs Nin

This document is a dissertation presenting a master’s thesis in the area of Pro-
gram Comprehension (PC) applied to Domain-Specific Languages (DSL). This mas-
ter’s thesis is a component of the second year of the new Masters Degree (second
cycle of Bologna’s), that is to held at University of Minho in Braga, Portugal. The
subjects discussed in this document sprang out from the Slovenian-Portuguese Bi-
lateral Project on Program Comprehension for Domain-Specific Languages (DSLpc)1.

In this chapter is given an overview of this work’s topics in the real world. After
a glance on the main pitfalls, which steer the studies in this thesis, are presented the
main objectives and the contributes. Also a brief discussion about the methodologies
applied in the work behind this dissertation is made.

1.1 Overview

Since the advent of the computer era, every day, some genius brains come up with
new ideas and new techniques to solve problems that exist in the world, and can only
be solved by a computer program or system. Several problems have been worked
out and many others are still there to be figured out. Informatics is not a limited
discipline applied to a limited set of domains. Instead, it is everywhere. Businesses,
medicine, justice, politics, sports, biology are some of the domains where it is applied
to solve emergent problems.

As the techniques and technologies for software development are being constantly
improved, rapidly the systems developed (those used to solve the problems) turn into
legacy systems.

Legacy systems have been the main propeller for the advances made in the
PC area [136]. They need maintenance or even improvements to follow the new
requirements imposed by the evolving needs. Maintenance is known to be the most
time-consume part of the software life-cycle. In [172] the author, based on [29]

1Project’s home page: www.di.uminho.pt/~gepl/DSL

1

Improving Program Comprehension Tools for DSLs

and [65] informs that 50% to 75% is the average time spent for the tasks involved
in the maintenance; and that 47% to 62% of the maintenance time is spent in
comprehending the whole system. Many reasons can cause this time expenditure:
the complexity of the systems, the non-preparation of the programmers to perform
such a task, the non-familiarization of the programmers with the domain for what
the system was developed, and so on. But the main reason lies on the fact that
in the major part of the cases, the process of comprehending a program is done
manually [172].

In order to gain time in the comprehension tasks, tools have been developed.
These tools try to systematize and automatize the process of comprehending pro-
grams from the simplest program to the most complex system. However, until now,
any of them reduces up to 100% the manual labour involved in these tasks.

Many techniques, which can be seen as sub-systems, are explored in Program
Comprehension Tools (PCTools). Software Visualization (SV) systems are an exam-
ple. They aid in the comprehension task, by showing internal aspects of the program
or system, that otherwise, humans would not assimilate so rapidly [98]. These as-
pects are, traditionally, sets of concepts retrieved from the program domain.

Program domain concepts are more complex to understand, the more generic is
the language used to write a program. General-Purpose Languages (GPL), like C,
C++, C#, Java among others, have this handicap. As they are used to program and
solve any problem in any kind of domain, their syntax and semantics are generic
and closer to the machine level of understanding than to the human’s. Although
the abstraction level of these languages have been increased with the born of new
programming paradigms, like the Object-Oriented, they still have programming con-
cepts that are hard to comprehend. And these difficulties grow bigger, when the
programs coded with such languages — General-Purpose Language based Programs
(GPLP) — are huge.

However, as in politics, justice, medicine, and so on, groups of specific words
are regularly used to ease the comprehension between people, also in informatics,
programming languages that address a specific domain were created. These lan-
guages, so called DSLs, rise the abstraction of the program domain and shorten the
distance to the concepts of the problem to which they were designed. So that, pro-
grams written with these languages — Domain-Specific Language based Programs
(DSLP) — can be easily comprehended by persons aware of the problem domain.
But, the same may not be true for persons with lack of knowledge in the domain.

Thus, the study of program comprehension for DSLs is a necessity and a reality.
In the last few years some studies were done in order to understand on which type of
programming language (GPLs or DSLs) program comprehension strategies are more
effective. The intuition suggests that is easier to use a language (in the extent of
learning it, developing with it and evolving programs made with it) when domain
of its application is known and well defined [153].

The contribute provided, so far, by previous projects like VODA2 and PCVIA3, are
important for this area of research. In the sequel of them, a part of the DSLpc project,
that origins this thesis, aims at studying Domain-Specific Program Comprehension

2Project’s home page: http://wiki.di.uminho.pt/twiki/bin/view/Research/Voda
3Project’s home page: http://wiki.di.uminho.pt/twiki/bin/view/Research/PCVIA

2

1.2. Problems and Doubts

Tools (DsPCTools), in order to find new techniques that can be applied to DSLs.

1.2 Problems and Doubts
In 1978, Brooks [31] drew a theory about the behavior of programmers before the
task of comprehending a program. He affirms that, in order to comprehend a pro-
gram, any person (commonly a programmer) should gather knowledge, from sev-
eral resources related with the program and from the program itself; and with this
knowledge, be capable of creating bridges, addressing several domains of knowledge,
between the program and the problem domains. To put this in simpler words, the
theory says that a program is better understood if the person who is through the
process of comprehension knows the program and problem domains, and is capable
of establishing bridges between them.

Until today, this theory is proven to be correct. The development of some tools
and techniques for program comprehension, have adopted Brook ’s theory in order
to ease the process of program comprehension [131, 157]. But, commonly, they
give more attention to program domain aspects, and took little advantage from the
problem domain. Many times, the latter is not even addressed. So, despite adhering
to the proposed theory, they do not follow it completely. Thus, in general, PCTools
do not address the problem domain. This causes a hole in this set of tools, and it
should be filled out.

In part, it happens because these tools and techniques work upon GPLs, and the
difficulties on retrieving problem domain aspects from GPLPs and dealing with them,
are known for this kind of languages.

However, when dealing with DSLs, as the problem and program domains are close
to each other, it is easier to infer a conceptual connection between them. But as said
before, this is true if the person who is being through the process of comprehending
a program is acquainted with the problem domain. Otherwise it would be necessary
dedicated techniques and tools to help on the comprehension of DSLP [185]. A DSL
user has different necessities, compared to a GPL user. He would rather have a
visualization of the program at the problem level than at the program level.

As long as PCTools mostly cope with GPLs, throughout the years of research
on this area, many techniques tools and approaches (henceforth the set of tools,
techniques and approaches will be referred to as PCTools) took shape and were
applied to those languages. Concerning this, one question seems to have necessity
of being answered:

Question 1. Can the PC techniques, tailored for GPLs, be applied on DSLs?

In case of a positive answer, this question arises an important group of other
questions. From that group, the following question gains relevance, since it summa-
rizes all the doubts and misbeliefs that hang upon this work:

Question 2. Is it possible to improve existent PCTools, in order to give the end-user
useful and better perspectives to comprehend the program and the problem?

Both questions can be answered affirmatively. At least, at a first glance. De-
pending on the PCTools that are trying to be adapted, the conviction is that yes,

3

Improving Program Comprehension Tools for DSLs

they can be configured to cope with a new kind of languages, DSLs, in this case.
However it is a conviction that should be proved.

Regarding the second question, it is also a conviction that adapted versions of
PCTools can help users on the process of comprehending a DSLP, yes, but only if
a clear investment in order to address the problem domain, besides the program
domain, is made. Without it, the users will only absorb the program internals,
and those (users) not familiarized with the domain, will remain with almost all the
difficulties as if there were not such PCTools.

Since it is not usual to find, in PCTools, visualizations of the effects that the
execution of a program provoke in the problem domain, an investment on this di-
rection should be made when adapting the PCTools to cope with DSLs, taking great
advantage from the problem domain and its intrinsic connections with the program
domain.

1.3 Goals to Achieve

Summing up the previous section, it is known that some PCTools follow Brook’s
theory, but not completely. The major part of them only address the program
domain and work upon generic programming languages. A problem was raised from
the fact that there is not effective PCTools to help in DSLP comprehension, addressing
both program and problem domains. From here emerged doubts and convictions
about the possibility of adapting PCTools to cope with DSLs, that should be proved.

Brook’s theory is the basis of the hypothesis that steers the present thesis. This
theory is not focused on the development of PCTools, but on the behavior of the
programmer when studying a program to comprehend it. Since PCTools aim at
helping the programmers to understand programs, the knowledge behind the theory
can be taken to guide the behavior of the programmer via a tool. But, in an attempt
to bring closer such theory to the development or improvement of PCTools, it seems
that it needs an increment. The following theorem represents the new visage of the
theory applied to PCTools:

Theorem 1. (Extended Brook’s Theory) A program comprehension tool, will
ease the task of comprehending a program when synchronized visualizations of its
program and problem domains are provided, since from these visualizations, the user
is able to build a conceptual knowledge base that easily bridges both program and
problem domains.

One of the aims of this master’s thesis is to prove that the theory just composed
is correct. But, to do so, first, it is needed to support the affirmative answers given
to the questions raised in the previous section. In Figure 1.1 is shown a scheme of
how to proceed with this proof and what are the main resources needed to succeed.

According to this, the studies underlying this thesis are twofold: on the one hand
it is made a more theoretical study, and on the other hand a more practical one for
proof of concepts. The goals proposed to attain in this work are the following:

• Study techniques, tools and other approaches on program comprehension, to

4

1.3. Goals to Achieve

Figure 1.1: Method to Proof the Theory

reason about whether they can or can not be applied to the comprehension of
DSLP;

• Study a way of applying them to the development of PCTools and/or their
improvement into DsPCTools.

• Propose the new technique which, theoretically, may ease the process of com-
prehending DSLP;

• Develop the prototype of a program comprehension tool based on an existent
one, which follows a technique studied before. The prototype should focus
on the creation of the visualization at the problem domain level, and, fun-
damentally, provide a synchronized visualization of the program and problem
domains. This would hold the requirements of the theory stated before.

• Evaluation of the developed prototype, resorting to a non uniform group of
possible users. This last objective would be used to corroborate, or not, the
hypothesis of this thesis.

This work is expected to improve the way the problem subjacent to a program
is shown to the user, in order to accomplish its comprehension. Also, it is intended
to be a pioneer work aiming at increasing the number of DsPCTools, so the hole on
the set of PCTools will be filled out.

5

Improving Program Comprehension Tools for DSLs

1.4 Outline

After this opening chapter, the document is structured as follows:
In Chapter 2 a deep study on domain-specific languages is provided. The char-

acteristics of these languages, the advantages and disadvantages concerning their
use and development, and approaches to improve and make more agile the DSL’s
implementation process are some of the topics addressed in this study. This chapter
would provide a basilar knowledge about these languages as they are the focus of
this master thesis.

In Chapter 3 are addressed the main keywords of the research field on program
comprehension. Some specific and fundamental definitions that will be used through
all the document are presented here. Main focus is given to the topics of software
visualization and cognitive models, as they are also central issues on this thesis. A
study on the state of the art, concerning the tools for program comprehension is
also provided in this chapter. Tools are classified according to important program
comprehension aspects, to make evident what is missing in those tools. This, along
with a presentation of tools to analyze domain-specific language based programs,
enables the reader to understand where the contributions of this thesis stand.

In Chapter 4, a program comprehension tool is chosen from those studied be-
fore, in Chapter 3; then the program comprehension technique followed by that
tool is carefully studied. Finally a new approach is designed based on the ana-
lyzed one. This new approach has the objective of providing visualizations and
animations of the problem domain concepts, and also to synchronize them with the
program domain visualizations. For that, a powerful intermediate representation of
the program, extended with special patterns, is used; and the method to animate
this representation, resorting to the patterns, is depicted.

In Chapter 5 the tool chosen before is extended to cope with the new program
comprehension approach. The architecture of the resultant tool and internal relation
between the several components are presented and explained. Moreover, the main
algorithm for the animation of the problem domain and its synchronization with
the program visualizations, is explained with some detail. At the end, it is briefly
explained how the users should use the tool; two groups of users with different
expertise level are taken into account in such a usage explanation.

In Chapter 6 the tool is tested with two different case studies. The case studies
follow a set of specific steps determined in the previous section as those necessary
to build the visualizations of the domains. Each case study addresses a different
domain specific language; the first one is an imperative language, and the second is a
declarative. Difficulties and problems on creating these visualizations are addressed
for each type of language, however explanations to solve them are given.

In Chapter 7 an experiment to assess the effectiveness and usefulness of the ap-
proach is described. The details of the preparation, concerning the previous know-
how, the tasks and the questionnaire design, and the details of the conduction,
concerning the steps followed to achieve successful results are presented. Tables and
charts present the results obtained, and are accompanied by analysis and explana-
tions for those results.

In Chapter 8 the thesis is concluded. The main achievements and contributions

6

1.4. Outline

are highlighted, and a space for discussing future work topics is reserved.

7

Improving Program Comprehension Tools for DSLs

8

Chapter 2

Domain-Specific Languages

A programming language is low level when its programs require
attention to the irrelevant.

Alan Perlis

No matter what is done, computers will always understand things in terms of 0’s
(zeros) and 1’s (ones). These things they understand are human-made programs.
And humans, although capable of doing it, are not proficient in speaking that binary
language. However, the computer can be taught to translate any language into its
preferred idiom. For this reason, humans do not need to go down to binary level.
Instead, they can keep the way they talk to computers at a very perceptible level
by raising the abstraction level of the language they use.

Programming is no more a computer-oriented task. Several factors play an im-
portant role in it. One of the most important is the concern about the future of
a software piece, namely, its maintenance. It is not a computer that will maintain
the software, but a human. So the target of the code written must not be only the
computers, but also the humans.

Thus, to clarify the dialogue between persons and program code, the terms and
concepts used in the programming language syntax and semantics should be close
to those the person knows about the real world.

Two types of languages are mainly used to write programs for computers: GPLs
and DSLs.

There is not a precise definition for GPL [46, 45, 201]. They are created to solve
any kind of problem no matter the area or domain this problem fits into. Nor-
mally they are the programer’s choice for the communication with the computer.
As they are general purpose and widely used, they are adopted by the majority of
programmers. The existence of a large community of experts in one GPL also plays
an important role in such adoption. But issues like the maturity of the language, the
availability of well tested and optimized compilers, and the existence of good devel-
opment tools or environments [84], are the more crucial for the referred preference.
But, these languages have drawbacks when regarding other aspects like writing and
reading or understanding their programs, commonly addressed as semantic gap.

Concerning the former aspect, they always imply vast programming expertise.
Hence, not every human is able to use them. Concerning the latter aspect, GPLs are

9

Improving Program Comprehension Tools for DSLs

commonly low level languages. Low level language means that the syntactic con-
structors and underlying semantics of that language address implementation partic-
ularities that are closer to the machine’s way of working than to the human’s way of
thinking. Their varied formats and the programming paradigms they follow, which
try to raise the abstraction level, are not enough to erase the difficulties observed
on comprehending the programs written with these languages.

DSLs can be defined by the following sentence:

A domain-specific language is a programming language or executable
specification language that offers, through appropriate notations and ab-
stractions, expressive power focused on, and usually restricted to, a par-
ticular problem domain. [196]

This sentence gives a concrete definition of what a DSL is. Although a small aspect
can be discussed. It is said that a DSL is a programming language. But Wile [204]
affirms that this is not necessarily true. He supports his affirmation with the example
of musical notation, which is a DSL, but it is not a programming language. On the
other hand, it is said that a DSL is an executable specification language. But, again,
Mernik et al. [123] say that DSLs are not necessarily executable, referring that they
can be used just for being processed as happens, for instance with Extensible Markup
Language (XML) dialects. Therefore, perhaps the better solution is to change the
beginning of the definition, and say that a DSL is a computer language; the definition
with this change neither generalizes nor specifies the purposes of such a language,
but enhances its major characteristic, which is the fact of being tailored for a specific
problem domain [197].

As these languages are built for a specific domain, it is easy to absorb the main
concepts and features inherent to this domain, and bring them to the language
notation [105]. This would result in a notation capable of raising the abstraction level
of the programming [41], that is, the notation addresses a higher level of abstractness,
enlarging the distance to the machine’s way of working but shortening it to the
human’s way of thinking. Moreover, these languages tend to be small [16, 126] and
less complex.

DSLs, as well as GPLs, can be regarded as programming languages, or modeling
languages. The latter are called Domain-Specific Modeling Languages (DSML) [92],
sharing the same global definition given before for DSLs. Although programming
languages and modeling languages have not precise boundaries, there are efforts
trying to clarify their borders, by defining sets of criteria for their classification [187].
One important point is that DSMLs are used in earlier phases of the development of
a software system, namely, the system’s designing or modeling phase, in the Model-
Driven Software Engineering (MDSE) approach. Another aspect is that DSMLs can be
used to derive computations, by translating the modeled behavior of the software in
an executable source.

Since DSLs are the central issue of this thesis, a further and deeper look into
their discussion is given in the remainder of this chapter. First, in Section 2.1,
the characteristics of these languages are addressed, in order to enhance the main
differences to GPLs, which are discussed in Section 2.2. The characteristics of these

10

2.1. Characteristics

languages are intrinsically related with the advantages and disadvantages that their
usage and development present. These pros and cons are discussed in Section 2.3.
Finally, it is presented a small overview of DSLs application areas and some examples
of these languages, in Section 2.5.

2.1 Characteristics
GPLs are perfectly established in the software development life-cycle. Their char-
acteristics are so widely spread among the software engineers community that are
regarded as a natural thing. However, with DSLs is not the same. There is the neces-
sity of enhancing their characteristics in order to defend their usage instead of GPLs.
In part, this oughts to the research and studies made on DSLs during the last ten
years [204, 123, 105], revealing the importance that these languages are achieving in
software engineering. Because of that, the characteristics of DSLs are worthwhile to
know and understand.

The following sections present those characteristics and justifies them resorting
to the Cognitive Dimensions (CD), which are also overviewed in the remainder of
this section.

2.1.1 Cognitive Dimensions

CDs [71, 73, 74] are attributes of computer languages and other similar notations.
These attributes are comprehended in a framework, known as the Cognitive Di-
mensions of Notations Framework (CDF) [27], which was created to help on the
design of new notational systems, by providing available design choices, and means
to evaluate the usability of these systems. So, an usual application of the CDF is
on the improvement of notations and associated systems, with respect to the users’
perspectives [93, 38].

In this section, the CDs are listed and each one is briefly explained, in order to
expose an overview about its purpose in the framework.

• Abstraction — is related with the possibility of incrementing the original no-
tation by creating an higher level perception of the terms. Examples are the
possibility of defining new macros and new data-structures.

• Closeness of Mapping — is related with the distance between the notation
and the terms of the domain that are to be described. That is, the notation
entities describe precisely what the user wants to describe.

• Consistency — is related with the capacity of expressing similar semantics
resorting to a similar syntax. That implies the existence of patterns in the no-
tation, so they help users on identifying desired information, without breaking
expectations.

• Diffuseness — is related with the verbosity of the notation. That is, the
number of words and characters necessary to express a term or concept of the
domain.

11

Improving Program Comprehension Tools for DSLs

• Error-Proneness — is related with the non-protection of the notation against
user-made errors. In other words, are the characteristics of the notation that
allow users to express erroneous things.

• Hard Mental Operations — refer to the great necessity that users have on
thinking hard and resorting to tools or other resources in order to understand
what the notation means in a precise context.

• Hidden Dependencies — refer to connections on the notation entities that are
important, but are not fully exposed to the users’ eyes. Examples are intricate
class hierarchies, HTML links, operations with side-effect, among others.

• Premature Commitment — is related with the imposition of an order of doing
things. The users are constrained on making decisions even before they have
the notion of what would be needed in the future. This dimension can also
appear under the name of Imposed Guess-Ahead.

• Progressive Evaluation — is related with the possibility of checking the state
of a description in a notation, before finishing it. The interpretation rather
than the execution of programs, as happens with Haskell, for instance, allows
a partial evaluation of the programs.

• Provisionality — is related with the possibility of making provisional actions.
It is similar to the Premature Commitment dimension, but in the present case,
the commitment is not imposed.

• Role-Expressiveness — refers to the easiness on inferring the purpose of a
notation entity, just by reading the specification in the given notation.

• Secondary Notation — is related with the availability of mechanisms for ex-
pressing extra information, but not in the syntax of specification. Examples
are comments, annotations, colors, and others which give information that
sometimes is not possible (or is hard) to infer from the formal syntax only.

• Viscosity — refers to the difficulties observed at the time of changing something
in a specification. Normally it can be measured using the number of actions a
user need to accomplish a task. Intricate dependencies on the notation entities
can be the cause to make a notation or system viscous. More on this dimension
can be seen in [72].

• Visibility — is related with the ability of viewing notation components eas-
ily. The existence of this dimension (the same happens with all the others
dimensions described above) on a notation, depends on the user perspective
and usage of the notation. Many times, visibility on notations can only raise
problems when performing a comprehension task on a specification.

The CDF is an interesting and usable approach to assess the usability, and to
enhance and explain the characteristics of notations. In the following section (Sec-
tion 2.1.2), characteristics of DSLs are presented, and their explanation is based on
some of the CDs presented above.

12

2.1. Characteristics

2.1.2 Cognitive Dimensions Applied to DSLs

As DSLs are notations, the application of the CDF, in order to study the usability of
these languages, is a powerful approach. DSLs are different, but somehow share some
characteristics. In this context, it is possible to create a shelf for these languages,
and evaluate and explain their common characteristics. In [153], the authors used
the CDF to accomplish a speculation-based evaluation of DSLs.

In this section, the intention is to do a similar analysis, since a complete empirical
experiment is not in the scope of the present work. However in this case, the aim is
to enhance, describe and point reasons for the characteristics of DSLs based on the
CDs presented in Section 2.1.1.

Normally, DSLs are small. The fact of these languages being tailored to deal with
the problems of a specific domain, allows their designers to grab only the essential
features and concepts of that domain, and manage them to create a small and
restricted notation. When languages are small, the proneness to errors is, a priori,
also small, so this characteristic diminishes the presence of the error-proneness CD.
Small notations allow the specification of solutions to solve the problems, instead
of programming them, unlike what happens when dealing with the major part of
GPLs. So, DSLs are usually more declarative than imperative languages [196]. This
characteristic enables the presence of the progressive evaluation dimension, in the
sense that specifications can be interpreted at any time, but this is a topic that
depends on the system that cope with the DSL (compiler, processor, and so forth)
and not on the notation itself.

Moreover, they are abstract [82] and expressive in their domain [123]. Actually,
the latter is not always true, regarding the following law proposed by Heering [78]:

Expressiveness×Domain size = Constant

When analyzing and designing a DSL, engineers should be aware of the domain
where the language will be applied. The semantics of the domain should be implicit
in the language notation [83]. The latter means that abstraction should be brought
to the notation of the language; that is, the low level notions of how something is
done should be encapsulated by a high level notation, expressing, for each sentence
or statement, the precise purposes of their existence and usage. Indubitably, this
allows their users to easily create mappings between the syntax of the language
and the objects of the problem domain. So, these two characteristics, enable the
presence of the role-expressiveness, closeness of mapping and diffuseness CDs. On
the other hand, the encapsulation of semantic information in the notation, reduces
the visibility dimension on the language; and, opposed to the role-expressiveness
dimension, DSLs would present low indices of hard mental operations. Also, the
viscosity of these languages is supposed to be small, because of DSLs being little
and abstract languages. In a naif supposition, it is also valid that the abstraction
dimension is also present, since DSLs are, per se, abstract languages and, some of
them, present mechanisms to create even more abstraction. On the other hand, the
abstraction would increase the number of hidden dependencies.

The concentration on the definition of a notation that would only express con-
cepts of a single application domain, brings the possibility of sharpening edges on the

13

Improving Program Comprehension Tools for DSLs

language, and make it more and more efficient on various directions. One of these
directions is the efficiency on being read and learned by the domain experts [2, 41].
Domain experts are persons with great knowledge on a given domain, but, normally
with any or little expertise on programming. Thus, given the abstractness and the
expressiveness of DSLs, they can easily read programs, and learn the languages in
order to specify the programs with efficiency, or in another words, with little time
spent. The same may not happen if the person interpreting the language is outside
of the domain.

Another facet of that efficiency can be observed on the tools that give support to
the language. Their processors, for instance, can be improved to offer better results,
as the domain is restricted and the knowledge is centralized.

2.2 Dichotomies

In this section are used comparisons with both general-purpose and domain-specific
languages, to discuss about some dichotomous characteristics on DSLs. For this
discussion, the following pairs of characteristics are taken into account: i) Con-
creteness and Low-level vs Abstractness and High-level ; ii) Computational Power vs
Expressiveness. The following paragraph gives an overview on the concerns of the
characteristic written above.

Abstractness and Concreteness address the semantics of the language and how
it is exteriorized to the user. Low-Level and High-Level focus on the level where a
programmer must think to be capable of working with the language. Expressiveness
is related with the easiness of mapping the language notation into the real world
objects and other inherent characteristics. Computational Power concerns with
the different possible ways of defining a computation and the capability of defining
several things using the same constructors.

2.2.1 Abstractness and High-level versus Concreteness and
Low-level

What should be answered when it is asked whether DSLs are abstract or concrete? A
language is more abstract the more it hides the operational semantics [137] from the
final user. One of the main efforts during the construction of a DSL, is to encapsulate
the semantical knowledge in the language notation, in order to have it implicitly,
instead of explicitly, as happens with GPLs. For this reason DSLs are more abstract
than GPLs, which, by exclusion of parts, are more concrete.

In fact, as Deursen and Klint observed [195], the knowledge about the domain is
concentrated in the language notation, and the knowledge about the implementation
(the operational semantics of the language) is delegated to the compilers, processors
or other related tools that give support to the language usage.

A low level language is a language that takes its user into a thinking level that
is known to be unusual for human beings. That is, the handling of constructors
and abstractions of a low level language imply the presence of specialized knowledge
beyond the empirical knowledge on an application domain.

14

2.2. Dichotomies

On the other hand, high level languages, remove from their notations explicit
implementation aspects (abstractness). Users are able, then, to handle the language
constructors at a more rational level.

DSLs are usually high level languages, when comparing with GPLs. The abstract-
ness of DSLs raise this level, once the semantics of the language are implicit in the
constructors and abstractions that the notation of the language presents. This way,
the user’s concerns are focused on issues associated with the problem and not with
the solution (code, program and other intricacies). The gains on following this phi-
losophy are great; using high level languages (DSLs, namely DSMLs) that allow the
focus on the problem and not in the solution, can be profitable at earlier stages of the
software life-cycle [76, 87], like the requirements analysis and management [8, 86].

2.2.2 Expressiveness versus Computational Power

A language is said to be expressive when its notation helps the user on creating
mappings between the program and problem domain concepts, without resorting to
documentation of the software pieces, whether it is internal (comments, annotations
and so forth) or external (user manuals, implementation reports and so forth). Such
characteristic is observable when the language is easy to learn, and their programs
are easy to read and understand.

On the other hand, the computational power of a language is related with the
possibility of specifying multiple and different computations relying on the same
vocabulary and structures, offered by the language. Also it is manifested when the
notation allows the definition of similar computations, using different approaches.

DSLs are usually, more expressive than GPLs; on the other hand, GPLs offer a
greater computational power (concerning the CDs, DSLs present more consistency
than GPLs). The major difference between these types of languages is precisely this
dichotomy. However, it was not always true. Languages like Fortran or Cobol, can
be regarded, nowadays, as GPLs, because of their computational power, but they were
first constructed to fulfill requirements on the mathematics and the business areas,
respectively [196]. That is, they were tailored for a single domain of application.

The expressive power of DSLs make of them very objective languages, in the
extent that the user would know, easier, what happens when a statement of a pro-
gram is interpreted or executed. The vocabulary of these languages store knowledge
of the application domain, and mask behavioral aspects of this same domain. As
they are used to cope with the aspects of a single domain, they do not need extra
computational power to extrapolate for other domains. The language constructors
must encapsulate precisely the behavior required for the concepts of the domain,
with which they are associated.

As final words about this dichotomy, Ladd and Ramming [108] state that DSLs
should not be designed to describe computations, but to express useful facts from
which one or more computations can be derived. This express precisely what was
said about DSLs throughout the present section.

15

Improving Program Comprehension Tools for DSLs

2.3 Pros and Cons

All the characteristics of DSLs, listed and explained before, lead to a group of ad-
vantages and disadvantages.

In this section, an impartial and literature-based overview on this matter is
given. In order to proceed, it is important to left clear two perspectives on this
discussion. On the one hand, there is the usage perspective, which concerns with
the usage of DSLs to produce programs or specifications, and other tasks associated,
like comprehension, maintenance or evolution of the specifications. On the other
hand, there is the creation perspective, which concerns with the development of
new DSLs and tools like processors, compilers or interpreters, and also with the
maintenance of the languages and the associated tools.

2.3.1 On DSLs Usage Perspective

The most claimed advantage on using DSLs is the possibility of integrating domain
experts in later stages of the software development life-cycle [195, 2, 70]. Normally,
domain-experts are very required in the analysis phase of the whole software devel-
opment process, and their functions end right there. But are not few the times that,
a new overview on the conceptual aspects concerning the software in production,
is needed. Since the usage of GPLs require good programming skills, the domain-
experts, who are not proficient on that area, little work can do on this matter.
However, using DSLs they can steer the flow on the programming tasks and they can
even give a hand on specifying the programs.

In this context, DSLs are also appropriated to diminish the distances that exist
between the conception and implementation phases of the software development
process. Also, this leads to the creation of new software development methodologies,
meeting the requirements that the domain imposes [2].

It is possible to sub-divide the present perspective into two parts: (i) the imple-
mentation phase and (ii) the maintenance phase.

Concerning the former sub-perspective, (i), DSLs ease and increase the speed on
the construction of software pieces [195]. Kieburtz et al. [94] also defined a set of
advantages, that, in some extent, empower the existence of the last addressed advan-
tage: they claim that DSLs enhance the flexibility, productivity and usability. The
justification for these advantages is trivial by regarding the characteristics of DSLs
presented before. All they are due, mainly, to the expressiveness and abstraction
of these languages, which are, indeed, the main characteristics. Also, the usability
of these languages can be justified by the fact of being small and easy to read and
write.

Further in the implementation steps, DSLs would enhance the testability of the
programs or specifications being described. In this context, non-traditional methods
like [179] can be followed in order to test these programs.

Regarding the latter sub-perspective, (ii), there are many advantages. The main
one is that using DSLs the software maintenance is simplified [195]. Completely
related with this one, is the claim that these languages enhance the comprehensibil-
ity of programs and specifications [204, 105]; which is not any novelty, because the

16

2.3. Pros and Cons

easiness of maintaining a piece of software implies the easiness of comprehending
the program specifications. To this advantage contributes the easiness on infer-
ring the domain of the language, and on creating mappings between the program
and problem domains. Another great aspect of these languages is that, in many
cases, they provide self-documentation, what avoids the search for documentation
resources that may be unavailable. Together, these three aspects diminish the costs
of engineering and reengineering, and increase reliability and repairability on the
software constructed with DSLs [81].

DSLs are claimed to be a good approach for software reuse [107]. In this context,
not only the pieces of software are reused, but also the knowledge embodied in the
language. So, the reutilization is another advantage that is connected to the usage
of DSLs.

Until now, only advantages were pointed. However DSLs have also some draw-
backs associated, concerning their usage. Some programmers create some resistance
to use DSLs, because it may be necessary many DSLs to do the job of a single GPL.
This dues to the fact that DSLs are tailored for a specific domain. So the program-
mers claim that they do not need to learn many DSLs when already know one GPL.
The point is, if there is not adherence on a DSL, it would not have any success, and
its evolution or work done upon them, like tool support construction, would be tasks
without future; on the other hand, the adherence implies teaching costs, which can
be significative [195]. Although the latter has been pointed as a disadvantage, it is
believed that it is easy to learn a DSL with little effort.

Moreover, this variety reduces the easiness of interoperability with other well
established languages [70]. This is obviously a disadvantage, because in real projects,
several domains can be addressed and, thus, several DSLs can be used; and even the
combination of DSLs with GPLs is a reality. So, without interoperability between
them, DSLs can fall into disuse.

Missing tool supporting for monitoring, debugging and other necessary tasks for
DSL users is, indubitably, a great disadvantage. Without tool support, the availabil-
ity of DSL is limited [196], what leads to low number of adherents on such language.

2.3.2 On DSLs Development Perspective

The development of DSLs allow optimization and validation at domain level [33,
13, 122]. The optimization of a language concerns with details of implementation
at machine level, e.g. managing the memory allocation. As was stated before,
these kind of implementations are done at language development time, and not
at programming time, providing abstractions that encapsulate these details. So,
at programming time, the user is able to build specifications and optimize them
at domain level, because the optimization at machine level, is already done. For
instance, in C, memory allocation is an indispensable task, but it takes the user to
cope with details that are, most of the times, beyond their capabilities.

But this raises the majority of the disadvantages on developing DSLs. Firstly,
in order to develop a language, the engineer must be expert on both the domain
of application and compilers engineering [195]. Most of the times, the language
engineers are not proficient on the problem domain, so creating a language is not a

17

Improving Program Comprehension Tools for DSLs

single-man task; domain experts are needed to steer the DSL requirements [103], and
language engineers are needed to concretize the requirements into an abstraction
capable of coping with the domain concepts.

This fact empowers the consumption of time and money on the several phases of
the language development (design, implementation and maintenance) [196]. In fact,
developing a language requires knowledge about programming in GPLs, on most part
of the cases. The issues related with the maintenance of GPLPs are widely known. So,
maintaing DSLs and their associated tools, like compilers, processors or interpreters,
can be a very complicated and difficult task. Not for so little times, this leads to
low number of tool supporting; and when there are tools, they may not follow up
the evolutionary trends of the language [70].

The disadvantages on the present perspective, can be attenuated regarding the
methodologies used for the development of DSLs. Section 2.4 gives a little survey
on some development methodologies that were successfully used to implement DSLs,
over the times.

2.4 Developing DSLs

Language engineering is an old discipline perfectly established as a branch of the
software engineering. The development of DSLs is just a small part on that branch.
Unlike the development of GPLs, which is, normally, based on compiler techniques [1],
the development of DSLs follows several methods and techniques, including also the
techniques used for creating GPLs [123].

Each development methodology is well supported by tools. Not all the tools were
tailored to cope with the development of DSLs, but they are successfully and easily
adapted to cope with it.

The following sections address the DSLs development techniques, their associated
classifications and the tools used for their crafting. The knowledge present in these
sections is not relevant for the work of this master’s thesis, thus this small survey
does not go deep into details.

In general, five main steps are pointed to be essential on DSL development: de-
cision, analysis, design, implementation and deployment [123, 196]. The decision
phase concerns with the analysis of pros and cons about developing or not a new
language. The analysis is the phase where domain experts gather knowledge related
with the domain, relying on domain analysis methodologies like Feature Oriented
Domain Analysis (FODA) [90], Domain Specific Software Architectures (DSSA) [188],
Organization Domain Modeling (ODM) [178]. Domain Analysis and Reuse Envi-
ronment (DARE) [67], Family-Oriented Abstractions, Specifications and Translations
(FAST) [202] and Ontology-based Domain Engineering (ODE) [64]. The design step is
concerned with the choice and adoption of patterns and conceptual implementation
decisions. The implementation phase, is related with the concrete construction of
the DSL, using the patterns and implementation approaches adopted in the design
phase. The deployment (or distribution) step is when the language is ready to be
used, and is made available for general usage.

18

2.4. Developing DSLs

During these phases, patterns can be used to ease the process of language devel-
opment. Spinellis [181], reinforced later byMernik et al. [123], defined a set of several
design patterns. Some of them are listed below with a snippet of their description.
For further reading about these patterns, the given references are recommended.

Piggyback The capabilities of existing languages are used as host to the develop-
ment of new DSLs;

Pipeline DSLs are constructed in a way that the input of one is the output of
another;

Lexical processing The languages are designed with the intuit of not using syntax
analysis, but only lexical scanning.

Language extension DSLs are constructed in order to add features to existing
languages. It can be seen as an extension of the base language;

Language specialization The languages created remove features from existing
languages which serve as base;

Source-to-source transformation The source code of a DSL is transformed into
the code of an existing language;

Data structure representation DSLs are designed to represent data structures;

System front-end DSLs are constructed to be the front-end of a system, in order
to configure and adapt the underlying system.

These patterns are basis for implementation approaches. In [204], three main
shelves were identified to contain such approaches. In the list below are presented
the containers and the approaches contained in each one. For each implementation
approach a small description is given.

2.4.1 Complete Language Design Approaches

The approaches contained in this shelf involve the creation of a language from the
zero. This requires the definition of the language syntax (commonly achieved by
using Backus-Naur Form (BNF) or Extended Backus-Naur Form (EBNF) notations),
the specification of the semantics, and the translation into target code. Compilation
and Interpretation are the main approaches within this container.

Compilation. It is the most traditional approach to implement a language, no
matter the language is a DSL or a GPL. The language constructs are analyzed and
synthesized into a target code, that can be machine code or a common GPL lan-
guage code, that is to be executed by a machine. The common tasks performed by
compilers can be seen in Figure 2.1. Besides the tasks, it is also presented auxiliary
data-structures and mechanisms, used to communicate between tasks, and assess
the correctness of the programs.

19

Improving Program Comprehension Tools for DSLs

Figure 2.1: Overview of Compiler Tasks

Interpretation. The difference to the compilation approach is that the language
constructs are recognized but not executed at machine level; instead they are inter-
preted.

These implementation approaches are supported by compiler-compilers (tools for
compiler generation) that are widely available for many years. The Lex [112] and
YACC [88] system, used for the development of any kind of language, is one of the most
popular; but more recent and similar tools (in the extent that are not only focused on
the development of DSLs) are available: JavaCC1, SableCC [69], based on translation
grammars, and LISA [125], AntLR [146], JastAdd [61], based on Attribute Grammars
(AG) [101], are some examples. On the other hand, there are tools specified on the
construction of compilers and interpreters for DSLs. ASF+SDF [194], Khepera [63],
Kodiyak [81], InfoWiz [134], are some examples of these specialized tools.

The languages created with these approaches are said to be external languages [164],
because they are independent languages; that is, the DSL constructed on this strat-
egy is completely designed and implemented from the scratch, not relying on any
pre-existent language.

1Home page: https://javacc.dev.java.net/

20

2.4. Developing DSLs

2.4.2 Languages Extension Approaches

In this container are placed the approaches for DSLs implementation using GPLs, or
components of these languages, as a start point. In this context, two approaches
are considered to be the most used: Embedding and Extensible compiler/interpreter
approaches.

Embedding. In these approaches, the developer does not need to have compilers
expertise, because all the work of semantics verification and machine code transfor-
mation is delegated to the compiler of the host language. Nevertheless, the syntax of
the DSL must be designed, but this time is used the host language syntax to develop
the new DSL constructs. The construction of an Application Programming Interface
(API) for a given application domain, is considered a concretization of this approach.

The advantages on embedding languages are considerable. Starting on the fact
that it needs no compiler knowledge, to the fact that the compiler of the host-
language is completely reused; from the point that the development of the language
needs only knowledge on the domain and on parts of the host language, to the point
that, for usage purpose, it is not need to know the underlying language.

The languages implemented with this approach are called internal or embedded
languages [82]. Almost any GPL can be used as host-language, but some have more
appropriated characteristics and are frequently used: Ruby [44, 47], Python [148],
Haskell [82, 155, 154], Java [68, 89], C++ [163] and Boo [164] are some examples of
utilization.

A specialization of the embedded languages was introduced by Fowler and
Evans [66], and is called Fluent Interfaces. These languages still being classified
as embedded, but their construction upon a GPL follows a methodology enabling
a more flexibility in the syntax, so writing operations is no more than chaining
function calls, what allows a more fluent specification.

Extensible compiler/interpreter. This approach is very similar to the compi-
lation approach presented in Section 2.4.1. The main difference is that an existent
compiler of a GPL is extended with domain-specific aspects in order to add domain-
specific constructs to the underlying language, rather than creating the compiler
from the scratch. This way, the task of creating the language is easier than using
the other approach, but attention must be paid when modifying the compiler, in
order to not screw up the base language.

2.4.3 COTS Products-based Approach

Commercial Off-The-Shelf (COTS) products, as the name induces, are very accessi-
ble. In this context, the implementation of DSLs followed the trends of the crescent
usage of such products. The idea on this approach is to specify the language struc-
tural aspects in terms of these tools [204].

The most used COTS-based product is the XML. However other products like Mi-
crosoft Access, Microsof Powerpoint and spreadsheet representations can be used as
claimed by Wile [204]. XML gives a fairly easy to use approach to write new DSLs.

21

Improving Program Comprehension Tools for DSLs

The tools associated with it increment flexibility on creating processors for the lan-
guage. However, the XML dialects tend to be very verbose, and hard for humans to
read.

Summing up this discussion about the implementation of DSLs, Kosar et al. [105],
in their study on the implementation of DSLs, concluded that the extension of lan-
guages by the embedding approach are the most efficient approach to be used when
developing DSLs. Moreover they state that a great alternative to this approach is to
use the compilation approach, because of the possibility of handling minor aspects
and having more control over the language implementation.

2.5 Application Domains
The applicability of DSLs is widely spread through many domains, so, it is not
a surprise when it is said that hundreds of languages have been developed until
today [96]. In this section is given a sample of those domains and languages tailored
for them, following the surveys on this matter [196, 204, 123].

Table 2.1 lists some of the domains to where DSLs were constructed. The first
column shows the application domains, and the second associates names of DSLs
used on each domain.

Table 2.1: Sample of DSLs Application Domains

Application Domain Language Examples
Finances RISLA
Business Cobol
Databases SQL
Web Computing Mawl, StruQL
Imaging Envision, PIC
Graphs/Diagrams DOT
3D Animation HAL
Communications PRL, Promela++
Simulation SHIFT, APOSTL
Robotics ARCL, Karel
Mathematics Mathematica, Matlab, Fortran
Compilation YACC
Software Building Make
Spreadsheets Excel
Syntax Specification BNF, EBNF
Web Development HTML, CSS
Typesetting LaTeX
Hardware Design VHDL
GUI Construction SWUL, XAML
Data Processing Hancock

22

2.6. Summary

2.6 Summary
The fact of DSL being tailored for a specific domain, gives great advantages and
add a reasonable number of characteristics that make them different from GPLs:
they are high-level, small and declarative (most of the times), abstract, expressive
and efficient. However, in [97], the author concludes that any of the characteristics
of DSLs make them different from the the other software languages. Maybe this
is a correct statement regarding a specific perspective like their existence purpose,
nonetheless, in terms of using them and understanding their programs, they really
mark a difference.

These characteristics enable the presence of many advantages like the fact of
allowing the insertion of domain experts (usually non-programmer persons) in ad-
vanced phases of software development. However their development is not an easy
task and requires, in the major part of the times, compiler construction knowledge.

Nevertheless, these difficulties can be soften regarding the variety of implementa-
tion approaches that have been successfully used. The embedding approach, where
a GPL is used as basis to develop a new DSL, is claimed to be the most flexible and
valuable approach.

An important conclusion about these languages is that is easier to infer its ap-
plication domain, and to identify and create mappings between the program and
problem domain concepts. This way, the comprehension of DSLPs is achieved with
more ease.

In this chapter, DSLs were introduced and a deep study on them was provided,
addressing (i) their characteristics; (ii) vantages and disadvantages on their usage
and development; (iii) methodologies of development, including design patterns
and implementation approaches and finally (iv) application areas and examples of
existing DSLs.

23

Improving Program Comprehension Tools for DSLs

24

Chapter 3

Program Comprehension

Testing leads to failure, and failure leads to understanding.

Burt Rutan

Software is developed through several phases [85, 77]. Some may think that
developing tasks concern just with the phases of creating the software pieces, but
there is more beyond that: after a software piece is completely implemented and
tested, its development continues to the maintenance phase. As already introduced
before, this is the most expensive and time-consuming phase [29, 65, 207], and much
of it is due to the fact that software must be comprehended.

Software maintenance relies on several activities that have the necessity of pro-
grams to be comprehended, or are means to achieve that comprehension:
(i) Reverse Engineering, is an activity to gather information about the interrela-
tionship of a system’s components, and to create a new representation, usually
more abstract, of the same system. Its dual is known as Forward Engineering.
(ii) Design Recovery, is similar to reverse engineering, but it takes advantage of re-
sources like documentation and domain knowledge, to gather the information about
design decisions, so it is possible to define an abstract representation of the system
under study;
(iii) Restructuring, is the activity of modifying the system’s representation but pre-
serving its initial abstraction and semantics. A common practice is to change source
code structures into more efficient or modern structures;
(iv) Reengineering, is a twofold activity: first, an analysis of the system is made (usu-
ally relying on reverse engineering) and then, using the knowledge base gathered in
the first step, the system is re-implemented in a new form, in order to meet the
changes needed. Figure 3.1 shows how reverse engineering and forward engineering
activities may be composed, in order to originate a maintenance methodology.

Above were listed only a few activities that are related with PC and to mainte-
nance in general. More on this matter can be seen in [37].

In this context, Program Comprehension (PC), defined as:

A discipline of Software Engineering aimed at providing models, meth-
ods, thechniques and tools, based on specific learning and engineering pro-
cesses, in order to reach a deep knowledge about a software system. [20].

25

Improving Program Comprehension Tools for DSLs

Figure 3.1: Reverse Engineering and Forward Engineering Activities Combined to
Implement a Maintenance Methodology — Reengineering

emerged as an useful and interesting research area [199, 136, 138, 185], to leverage
the work of maintaining and evolving software. But comprehending code is not an
easy task. Some empirical studies have been made in order to gather information
about the difficulties on comprehending programs and how to improve it [166, 129,
91]. A great contribute on the identification of difficulties associated with PC is
given by Rugaber [172]. The author identifies five gaps between different conceptual
areas, and states that program comprehension is compromised by the difficulties on
bridging those gaps. In an abstract point of view, those gaps can be turned into
one single gap: the gap between the problem and the program domains, as shown
in Figure 3.2.

The research involved in PC, walks around this gap, trying to fill it, for more
than three decades. This problem led researchers to the construction of theories and
cognitive models [189, 200, 208, 75], which have been applied in building PCTools, to
(semi)automatize the program comprehension task. Figure 3.2 presents a common
PC process sketch, identifying the domains of knowledge and the usual activities
performed in each one. In addition, is marked the direction of the principal theories
on program comprehension: Bottom-up and Top-down, which are addressed later in
this chapter.

But before providing information on program comprehension theories and cog-
nitive models (Section 3.3), important and commonly used terms in PC area, are
explained, in Section 3.1. In Section 3.2, a general overview on Software visual-
ization, is given. Then, in Section 3.4 some PCTools are surveyed, but not with
the objective of giving a complete description of these tools; instead the aim is to
show what kind of information they present to the users, to enhance the program
comprehension. Finally, in Section 3.5 work related with the one discussed in this
dissertation, is presented; there are presented approaches and tools that, on the
one hand, take advantage of the problem domain to enhance the comprehension of
programs, and on the other hand, deal with DSLs.

26

3. Program Comprehension

Figure 3.2: Gap Between Program and Problem Domain

27

Improving Program Comprehension Tools for DSLs

3.1 Fundamental Definitions

PC is an area of research, as many others, where specific terms are used to foment
the dialogue and establish a comprehension between the researchers. Throughout
the previous chapters, some of these terms have been, inevitably, used, but without
been given a complete definition or explanation. In order to converge the meanings,
some of the more relevant terms to establish a perfect comprehension between the
reader and the message being passed in this dissertation, are defined and explained
in the following sections.

3.1.1 Program Reader

Although the name is not perfectly established, Program Reader (PR), or simply
Reader, is the most common name used, by some authors [172, 113], to identify the
person who is being through the process of understanding a program.

Reverse engineer or programmer are also used. But these are narrower terms,
when comparing with PR. A programmer is normally connoted as a person who
implements a program and little times is seen as someone who tries to understand a
program. Reverse engineer may be a better approximation, but it seems, somehow,
to infer that it is a task performed by some specialized person — some times it is
not.

Thus, henceforth, the term program reader (or for short, PR) will be used to refer
to the person who performs mappings between the problem and program domains,
in order to understand the program as a whole.

3.1.2 Problem Domain

Problem domain, also called application domain, is the term used to refer to the
knowledge and the information resources on the area where a software system was
developed to. In PC, the problem domain is also regarded as the domain of knowledge
which “is concerned with the effect of the program execution, i.e., the final result
produced and the impact at the level of the problem to be solved” [20].

Normally, it is regarded as a set of concepts which are closer to the humans
perception. These concepts are usually gathered resorting to domain analysis and
ontologies [6, 64, 111], defining and describing the problem area.

3.1.3 Program Domain

Program domain is the term used to refer to the program level of a software sys-
tem, that is, to the source code of the software programs and to the low level
concepts associated with it. This domain “is concerned with technological issues of
the programming language (. . .), and how the program is executed to produce an
output” [20].

At program domain, the sentences of the program, composed of statements or
function calls, are the resources to raise information that helps to comprehend a
program, namely its data and control flows.

28

3.1. Fundamental Definitions

3.1.4 Domain Concepts

In [165], Rajlich and Wilde define Domain Concepts or just Concepts as

Units of human knowledge that can be processed by human mind (short-
term memory) in one instance.

Other authors have a more pragmatic idea about concepts on programming perspec-
tive, describing them as equivalent to the objects of the object-oriented program-
ming, however it seems to be a limited approach. Others see them as attributes and
subsets of attributes constituting lattices [115]. Another perspective about concepts
can be retrieved from [149], where the authors present a concept as a brick repre-
senting an informational idea, capable of being present in one or several domains.

In PC, the concepts are very important, because it is based on them that the
knowledge about a program and the problem is interconnected. However, these
interconnections are hard to do, because high level concepts at source code are
spread all over the code; thus, many studies and approaches for their localization in
the source code have been done for years [26, 114, 53, 121].

3.1.5 Mental Model

Mental Model [43], is a central term in PC research. A good summary on the story
of its usage and application in PC or cognitive sciences is provided in [133].

In simple words, a mental model is the internal representation of the program
being studied, created by the PR [200]. This means that, somehow, the program
reader creates an internal representation (at human mind level) of the connections,
dependencies and other dynamic and static aspects of the source program.

3.1.6 Information Extraction

Information Extraction is a discipline focusing on the extraction of relevant infor-
mation, from the source code or other information resources of a system, in order
to present it over several perspectives. Information can be extracted, mainly, by
following static or dynamic approaches.

Compiler techniques [1, 9] are traditionally used for static information extraction.
Also slicing techniques [191, 25] can be used to retrieve static information from code,
in order to know the influence of parts of the program in the whole program or
system.

For dynamic information extraction [210], other techniques are used. Code in-
strumentation [190, 24] is an example. With this technique is possible to know, in
run-time, which are the objects, functions, variables and so forth, of the program
that are being used or called.

The terms enhanced in this section are the most relevant to establish a perfect
symbiosis between the reader and the text. However, other PC-specific terms are
used in this dissertation. As the work made upon them is related with the topic of
this thesis, they will be explained in more detail in Sections 3.2 and 3.3.

29

Improving Program Comprehension Tools for DSLs

3.2 Software Visualization

Software Visualization (SV) [156, 56] is a discipline of the software engineering that
have been evolving along with the trends of the PC. It provides the visual representa-
tion of the information present in software systems, allowing a better comprehension
of such information [23]. Price et al. defined, theoretically, SV as follows:

Software Visualization is the use of the crafts of typography, graphics
design, animation and cinematographic with modern human-computer
interaction and computer graphics technology to facilitate both the human
understanding and the effective use of computer software [161].

and in [36], the authors refer to SV tools as systems used, mainly, to support the
navigation and exploration of the software information resources, to give insight
about the complexity of information, and to support communication, giving a more
technical approach to that definition.

3.2.1 Software Visualization Systems — Categorizations

In order to materialize the techniques and approaches researched on the SV area,
tools and complete systems have been developed. Some of these tools are stand-
alone, in the extent that have no other purpose besides the visual representation
of the software information. But the major part of these tools are known as pure
PCTools1, or are sub-systems of such tools, because the visualization of the informa-
tion is an important part on the PC approaches. These systems have been categorized
regarding their features and functionalities, throughout the years. Taxonomies on
this matter have been created, to classify the systems and to guide their develop-
ers. Before presenting taxonomies, is worthwhile to know that SV systems can be
grouped into Algorithm Visualization, Program Visualization and System Visual-
ization, depending on their scope and applicability. Algorithm visualization refers
to the visualization of algorithms and is applied on teaching situations. Program
visualization refers to the visualization of programs, regarding the interconnections
between the components. System visualization englobes all the other ones [23],
because is used to visualize the algorithms, dependencies and functionalities of pro-
grams that compound a complex and multi-module software system.

Myers [132] classify software visualization systems using a three-by-two matrix.
The possible classifications are (i) Static Code Visualization; (ii) Dynamic Code
Visualization; (iii) Static Data Visualization; (iv) Dynamic Data Visualization;
(v) Static Algorithm Visualization and (vi) Dynamic Algorithm Visualization.

Price et al. [162, 160] provide a classification framework composed of six ma-
jor sections: (i) Scope; (ii) Content; (iii) Form; (iv) Method (v) Interaction and
(vi) Effectiveness. Each one of these master terms are then subdivided into smaller
parts to which the authors called characteristics of SV systems.

The work of Roman and Kenneth [170] in this area, results in a taxonomy similar
to that of Price et al., referred before. The taxonomy presented by the authors is

1See Section 3.4 for an overview on these tools.

30

3.2. Software Visualization

composed of five main classification terms: (i) Scope; (ii) Abstraction; (iii) Speci-
fication Method; (iv) Interface and (v) Presentation. Again, these terms are subdi-
vided into smaller ones, used to characterize the tools for software visualization.

The works referred in the previous paragraphs are the most influent on this area
of SV systems classification. But all these works are only concerned with the visu-
alization of the program domain, giving little importance to the problem domain
visualization. Recently, Berón et al. [20], presented an extension, by providing a tax-
onomy for classifying SV tools that address the problem domain. The authors claim
that the terms used to classify other SV tools are suitable for this new taxonomy,
but they need to be given a new and coherent semantics.

3.2.2 Visual Representations and Their Requirements

The taxonomies are used to classify the systems according to the information that
is presented and how it is presented. The visualization of abstract information
(for instance, software data structures, algorithms and so forth) is neither easy nor
perfectly established [145, 169]. The developers create their own visualization of the
software systems and the concepts involved. However they are always restricted to
represent that information using 2D or 3D graphics.

The different perspectives, showing static and dynamic information of the soft-
ware information in SV systems, are called Views [24]. The same information re-
source can be seen over several perspectives, and several approaches can be adopted
to do its visual representation. For instance, the source code of a program can be
seen using a textual view, but it can also be seen by means of graphs concerning
the dependencies between concepts in the program domain [157]. In [23] and [50],
the authors refer to a considerable number of possible views to represent the infor-
mation. Some of them are the module dependency graph, function graph, runtime
function graph, type dependency graph and so on. The previous list of perspective
approaches resort to graphs. Other important views of a program are the Identifiers
Table (IT), the source code, itself and the documentation associated with it. All
these approaches are based on text and 2D graphics.

Recently, as the improvements on computer graphics are evolving so fast, several
works on representing software using three-dimensional approaches have been done.
Some authors keep using graphs (but in a 3D approach) to represent the informa-
tion [168, 40], others are more concerned on giving a new perspective to the code
visualization based on metaphors [120]. Virtual reality is also an approach that
some authors follow to develop their SV systems [99, 30]; while others are focused
on viewing software systems as complex cities [100, 203].

All the 3D approaches seem to be very interesting, but the utility and usability
of the associated tools are badly tested, what points that there is no reliable results
to affirm that 3D visualizations are better than 2D. At the end, what matters is
that the tools should hold the user (the PR) requirements for a better program
understanding. Kienle and Müller [95] have created a list of such requirements,
regarding them as quality and functional requirements. Bellow is given a summary
of each one.

• Quality Requirements

31

Improving Program Comprehension Tools for DSLs

Rendering Scalability The systems’ rendering speed should scale up whether
the amounts of data to represent is small or great;

Information Scalability The systems should behave equally, whenever the
amounts of data are small or great. This aspects concerns the approach
followed to represent the data.

Interoperability The systems should provide information capable of being
used by other system, whether it is a SV system or another kind of system,
for instance, measurement systems.

Customizability The systems should be customizable, in order to hold needs
that can not be forecasted at developing time.

Interactivity The system should allow users to manipulate the information
that is represented, in order to have better understanding of the abstract
concepts represented visually.

Usability The systems should be usable. This is a subjective aspect of the
systems, in the extent that the opinions may vary. Nonetheless, the tools
should be tested against their usability.

Adoptability The systems should provide features to solve needed tasks,
otherwise, users will not use the tools, leading to its unsuccess.

• Functional Requirements

Views The system should provide as many views as possible, in order to
praise any kind of stakeholder.

Abstraction The system should give the user the possibility of working and
visualize the information on varied levels of abstraction.

Code Proximity The system should provide a raw view of the source code,
instead of hiding it, because the source code is always the most important
resource to start the exploration of the program.

Automatic Layouts The system should offer the capability of automatize
the way the information is displayed in the screen.

Miscellaneous The systems should provide tools and mechanisms that other
systems present as are examples the colors, the search filtering and history
mechanisms, zoom-in and zoom-out of some views, deletion and edition,
and so forth.

Some of the requirements listed above are, in some cases, trivial to offer, as
they are generic requirements for software development and several approaches have
been proposed. Nonetheless, others are rather complex, and some flaws on SV sys-
tems come from the absence of such requirements. Henríquez [80] fundaments this
statement by claiming that one of the greatest difficulties on the development of SV
systems is to cope with the scalability problem, i.e., the size of the programs that
will be visually explored.

32

3.3. Cognitive Models

3.3 Cognitive Models

A Cognitive Model is a means to create a mental model. That is, a structured
way, adhered by the PR, in order to retrieve and gather knowledge from the source
program [209]. In [133], the authors refer to a cognitive model as a way of “un-
derstanding how humans know, perceive, make decisions, and construct behavior in
a variety of environments”. From this definition, is possible to see that such term
is used not only to describe the process of creating mental representations of a
program, but also to explain how, and based on what, the PRs do it.

Cognitive psychology is a term introduced by Ulric Neisser [135] and was stud-
ied by very well known psychologists, namely Jean Piaget or Saul Sternberg. The
objective of this discipline is to study internal mental processes, including memory,
language and problem solving. The study of how persons use cognition to solve
problems is in the basis of the cognitive models. In fact, psychological studies on
how people learn things are really close to the studies done in program comprehen-
sion, thus, the methods and theories that outcome from cognitive psychology can
be applied to this area of computer sciences [128].

Throughout the years, many models and theories of cognition to support the
program comprehension, have been constructed. The following sections present a
fast overview on them.

3.3.1 Top-Down Model

In a top down model of understanding a program, the PR starts from a higher-level
domain (top) and goes down to a lower-level domain (bottom). Figure 3.2 identifies
the top level of a top-down approach for program comprehension as the level of the
problem domain. The process is finished when a mapping of the knowledge about
the problem to the knowledge of the program is achieved.

The most influent work on this model was the theory developed by Brooks [32],
in 1983, being followed by Soloway and Ehrlich [180] in 1989.

Brooks’ Theory

In his cognitive theory [32], Brooks defends that program comprehension is attained
when mappings between the problem and program domain are established. The the-
ory is based on hypotheses. That is, the PR creates a primary hypothesis about the
program, a very generic one, and goes down to the program domain, discovering the
answer. Meanwhile that primary hypothesis is subdivided in a hierarchic structure
of hypothesis that would all be answered at the program level.

The hypotheses are corroborated, or not, due to the existence of beacons [32]
in the code. Beacons are a set of features, marks or structures commonly used to
identify concepts in the programs. Storey et al. [183] exemplifies that a common
beacon is the function swap in a sorting program.

33

Improving Program Comprehension Tools for DSLs

Soloway and Ehrlich’s Theory

Soloway and Ehrlich’s theory [180] is similar to that of Brooks. It also follows a
top-down approach, however it is based on programming plans and rules of pro-
gramming discourse. The former are “generic program fragments that represent
stereotypic action sequences in programming” [180]; and the latter “capture conven-
tions in programming and governs the composition of plans into programs” [180].

The authors claim that these are features that only expert programmers have.
Thus, their theory is only observed on expert PRs. The theory says that in the
beginning, the PR has an overall idea about the functionality of the program, and
through a hierarchy of plans and goals, where beacons and rules of programming
discourse help on creating the mappings between the higher level (problem domain)
and the lower level (program domain).

3.3.2 Bottom-Up Model

As opposed to the top-down, in the bottom-up model, the PR starts from a lower-level
domain (bottom) and goes up to a higher-level domain (top). Figure 3.2 identifies
the bottom level of a bottom-up approach for program comprehension as the level of
the program domain. The process is finished when the knowledge about the program
is converted into abstraction that can be mapped to the knowledge at the problem
domain.

The most influent works on this model were the theories developed by Shnei-
derman and Mayer [175], in 1979, and Pennington [151], in 1987. Another work,
although not a theory, is that of Basili and Mills [12], in 1982. This one is not
addressed in this document.

Shneiderman and Mayer’s Theory

Shneiderman and Mayer ’s theory [175] is based on programming knowledge, which
the authors state as being twofold: syntactic and semantic knowledge. These do-
mains of knowledge derive into (i) Syntax Knowledge, related with the details of the
programming language; (ii) General Semantic Knowledge, related with the knowl-
edge of not domain-specific general concepts in programming; (iii) Task-related
Semantic Knowledge, directly concerned with the problem domain knowledge.

The theory tells that the PR, using his own programming knowledge, performs
tasks of abstracting source code fragments into chunks (which can be seen, for
simplicity, as code fragments [7]). These chunks are gradually revisited, under the
several parts of the programming knowledge, until they are mapped into higher level
concepts.

Pennington’s Theory

Pennington’s theory [151] states that the PR starts his comprehension process by
collecting information from the source code, in order to create an abstract control-
flow, so the sequence of the program’s execution is perceived. To this, the author
called program model. Then, also in a bottom-up process, but requiring problem

34

3.3. Cognitive Models

domain knowledge, the PR creates a situation model, concerned with knowledge on
data-flow and functional abstractions of the program.

3.3.3 Hybrid Cognitive Models

Hybrid cognitive models are cognitive models that embody both top-down and
bottom-up processes of program comprehension. Several researchers argue that
the process of comprehending programs is not as rigid as following a top-down or a
bottom-up approach, so they came up with their own models and explanations.

Letovsky [113] (1986), provides an opportunistic view of the process of compre-
hending programs. His cognition model defines three main components: (i) Knowl-
edge base, which stores the knowledge acquired by the PR during his experience in
the area; (ii) Mental model and (iii) Assimilation process, which uses the knowl-
edge base and any other resource (from documentation to source code) to generate
and improve the mental model. In this component is where thePR may opt for a
bottom-up or top-down approach, taking into account the one that is more valuable
to finish the comprehension process.

Littman et al. [117] (1987), claim that strategies for program comprehension
process can be systematic, following one of bottom-up or top-down approaches, or
as needed, that is, depending on the needs of the PR, in a given moment, it can be
changed from an approach to another, in an opportunistic manner. They conclude
that when adhering to a systematic strategy, the time consumption is higher, but
the knowledge gathered is also higher, whilst the as needed strategy is the opposite:
takes less time to have a comprehension of the program, and the knowledge gathered
is focused on fragments of the system, and not as a whole.

Koenemann and Robertson (1991), based on the results from an experiment,
claim that “program comprehension is best understood as a goal-oriented, hypotheses-
driven problem solving process” [102]. The authors also state that PRs follow as
needed rather than systematic strategies, because readers focus on the parts of the
code that are relevant for solving a task. Bottom-up approach is used when hy-
potheses fail.

von Mayrhaser et al. [198] (1993), collect information from the models presented
by Soloway and Ehrlich [180] and Pennington [151, 150], and build the Integrated
Model. This model embodies the program model, situation model, the top-down
model (also called domain model) and knowledge base. Depending on the experience
of the PR, the integrated model can be started by a top-down approach, if the PR has
experience on the domain; or by the construction of the program model, otherwise.

All the theories and models of program comprehension addressed above, are old,
regarding their publication dates. However they are so well assessed that convince
any researcher on the area. So that, there is not much recent research studies on
cognitive models. However, in 2005, Xu [208] presented a new theory based on the
constructivist learning theories [62, 119] and on Bloom and Krathwohl ’s taxonomy
of cognitive domain [28]; and more recently, in 2009, Guéhéneuc [75] proposed a
theory of program comprehension, joining both program comprehension and vision
science aspects, in order to extend Brooks ’ [32] and von Mayrhauser ’s [200] models.

35

Improving Program Comprehension Tools for DSLs

3.4 Program Comprehension Tools

Program Comprehension Tools (PCTools) are software systems aiming at helping
the PR on its program comprehension task.

PCTools are widely available as free software or commercial products, and a con-
siderable number of studies on their features and characteristics has been done [14,
177, 185, 52, 15], in order to provide both the state of the art, and to offer the PR
good bases for choosing the most appropriated tool for the work being realized.

In this section, just a small set of tools is provided. The intent is not to go into a
deep description of their features, but to present the software system, by presenting
the information they provide, as output.

3.4.1 The Tools

This section presents the state of the art on PCTools. In [185], Storey described a
considerable number of such tools. As far as it is known, this is the most recent
survey addressing general tools for program comprehension. In this context, tools
are summarized below, following Storey ’s work until the year of 2005; and from 2006
to 2009, are presented the newer PCTools developed meanwhile. The tools are listed
in an alphabetic order, thus, not regarding their age.

Alborz Alborz2 [174], is a general purpose system for reverse engineering, focusing
on the recovery and evaluation of a software system’s architecture. It uses several
techniques for extraction of static and dynamic data, in order to create several views
of the software system.

Alma Alma3 [48], is a language-independent system for program animation and
visualization. It allows the inspection of code by providing several views, including
the static control flow and dynamic animation of the program interpretation.

Bauhaus Bauhaus4 [167], is a tool designed to help users on understanding legacy
software systems, by deriving and describing the architecture, and by providing
several analyses at different abstraction levels. It copes with Ada, C, C++, and Java
programming languages.

Cerberus Cerberus [58], is a threefold system taking advantage of information
retrieval, execution tracing and prune dependency analysis, to locate concerns (re-
quirements and features, for instance) in the source code of a software system written
in Java.

2Alborz — http://www.cas.mcmaster.ca/~sartipi/Alborz/static/index.htm
3Alma — http://epl.di.uminho.pt/~gepl/ALMA/
4Bauhaus — http://www.iste.uni-stuttgart.de/ps/bauhaus

36

3.4. Program Comprehension Tools

CodeCrawler CodeCrawler5 [110], is language-independent reverse engineering
tool, combining metrics and software visualization for ease the program comprehen-
sion task.

DA4Java DA4Java6 [157], is a system designed to visualize and analyze Java
source code, by providing nested graphs. Users are allowed to use bottom-up or
top-down analysis.

Imagix4D Imagix4D7, is a system to help users on understanding legacy systems
written in C/C++ and Java programming languages. It provides an automatization
of understanding program’s control flow, dependencies and so on.

JIRiSS JIRiSS (Information Retrieval based Software Search for Java) [158],
is a tool used for exploration of software systems. It uses information retrieval
approaches to allow the exploration of Java source code.

PICS PICS [21, 18], is a system based on the presentation of several views of
software systems written in the C language. It uses a strategy to interconnect both
problem and program domain, easing the tasks involved in program comprehension.

Reflexion Model Reflextion Model tool (RMtool)8 [131], is a tool designed to
provide system summaries (the reflexion models) to help users on understanding the
structure of large software systems.

Rigi Rigi system9 [130], is a tool to help users on understanding and re-documenting
large software systems. It is a multi-plataform system and copes with C/C++, Cobol
and Java programming languages.

SeeSoft SeeSoft [10], is a tool designed to provide source code (line-oriented)
statistics of a software system.

SHriMP SHriMP (Simple Hierarchical Multi-Perspective)10 [186, 184], is a sys-
tem designed for visualization and exploration of software architecture and related
information. For visualization and exploration of Java programs, Creole [116], a
system derived from SHriMP, can be used.

Not even all the tools presented above are regarded as PCTools, at least according
to Berón, who claims that a software system is a program comprehension tool if
it provides “support for mental models, techniques for software visualization and
strategies to extract and organize the information” [19]. From the knowledge acquired

5CodeCrawler — http://www.inf.unisi.ch/faculty/lanza/codecrawler.html
6DA4Java — http://swerl.tudelft.nl/bin/view/MartinPinzger/MartinPinzgerDA4Java
7Imagix4D — http://www.imagix.com
8RMtool — http://www.cs.ubc.ca/~murphy/jRMTool/doc/
9Rigi — http://www.rigi.csc.uvic.ca/index.html

10SHriMP — http://www.thechiselgroup.org/shrimp

37

Improving Program Comprehension Tools for DSLs

on studying Cerberus, for instance, it does not provide any kind of visualization sub-
system.

However they are all a good indicator that work has been done in the devel-
opment of tools to help the maintenance of legacy systems, by easing the program
comprehension tasks.

3.4.2 Tool’s Output Characterization

The tools listed in the previous section help their users on understanding programs,
by generating several views of the software system. They all use different approaches
to cope with information extraction and its presentation. Some of them present
the information by using fancy graphs, while others use only textual approaches.
However, the discussion in this section, is not on how they present it, but on what
kind of output information they provide.

From the analysis made, a small list of dimensions characterizing the information
provided by these tools was created. These dimensions are explained in the following
points.

Source Code Metrics This aspect encompasses several metrics related with the
source code of a program [159], in order to assess its quality. Examples of
these metrics englobe the number of lines of code, the age of the code, the co-
hesion and coupling of classes, Halstead Complexity and McCabe Cyclomatic
Complexity.

System Components Dependencies Is related with the structural dependencies
at the system’s architecture level, i.e., the relations between files, modules and
packages.

Code Components Dependencies Is a topic similar to the one defined above,
but this time the dependencies are between source code components such func-
tions, attributes, classes, and so on.

Source Code Exploration This aspect englobes the possibility of exploring the
code by simple visualization of the source code, or by performing information
retrieval or other related techniques for information extraction. Notice that
this is better seen as a feature than as an information provided, nevertheless
is important to take it into account.

Data Structures Exploration This topic embodies the possibility of exploring
data structures present in the source code, regarding their abstract represen-
tation.

Static Visualization Is concerned with the presentation of static information re-
trieved from the source code, via static information extraction. It englobes
the presentation of Flow Diagrams, Flow Control, Function Call Graphs and
other graphs representation.

Dynamic Visualization Concerns with the presentation of dynamic information
extracted from the source code. It englobes the presentation of animation of

38

3.4. Program Comprehension Tools

execution trees, execution traces, analysis based on the that information, and
so forth.

Identifiers/Symbols Table This topic is concerned with presentation of the IT,
and dynamic evolution of the values on it.

Operational/Behavioral Relations This aspect is related with the presentation
of relations between the program and the problem level information.

Table 3.1 presents a summary of how the tools presented in Section 3.4.1 cope
with the information dimensions described above. The columns correspond to the
tools, and in each row is marked, with a cross, whether they provide of the several
information aspects.

Table 3.1: Information Provided by the PCTools Examined

A
lb
or
z

A
lm

a

B
au

ha
us

C
er
be

ru
s

C
od

eC
ra
w
le
r

D
A
4J

av
a

Im
ag

ix
4D

JR
iS
S

P
IC

S

R
M
to
ol

R
ig
i

Se
eS
of
t

SH
ri
M
P

Source Code Metrics 7 7 7 7 7 7

System Components Dependencies 7 7 7 7 7 7 7

Code Components Dependencies 7 7 7 7

Source Code Exploration 7 7 7 7 7 7 7 7 7

Data Structures Exploration 7 7 7

Static Visualization 7 7 7 7 7 7

Dinamic Visualization 7 7 7

Identifiers/Symbols Table 7 7 7

Operational/Behavioral Relations 7 7

At a first glance, Table 3.1 presents a very sparse matrix. This means that
the information topics are not covered by the major part of the tools. In fact, the
tools present many features and, surely, provide much more information than the
indicated in the table. It must be left clear that much of the tools were not tested
in order to confirm such information. The table information is, mainly, constructed
upon the literature reviewed.

In [80], the author assumes the “missing-link” problem as a missing detail in
almost every PCTools. This problem consists in the non existence of a cause-effect
relation between the source code and the visualizations produced. Nonetheless, this
problem is not as present as the problem of the absence of connections between the
aspects visualized at the program domain, and what is the effect, at the problem
domain, produced when executing the program under analysis.

Notice therefore, that almost all the tools referred above, address only aspects
related with the program domain, and take little advantage of the problem domain,

39

Improving Program Comprehension Tools for DSLs

left remaining the gap already addressed between the domains. In part, it is due to
the fact of dealing with GPLs; from the discussion in Chapter 2, it is known that the
characteristics of GPLs difficult the creation of approaches to abridge these domains.
However, from the literature reviewed, there are no general and known PCTools that
take advantage of DSLs’ characteristics to fill such a gap.

3.5 Domain-Oriented Program Comprehension
This section presents the state of the art on tools and other works that go further
and try to analyze the connection of both problem and program domains.

In this dissertation, the main objective is to improve program comprehension
tools to cope with DSLs, bridging the problem and program domains. In the present
chapter, the state of the art on general PCTools already was presented, but any of
the tools was concerned with DSLs. Other works, considered close to the one inherent
to this master thesis can be classified as follow: (i) approaches to bring, to PC, the
problem domain knowledge and connect it with the program domain and (ii) tools
for DSLs that, somehow, help on understanding the programs written using these
languages.

So, this section is twofold: First, information about approaches that have been
developed to conceptually connect the problem and program domains, providing
exploration, navigation and visualization of such relations, is given; and second,
some tools and approaches based on DSLs, which produce analytical results and
visualizations to help the understanding of programs written using these languages,
are presented.

3.5.1 Approaches for Connecting Domains in DSL Compre-
hension

The tasks of finding and creating mappings between problem and program domains,
are very complex. Approaches that would reduce this problem are based on gath-
ering information about the programs and confront it with higher-level models,
describing the application domain, in order to extract behavioral aspects of the
program.

However, in [35], the author goes around this problem by claiming that safety-
critical systems can be better understood if they are modeled and programmed
using well formalized DSLs. The premiss says that, to establish such a link be-
tween these domains, it is necessary to find connections between the concepts at
the problem level, and the concepts at the programming level. His proposal is the
definition of DSLs through a systematic and formal design criteria, that englobes the
transformation into a standard language — Wide Spectrum Language [34] — which
has standard programming constructs, and provides easier reverse-engineering. Al-
though this approach is not a novelty in these days, it enhances the fact that using
DSLs, it is easier to have program comprehension even without tool support.

The Domain Analysis and Reverse Engineering Project (DAREp) [39] is an at-
tempt to enlarge the program comprehension process with the knowledge on the
problem domain, trying to fill in the gap between the domains. This approach uses

40

3.5. Domain-Oriented Program Comprehension

Synchronized Refinement [171], which is a technique for reverse engineering detecting
design decisions from the source code, and mapping it to problem domain concepts.
The objective of this approach is that, from the source code and the problem do-
main description, it produces several outputs, including descriptions of the domain,
of the program and of how the code is mapped into the application domain. An
intermediate architecture of descriptions, mapping the source code information into
high-level models, is the final result, claimed to be useful to understand programs.

A similar approach is presented by Rugaber. In [173] he claims that existing
tools answer what questions but not why questions. That is, the tools help the user
to understand what the programs do, but not why the things are doing in that way.
Using more familiar words, it means that tools only address the program domain
(from where is possible to extract the operational view of the program), and pay
little attention to the problem domain and the connections between these domains
(from where it is possible to retrieve the information about the behavior of the
program). In order to minimize this problem, Rugaber proposes a dowser, which
is a tool framework for domain-oriented program understanding, by exploring the
structure of the application domain underneath the software program.

This approach also relies on software documentation and its source code, concen-
trating the data (conceptual and logical models of the program) into a repository,
after its extraction and analysis. This data is converted into information being pre-
sented under graphs, images or text, allowing the navigation and exploration of the
information.

Some studies done on the area of concept analysis and recovery [26, 121] can
also be regarded as approaches for domain-oriented program comprehension. From a
considerable list of research projects, the one discussed in [60] gains relevance. There,
the authors present a technique that creates mappings between the system’s visible
behavior and the parts of the source code directly related with that behavior. The
approach relies on static and dynamic analysis to retrieve data implicitly connected
to the program’s features (the high-level concepts), from the source code. Then,
resorting to concept analysis, it creates relationships between the program level and
the high-level concepts set (problem domain), which can be visualized, explored
and navigated as graphs. The Bauhaus tool, with help of the Rigi system, both
presented before, was used to realize this idea. The authors claim that this approach
is handy to guide a goal-oriented program understanding.

Anam et al. [4, 5] propose an approach that differs from the others presented
before. The authors describe a system that provides domain-oriented explanations
of the program’s behavior. This system is an improvement of a previous one. That
previous system only produced textual explanations of the code. The improvement
generated a new version that, based on the textual sentences produced, translates
the explanations into visual elements of the application domain. This system only
supports PASCAL programs, and since PASCAL is a GPL, the authors concluded that it
was impossible to cope with all the domains to where the language can be applied,
thus, they designed domain models for a few of them. Nevertheless, they produce
domain-oriented imagery for each program statement, depicting the state of the
world. So, they are aware of the necessities of initializing the state of the world
before each exercise. The description of their approach is not very precise in the

41

Improving Program Comprehension Tools for DSLs

literature. But it seems to be an interesting and very related work to the one
underlying this thesis.

A more recent work addressing the problem of domains interconnection for im-
provement of PC strategies, is presented by Berón et al. [19, 21]. They developed a
strategy called Behavioral-Operational Relation Strategy (BORS). The authors defines
BORS as a “strategy aimed at relating the behavioral and operational views based on
problem domain object observation and system abstract data types inspection” [22].

In fact, this strategy is based on the idea that the output of a program is com-
posed of domain objects (also called concepts). The authors assume that each one
of these objects can be realized by an Abstract Data Type (ADT) in the source code.
Then, taking advantage of static and dynamic analysis strategies applied on the
program’s source code, information concerning these ADTs is retrieved. A particu-
larity of BORS is that it is performed in two phases: at run-time (Alive) and after it
(Post Mortem). The Alive phase enables the creation of, among other artifacts, a
so called FE-Tree, which is a tree of functions that are actually executed during the
run-time of the program. Whereas the Post Mortem phase allows the conclusion
of the process in two steps: (i) the storage of functions related with ADTs to be
explained and (ii) the explanation of these functions [23].

In the end, the user, is able to see the relations between the concepts of the
domain (expressed as ADTs) and the source code. BORS is implemented in PICS
system, introduced in the previous section. Attention should be paid that this
strategy relies on code annotation, so it depends on the underlying language.

The same authors present another strategy, called Simultaneous Visualization
Strategy (SVS) for synchronization of program and problem domains [19]. This is a
strategy to recover the relations between both program and problem domain, using
code instrumentation and a parallel execution of the program’s code and a monitor.
The monitor informs which are the objects of the program that produce the output
of the program.

3.5.2 Tools for DSLPs

To cope with the most known and used GPLs, debuggers and similar tools, which
are important and required for the development of more complex systems, were
constructed. These tools are not regarded as PCTools, nevertheless, they can be
used to understand the dynamics of programs. The research on DSLs identified
the need for construction of similar tools to help the development and consequent
understanding of programs using such DSLs. In the remainder of this section, are
presented works in the area of visualizers and debuggers for DSLPs, since there were
not found any specific PCTools for DSLs in the literature.

Debuggers

Debuggers, are essential for development practices. Usually they provide information
about the program as if it was really executing. Variables’ values, function calls
and its arguments, execution traces, and so on, are some of the aspects that can
be retrieved from that fake execution of the program, called debugging. Features
provided by debuggers are usually the possibility of setting breakpoints (to pause the

42

3.5. Domain-Oriented Program Comprehension

execution), stepping forward, stepping over a statement, and so on. At least, these
are some of the features provided by debuggers for GPLs like GDB [182], DDD [212] or
those integrated in Eclipse11 or Visual Studio .NET12.

This section addresses three different approaches for debugging DSLs. These
debuggers have, somehow, similarities with the work underlying this master disser-
tation, because they focus on some aspects of the animation and visualization of
programs, rather then just debugging it. Other debuggers for DSLs exist, as is the
case of TIDE [193], but are not discussed here.

Gem-Mex, introduced by Anlauff et al. [3], in 1998, is above all things, a tool for
DSLs development. This Gem-Mex tool supports a language description formalism
— Montages — for the rapid development of DSLs. From the specification of the
language, the tool produces, among many other features, a graphical environment
where are included visualizers for program animation and debuggers for the language
created. These features allow the visualization of the program’s behavior, by means
of a static and dynamic animation. The static animation is provided by means of
tables and textual descriptions, showing the values of variables and functions. On
the other hand, the dynamic animation is brought by means of arrows that point,
in the source code, the path that is being executed. Unfortunately, the development
strategy of this approach is not available in the literature.

Another approach for a debugger is presented byMészáros and Levendovsky [127].
Actually, it is not a debugger for any kind of DSLs, but for model transformations
based on graph rewriting [59], and supported by their Visual Modeling Transfor-
mation System (VMTS). The authors present the possibility of expressing models in
a meta-model, which is then plugged with a description of its dynamic behavior.
This description is done by means of visual languages: one used to define an event
handler model, and another to define a state machine model. The two models that
describe the behavior of the main model, are connected, and the workflow behind
this approach is that the state machine transitions trigger and fire events, when there
are such events associated to ports, which are the communication window between
the components of the main model.

The aim of the debugger presented is to create a trace of the transformations
that occurred in the model, and to enable modifications in the model, at run-time.
The authors are not concerned with the comprehension of programs (models) but
only with the visualization of the transformation process.

Finally, Wu [205] describes an interesting system for debugging DSLs, based on
grammar technology. The tool presented is a plugin for Eclipse and takes great
advantage of the debugging facilities of this Integrated Development Environment
(IDE). The framework presented by the author (see Figure 3.3), so called DSL De-
bugging Framework (DDF), is twofold. First, the user provides the grammar of the
DSL, whether it is imperative, declarative or hybrid, with semantic actions instruct-
ing the processor to (i) translate the language into a GPL, Java in this case; and
(ii) create mappings between the source code (the DSL) and the translated code (the
GPL). The latter is, general words, a mapping between lines of the fragment in the
source code and the correspondent in the translated one. For more details on this

11Home Page: http://www.eclipse.org
12Home Page: http://msdn.microsoft.com/en-us/vstudio/default.aspx

43

Improving Program Comprehension Tools for DSLs

mapping see [206].

Figure 3.3: Framework for Debugging DSLs

Second the user debugs the program, at DSL level, reusing the Eclipse debugging
actions. However, the program which is actually being debugged, is not the original
one, but the GPLP one. So, the system relies on the mappings database created to,
in a first moment, situate the debugger at GPL level to really extract the information
of the program, and in a second moment, to go back and present the result of the
debugging action at DSL level.

The main interest of this work is not focused on the debugging actions that are
provided for the DSL, because it reuses an existing debugger. The interest, at least
for this dissertation, relies on the mappings and translation of the DSLP into the
GPLP,

Visualizers

Visualizers are, in the context of this dissertation, tools that help the understanding
of a program, by illustrating specific details of that program. Thus, they can be seen
as SV systems. In this section, two visualization systems that take advantage of the
knowledge on specific domains, are presented, and their approaches are discussed.

Mathematics is one specific area of knowledge where the human brain has more
difficulties to grasp. The abstract calculus and functions are not easy to understand
by every person. But perhaps with graphical representations, some of these diffi-
culties start to vanish. This was what Peterson [154] thought when developed a
system for mathematical aspects visualization. His system is based on a DSL that
was firstly embedded in Haskell: Pan; but the author tweaked it to behave as a
stand alone language and to improve its syntax, making it more usable. The users

44

3.5. Domain-Oriented Program Comprehension

of the system specify, using this language, the program which is based on definitions
close to the mathematical notation. They do this in an environment that allows also
the introduction of controls to manipulate the final visualization. The final visual-
ization, that is, the effects of the program expressions, are visible upon imported
images.

As can be noticed, the visualization is not about the functions, but about the
effect of the functions in an image, what is important to understand the function
utility. Moreover, the visualizations can be adjusted to cope with the user needs.

That is an interesting work which tries to take advantage of the problem domain
to ease the understandability of a mathematical program. However, it does not
link the effects of the functions with the functions themselves. In fact this is what
happens with the Dot language, and the output produced by Graphviz, or with the
Java GUI language and the graphical output produced13.

Kolpakov [104], presents BioUML14, a framework for modeling and simulating of
biological systems. That framework permits the creation, using graphs, of biological
systems that are visualized and edited by means of diagrams. Additionally, it auto-
matically generates models that can be simulated resorting to MATLAB15 capabilities.

This system is another example that using formal specifications (the MATLAB
M-files) and the knowledge in a specific domain (biologic systems) is possible
to visualize, at problem level, the effects produced by that specifications in the
biological system. But once again, these simulations only present the results of the
specifications, what is not so interesting to understand them. It still missing a link
between the execution of the program and the effects casted on the problem domain.

3.5.3 Discussion

From all the approaches and tools referred in Sections 3.5.1 and 3.5.2, which are,
somehow, representative works on the area of the domain oriented program compre-
hension, it is possible to draw three main conclusions:

1. These tools and approaches do not fill the gap illustrated in Figure 3.2, between
the program and problem domains;

2. Tools are not conceived to provide visualizations of both domains and

3. Some of the tools are only focused on a specific DSL, not coping with all DSLs
or, at least, a large number of them and

In fact, there are some approaches trying to fill the gap between the domains, by
interconnecting them. The BORS strategy (present in the PICS tool) is an example
of success. But the visualization of the problem domain may be not as higher level
as the user would need. However, besides PICS, there are no more tools providing
this interconnection of domains. So, the gap between them still remaining.

13In this case, there are already studies helping on the reverse engineering of the interface to
intermediate behavioral models that allow the detection of faults [176].

14Home Page: http://www.biouml.net
15Home Page: http://www.mathworks.com

45

Improving Program Comprehension Tools for DSLs

The tools addressed are not conceived to perform visualization of both domains.
In Section 3.5.2, the majority of the presented tools only provide visualization of the
problem domain, forgetting about the program domain. This automatically leads
to systems not biased for program comprehension.

The solution presented by Wu [205], is a contradiction of the third conclusion.
On the one hand, it deals with all DSLs, but on the other hand, it just concerns
with the program domain, since it is a common debugger, reinforcing the second
conclusion.

At the end, the main topic to retain is that tools and approaches for domain-
oriented program comprehension are rare; and ,when exist, are not systematic and
do not provide features to bridge the gap between program and problem domains.

3.6 Summary
While there is a large work on program comprehension at theoretical, practical
levels and at tools implementation level, they do not always meet all the needs of
the users, who have to comprehend the programs. The development of tools used in
program comprehension, insist on the visualization of software by means of graphs
(mainly); and the creation of cognitive models that are, for some times, neglected
on the construction of such PCTools.

General PCTools, i.e., those dealing with the most used programming languages
(mainly GPLs), gather information from the source code (and a few times, from
higher-level resources) and present them over nine identified dimensions: (i) Code
Metrics; (ii) System Components Dependencies; (iii) Code Components Dependen-
cies; (iv) Source Code Exploration; (v) Data Structures Exploration; (vi) Static
Visualization; (vii) Dynamic Visualization; (viii) Identifiers/Symbols Table and
(ix) Operational/Behavioral Relations. The ninth dimension was the one with less
relevance in the information provided by a set of tools that were, roughly, studied.
However this dimension is concerned with the information that should be provided
by all the tools to fill in the gap between the program and the problem domains.

In addition, more specific projects and tools also show that exists a big deficit
on the domain-oriented program comprehension in what respects the bridge con-
struction between the problem and program domains, and the usage of DSLs to take
advantage of the domain knowledge to improve the program comprehension.

In this chapter, an overview of themes and issues on the program comprehen-
sion area were introduced. Fundamental definitions were given to establish a more
concrete dialogue between the dissertation text and the reader. Software visualiza-
tion and cognitive model terms were presented with more profundity, because are
central aspects not only in the program comprehension, but also in the rest of this
dissertation. Then, the state of the art on general PCToolswas studied and the in-
formation they provide was analyzed with criticism. Some projects that go further
in the domain-oriented program comprehension,were surveyed as related work. The
main points were addressed and discussed.

46

Chapter 4

An Idea to Comprehend DSLs

Give me six hours to chop down a tree and I will spend the first
four sharpening the axe.

Abraham Lincoln

Recalling Section 1.3, the main goal proposed for this thesis is to prove the
correctness of the extension made to Brook’s theory in Theorem 1, which says,
briefly, that program comprehension tasks will be easy if tools provide synchronized
visualizations of the program and problem domains. To complete this proof, two
minor answers need to be taken into account, as was depicted in Figure 1.1.

In this chapter, attentions are concentrated, exclusively, on Question 1, which
asks Can the PC techniques, tailored for GPLs, be applied on DSLs? An answer
should be given to that question; to achieve a concrete and well supported answer,
a methodology is followed. Figure 4.1 presents the sketch of the methodology.

Figure 4.1: Answering Question 1: Can the PC techniques, tailored for GPLs, be
applied on DSLs?

Figure 4.1 shows that for answering Question 1, three resources must be available:
approaches, tools and one proposal. Approaches and tools refer to the approaches
and tools already addressed and analyzed in the previous chapter. The proposal is
a resource derived from the approaches existent and intends to be the conception
of a new approach to understanding DSLPs. Question 1 is automatically answered,
when, and if, such resource is produced.

47

Improving Program Comprehension Tools for DSLs

In chapter 3, tools and approaches used to extract information and present it,
were analyzed. From them, one is chosen to be the base of the proposal. This choice
is made and justified in Section 4.1. Section 4.2 gives a detailed description of the
approach that have been picked up and relates it with the tool which embodies this
technique. Finally, the proposal is conceived and abstractly explained in Section 4.3.

4.1 Choosing One Suitable Approach
The objective of this section is to recall some approaches for program comprehension,
that have been discussed before, and to discuss others that have not been presented
yet. Finally, one of these approaches is selected to serve as basis for the proposal
that intends to improve PCTools to cope with DSLs, taking profit of the well defined
characteristics of these languages.

The study made in Section 3.5.1 revealed the work done on the creation of ap-
proaches for program comprehension that address the application domain of the
programs written in GPLs. SVS and BORS [19] techniques could be a good start for
an approach that would cope with DSLs, because they address both program and
problem domains. However, the associated tool — PICS — only copes with the C
language. This is an handicap, because the core of the tool is oriented to a specific
language, and the major part of the DSLs are not even closer to that imperative
language. Moreover, BORS runs in two separated phases, not being possible a syn-
chronized visualization of the domains; and SVS, despite providing synchronized
relations between the domains, heavily depends on C code instrumentation.

From this first attempt of evaluating one existing approach, a characteristic
should be regarded: the tools that embody the program comprehension technique
must not be constrained to a specific programming language, i.e., they must be
generic tools1. This characteristic creates a great filter when applied to the set of
tools presented in section 3.4. The major part of these tools are limited to cope with
a small number of languages. The theoretical study made, shows that only Alma
and CodeCrawler systems are not language-dependent. Thus, the approaches they
embody are not dependent on the programming language, as well.

Both CodeCrawler and Alma are tools that depend on other tools. The archi-
tecture of CodeCrawler [109] is explicitly built upon the Moose system [57]. In its
turn, Alma depends on LISA system [125]. This aspect is also a good characteristic
to work as a filter to find a suitable approach that can be applied to DSLs: the more
a tool is independent, the easier the approach is to be improved. However, in this
case, this characteristic is not decisive to choose one of these two tools, since both
depend on third party tools. For a more precise decision, next are summarized the
approaches followed by each tool.

CodeCrawler uses Moose and associated features as the meta-model where the
information of the source code is stored. The meta-model is processed by the core
of the system, which serves as bridge to the visualization of the source code of the
program under analysis. The system relies on the notion of graph to internally

1The consideration of tools, rather than only the approaches, is due to the fact that a tool is the
concrete form of an approach or technique, and is where important characteristics can be easily
pointed out.

48

4.2. DAST — The Initial Approach

represent the knowledge that comes from the meta-model, and resorts to traditional
graph operations to expound the internals. Summing up the approach underneath
CodeCrawler, the PR feeds the system with the source code; then Moose creates
the meta-model, which is then transposed to the internal graph representation of
CodeCrawler and processed for visualization.

Alma uses an abstract representation of the source program, in the form of a
tree to store the information at the program level. In a first step (done once per
language and not per program) it is used LISA (but other compiler-compiler tool
could be used) and AGs for construction of the generic and abstract representation
of the language constructs, and to associate important information to the nodes of
the created tree. This tree is called Decorated Abstract Syntax Tree (DAST), and is
generated every time a program is passed to Alma. Then the core of Alma traverses
the DAST, and resorting to a database of rewriting and visualization rules, the internal
tree is modified and the program aspects are visualized.

The approaches used in both the tools are similar. One uses a graph, the other
uses a tree for internal representation of the program information. Both of them
have a core that processes the intermediate representation of the program to output
its visualization aspects. As they are similar approaches, there is not a consensual
point for the choice. But it is known that CodeCrawler is more adjusted to cope
with object-oriented languages, so the DAST approach of Alma seems to be a good
starting point for the new approach that deals with DSLs and the problem domain of
the programs (or generally, the problem domain of the DSL). Also, the acquaintance
level to the approaches and the accessibility to the source code of the tool, leads to
the selection of the DAST approach.

4.2 DAST — The Initial Approach
An important aspect of an approach for program comprehension is the way the in-
formation of the source program is retrieved and stored in an intermediate structure
for a later visualization and exploration. This intermediate structure should pro-
vide easy and fast access to the information. As Alma aims at showing the soul of a
program (its meaning) resorting to the same core processor, whichever the program-
ming language is, it needs to extract the abstract representation of that program
and to store it in a generic intermediate structure. Since it relies on AG techniques
to retrieve the necessary information of the source program, it is obvious the reuti-
lization of the structures that parsers build during their action: the Abstract Syntax
Tree (AST) [1]. But an AST does not represent a program in a generic form. Other-
wise, it creates an abstract representation of the program for the language processed.
Nonetheless, the AST concept can be reused to achieve an abstract representation
of any program, written in any programming language. In Alma it was achieved by
resorting to the DAST concept. Figure 4.2 shows the main differences between the
AST and the DAST and how the second can be constructed from the first.

A DAST stores the meaning of the program [152], resorting to patterns. These
patterns represent language constructs, which are concepts present in every pro-
gramming language. They can be seen as semantic patterns. Regarding Figure 4.2,
the AST (the leftmost tree) represents the program, resorting to the essential syntac-

49

Improving Program Comprehension Tools for DSLs

Figure 4.2: DAST - Decorated Abstract Syntax Tree

tic constructs of the language. On the other hand, the DAST (the rightmost tree) also
represents the program, but uses the generic semantics of the syntactic constructs,
to explain the meaning of the program. For example: a = 2 means that the variable
a will be assigned the constant 2.

Alma supports patterns for declaration of variables, assignment and conditional
expressions, read from input, write to output, arithmetic and logic operations, ac-
cess to variables, definition of constants, loops, generic statements, declaration of
lists, function definition and invocation and finally return expressions [48]. The con-
struction of a DAST with these patterns, as nodes, is briefly addressed in Chapter 5.

Using a DAST as an abstract representation of the source program, brings many
advantages to later phases of the visualization. The most important one is that a
single core for processing is used to create the same visualization for the most varied
programs. The main flow of this approach using the DAST concept starts when
the program is passed to Alma, and parsed by the parser built for the underlying
programming language. This parser, also called Front-End (FE), constructs the
DAST of the program, and keep it as an intermediate representation. Then, when
the PR starts the interpretation of the program, the processor (called Back-End
(BE)) traverses the tree, following a top-down strategy, and resorts to databases of
pre-defined rules to rewrite the patterns modifying their attributes, and to create
the visualization at the program level. Figure 4.3 depicts the expounded process,
showing the DAST traversal, the access to the database of rules, and generation of
the visualization.

The rules are associated with each one of the patterns, so that, when the tree
walker traverses the DAST and find non processed leaf nodes, these rules are applied
according to the information of the pattern underlying the DAST node. There are two
databases of rules: (i) rewriting rules and (ii) visualization rules [79]. The rewriting
rules (RR in Figure 4.3), are used to rewrite the nodes of the DAST, performing a
semantic modification on it. These rules also actuate at the internal state of the
program, by acting as interfaces for storage, modification, and access of the value
associated with the variables in the programs. On the other hand, the visualization
rules (VR in Figure 4.3) do not actuate over the DAST. Instead, when the pattern
in the DAST is being processed, the visualization rule associated with such pattern,

50

4.3. DapAST — The Improved Approach

Figure 4.3: Processing a DAST

takes the necessary information from it, and builds or rebuilds the tree correspondent
to the dynamic interpretation of the program under analysis, which is one of the
views of the program domain provided by Alma.

This approach does not modify the source code of the program, and do not use
compilation nor optimization of code for analysis. Then, variables and other iden-
tifiers of the program are not stored in memory when the programming is running.
Actually, the program is never running in Alma, because this system can be seen as
a virtual machine that interprets the program, relying on the powerful intermediate
structure named DAST. Mistakenly, Alma is being pointed to be a visual debugger.
Although it can be seen as one, their authors defend that it is more than a simple
debugger [49]. After all, reusing the underlying approach, is possible to enhance the
visualization of this approach to cope with the problem domain of DSLs; what is
something that a debugger would never be capable to offer. The following section
presents that new approach completely derived from the DAST.

4.3 DapAST — The Improved Approach

In Chapter 2, several characteristics of DSLs were highlighted from the simple fact
that these languages are tailored for a specific domain of application. Experts on
the application domain of such languages are able to use them even without having
programming skills. This happens because the language is so close to the problem
domain, that the experts do not need to think about low-level details; instead, they
conceive a mental image of what is wanted in the real world and easily use the
language constructs to concretize it. These points lead to the following conclusions:

• The DSLs’ syntactic constructs are very close to the real concepts of the ap-
plication domain (thanks to the abstractness and expressiveness of these lan-
gauges), and

• The interconnections between concepts of the application domain, along with
their concrete shape, are useful for a mental representation of the problem and
its solution.

51

Improving Program Comprehension Tools for DSLs

Regarding the problem from the other side, that is, the side of those who have
a DSLP already written but need to understand it, the construction of an image of
what and how the program does, would be helpful for its comprehension. Taking
into account both points drawn above, it is possible to create such a representative
image, by interconnecting the syntactic and semantic constructs of the language, the
graphical shape of the concepts in the problem domain, and animating them using
dynamic information from the program. The last sentence refers to the starting
point of the approach that is introduced along this section and is baptized with the
name of Decorated with animation patterns Abstract Syntax Tree (DapAST). In some
aspects this approach follows a cinema metaphor, which is used to explain some
notions that are harder to grasp.

4.3.1 DAST versus DapAST

As said in Section 4.2, the DAST is an abstract representation of the meaning of a
program. It is built recurring to generalized semantic patterns, which represent the
nodes of the tree. In its turn, a DapAST is, likewise, an abstract representation of
the meaning of a program (also referred as program’s semantics). However, there is
more inside each node of such a tree.

In a DapAST the semantic patterns, that decorated the AST to generate a DAST, are
incremented with extra information attributes, and are called henceforth Animation
Nodes. This extra information consists of images to represent the concepts in the
problem domain; and animation functions to create the animation of the concepts
by relating the images with each other and with the dynamic information extracted
from the program interpretation.

The information added to the semantic patterns, constituting the animation
nodes, is called Animation Patterns. Figure 4.4 shows the DapAST resulting from
the decoration of the DAST with several animation patterns. The nodes in orange
(darker ones) are the animation nodes, and the clouds are the representation of
the animation patterns. Notice, from Figure 4.4, that a DapAST is a hybrid tree,
in the extent that it is not mandatory that all the nodes have animation patterns
associated.

Notice also that a single animation pattern is composed of one image and one
animation function. But the animation nodes are not restricted to have only one
animation pattern associated; instead they have a list of animation patterns. The
animation patterns in this list can repeat the image and the animation function. The
way the animation nodes are configured is responsibility of the person who defines
the visualization of the problem domain for the DSL. More details on the definition
of the visualization are given in Chapter 5.

4.3.2 Inside Animation Nodes

The animation nodes are the pieces that compose a DapAST, and make it different
from the DAST presented in Section 4.2. Each animation node is composed of two
parts of information: the basic one, constituting the information associated with any
DAST node, and the extra part, constituting the information for the visualization and

52

4.3. DapAST — The Improved Approach

Figure 4.4: DapAST — Decorated with animation patterns Abstract Syntax Tree

animation of the problem domain. The explanation of the first part can be seen in
the literature related with Alma [152, 79, 48, 49].

The second part is the list of animation patterns. Each animation pattern is
also composed of two parts: the image and the animation function. Until now these
have been the names given to these parts, however to keep close this approach to
the cinema metaphor, the image is henceforth called Actor, while the animation
function remains with the same name.

A real actor is someone or something that interprets the scripts produced by
an author, resorting to actions of the body and sounds; and has, as objective, to
tell and to explain the idea or moral of the story underlying the script. In this
program comprehension approach, an Actor represents one concept that is part of
the problem domain and is implied in a certain semantic action of the language. Also
it can be seen as one of the objects controlled by the DSL. This actor also follows
the script of an author (the DSLP) and has the same objective of telling the idea of
such DSLP to the person who reads the program. In order to express the moments
of its representation, the actor has implicit a set of key figures, named Poses. They
are addressed by the animation functions, to visually represent the effects of the
program in the application domain.

The animation functions can be seen as script lines of the story being played.
They transmit to the actors the actions they should perform (e.g. move or rotate)
and which are the used poses in a determined semantic situation. A single animation
function may order an actor to use a sequence of poses for a more detailed animation

53

Improving Program Comprehension Tools for DSLs

of the problem domain.

These details inside an animation node define some simple concepts with char-
acteristic notation. Knowing the parts played by each one and how they are related
with each other, it is important to understand the process of animation being con-
ceived in this chapter. Section 4.3.3 presents an explanation of the DapAST traversing,
which is the essential point of this chapter, because it is where the abstract idea to
comprehend DSLs comes close to concretization.

4.3.3 Traversing the DapAST — Theoretical Approach

The animation of the actors according to the associated animation functions, follow
up a given order. The top-down tree traversal used to visualize the program domain
from the DAST is applied on the DapAST to visualize the problem domain. The walker
of the DAST is kept untouchable, so the program domain visualization is not changed,
however extensions are made, enabling the walker to cope with the new animation
nodes and the associated animation patterns.

The tree traversal and the execution of the problem domain animation is depicted
in Figure 4.5. The scheme followed is equal to that shown in Figure 4.3. The tree

Figure 4.5: Processing the DapAST

walker processes the nodes in a top-down strategy; for each node it accesses the
database of rules to rewrite the tree and to build the visualization of the program
domain. But in this new scheme, the tree walker is incremented with a new action
when processing a node. For each node the walker checks whether it is an animation
node or a semantic pattern. In case of being an animation node the walker accesses
a new database of rules — Animatoin Rules — created on purpose for the animation
of the problem domain.

54

4.4. Summary — Answering Question One

Unlike what happens with the rewriting and visualization rules, the animation
rules do not look to the semantic patterns of the nodes, but to the animation patterns
that constitute the nodes. Such rules consist of different drawing routines, which
are called regarding the animation patterns in the node. Their objective is twofold:
first is to apply the animation function to the actors, and second is to draw one or
various poses of the actors in the scene of the problem domain animation.

The animation is directed by frames. Theoretically, each frame corresponds to
the processing of one animation node; however, in practice, the processing of a node
may generate more than one frame, all depends on the number of poses that an
actor is told to represent by the animation function.

4.4 Summary — Answering Question One
Alma system presents an approach for program comprehension based on the creation
of an abstract representation of the program under analysis. This representation is
stored in an intermediate structure called DAST, which is similar to an AST but
represents the semantics of the program, rather than the syntax. So the nodes of
this DAST are generic semantic patterns that are programming language and pro-
gramming paradigm independent. The technique for visualization of the program
comprises a top-down tree traversal and the processing of the nodes resorting to
databases of rules.

As the DAST approach supports the major part of the programming language,
with small improvements, it would support any DSL and would also be capable of
addressing the application domain of these DSLs. So, following a cinema metaphor,
was conjectured an extension to that approach. In this novel idea to comprehend
DSLPs, the abstract representation of the meaning of the program is also stored in an
intermediate structure, called DapAST. This structure differs from the initial, because
the tree nodes are now decorated with animation patterns. These animation patterns
are used to relate a visual animation of the problem domain with the program’s
semantic action in a node of the tree. This way, the animation pattern is composed
of actors and animation functions to represent concepts of the static problem domain
associated with the DSL. The traversal to this structure is similar to the initial one;
it only requires the use of a new database of rules to steer the animation of the
actors regarding the animation functions, and to draw the frames in the animation
scene.

The main objective of this chapter was to answer Question 1, raised in Sec-
tion 1.2: “Can the PC techniques, tailored for GPLs, be applied on DSLs?”. After the
discussion presented on the several sections of the present chapter, it is possible to
answer affirmatively to that question. In fact, the DapAST approach conceived in Sec-
tion 4.3, is based on a technique for GPLs, which was applied to DSLs and improved
to cope with their problem domain. Such affirmative answer raises Theorem 2,
summing up the chapter.

Theorem 2. Program Comprehension techniques for GPLs can be applied on DSLs.

55

Improving Program Comprehension Tools for DSLs

56

Chapter 5

Alma2

Cherish your visions and your dreams as they are the children of
your soul, the blueprints of your ultimate achievements.

Napoleon Hill

Last chapter (Chapter 4) summed up with an important result: Theorem 2,
saying that program comprehension approaches usually crafted to deal with GPLs can
be applied, with minor changes, to DSLs and take advantage of the problem domain
associated with these languages. Despite of its importance, this theorem has no value
if it can not be used to achieve other results. So, in the present chapter, Theorem 2
is used to answer Question 2, raised in Section 1.2: Is it possible to improve existent
PCTools, in order to give the end-user useful and better perspectives to comprehend
the program and the problem? Figure 5.1, which is a mutation part of the steering
Figure 1.1, depicts the scheme to follow in order to give an answer this question.

Figure 5.1: Answering Question 2: Is it possible to improve existent PCTools, in
order to give the end-user useful and better perspectives to comprehend the program
and the problem?

Ruled by the result of Theorem 2, along with the approach conceived, DapAST,

57

Improving Program Comprehension Tools for DSLs

and the tool chosen, Alma, a proof must be carried out of whether it is or it is not
possible to improve program comprehension tools to cope with DSLs and with their
problem domain associated. Thus, Question 2’s answer is affirmative if a DsPCTool
can be created based on a PCTool— Alma, in this case — and on the DapAST approach
conceived in Chapter 4.

The question to answer in this chapter has three main aspects that are should
be shown. The most important one is, obviously, the improvement of the PCTool
into the DsPCTool; another aspect is the interaction of the different users with the
tool; and finally, it is important to describe the new perspectives offered, in order
to evaluate their utility regarding the previous version of the tool. So, this chapter
is structured over two main sections. In Section 5.1 all the technical aspects related
with the development of the tool are expounded. First the overall architecture of
the system is shown, then its internal structure, regarding the relations between the
different components, is described. A major focus in this section is given to the
strategy of traversing the DapAST structure. In Section 5.2, the usage of the system
is explained. First, the type of users are identified and characterized; then, for each
one is described the main workflow on using the new approach to understand a
program. Important focus is given to the construction of a DapAST, complementing
the explanation of the approach proposed in Chapter 4.

5.1 Developing the System
Alma is a program comprehension tool with two main focus. One is the understand-
ing of a program, and the other is its teaching purposes by animation of the program
flow, and showing internal aspects of the program’s state.

An important aspect that must not be forgotten is its dependency on LISA. The
word dependency is emphasized because other compiler generator tools could have
been used instead; so there is not a strong dependency between LISA and Alma.
However, for explanations purposes, LISA will be used, but it should be regarded as
just an instance of a compiler generator.

So, in LISA is prepared the FE for a given programming language, by using AGs
to declare the DAST constructs. Once this specification is done, the PR feeds Alma
with a program in that language, and the processor (the FE generated with LISA)
parses the program, prepares the internal state of the program and builds its DAST.
Then, the generic BE of alma animates the program domain using the rewriting and
visualization rules.

This glimpse on Alma helps the reader of this thesis on conceiving a representation
of the system’s architecture and a way of using it. As Alma is the base for the
tool described in this section, no more specific details on its architecture and other
aspects are given. However, as it can not be neglected, it is kept a parallel between
the description of the DsPCTool and Alma to emphasize the improvements made.

Alma2 (read: Alma two) is the name given to the system originated from the
improvement made on Alma. The number 2 in superscript style is fully of valid
meanings: it means that Alma2 is a second version of Alma; it means that two
domains are now addressed (the problem and the program domains); it may mean
also the synchronization of these domains; and so many other meanings, that, in

58

5.1. Developing the System

fact, are not important in the discussion of this thesis.
In this section technical aspects concerning the development of Alma2 are ad-

dressed. The architecture, the internal class structure, and some of the algorithms
used to traverse the DapAST and to draw the actors are the main points.

5.1.1 Architecture

As Alma2 is based on Alma, the components composing their architectures are almost
the same, except for those that implement the extension done. Figure 5.2 presents
the architecture of Alma2.

Figure 5.2: Alma2 Architecture

As can be seen, the system is divided into two main parts: the Front-End and the
Back-End. Lets begin by explaining the FE. Its main component is the Compiler.
It receives the programs and extracts the necessary information to build the DapAST.
The compiler recognizes one single DSL, since it is generated automatically from the
grammar specification of such a language, using LISA. The Grammar Specification
and LISA are presented inside a dashed box because, in fact, they are not part of the
FE; with their inclusion in Figure 5.2 is intended to show what is necessary to create
the FE. For each DSL is built a FE, capable of reading the compliant programs to
generate the intermediate structure that supports the abstract representation of the
program’s meaning. Until here, there is nothing different from Alma’s architecture,
except, of course, the generation of a DapAST instead of a DAST.

The DapAST is the communication channel between the FE and the BE, for being
the structure where the needed information for the program visualization, animation

59

Improving Program Comprehension Tools for DSLs

and understanding is kept. This component was fully addressed in Section 4.3.
The Back-End is composed of one component called Core Processor. From the

name of this component, it is easy to understand that it is where the most important
actions are executed. This processor processes the DapAST information performing
top-down traversals. As was explained before, for each node of the intermediate
structure, this processor actuates based on appropriated pre-defined rules. However,
it does not do it alone. It delegates responsibilities by exchanging information with
other components: the Visualizer, the Rewriter and the Animator. The Rewriter
component gets the information incoming from the DapAST node being processed,
and transforms it regarding the rewriting rules database (cylinder labeled as RR in
Figure 5.2). It performs simple and various calculi to compute the value of a variable,
to access a variable’s value, and so on. The Visualizer also receives information
from the DapAST and from the Rewriter. Based on it, it accesses a database of
visualization rules (cylinder labeled as VR in Figure 5.2), and creates the visualization
of the program domain, by drawing a tree of the abstract program’s flow. However,
other program domain visualization could be constructed, by extending these rules.
These two components work equally in Alma, of course with the exception that the
information comes from a DapAST. The difference to Alma2 is in the third component
of the Core Processor: the Animator. This component works similarly to the
Visualizer. It takes information from the DapAST and from the Rewriter. But
instead of being concerned with the semantic information of the DapAST node under
processing, it grabs, essentially, the information related with the Animation Patterns
of the node. Then, regarding these patterns, it accesses the animation rules database
(cylinder labeled as AR in Figure 5.2) to apply the animation functions to the actors,
drawing, then, the actors in the scene.

The Core Processor, receives the work done by its components and holds the
task of presenting the output visualizations in a user-fiendly interface. This interface
of visualizations corresponds to the main window of Alma2. Figure 5.2 presents a
thumbnail of this window (the box labeled with Visualizations). The image is
small, but is possible to see four sub-windows representing the four views intended
to be necessary to provide important information about the program. The views
are listed below with a simple description:

Identifiers Table (left column, first row) Represents the internal state of the pro-
gram being interpreted. It keeps the variables of the program and the associ-
ated values.

Source Code (left column, second row) A text field (not editable) with the source
code of the program under analysis. The line being interpreted in each moment
is highlighted.

Interpretation Tree (right column, first row) Is the static/dynamic semantic rep-
resentation of the input program. It is normally called execution tree, but
since in Alma2 the program is never executed, it was decided to call it that
way. This tree also represent the program’s flow, and uses three colors to in-
dicate that the node is not yet interpreted, the node is under interpretation
and the node was interpreted, respectively, grey, red, and green.

60

5.1. Developing the System

Behavior Animation Panel (right column, second row) Is the panel where the
scenes with the actors of the problem domain animations are drawn. It rep-
resents the effects of the program execution/interpretation in the concepts of
the problem domain.

The BE is the part of Alma that suffered more extensions to comply with the
improvements. Next section shows the internal structure of the system, regarding
the extensions made, and explaining them in practice, in order to complete the
information conceived in Chapter 4.

5.1.2 Internal Structure

A simple vision of the internal structure of Alma2 is shown in Figure 5.3, by means
of a class diagram1. The internal structure is divided into two separated parts with
two distinct utilities. But, before addressing these two parts, is important to inform
that everything inside the green box (package) identified with the label Animation,
embodies all the extensions made to Alma. That is, the original classes of Alma are
painted in a darker color and are situated outside the Animation package.

Figure 5.3: Alma2 Internal Structure

The first part, comprehending the classes Backend, Visualize, Rewrite,Animate
and DrawingPanel, corresponds to the core processor of the system. The remaining

1Attention should be paid that much more classes make part of Alma2 class diagram; the one
presented is kept simple, but with the essential, for an easier understanding.

61

Improving Program Comprehension Tools for DSLs

classes are used to create the DapAST, as they can be seen as constructs of an embed-
ded language In this section only the classes of the second part are explained with
more detail. The others are addressed in the next section.

The Nodes Classes

In the class diagram presented (Figure 5.3), there are two class called CXXXNode
and AnimXXXNode. In fact, they do not exist in the system as shown here, instead,
they represent a family of classes having the prefixes and suffix right before and after
the XXX.

The CXXXNode classes represent the constructs for the DAST nodes. Each one
of the classes stores necessary information about a generic semantic aspect of the
program. For instance, the assignment of a variable, is represented by the class
CAssignNode. But a node of this kind needs information about the variable, and
the value to assign. So, the CAssignNode class would store that information in
attributes, and successively, until being used classes that do not require any attribute
representing a tree node. This succession of nodes inside nodes are the principle of
the method for constructing a DAST. However, the approach underlying Alma2 uses a
DapAST. So, the solution was to extend the major part of the CXXXNode classes, to
create the already known animation nodes: the AnimXXXNode classes. This way,
the AnimXXXNode nodes behave as a CXXXNode, but the information about the
animation patterns is also stored inside them.

For instance, the old CAssignNode class is now AnimAssignNode, and besides
the information about the variable and the value to assign, it needs the information
about the actors and the animation functions used to animate the problem domain.
Notice, however, that both kind of nodes are valid in the construction of the DapAST,
because it is an hybrid tree (remember Section 4.3).

Appendix A list all the classes inside the family of classes AnimXXXNode, pre-
senting the attributes they need to fill with information.

The Class Actor

The actor, in the DapAST approach, represents a concept of the problem domain
underlying the DSL. Since the objective of the approach is to perform an animation
of the problem domain regarding the effects of the program domain, the concept is
represented by one or more images depending on the situations it can appear in the
scene.

The information stored in each object of the class Actor describes, thus, the
concept of the problem domain. Next is listed some of the attributes in this class,
along with a small description.

figuresPath Is a list of system paths to the figures representing the poses that the
actor can hold;

poses Is a list of buffered images representing the poses that the actor can hold,
ready to be used by the animation engine;

62

5.1. Developing the System

usedPoses Is the list of poses the actor uses in a scene. Each pose is a zero based
integer, pointing to the position of the image that represent the desired pose
in the poses list;

label Regarding the cinema metaphor, it can be seen as the text the actor says in
each scene it appears. In other words, the label describes something useful for
the understanding of the scene;

state Represents the internal state of the actor. Each actor starts with a position
in the plan, (X,Y), and an angle of rotation. These three values start with 0,
and are used, internally for drawing purposes. This state can be incremented
with other variables, reflecting the state of the program.

The utility of this class is further explored next, when the animation patterns
are addressed.

The Animation Patterns Classes

The animation patterns are the most important classes in the DapAST approach. Fig-
ure 5.3 presents an abstract class named AnimationPattern which is then extended
by a family of classes prefixed by AP. The animation patterns in this family have
the same basic structure, thus, the use of such an abstract class. Also they have
a similar behavior, introduced by the implementation of a common method named
animate.

At this moment, there are available six patterns to produce the animations of
the problem domain. The following list presents them:

APMove Is the pattern used to move the actor to any position in the 2D plan.

APRotate Is the pattern used to rotate the actor. It is not limited to 360o. The use
of a superior value is processed natively by the Java Virtual Machine (JVM),
so the effects can not be the desired ones.

APIdentity Is used to keep the actor as it is. This pattern is used to allow the
redrawing of an actor in the same position in a sequent scene.

APLabel Is the pattern to set or change the text recited by the actor.

APAggregator This pattern differs from the others because it does not actuates
over a single actor, but over a list of them. It is also used to aggregate poses of
a same actor through out the scenes, otherwise only one pose would remain for
scene. It can be used to show the trace the complete animation of a program.

The APAggregator is a higher-order animation pattern, because besides the
aggregation utility, it embodies both the APMove and the APLabel patterns.
Moreover, it can be extended to support any other simple pattern.

APCleanAggregator This pattern cleans the list of aggregated actors.

63

Improving Program Comprehension Tools for DSLs

From the description given above, it is possible to see an intrinsic relation between
the animation patterns and the actors. In fact, regarding Figure 5.3, there is a
relationship between these classes. Each animation pattern is constructed with
an Actor, its used poses and the remaining arguments that define the animation
function. The animation function of a pattern is the method animate. This method
uses the information, passed as argument to its pattern, to actuate accordingly on
the actor’s internal state. Figure 5.4 explains this process with more detail.

Figure 5.4: Animation Pattern Workflow

The animation patterns can only be applied to one actor. But in an animation
node, several animation patterns can be specified and applied to the same actor. In
this case the result in the actor’s state and drawing is the union of all the animation
function effects. When two patterns apply changes to the same variables of the ac-
tor’s state, the pattern that provokes more significant changes on them, will prevail.
For instance, if applying the APIdentity and the APMove to the same actor, the
APIdentity is unnecessary because the changes provoked by the APMove are bigger.

Notice that all the patterns are processed before drawing the actors in the scene.
This way, the actors are drawn once after calculating all the changes in their state.
The algorithm of drawing the actors, along with that of traversing the DapAST is
presented in the next section.

5.1.3 Traversing the DapAST — Practical Approach

Before, in Section 4.3.3, a theoretical approach on how to traverse and process the
DapAST was given. In the present section, the practical approach is explained. As
usually happens, the theory and the practice are slightly different, because they tend
to address different levels of conceptualization. But the main principles are equal
to each one.

The algorithm used to traverse a tree structure, adopting a top-down strategy, is
well known and fully documented [213]. The core processor of Alma is based on such
strategy to process the nodes of the DAST. This way, the same strategy to traverse
the DapAST, process the nodes and animate the problem domain, according to the
animation patterns, was adopted.

64

5.1. Developing the System

In Figure 5.3 is presented the relation between the classes pertaining to the core
of Alma2. The classes Backend, Visualize, Rewrite define the processor of Alma. The
first class is where the processor engine is located; it is responsible to perform the
top-down tree traversal. The other two classes are invoked from this engine and they
are responsible to perform the node processing. They can be seen as decision/action
processors, because they, based on the information of the node, decide which suitable
rule can be applied to the node, and apply it. So, each class has a database of rules for
rewriting and visualizing, respectively, inside their structure, as have been explained
in earlier sections. Considering Figure 5.2, these classes correspond, simultaneously,
to the components inside the Core Processor, and the respective rules database.

In Alma2, the processor was extended with the problem domain animation engine.
The classes corresponding to that engine are the Animate and the DrawingPanel.
The first class is connected to the class Backend, and follows the principle followed
by the classes Visualize and Rewrite. The second is connected to the first and is
used to draw the actors in the scene. Next paragraphs give a detailed description of
the functionalities of these classes in the entire process of animation: from the tree
traversal and actors preparation to their drawing in the scene.

Class Animate — Animation Node Processing Algorithm

When start processing the nodes of the DapAST the main engine invokes the labour of
the classes Rewrite, Visualize and Animate, following this order. A brief explanation
on the actions performed by the first two classes was already given. No more details
are given, because it is out of this work’s scope, and also because they are a simplified
version of what happens within the class Animate, which is described next.

Before going further on the details about the class Animate, it is important to
know, more than the attributes of such class, its main methods:

performAnimation() This method is used to traverse the tree, given a starting
node, and to grab the animation data, whenever is possible. For processing
the nodes’ data, doAnimation() method is invoked;

doAnimation() This method is used to effectively animate one node by processing
the animation patterns associated with the nodes.

These are the two main methods used to transform the data into useful infor-
mation to be drawn. The first method receives a node, lets call it X , of the DapAST.
Then it follows a simple decision tree based, essentially, on two types of questions:
(i) Is the node Animated? and (ii) Has the node children nodes? To give an answer
to question (i), each node was extended with a boolean attribute to store whether
it has been processed or not by the animation engine. Then, the node is animated
or not animated. This way, X is processed if it is not animated, but only if it has no
children nodes. If X has children nodes, and they are not animated, X can not be
processed. When X can not be processed, the same algorithm is applied on its first
child, until reach a node able to be animated, following a depth-first tree traversal
strategy.

When X is ready to be animated, then it is invoked method doAnimation applied
to that node. This follows a simple algorithm based on the six steps listed below:

65

Improving Program Comprehension Tools for DSLs

1. All the animation patterns are extracted from the animation node;

2. The animate() message, is sent to each animation pattern, to actuate on the
respective actor, changing its state (see Figure 5.4);

3. From the list of animation patterns are extracted all the distinct actors;

4. The distinct actors are sent to the drawing engine;

5. The drawing method is invoked to paint the scene resulting from processing
the node, and finally

6. The node is set as animated.

In the case of the animation engine, the animation rules database corresponds
to the specific instructions inside the method animate(). Unlike the processors for
rewriting and visualizing the program domain, this one does not look to the basic
information of the DapAST node, but to the data representing the animation of the
problem domain. Except, of course, to see if the node to process is part of a loop,
if. . . else, function or call semantic patterns. These four concepts go through the
same algorithm, but may perform different actions when processing the nodes.

The drawing of the actors is the last step of the animation nodes processing
algorithm. As it is an interesting issue, its discussion is kept separated from the tree
traversal algorithm explanation and, is addressed next.

Class DrawingPanel — Drawing the Actors

The class DrawingPanel is an extension to the known class JPanel of the Java
API, and is used to support the drawing of the problem domain animation. Class
JPanel is several times used as canvas to paint and display images. Its method
paintComponent() enables the painting of the Java Panel component and all its
content.

In Alma2, the original interface was incremented with a new panel, identified
before as Behavior Animation Panel. This panel is an instance of the class Draw-
ingPanel, which uses the method paintComponente() to draw the behavior of the
problem domain concepts. This class can be seen as the drawing engine of Alma2.

As seen before, there are three important steps until the animation process is
complete. The first is the tree traversal, the second is the animation nodes process-
ing, transforming animation data into useful information, and finally, the third is
the drawing of that information. The first two steps were already addressed in later
sections. The last one, is about to be discussed in the following paragraphs. In fact,
there is not rocket science behind the drawing algorithm because, remember, the
information to be drawn are actors (standing in one or several poses), and each one
of these actors and their poses, are described by images.

When executing the fifth step of the algorithm description for the doAnimation
method, presented in the last section, the DrawingPanel ’s method makeAnimation()
is invoked. If one actor was represented only by one pose in each animation step2,

2One animation step corresponds to the complete processing of one animation node.

66

5.1. Developing the System

this method would not be necessary, because it would call the paintComponent()
method directly, to effectively draw the actors in the scene. However, one actor
can hold multiple poses in each animation step. This means that for each step
more than one frame on the Behavior Animation Panel should appear. So, the
job of makeAnimation() is to transform each actor in a pair (ac, p), where ac is the
reference for the actor, and p is one pose of the actor; and then, paint them following
a certain order. Figure 5.5 explains clearly what happens.

Figure 5.5: Process of Drawing Actors

The makeAnimation() method iterates on the list of distinct actors, creates the
referred pairs, storing them in a list, and calls the method paintComponent() to
draw the actors, based on that list of pairs, and on the actors’ attributes. Notice
that the method paintComponent() is called in each iteration inside the method
makeAnimation(). Regard Figure 5.5 to see that in the first iteration (it 1), the
list of pairs is composed of the pair (light-grey actor, pose 0); then, in the second
iteration this pair is replaced by the pair with the same actor, but pose 3 and in
the third iteration that pair is replaced by the one with the same actor, but pose 2.
This is the painting of sequence of poses, creating the effect of an animation. Notice
that in iteration four (it 4), the pair (light-gray actor, pose 2) remains, and is added
the pair (grey actor, pose 0). As a new actor is being processed, the previous is
repainted holding the last pose. This mechanism is repeated until all the distinct
actors are processed. The remain steps of the drawing process are basic technical
drawing instructions that are out this explanation bounds.

With this last algorithm explanation, the DapAST processing implementation and
all the Alma2 system is completely expounded without detailing it with boring code
samples. Next section addresses the discussion on how to use the system, with great

67

Improving Program Comprehension Tools for DSLs

focus on the method to create the DapAST.

5.2 Using the System

As have been told before, Alma2 requires LISA (or a similar compiler generator) to
create the FE for a DSL, whose programs can then be analyzed, using the Alma2

interface. So, Alma2 usage is twofold: in a first moment it is needed to prepare the
FE, and in a second moment, it is needed to feed the system with DSLPs for analysis.
The same way, it is needed two groups of users, which can perfectly intersect, to use
the system. Figure 5.6 shows the two kind of users implied by Alma2, and highlights
also the intersection of these two groups of users.

Figure 5.6: The Alma2 Users

The two groups of users are identified as Experts and Program Readers. The
following paragraphs give a small description of these users’ characteristics.

Program Readers. The PRs, as introduced in Section 3.1, are all the persons
interested in understanding or analyzing a program. There is not a set of pre-
defined characteristics for these users, because they can be programmers, students,
and so on. They can be someone just interested in changing a program, not being
necessarily a programmer. They are qualified to use Alma2 interface, and not to
prepare the FE.

Experts. The experts are persons with some background in compiler theory and
AGs, but with expertise in the problem domain associated with the DSL. Because
of their expertise, these users are qualified to work on the preparation of the FE.
However, the major part of them can also pertain to the group of PRs allowed to
analyze DSLPs.

Now that the possible kind of users are identified, it is important to show how
they should perform their tasks. Next sections address the main steps on the exe-
cution of such tasks.

68

5.2. Using the System

5.2.1 The Expert does. . .

As identified before, the main task executed by the expert, when using Alma2, is the
preparation of the FE for DSLs. This task implies the construction of the AG that
would generate the compiler to parse the programs and build the DapAST. However,
to create such a compiler, it is needed to study the application domain, the language,
the connections between their concepts and to choose images capable of representing
these concepts.

In a work previous to this master’s, it was created a Visual Language (VL) for
attribute grammars [141, 144, 139]. There it was studied a systematic approach for
developing domain specific visual languages in general and the environment support-
ing them. From there, a conclusion was drawn: to conceive a domain-specific visual
language, it is needed to have a great knowledge about the application domain in
order to find the necessary number of problem domain concepts that would also be
intrinsic to the language (program domain) and represented by images. The con-
cepts at the problem domain are mapped into concepts representing the language
constructs, and the images of the concepts are set as masks for these constructs.
Notice the presence of three entities: (i) problem domain concepts; (ii) program
domain concepts and (iii) images representing concepts. The images are intercon-
necting both domains, so they act as facades for the interconnections between them.
This way, the search for appropriate imagery is a core task, but that can only be
performed when having identified the interconnections between the domains.

Regarding the lesson learnt with the previous work, a parallel can be traced
with the approach to create the FEs for Alma2. This way, five steps are identified as
necessary for the expert’s main task:

1. Domain Analysis. This task should be the first of all. Here, the expert is
encouraged to create a conceptual map or ontology [54], where is described
the problem domain by means of concepts and relations between them.

2. Language Analysis. As the DSL to which the FE is being constructed, is
already defined, the analysis of its main program domain concepts should be
made without any troubles. In this case, a list of such concepts with a small
description addressing their semantics, would ease the next steps.

3. Interconnection of Domains. With the ontology of the problem domain
and the list of the program domain concepts, a relation between concepts
of levels should be made. This task is made manually, but regarding the
recent advances done in the area of concept localization [53, 121] it can be
automatized.

4. Search for Imagery. This task requires deep knowledge on the problem
domain, because the images should depict the concepts and their actions in
such a domain.

5. Creation the Attribute Grammar. Resorting to LISA(or similar compiler
generators), an AG should be defined. In the grammar, the main attribute
of the root symbol, should synthesize a DapAST structure, so the generated
compiler for the FE can create a DapAST when processing the input program.

69

Improving Program Comprehension Tools for DSLs

Next paragraphs show the details on the definition of such AG.

Constructing a DapAST

Until here, the DapAST structure was always assumed as already constructed. But
no explanation on how to build it was given. As the DapAST is the most important
piece of Alma2 system, it must be constructed correctly.

As told before, the DapAST derives from the DAST. So, the way of constructing
them is similar in certain aspects. While in Alma the languages considered follow
concrete paradigms like the imperative or the object-oriented, and their constructs
are close to a low level generic format, in Alma2, the DSLs, although can follow
the same paradigms, have very different and higher level constructs. This way the
construction of a DapAST is not as easy as the construction of a DAST, because these
structures’ constructs regard generic semantic aspects that are much closer to a GPL
constructs than to a DSL’s. But here enters the analysis made in the fourth previous
steps, to diminish the effort of the expert.

The first thing to do is to write (or find already written) the CFG of the DSL,
following the LISA syntax. When it is ready, the expert must add the necessary
attributes. In the simplest case, only one attribute for each nonterminal is necessary.
These attributes must by typed as CAlmaNode, except the one connected to the
grammar’s root symbol; this should be declared as a CRootNode.

In order to have a perfect compilation, a few packages should be imported.
Listing 5.1 show the fundamental packages to import.

Listing 5.1: Fundamental Packages to Import
1 import Alma . ∗ ;
2 import Alma . animation . Actor ;
3 import Alma . animation . pat t e rns . ∗ ;
4 import Alma . animation . nodes . ∗ ;

After having the skeleton of the AG it is time to start using the DapAST constructs
to define that structure for the DSL. Imagine the language in Listing 5.2 used to
move a simple robot in four orthogonal directions.

Listing 5.2: Toy Language Syntax
1 robot → moves
2 moves → move moves
3 | ε
4 move → N
5 | S
6 | E
7 | W

This language approaches itself to an imperative paradigm, however it is very
high level, compared with imperative GPLs. This simple example addresses, besides
others, three important aspects that would be present in great part of the DapAST
creation, which is the main task in the preparation ofFEs: (i) the injection of manu-
factured trees into automatic generated trees and (ii) the usage of animation nodes.
(iii) the translation of the DSL into a GPL closer to the DapAST constructs;

Injecting a Sub-Tree. In this example, the language is used to move a robot in
four directions. So, at least, the robot will have a state concerning its position. Lets

70

5.2. Using the System

imagine such state as a pair (x, y). This state is needed in every animation step, to
know exactly where the robot is. But nowhere in the language is a place defining
this state. This way, this state must be injected in the beginning of the DapAST. A
possible way to do this is shown in Listing 5.3.

Listing 5.3: Example of a Tree Injection Method
1

2 r u l e program {
3 ROBOT ::= MOVES compute {
4 ROBOT. t r e e = new CStmtsNode (i n i t S t a t e () , MOVES. t r e e) ;
5 } ;
6 }
7

8 (. . .)
9 method use r_De f in i t i on s {

10 (. . .)
11

12 CToken tX = new CToken("posX" , 1 , 1 , 1 , f a l s e , f a l s e , "posX" , "posX") ;
13 CToken tY = new CToken("posY" , 1 , 1 , 1 , f a l s e , f a l s e , "posY" , "posY") ;
14

15 pub l i c CAlmaNode i n i t S t a t e () {
16 CConstNode c0 = new CConstNode (0) ;
17 CAlmaNode nX = new CAssignNode (tX , c0) ;
18 CAlmaNode nY = new CAssignNode (tY , c0) ;
19

20 CDeclNode x = new CDeclNode (tX , " i n t e g e r " , nu l l , nX) ;
21 CDeclNode y = new CDeclNode (tY , " i n t e g e r " , nu l l , nY) ;
22

23 CAlmaNode dec l = new CStmtsNode (x , y) ;
24

25 r e turn dec l ;
26 }
27 }

From line 15 to line 26, the variables x and y are manually declared and initial-
ized. The declaration is effectively performed in lines 20 and 21, using the CDeclNode
construct. This construct is filled with information containing, besides other, the
sub-tree of the assignment (lines 17 and 18). Figure 5.7(a) shows the tree generated
correspondent to the return statement in line 25.

In line 4, the attribute tree of robot is being assigned the construction of a
tree composed of the tree synthesized in the attribute tree of the symbol moves,
of the tree manually created in function initState(). Figure 5.7(b) shows the tree
originated from the injection of the program’s state.

Using Animation Nodes. The creation of the DapAST, is simply done by chain-
ing the trees resulting from the synthesis of the attribute of any nonterminal in the
grammar, and assigning it to other attribute of other nonterminal. This is the basic
method to build the DapAST. The difficulty lies on the correct application of the se-
mantic patterns, what is overcome with practice. For that small example, only basic
semantic patterns were used. The construction of the DapAST with animation nodes
follows the same method; but this time the nodes have data about the animation of
the problem domain. Imagine now, that after declaring the y variable, the program
should paint a robot. Notice the differences from the declaration of the y variable
in Listing 5.3 to the new declaration in Listing 5.4

Listing 5.4: Creation of an Animation Node

71

Improving Program Comprehension Tools for DSLs

(a) (b)

Figure 5.7: State Initialization: (a) The initialization’s DapAST generated; (b) The
program’s DapAST generated with the injection of the initialization tree.

1

2 Actor robot = new Actor (new St r ing [] {" robot . png "}) ;
3

4 pub l i c CAlmaNode i n i t S t a t e () {
5 (. . .)
6 CDeclNode y = new AnimDeclNode (tY , " i n t e g e r " , nu l l , nY,
7 new AnimationPattern [] {
8 new APIdentity (robot , new in t [] {0})
9 }

10) ;
11 (. . .)
12 }
13 }

First, in Listing 5.4, line 2, is declared an Actor. This actor is represented by
only one image (one pose), and assumes a default state. Then in lines 6 to 10 is
created the animation node. As can be compared, the four arguments given to
the AnimDeclNode construct, are the same given before. The difference is in the
existence of the fifth argument. This fifth parameter is the list of animation patterns
of that node. In this example is being used only one animation pattern (APIdentity).
This pattern refers to the robot actor, which will hold its first pose.

Translation. The translation of a DSL into GPL is not a novelty. Wu [205] created
a debugger for DSLs resorting to the Eclipse’s Java debugger. As explained later in
Section 3.5.2 the DSL is translated into Java, which is the code effectively debugged.
Wu also identified three types of DSLs: imperative, declarative and hybrid; and all
of them have a possible translation into Java.

In Alma2, the translation into a GPL is not made in practice. In fact, the trans-
lation really made is of the DSL constructs into the DapAST’s. But as the DapAST
constructs are generic and are closer to those used by GPLs, a difficulty arises. But
the expert, with knowledge on the domain and on the language can easily overcome
it. It is only needed notion about the semantics of the language. For instance, the

72

5.2. Using the System

language of Listing 5.2, is used to move a robot. The word move implies movement,
and alteration of the robot’s state. The instructions that can be used to move the
robot are the initial letters of the four cardinal points: N for North, S for South, E
for East and W for West. This means that the robot will move one step forward
when reading the instruction N, one step backwards when reading the instruction
S, one step to the left and one to the right when processing instructions W and E,
respectively. After performed this simple mental exercise, it is now obvious how the
state is changed. Regard the semantic rules presented in Listing 5.5.

Listing 5.5: Semantic Rules for the Robot Movement
1 i n i t i a l s t a t e :
2 x = 0
3 y = 0
4

5 N → y = y+1
6 S → y = y−1
7 E → x = x+1
8 W → x = x−1

Notice that the rules presented in ListinglstRules are written in a generic math-
ematical way; then it can be easily translated into the DapAST semantic patterns and
animation nodes. Listing 5.6 shows an example of the tree construction for the N
instruction. Notice also the use of animation patterns to define the action of the
robot when the N instruction is executed.

Listing 5.6: Definition of Animation Nodes for one Instruction
1 r u l e Instruction_N {
2 MOVE ::= #N compute {
3 MOVE. t r e e = new AnimAssignNode (
4 tY ,
5 new COperNode(
6 new CVarNode(tY) ,
7 new CConstNode (1) ,
8 "+"
9) ,

10 new AnimationPattern [] {
11 new APMove(robot , new in t [] {0} , "posX" , "posY")
12 }
13) ;
14 } ;
15 }

The tree defined in Listing 5.6 reflects the semantic operation in the fifth line of
Listing 5.5. The root node of this tree is an animation node composed of, besides
others, the tree generated by the arithmetic operation construct (COperNode), and
the list of animation patterns. The latter is composed of only one pattern, the
APMove, where the actor robot is referred to use its first pose, and to assume the
position stored in the program’s state variables declared in Listing 5.3, lines 12 and
13, as posX and posY.

With this last paragraphs about the translation of the DSLs into the DapAST
constructs, is complete the explanation of the experts’ main task: build the FE for
a DSL.

73

Improving Program Comprehension Tools for DSLs

5.2.2 The Program Reader does. . .

The work of a PR, in Alma2, is very simplified. It boils down to clicking a button, so
the BE performs one animation step, processing one node of the DapAST. This sim-
plification is important for concentration in what is really important: the program
analysis.

This paragraph sums up the story of a normal usage of Alma2. The PR starts
Alma2 prepared with the FE for a determined DSL, and feeds it with a program written
in this DSL’s syntax. The compiler of the FE creates the DapAST and the BE creates
the first visualizations of the program domain: the interpretation tree, the identifiers
table, and the source code text area. The behavior animation panel remains clean
until the first animation node is processed. Figure 5.8 shows that situation. The
processing of the DapAST starts when the PR clicks the forward button. If the node of
the DapAST under processing is an animation node, the BE creates the visualization
of the problem domain in the behavioral animation panel, following the strategy
explained before, and the visualization of the program domain in the other panels.
Otherwise it only depicts the visualization of the program domain.

So, besides starting Alma2 and feeding it with a program for analysis, the PR
needs to click a button to request the processing of another node of the DapAST, and
for sometimes, is asked to input values in a very easy way.

Figure 5.8: Initial state of Alma2.

In fact, there is not much to add as PR tasks using Alma2. This system frees the
user mind from complications, opening doors to performing the program analysis,
following the strategies used to, without loosing time with details that cut the normal
flow of the analysis.

74

5.3. Summary — Answering Question Two

5.3 Summary — Answering Question Two
Alma2 is an improvement made to Alma. This improvement embodies the dealing
with any DSL and the visualization of the effects of the program in the domain where
the language was crafted to. To meet this new functionalities, Alma’s architecture
was extended with a new engine for animation of the domain concepts. This engine
takes advantage of the DapAST, which is an intermediate structure representing the
semantics of a program and the animation details of the problem domain provoked
by each operational semantic action. The animation details are defined in animation
patterns, by means of actors and specific animation functions. To process the ani-
mation nodes, a twofold algorithm is used: first it handles the data in the animation
pattern, transforming it in interesting information; and then, the drawing engine
uses that information to draw the frames of the scene.

In order to present the animation of the domain concepts synchronized with the
program domain visualization, a new panel on the user interface was added. It was
called Behavior Animation Panel. This enriches the whole interface, presenting,
now, four different views of the same program. One to see the internal values
of the program state, other to see the program’s source code, another to see the
interpretation of the program’s semantic and the program’s flow, and a new one to
see the effects of each semantic action at the problem domain level. This new view
is, indubitably, a major help for understanding the program at a more conceptual
and higher level: the problem domain level. The synchronization of the four views,
offered by the BE’s core processor, helps the users to apply different cognitive models,
from the bottom-up to the top-down models.

The improvement made on Alma ends in a new DsPCTool capable of giving more
features for program understanding. With this achievement, is possible to give an
affirmative response to Question 2. So, a new theorem (Theorem 3) raises from this
answer, and it says the following:

Theorem 3. It is possible to improve existent Program Comprehension tools to
enhance the understanding of DSL programs by the end users.

In this chapter was also addressed the way of defining the FE for the DSLs. The
method to define the DapAST using an AG follows a strategy of chaining animation
nodes. This chaining can be prepared for synthesis, or can be prepared manually,
for later injection of trees. This is a task produced only by experts in compilers and
in the problem domain of the DSL.

An important conclusion is that the DapAST approach can be applied both to
DSLs and GPLs, but in the latter, the output can be different from the desired one.
The problem is that in a GPL the problem domain of a system is not known a priori,
due to the fact that a GPL is used in several domains of application. So, the FE
for a given program in a GPL must be adapted or rebuilt according to the problem
domain desired. For instance, imagine that a FE is defined for a GPL, using pre-
defined images for animation of a meteorologic station program. This would work
correctly if the program passed later to Alma2 is the program for the meteorological
station. But in the same GPL, a program for traffic management, can be developed;
and the FE built for the meteorological station program, will accept the this second
program, but the animation of the problem domain will not be the desired one.

75

Improving Program Comprehension Tools for DSLs

So the conclusion is: for a DSL only one FE needs to be built for all its programs,
for a GPL, one FE must be built to accept each program, which is not a desirable
situation.

76

Chapter 6

Case Studies

Studies perfect nature and are perfected still by experience.

Francis Bacon

In this chapter, some case studies are defined. Each one of them is used to
support and assess the ideas stated before and to evaluate the improvement made
on the program comprehension system, Alma. The case studies are based on DSLs,
since these kind of programming languages are the main issue of this thesis.

Each case study is defined and described through several well-defined steps,
so the issues related with the comprehension of a DSLP are addressed. First, the
problem domain associated with the DSL is defined resorting to ontologies; then the
language is formally presented. The third step consists on the research for a set
of images capable of describing situations at the problem domain of the language.
This introduces the conception of the problem domain animation, which is divided
into two parts: (i) the static conception and (ii) the dynamic conception.

The static conception, or visualization, addresses the creation of connections
between the pieces of the problem domain (the images and the situations) and
the pieces of the program domain (the syntactic parts of the language as well as
their semantics). The main objective of this conception is to show one (possible)
visualization of the problem domain associated with the program domain. The
dynamic conception, or animation, consists in describing how the set of visualizations
produce an animation.

The results obtained from the usage of Alma2 will be used to draw conclusions
about what have been done and said throughout this master’s thesis.

6.1 Karel’s Language

Karel Čapek, a well-known Czech writer and playwright, created a dramatic play
named R.U.R (Rossum’s Universal Robots)1, which was premiered in Prague, in the
year of 1921. Although it was a successful play, and being foreseen its adaptation to
theaters near 2011, this piece of art left its mark on history for being the first time

1URL: http://ebooks.adelaide.edu.au/c/capek/karel/rur

77

Improving Program Comprehension Tools for DSLs

the word robot was used. Because of that, Karel Čapek is pointed as the father of
the word and the concept robot.

Based on the origins of the word robot, Richard Pattis, developed a small pro-
gramming language named Karel’s Language [147]. It is a language to control a
small robot, called Karel, in a small virtual world. This language is used in aca-
demic programming courses among several universities, because it eases the task
of teaching and learning the basic concepts behind imperative programming: the
logic and the structure of programs. Since the language’s release, many increments
and versions have been made. Nowadays, the language can also be found regarding
object-oriented programming aspects [17]; and there are also some simulation tools
crafted on purpose for this language. Monty Karel Simulators2 are some examples
of these tools.

6.1.1 Problem Domain Definition

Looking back to Karel ’s first implementation, the robot is neither a full-featured nor
a sophisticated machine. Besides turning itself on or off, moving one step ahead,
turning left, picking objects from the ground and putting them back in the ground,
Karel, the robot, knows (i) which direction it is facing to; (ii) whether it is blocked
by walls or even (iii) whether it sees objects in the ground. Due to this limited
behavior, it only understands a few basic instructions, and so the language to control
the robot is not very complex. However this does not limit the possibilities of using
it to solve different and challenging problems.

The tasks this robot can perform fit inside the boundaries of handling objects
from a place to another. It seems a very reduced problem domain, but regarding
with attention, there are many situations where using robots to change objects from
their position is very necessary. Cleaning up a child’s room, with toys spread all over
the ground is a complex task for a human; waking up early every cold morning to
pick up the milk (or the bread) in the outside, is also an hard task; like these, many
other jobs can be performed by an automatic system capable of moving around and
sensing edges or objects.

The problem domain associated with the Karel’s Language is depicted in Fig-
ure 6.1 by means of an ontology.

This ontology gives an initial perception of the main concepts related with the
domain for which Karel’s Language was designed. As a DSL, these concepts are very
well expressed in the language which is formally presented in the next sub-section.

6.1.2 Language Formal Definition

The definition of the Karel’s Language is presented in Listing 6.13. A Context Free
Grammar (CFG) is used to formally specify it. It uses Extended Backus-Naur Form
(EBNF) notation for an easier comprehension. The nonterminal symbols appear in
small letters, while the terminals are written in capital letters.

2URL: http://csis.pace.edu/~bergin/MontyKarel/simulatorinfo.htm
3The original grammar is available at http://mormegil.wz.cz/prog/karel/prog_doc.htm

78

6.1. Karel’s Language

Figure 6.1: Problem Domain associated with the Karel’s Language

79

Improving Program Comprehension Tools for DSLs

Listing 6.1: Formal Definition of Karel’s Language
1

2 s t a r t → BEGINNING−OF−PROGRAM program END−OF−PROGRAM
3 program → d e f i n i t i o n ∗ BEGINNING−OF−EXECUTION statement∗ END−OF−EXECUTION
4 d e f i n i t i o n → DEFINE−NEW−INSTRUCTION i d e n t i f i e r AS statement
5 statement → block | i t e r a t i o n
6 | loop | c ond i t i o na l
7 | i n s t r u c t i o n
8 block → BEGIN statement∗ END
9 i t e r a t i o n → ITERATE number TIMES statement

10 loop → WHILE cond i t i on DO statement
11 c ond i t i o na l → IF cond i t i on THEN statement (ELSE statement) ?
12 i n s t r u c t i o n → TURNON | MOVE | TURNLEFT
13 | PICKBEEPER | PUTBEEPER
14 | TURNOFF | i d e n t i f i e r
15 cond i t i on → FRONT−IS−CLEAR | FRONT−IS−BLOCKED
16 | LEFT−IS−CLEAR | LEFT−IS−BLOCKED
17 | RIGHT−IS−CLEAR | RIGHT−IS−BLOCKED
18 | BACK−IS−CLEAR | BACK−IS−BLOCKED
19 | NEXT−TO−A−BEEPER | NOT−NEXT−TO−A−BEEPER
20 | ANY−BEEPERS−IN−BEEPER−BAG | NO−BEEPERS−IN−BEEPER−BAG
21 | FACING−NORTH | NOT−FACING−NORTH
22 | FACING−SOUTH | NOT−FACING−SOUTH
23 | FACING−EAST | NOT−FACING−EAST
24 | FACING−WEST | NOT−FACING−WEST
25 i d e n t i f i e r → [a−z] ([a−z] | [0−9]+)∗

All the terminal symbols (excluding the Regular Expression (RE) associated with
the symbol identifier) correspond to a keyword, making the language truly verbose.
But the presence of all this verbosity in the language is not bad: it diminishes, per
se, the distance between the problem domain and the associated DSL. Regarding
the overall language definition and recalling the problem domain ontology depicted
in Figure 6.1, is easy to relate the concepts to the commands which the robot
understands, and is also easy to understand what will be the robot’s behavior when
each instruction occurs.

The language is based on linear instructions that occur sequentially in the pro-
gram. It presents also some control flow structures like if. . . else or loop instructions.
This approximates the DSL to the imperative programming languages. However,
there are neither variable declarations nor normal expressions (like addition or mul-
tiplication).

6.1.3 Conception: Mappings, Visualization and Animation

At this moment, the problem domain and the DSL are described. The main picture
that should remain in memory is that Karel’s Language is used to control a robot
to move around, pick objects from a position, and drop them in another place. To
achieve a possible visualization of the problem domain, these concepts, related with
the behavior of the controlled object, are important. But such higher-level concepts
have to be intrinsically related with some parts of the syntax and semantics of the
DSL. Only this way it would be possible to visualize a program at problem domain
level.

In this section, a threesome relation between problem domain, images and pro-
gram domain, in order to attain the visualization, is created. But before creating
such relation, the more relevant concepts at problem and program domain level are
highlighted. In the following list, the concepts at the problem domain level are

80

6.1. Karel’s Language

described:

• Turned Off The controlled object (robot) is turned off;

• Turned On The robot is turned on;

• Left Rotation The robot makes a rotation to its left side, by a given angle;

• Step Ahead The robot gives a step ahead. That is, changes its actual posi-
tion;

• Pick Object The robot picks an object from the ground and stores it in its
bag;

• Drop Object The robot takes an object from its bag, and drops the same
into the ground.

The other concepts presented in the ontology (Figure 6.1) are not directly related
with the physical behavior of the robot. Sensibility (the sensors of the robot) for
instance, constraint the behavior, but do not change the behavioral state of the
controlled object. So it is possible to discard these concepts from the visualization
matter. The same happens with the program domain concepts. Only those related
with an alteration on the robot’s state (those capable of provoking the movement of
the robot) are taken into account. The following list describes the concepts at the
program domain.

• turnoff The command to make the robot turn off;

• turnon The command to make the robot turn on;

• turnleft The command to make the robot perform a rotation to its left
side, by a given angle;

• move The command to instruct the robot to give a step ahead, on the direc-
tion it is turned to;

• pickbeeper The command to make the robot pick an object from the
ground;

• putbeeper The command to make the robot drop an object into the ground.

Notice that all the six concepts listed above are, in fact, instructions that can
be used to make the robot move around and perform the tasks the programmer
desires it to perform. These keywords are very similar to those related with the
problem domain, so the distance between the problem domain and the program
domain is small. This makes the task of establishing connections between both
domains a straightforward and easy job. Table 6.1 presents the connections between
the program and problem domain concepts and the main images that depict the
visualization of such concepts.

All the images represent the robot actuating in different situations. As they
are static images and the concepts represent dynamic situations (except the first

81

Improving Program Comprehension Tools for DSLs

Table 6.1: Connection of concepts to images in Karel’s Language

Problem Domain
Concepts

Images
Program Domain

Concepts

Turned Off turnoff

Turned On turnon

Step Ahead move

Left Rotation turnleft

Pick Object pickbeeper

Drop Object putbeeper

two), the effect of presenting the images may be not the desired. So that, the image
sequences from Figure 6.2 to 6.5 are used to give a more interesting view of the
visualization of the domain.

The first two images in Table 6.1 represent the robot turned off and turned on.
This is visually noted by a small red or green led in the back of the robot body.

The third image, connected to the move and Step Ahead concepts, depicts a
movement where the robot changes its position. This simple sequence is shown in
Figure 6.2.

Figure 6.2: Sequence to move the robot

The fourth shows how the robot appears after a rotation to the left by an angle
of 90o. In Figure 6.3, the sequence starts with the robot facing East (frame 1), and
ends with it turned to North (frame 2). Obviously, this also happens when the robot
has any other orientation rather than East.

The fifth image is composed by two figures: the robot and an object in its claw.

82

6.1. Karel’s Language

Figure 6.3: Sequence to rotate the robot

This presents how the action of catching an object is depicted. The sequence of
images in Figure 6.4 shows it clearly. When picking an object, the robot starts in
its normal configuration (frame 1), then it stretches its mechanical arm (frame 2)
and catches the object (frame 3). In the end, the robot lows its arm, going back to
its normal configuration (frame 4).

Figure 6.4: Sequence to pick an object

The last image in Table 6.1 is dual from the fifth one: the robot appears with its
mechanical arm stretched, but with no object in the claw because it was dropped.
The sequence of dropping an object is illustrated in Figure 6.5. Comparing with the
sequence in Figure 6.4, frames 2 and 3 changed their position. To drop an object,
the robot has the object in its claw, then throws it away, what is represented by a
stretched empty mechanical arm (frame 3).

Notice that after picking and dropping an object, the robot stays in its normal
configuration. There is not a visualization whether the robot has or not objects
in its bag. To solve this problem, other visual elements like textual labels can be
added in order to contextualize the visualization and animation. Figure 6.6 presents

83

Improving Program Comprehension Tools for DSLs

Figure 6.5: Sequence to drop an object

an example of a labeled pose of the robot, where is specified how many objects the
robot grabbed so far.

Figure 6.6: Example of a label as a resource element for the problem domain visu-
alization

6.1.4 Animation Using Alma

In this section, a program in Karel’s Language is automatically animated, resorting
to the extended version of Alma.

There are many tasks the robot can perform and which can be coded in Karel’s
Language. The task used here is based on the harvest problem4: imagine that the
robot is sent to work as a carrot lanyard. Its main job is to harvest a field of carrots.
The field has three rows and each row has only three carrots. The robot starts
turned off, facing north, with the field of carrots at its right side.

4URL: http://www.cs.mtsu.edu/~untch/karel/functions.html#style

84

6.1. Karel’s Language

The code corespondent to the described problem is presented in Listing 6.2. The
program is very linear. The instructions occur in a sequence and all are executed.

Listing 6.2: The code for the Harvest Problem
1

2 BEGINNING−OF−PROGRAM
3

4 DEFINE−NEW−INSTRUCTION turn r i gh t AS
5 ITERATE 3 TIMES
6 TURNLEFT
7

8 DEFINE−NEW−INSTRUCTION harves t AS
9 ITERATE 3 TIMES

10 BEGIN
11 PICKBEEPER
12 MOVE
13 END
14

15 BEGINNING−OF−EXECUTION
16 TURNON
17 tu rn r i gh t
18 MOVE
19 harves t
20 TURNLEFT
21 MOVE
22 TURNLEFT
23 MOVE
24 harves t
25 tu rn r i gh t
26 MOVE
27 tu rn r i gh t
28 MOVE
29 harves t
30 TURNOFF
31 END−OF−EXECUTION
32

33 END−OF−PROGRAM

Despite of being a small program, its animation is extensive and requires a lot
of images to depict all the process. In the present sub-section the objective is not to
show the complete animation of the program, instead it is to show how the program
can be visualized at the problem domain level, keeping a synchronization with the
visualization at the program domain level.

Figure 6.7 shows the visualization produced after the execution of the first turn-
right instruction in the Harvest program presented before; and Figure 6.8 shows the
visualization produced after the execution of the sequent instruction (move) in the
the same program.

The first instruction of the program, turnright, commands the robot to turn
three times to its left. The second instruction, move, makes the robot step one
unit into the direction it is facing. Regarding Figure 6.7 (the same aspects can
be seen in figure 6.8), the source code viewer highlights the line of the instruction
being executed. The execution tree shows that the first instruction of the program
was successfully executed (the rightmost green rectangle). Also the Identifiers table
shows the values of the variables that compose the internal state of the robot.

Confronting Figure 6.7 with Figure 6.8, can be noticed that the robot changed
its position. In the former, the robot is precisely in the center of the panel, and in
the latter, the robot is one unit/step ahead. This happened because the move in-
struction, which is the statement executed between those figures, has an operational

85

Improving Program Comprehension Tools for DSLs

Figure 6.7: Visualization after executed the first turnright instruction

Figure 6.8: Visualization after executed the first move instruction

86

6.2. The Lavanda Language

semantics at program level that reflects itself in the problem domain by means of
making the robot move into the direction it is facing.

All together, the tree and the source code viewer, the identifiers table and the
animation panel are unified into a synchronized visualization and animation of the
program and problem domains.

Figure Figure 6.9 depict other situation of the problem domain animation, us-
ing the Alma2. The animation panel depicts the second frame associated with the
sequence of frames designed for the concept of picking an object from the ground
(see Figure 6.4). This image appears in the context of executing the user-defined
harvest instruction, when the robot is harvesting the second row of carrots.

Figure 6.9: Visualization of a frame of the picking object sequence

The presented figures show the adquacy of the Alma2 for the proposed objectives:
the problem domain is visualized, and it is constantly synchronized with the program
domain visualization. This synchronization is, no doubts, worthwhile and effective.
It shows not only the program being executed but also which are the effects of such
execution in the object controlled by it.

6.2 The Lavanda Language
Karel’s Language, despite being an high level DSL, has some aspects that are typical
in a imperative GPL. So the process of mapping these aspects to the patterns of the
Alma2 is a simplified task. When dealing with a more declarative or descriptive DSL,
the difficulties to create such mapping will be bigger, because the level of concepts
are dissimilar. In this section, a descriptive language is used to show that the
difficulties identified in this paragraph can be overcome.

The Lavanda Language is a simple descriptive DSL. It was designed with the intuit
of being the case study for the analysis of some compiler generator tools carried out

87

Improving Program Comprehension Tools for DSLs

by da Cruz et al. in [51]. In addition, the language is being used for reviewing other
compiler generator tools5, and is also used in compiler classes on several exercises.
The sentences of Lavanda Language are used to describe the contents of laundry
bags (bags with clothes or linens to be washed) in a distributed laundry service.

6.2.1 Problem Domain Definition

As introduced before, the Lavanda Language is used to describe the contents of
bags in a distributed laundry company. This language was not tailored with the
purpose of being used by any real laundry company, but it gathers into its design
some aspects and concepts used in such a domain.

For the design of the language, a laundry company is constituted by a central
building and several small shops, so called collecting points. These collection points,
as the name recalls, are used to collect customers’ laundry bags and send them to
the central building. As bags come from all the shops, it is needed to keep tracking
of the map between the collecting point and the customers who ask for the laundry
service. These maps were named as ordering notes in [51];

A laundry bag may contain body clothes or household linens. The color of these
pieces may vary as well as the raw-materials used in their fabrication.

For a visual description of the problem domain underlying the language in ques-
tion, Figure 6.10 presents an ontology with the more relevant concepts associated
with such domain.

The main objective of these ordering notes is to describe the contents of a bag.
Altogether, these notes would be used to calculate the number of bags that are
received by the central building of the laundry company, and the number of pieces
of cloth correspondent to each type of fabrication.

6.2.2 Language Formal Definition

In this section, the formal definition of the Lavanda Language is presented. In
Listing 6.3 is resorted to a CFG to define the language.

Listing 6.3: Formal Definition of the Lavanda Language
1 note → header bags
2 header → date id
3 bags → bag+

4 bag → num id ’ (’ l o t s ’) ’
5 l o t s → l o t (’ , ’ l o t)∗
6 l o t → type num
7 type → c l a s s ’− ’ t i n t ’− ’ mate r i a l
8 c l a s s → BODY | HOUSE
9 t i n t → WHITE | COLOR

10 mate r i a l → COTTON | WOOL | FIBER
11 date → [0−2][0−9]\− [0−9][0−9]\− [0−2][0−9][0−9][0−9]
12 id → [a−z] +
13 num → [0−9]+

The concepts of the language at the program level are very close to those iden-
tified for the problem domain. The sentences of this language are precisely the

5The site of these reviews can be found in: http://epl.di.uminho.pt/~gepl/LP/
CompilerGenerators.html

88

6.2. The Lavanda Language

Figure 6.10: Problem Domain associated with the Lavanda Language

ordering notes introduced before. Briefly, an ordering note defines a set of bags and
for each bag is described its content as well as the identification of the customer.
The content of each bag is one or more items within a type of fabrication. The type
of fabrication, in its turn, is defined by a class (keywords body and house), a tint
(keywords white and color) and a raw-material (keywords cotton, wool and
fiber).

6.2.3 Conception: Mappings, Visualization and Animation

Summing up, the main idea that should prevail about the Lavanda Language, is
that it is used to describe the bags and its contents, in order to ease the tracking of
the number of customers (number of bags) and the number and types of the clothes
that are sent inside each bag.

In a first look, such a descriptive language has no semantics associated, then it
has no operational behavior. This is a reality for the major part of the declarative
DSLs. While in an imperative DSL is easy to identify one or several controlled objects,
in declarative ones, it is not so easy. This is because, in general, they are processed
(if so) to retrieve some results, and not to lead an object to perform an activity,
as it is the example of the Karel’s Language. Thus, the semantics of these DSLs,
is in the way how those results are calculated; and obviously, these operational
calculi are intrinsically related with the concepts of the problem domain presented
in Figure 6.10.

89

Improving Program Comprehension Tools for DSLs

The following list identifies and describes the concepts of the problem domain,
that are directly related with the expected visualization:

• Bags Object used to store the several pieces of cloth from one customer;

• Items The pieces of cloth;

• Colored and White The tint of the piece of cloth;

• Cotton, Wool and Fiber The raw-material of what the piece of cloth is
made of;

• Household Linen The item is for domestic use;

• Body Cloth The item is to be dressed by a person.

The other concepts presented in the ontology (Figure 6.10) can be discarded from
the visualization of the problem domain, because they are contextual concepts, and
do not interfere directly in the problem visualization. The same happens with the
program domain concepts. Some of those that appear in the formal definition of
the language, and will appear later in the programs specification, can be discarded,
because they do not interfere in the visualization. The following list describes the
relevant concepts at the program domain level:

• bag Supports the description of an order from a customer;

• lot Describes each type of cloth and its quantity, that goes inside the bag;

• body and house Define the class of the item in the bag;

• white and color Define the color aspect of the items in bag: they can be
either colored or white;

• cotton, wool and fiber Define the raw-material of what the item in the
lot is made of. It can be made of one of cotton, wool, or fiber.

Differently from what happened in the other case study, in this one the concepts
of the problem and program domains do not represent actions to control the object,
but words that are used to describe the ordering notes. An ordering note can, then,
be seen as the main actor in this language, but is an actor composed of other sub-
actors addressed by the language. Table 6.2 shows the easy connection between the
concepts at both problem and program domain, and adds the figures that represent
those sub-actors in the language.

The images used to represent the bridge between the concepts at both problem
and program domain, are very illustrative. The image in the first row of Table 6.2
represents a bag full of stuffs, which are intended to be clothes because of the clothes
that remain outside the bag. The image in the second row represents a piece of cloth,
by describing (visually) its type, w.r.t. the notion of type of fabrication given before.
Thus, it is an image composed of three other images that represent other concepts.
As there are 12 possible piece of clothes for this laundry, only one was shown in

90

6.2. The Lavanda Language

Table 6.2: Connection of concepts to images in Lavanda Language

Problem Domain
Concepts

Images
Program Domain

Concepts

Bags bag

Items lot

Colored color

White white

Cotton cotton

Wool wool

Fiber fiber

Household linen house

Body body

91

Improving Program Comprehension Tools for DSLs

the image. The third and fourth rows represent the tint of the clothes: a white
paper sheet and a colored rainbow. The next three images are used to represent
the raw-material of the piece of cloth: a cotton flower, a sheep and a pipe of lines
represent, respectively, the cotton, the wool and the fiber. The last two rows present
the images for the class concepts: a house and a t-shirt are used to identify the cloth
to be used in the house affairs and to be dressed (body clothes), respectively.

The conception of an animation for a declarative language is not a simple task,
because it depends on the operational behavior of that language, and much of the
times, this operational behavior is not obvious. But for Lavanda Language, the
problem of counting bags, lots and summarizing them up, in the end, was identified.
This determines, automatically, an operational behavior behind the language, and,
then, is easier to conceive a behavior for the several concepts on the problem domain.

The animation defined for Lavanda Language is mainly composed of three steps:

1. The description of the lots is displayed in the screen during the synthesis of
the lots that are stored inside a customer bag;

2. The bags that already are processed are displayed in the screen, during all the
animation;

3. After processing a bag, is shown a summary table of the lots that already
compose the contents of all the bags.

When a specification is completely interpreted, the final visualization (the final
screen) represents the number of bags that were ordered along with the summary
table of all the lots that compose each bag.

In the next section, is shown a Lavanda Language program and its animation us-
ing Alma2, where are presented figures that corroborate the three stepped animation
conceived in the present section.

6.2.4 Animation Using Alma

The programs written in the Lavanda Language, are always very similar. The differ-
ence between them is in the contents of the bags and in the size of the specification.
In this section, a simple program is proposed for an automatic animation using
Alma2. Listing 6.4 presents the code of such a program, where three clients send
their clothes to the laundry.

Listing 6.4: Specification in Lavanda Language
1

2 23−07−2009 Laundry
3 1 Joan
4 (body−co lo r−wool 3 ,
5 house−co lo r−wool 2 ,
6 body−white−cotton 5 ,
7 house−white−f i b e r 3)
8

9 2 Ulys se s
10 (body−co lo r−cotton 1 ,
11 house−white−f i b e r 4 ,
12 house−white−cotton 2)
13

92

6.2. The Lavanda Language

14 3 Layla
15 (house−co lo r−wool 10)

In fact this specification is very simple. As it is considering just three clients,
the number of bags is immediately retrieved. But notice that a real laundry have,
for sure, more than three customers in a day. On the other hand, the description of
contents of the bag, is something not so easy to read, regardless of the number of
clients. A more complex handwork would be needed to count the lots of clothes in
the bag, and also to distribute this number by the 12 different types of fabrication.

Figures 6.11 to 6.14 illustrate some steps of the global animation for the program
presented in Listing 6.4.

Figure 6.11: Initial Visualization of a Lavanda Language specificaiton

In Figure 6.11 is presented the Alma2 interface with its four characteristic views:
the IT, the source code, interpretation tree, and animation. The animation view
is still empty, because the interpretation of the program is not yet started. The
interpretation tree is zoomed out in order to show the complete tree representing
the semantics of the specification given.

Figure 6.12 shows the visualization of the contents in the first bag. Each lot
inside the bag appear described by the type of fabrication — represented by the
three images in each row in the list of lots — and the number of pieces of cloth that
compose the lot — represented by the label below each type of fabrication. The
next step on the animation is to calculate the number of bags that have already
been processed.

After closing each bag, a mark, signalizing the number of bags already processed,
appears in the upper-right corner of the Alma2’s animation view, as can be seen in
Figure 6.13. This visualization is composed of the image representing the concept
Bag, presented before in Table 6.2, and a label printing the value of bags processed.

93

Improving Program Comprehension Tools for DSLs

Figure 6.12: Visualization of the contents in the first bag

Figure 6.13: Problem Domain Visualization of the second Bag

94

6.3. Summary

This composed item of the visualization is always drawn, even when processing the
contents of other bags, as is the case of Figure 6.13.

Figure 6.14: Final Visualization of the Lavanda Language specification

In the end of the animation, is shown the number of bags processed and the
summary table for the lots and type of clothes. Figure 6.14 depicts exactly the final
moment in the visualization of the program. From this summary visualization is easy
to retrieve the number of bags and clients, and more important is the possibility to
get the number of each type of clothes that were sent to wash.

With this case study, is shown how a declarative DSL can be used in DsPCTools,
in order to offer its comprehension. Using Alma2, is possible to have a synchronized
visualization of both program and problem domains. Although this is not a complex
problem domain, the synchronization of the operational and behavioral views is
important to understand what, at the program level, leads to a behavior of the
concepts, at the problem level.

6.3 Summary

In this chapter were presented two case studies. The first case study was based on
an imperative DSL: Karel’s Language. The second was conceived using a declarative
DSL: Lavanda Language. Because of the paradigm underlying each language, several
facilities or difficulties were found to conceive the visualization and animation of the
programs, but in both cases, the goals were achieved in a systematic way.

When dealing with an imperative language that has a well bounded application
domain, is easy to identify one or several objects that can be said to be controlled by
the language. In the case of Karel’s Language, a robot is such a controlled object.

95

Improving Program Comprehension Tools for DSLs

Then, the important concepts at the program and problem levels are translated by
instructions used to command the object in the desired way. An imperative language
also defines a concrete operational semantics, what eases the process of constructing
an abstract representation of the internal behavior of the program. This, allied to
the fact that is easy to determine the connections between the problem and program
domains using a DSL, makes possible the synchronization of two views that show the
internal and external behavior of the program.

On the other hand, when dealing with a declarative language, it is not so easy
to find a concrete object that acts as the controlled object, because, in principle,
these language were not conceived to control objects. However, as the domain is
always well bounded, it is easy to find one or several objects that may play a leading
role in the entire domain. Another difficulty associated with these languages is that
they have not a precise semantics associated. But the objective on processing these
languages is to retrieve results, and not to lead an object to perform an activity.
Notice that to retrieve a result, there are needed operations; then, the absence of
operational semantics in the language is not a problem anymore. Connecting the
concepts at both domains (that differently from the imperative languages, repre-
sent words used to describe the specifications) a synchronized visualization of what
happens at these domains, is possible to achieve.

96

Chapter 7

Approach Assessment

The true method of knowledge is experiment.

William Blake

Throughout this dissertation, an approach for DSLP comprehension was conceived
and then concretized in a new DsPCTool. Both these tasks — conceiving and con-
cretizing — were based on existent approaches and tools crafted to cope with GPLs.
The concrete outcomes, the approach (DapAST) and the the DsPCTool (Alma2), were
the main resources to demystify two doubts raised in Section 1.2, which originate two
theorems. The first theorem (Theorem 2 presented in Chapter 4) says that program
comprehension techniques usually tailored to cope with GPLs can also be applied to
DSLs, regarding some minor changes. The second theorem (Theorem 3, presented
in Chapter 5) assesses the possibility of improving existent PCTools, to enhance the
understanding of DSLs, by taking advantage of problem domain visualizations.

With the theorems formulated before and the tool developed to assess them,
it was objective the formulation of Theorem 1 which, in fact, corresponds to the
main goal of this master thesis. Theorem 1, presented in Section 1.3 says, in a
very succinct way, that the comprehension of a program is easier when synchronized
visualizations of the program and problem domains are provided. But this theorem
must be proved correct, so its formulation is valid. Figure 7.1 describes the simple
method to prove it. The main resources for such a proof are the tool and the
user experiments, since it must confront the understanding of a program by the
Program Reader (PR) and the tool used to achieve it. The tool must meet the
synchronization of domains, required in the formulation of the theorem. Concerning
this requirement, in Chapter 6, two case studies were presented, from where it was
shown the synchronization of the problem and program domains provided by Alma2.
So, this requirement is completely assured. The second resource, the experiment,
should offer good results, in order to be drawn conclusions, regarding the theorem.

Given this, the content of this chapter reports the three main phases of the
experiment involving Alma2 and several PRs. These three phases are the preparation
of the experiment, its execution and, finally, the analysis of the results. Section 7.1
describes the preparation of the experiment according to previous experiences and
published works on the experiments area. Section 7.2 describes the execution of

97

Improving Program Comprehension Tools for DSLs

Figure 7.1: Theorem Proof Schema

the experiment. Some online observations are discussed, in order to advance some
conclusions. Finally, Section 7.3, presents the statistical results of the experiment.
With these results, conclusions are drawn.

7.1 Experiment Preparation

An empirical study, also called experiment, can be prepared and executed follow-
ing several ways, since there is not a standard. However there are common steps
from experiment to experiment. This section presents the team know-how on per-
forming similar empirical studies, discusses some related work on the preparation of
experiments, and comes out with concrete results from these studies.

7.1.1 Team Know-how

In the context of DSLpc project, the bilateral cooperation research inside which this
master thesis is placed, some empirical studies were proposed and performed to
analyze properties of DSLs comparing with GPLs, with respect to three perspectives:
learning the language, perceiving the programs and evolving the program [106, 124].

The experiments were supported by two questionnaires for each pair of languages
to be compared; the questionnaires were carefully designed and structured.

The experiment involved several students (programmers) from Portugal and
Slovenia with different background and expertise on the usage of programming lan-
guages. These students were submitted to several of the questionnaires discussed

98

7.1. Experiment Preparation

above with eleven questions (each) evenly distributed by all the three identified
perspectives.

During the preparation of these experiments, great importance was devoted to
the characterization of the programmers’ expertise on programming aspects related
to the domain of the experience. Then, several threats to the validity of the results
were analyzed to be taken into account when discussing the results. All the process
was very well structured, in order to relate, as much as possible, each question with
the objective of the experience.

The results of these experiments were conclusive and important to the program-
ming languages community, meaning that experience on this area of empirical stud-
ies, was obtained. So, DSLpc team has background on realizing these experiments,
what was crucial to prepare the one concerning this master thesis.

7.1.2 Related Work

There are many written reports on research and outcomes of experimental stud-
ies [180, 166, 11, 211, 118, 192] performed by experts, from where knowledge can be
retrieved to improve the background on this area of experimenting.

Despite the significative number of works cited, there are two major and recent
contributions representing the trends and the standardization of the experiments’
preparation. The first work was made by Di Penta et al. [55]. The authors iden-
tify a set of important characteristics that an empirical study should hold to be
considered acceptable. These characteristics are on the way of the standardization,
because, as the authors claim in their work, “the standardization of an experiment
format would facilitate the replication of experiments and the aggregation of data
from multiple experiments”. From the six steps described on their work, three of
them seem to be really important: the definition of variables to measure during the
experiment, the identification of an appropriate subject population, and finally, the
precise description of the system or task under evaluation.

Another important outcome from Di Penta et al.’s work is that it must be stated
the relation between what is to evaluate and what is used to evaluate, that is the,
the relation between the knowledge and the question; it is very important that this
remains clear when analyzing the results of the experiment,.

The second work was undertaken by Cornelissen et al. [42]. This work follows
the main guidelines suggested by Di Penta, skipping ones but adding others. In
this work, the authors prepare, execute and analyze an experiment on the added
value of trace visualization tools for program comprehension. In what concerns the
preparation of the experiment, they start by identifying the variables (time and
correctness) that will be measured during the experiment; then, they identify the
research questions and their initial hypotheses; next, prepare the tasks, and finally
identify the subjects of the experiment. They also identify some threats that may
compromise the validity of the study.

The latter work follows a complete and interesting preparation of an experiment.
As the intention on the present chapter is not to reinventing the wheel, blending the
ideas coming from the background knowledge, and the steps followed in the latter

99

Improving Program Comprehension Tools for DSLs

work, the experiment underlying this chapter is prepared. Next sections report such
preparation.

7.1.3 Objective of the Experiment

Differently from what was done in the experiments reported in section 7.1.1, in the
present experiment is objective to see if Alma2 and its synchronized views of the
program and problem domain are capable of giving the user a better experience on
understanding a program.

The objective of reaching the understanding is twofold: on the one hand, when a
program is understood, the user obtains a certain knowledge about its functionalities
and purposes; and on the other hand, when a program is understood, the user is
able to modify it in the correct location.

So, to test whether the synchronized views of the program and problem domain
in Alma2 ease the understanding process (in both directions described before), the ex-
periment must compare the usage of Alma, which only concerns the program domain,
with the usage of Alma2, which concerns both domains, and present synchronized
views of their animation.

The following paragraphs identify the variables, the research questions and the
hypotheses of the experiment. These points agree with the strategy of preparing an
experiment proposed by the work of Cornelissen et al. [42].

Variables. During the experiment it is important to measure two values: the time
spent on each question, and the correctness of the questions, as these are the usual
directions of an experiment. But for this study, a variable to measure the importance
of the incremented value of Alma2 is essential. So, in this experiment, three variables
are taken into account: time, correctness and importance.

Research Questions. In fact, there is only one research question on these ex-
periment: Does the synchronized visualization of the program and problem domains
help users on understanding DSLPs?

But this question can be divided into three others:

1. Does Alma2 decreases the time spent on program comprehension tasks?

2. Does Alma2 augment the correctness of the comprehension tasks?

3. Is the problem domain visualization and the views synchronization of Alma2

important to understand programs?

A third question was inserted in order to take advantage of the variable time.
However, to prove Theorem 1, the time spent in each program comprehension task
is not relevant.

100

7.1. Experiment Preparation

Hypotheses. The hypotheses of the experiment are associated with the research
questions. They are used to confront with the results of the experiment, and then
to answer the research questions.

• H1 — Alma2 has influence in the time spent on the comprehension tasks,
decreasing it.

• H2 — Alma2 has influence in the correctness of the comprehension tasks,
augmenting it;

• H3 — The problem domain visualizations and their synchronization with the
program domain visualizations offered by Alma2 are important to the process
of comprehension;

7.1.4 Questionnaire Design

Regarding the objective defined in the previous section, the tasks of the experiment
must focus on the analysis of the results of the program comprehension process.
That is, the participants of the experiment must use Alma and Alma2 to achieve the
comprehension of a program, and then, with the knowledge gathered, answer some
questions to assess two directions: (i) if the program functionalities were perceived,
and (ii) if the participant is able to evolve the program.

Both directions must be assessed in Alma and in Alma2. The use of the former
system would provide base results that will be confronted against those coming from
the usage of the latter system. This confrontation of results answers the research
questions drawn in the previous section.

So, the tasks of the experiment must address details on perceiving and evolving
programs, but they must also be directed to answer the research questions. Attention
should be paid that the tasks must not be biased to give advantage to any of the
used tools; otherwise it would distort the final results and conclusions.

Each task of the questionnaire must provide data to fill the three identified
variables, which analysis will answer the research questions and enable the drawing
of conclusions. The following list describes how each task is composed to gather
such information.

• To capture information for the correctness variable, a question about a DSLP is
asked. The question addresses either the program purposes or its modification.
The correctness of the answer will be used to measure the correctness variable.

• To gather information for the time variable, the participant is required to
stamp the time at the begin and at the end of the task’s execution. Once the
tasks are executed on a computer, but the answers are written in paper, the
time spent on its execution can not be calculated in an automatic way.

• Finally, to gather information for the importance variable, the participant is
asked to score the importance of the problem domain visualization and its
synchronization with the program domain visualization, in the resolution of
the task. Notice that this is a subjective answer for each participant, but the
overall result reflects the general opinion.

101

Improving Program Comprehension Tools for DSLs

Figure 7.2 depicts the main structure of a task in the questionnaire. Notice
however that, from task to task, its content and format may vary a little, depending
on the type of the question.

Figure 7.2: Main Structure for the Experiment Tasks

Now that the structure of the questionnaire is conceived, the next step is to
define the questions. But to proceed on this step, it is needed to know, first, which
DSLs would be used. In Chapter 6, two languages (Karel’s Language and Lavanda
Language) were presented, described and its use on Alma2 was testified. Their
different characteristics (imperative and declarative, respectively) are a good aspect
to take into account, so the answers to the research questions and to Theorem 1 are
more credible and consistent.

It was decided that the questionnaire would be eight tasks long, evenly divided
into two groups: one group for perceiving questions, and another for evolving ques-
tions. Two perceiving questions and two evolving questions are associated to each
language. Moreover, each one of these questions are to be answered, alternately,
using Alma and Alma2. Figure 7.3 explains, by means of a diagram, the scheme of
the questions distribution.

Figure 7.3: Distribution of Questions

The complete questionnaires are presented in Appendix B, from Figure B.2

102

7.1. Experiment Preparation

to B.6. In this section, only the abstract type of the task is shown in the following
list:

• T1 and T2— Understand the program to identify functions producing a given
output;

• T3 — Change (adding or removing parts of) a program to cope with new
requirements;

• T4 — Refactoring a program, cleaning unnecessary instructions;

• T5 and T6 — Understand the program to calculate part of the final output;

• T7 — Remove part of the program to achieve a new output and

• T8 — Add code to the program to achieve a new output.

For this experiment, it is used a type of questions similar to that used in the
experiments reported in [106, 124]. The reason to do that, is supported by the fact
that in the present experiment it is wanted to conclude about the perception and
the evolution of DSLs using a tool for helping the comprehension, while in the past
experiment it was objective to study the comprehension of DSLs over the learning,
perceiving and evolving directions, without tool support.

7.1.5 Participants Identification

In order to accomplish the experiment, 20 (twenty) persons from the area of in-
formatics were invited. This sample was composed of three females and seventeen
males, where one (5%) was B.Sc. student, sixteen (80%) were M.Sc. students and
three (15%) were Ph.D. students. The undergraduate student was starting his final
year of the B.Sc. degree; about 20% of the master students were starting their final
year, and the remainder were finishing their master’s thesis; all the Ph.D. students
were starting their third year of studies in that degree. Their areas of specialization
were varied and addressed fields like computer networks, distributed computing,
bioinformatics, data warehousing, computer graphics and computer interaction.

Before starting to answer the questionnaire, the participants were requested to
fill in a simple form to classify their background in performing tasks related with the
experiment1. The information that outcomes from the analysis of the forms’ data is
important to elaborate an idea about the skills of the participants on (i) analyzing
programs to understand them; (ii) using program comprehension tools; (iii) us-
ing IDEs with debugging features for software development; (iv) using DSLs and
(v) comprehending DSLPs.

Figure 7.4 shows the results of the evaluation made by the participants about
their background (history and expertise) on performing the tasks referred in the
previous paragraph.

To each task the participants evaluated their history based on the following
grades: 1 - Never; 2 - Rarely; 3 - Sometimes; 4 - Several times and 5 - Always; and

1The participant identification form can be seen in Figure B.1, in Appendix B.

103

Improving Program Comprehension Tools for DSLs

Figure 7.4: Comprehension Tasks — History and Expertise of the Participants

marked their expertise ruled by the following scores: 1 - Null; 2 - Low; 3 - Medium;
4 - High and 5 - Expert;

From the chart presented in Figure 7.4, it is possible to observe that in average,
the participants never, or very rarely, used a program comprehension tool. However,
they are very used to analyze and understanding programs. This may mean that
they follow a non systematic and manual process of program comprehension. On
the other hand, they often use IDEs with debugging features, what may mean that
they use these tools to help on the comprehension process. Regarding DSLs, the
participants are used to use them, but rarely go through a process of comprehending
programs written in such languages.

Given this analysis, and knowing that none of the participants have ever had a
contact neither with Alma nor with Alma2, the results of the experiment will not be
influenced by previous bad habits.

7.2 Experiment Execution

The experiment was, initially, thought to be executed in a single session. But due to
room space factors and incompatibility of dates, there were scheduled two sessions.
Thus, the participants were divided into two groups: in the first session participated
7 persons, and in the second participated 13.

In the overall, each session long about 2 hours. The first 15 minutes of each
session was spent to give a small presentation about the experiment and the resources
involved. In that presentation each one of the DSLs was briefly explained, presenting
their domain and syntax, by means of simple examples. Also, that presentation
was used to introduce Alma and Alma2, pointing their main differences and their
purposes. The remaining time was used to answer the questionnaire.

In order to ease all the questionnaire process, a package was prepared with a

104

7.3. Final Results

ready-to-use version of Alma and Alma2. Besides it, multi-platform scripts were
delivered to execute the systems, hiding some Java intricacies. At last, along with
these two resources, was delivered a third one, containing the source code of the
eight different DSLPs used in each task of the questionnaire.

During the experiment, participants solicited help to clarify the real intent of
some questions. Care was taken in the help given, in order not to bias the answer of
the respective question. But, in the overall, the participants understood what was
asked and filled out the questionnaire without difficulties, adopting some interesting
strategies which are worthy to take note and analyze to have a reasoned discussion
about the experiment results, in Section 7.3.

As said earlier, the participants used two different systems to answer the ques-
tions. As the main difference from Alma to Alma2, is the visualization of the problem
domain, it was interesting to see the different strategies adopted by the participants
to answer the questions when using both systems. The main observations respecting
to this aspect were that when questions have to be answered using Alma, principally
those concerning Karel’s Language, the major part of the participants used a draft
sheet to draw world objects similar to the visualizations offered by Alma2. So this
led to the following conclusion: in every moment, the participants felt the necessity
of synchronizing the operation in the source code with the behavior of the controlled
objects, by means of problem domain visualizations.

Maybe this conclusion is a little bit biased to the desired outcome. But, together
with the analysis of results presented in Section 7.3, will be possible to conclude
whether it is tampered or not, as well as drawing new conclusions.

7.3 Final Results
In this section are shown the results of the experiment and a possible interpretation
of the output values (Section 7.3.1). In order to have a more reliable discussion
about the results, some independent variables, and facts that may have interfered
in the results, are identified (Section 7.3.2).

Is worthwhile to say that after the two sessions of the experiment, five experts
on language engineering (two from University of Minho, and three from Universsity
of Maribor) were asked to go through the questionnaires in order to provide some
comments on the questions and on the observed results. So, the discussion of the
results below have also the important point of view of these experts.

7.3.1 Results and Discussion

In this part of the section, the results of the experiment are presented by means of
charts and tables. For each of the variables defined before (time, correctness and im-
portance) these charts and tables are discussed, taking into account the hypotheses
H1, H2 and H3 defined in Section 7.1.

The time variable is scrutinized in first place, because the results of this analysis
are important to discuss the results of the second variable being analyzed: the
correctness. Finally, the results about the importance variable are revealed, taking
into account the discussions about the time and correctness variables.

105

Improving Program Comprehension Tools for DSLs

Time

The hypothesisH1 raised before states that, using Alma2, the time spent on perform-
ing comprehension tasks decreases. During this section, the hypothesis is studied
according to the results obtained.

In Table 7.1 and Figure 7.5 (left) are presented the results of the time spent for
each question. The labels Q1 to Q8 are the questions inside the eight tasks presented
before and concretely identified through Figures B.2 to B.6.

Table 7.1: Average of Time Spent in Solving the Questions (minutes)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Average 9,10 8,05 15,35 17,55 3,25 2,75 5,00 3,05
Stdev. 4,70 5,19 5,82 11,59 3,23 2,49 2,99 1,73

Figure 7.5: Time Results per Question (left) and per System (right)

The odd questions (Q1, Q3, Q5 and Q7) were solved with Alma2, and the even
ones (Q2, Q4, Q6 and Q8) with Alma. As can be seen, Q4, solved with Alma,
was the question where the participants, in average, spent more time. However, in
general, they took more time to answering the questions concerning the use of Alma2.
Figure 7.5 (right) corroborates it by presenting the bar chart of the comparison
between the time spent when answering questions using either Alma (7,85 minutes)
or Alma2 (8,18 minutes)2.

Despite of not being a great difference in terms of minutes, only about 20 seconds,
this is a difference that should be taken into account: using Alma2, the participants
spent more 3,98% of their time to solve traditional program comprehension tasks.

An interesting result that can be mentioned is the difference of time spent when
answering questions concerning the type of the language. From the chart in Fig-
ure 7.5 (left), it is easy to see that from Q5 to Q8, the participants spent less time
than in the first four. Questions 5 to 8 are questions about programs written in La-
vanda Language, which is a declarative language. This leads to draw the conclusion

2Notice that 7,85 minutes correspond to 7 minutes and 51 seconds, and 8,18 minutes correspond
to approximately 8 minutes and 11 seconds.

106

7.3. Final Results

that performing traditional program comprehension tasks in declarative programs is
faster than in imperative ones.

As a last outcome from the time analysis, shown in Table 7.2, is that using
Alma the questions concerning the perceiving of the program take less time than
using Alma2. But the same is not applicable in questions concerning the evolution
of a program In this case, the time spent using Alma2 is slightly less than using
Alma. Nonetheless, the participants spend twice the time performing evolution based
program comprehension tasks, when comparing with their performance on solving
perceiving based tasks.

Table 7.2: Average of Time Spent per Type of Question (minutes)

Perceive Evolve
Alma 5,40 10,30
Alma2 6,18 10,18
Average 5,79 10,24

So, in conclusion, H1 is false. This means that the usage of Alma2 affects the
time on performing program comprehension tasks in the extent that it is needed
more to perform the tasks.

The conclusion drawn in the previous paragraph is not the expected one. In fact,
using Alma2 should have decreased the time needed to perform traditional PC tasks.
However, there are some factors contributing to the explanation of these results,
that were never thought as possible threats to the time spent on the execution of
the proposed PC tasks.

The first point is that having an extra view in the layout of Alma2 may affect,
negatively, the time. In Alma the participants only have three sub-windows to look
to; in Alma2 they have four, and looking to these four sub-windows may cause an
additional overhead, increasing the time spent to perform the tasks. Also related
with this point is that the new view may catch the eye of the user, so, on the one
hand, they spend extra time mesmerized with the problem domain visualizations
or, on the other hand, they feel more motivated to create a more accurate mental
model, which is a task that takes its time.

The second point is concerned with the difficulty of the questions. When a
question is more difficult, the time consumed to answer it is always higher than
when it is easier. Although nothing points into that direction, the participants may
have felt more difficulties on solving the Alma2 questions, then the time spent had
increased.

Correctness

The hypothesis H2 claims that, using Alma2, the correctness of answers given to
questions concerning traditional PC tasks is augmented. According to the study of
the results obtained, and the results of the time, previously hashed, this hypothesis
is discussed during the remaining of this section.

107

Improving Program Comprehension Tools for DSLs

Table 7.3 and the bar chart in Figure 7.6 (left) present the average of correctness
of the answers given to the eight questions of the questionnaire. Each answer was
classified with a value from 0% to 100%, depending on their correctness. So, the
average is also presented in terms of percentage.

Table 7.3: Average Correctness of the Questions (%)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Average 95,00 62,50 35,25 58,10 80,00 55,00 95,00 100,00
Stdev. 22,36 22,21 31,10 38,81 41,04 51,04 22,36 0,00

Figure 7.6: Correctness Results per Question (left) and per System (right)

In average, the answers are positive and over the 50% barrier. Only Q3, which
was solved using Alma2 to analyze the program, had an average of correctness under
50%. On the other hand, Q8, answered using Alma, was guessed by every partici-
pants.

However, in general, the participants scored higher in the their answers, when
they use Alma2 as tool to analyze and explore the program. In Alma the participants
scored, in average, 68,90%, and in Alma2 they scored 76,31% (see Figure 7.6 (right)).
This means that: using Alma2, the participants answer about 10% more correctly the
questions, than using Alma.

From this study, an important result, concerning the type of the language, can
be pointed out. Figure 7.6 shows that it is more likely to have good scores when
trying to perceive and evolve declarative languages than when doing the same with
imperative ones. Just notice the correctness values from the bars respecting Q5 to
Q8.

Another outcome concerns the type of the PC task and the comparison between
the systems used. Table 7.4 shows such a comparison. It is interesting to see
that when using Alma2 to perceive a program the correctness of the answers is huge,
comparing with Alma. On the other hand, when the questions concerns the evolution
of programs, Alma2 get worst correctness values than Alma. Nonetheless, in terms
of correctness, there is not a great difference between the two types of PC tasks.

108

7.3. Final Results

Table 7.4: Average of Correctness per Type of Question (%)

Perceive Evolve
Alma 58,75 79,05
Alma2 87,50 65,13
Average 73,13 72,09

Because of the three last results, but with more focus on the first one, it is easy
to conclude that hypothesis H2 is true: the usage of Alma2 affects the correctness
percentage of the answers, augmenting them.

This conclusion confirms exactly what was predicted. However, the results shown
do not enhance always the use of Alma2. For instance, the percentage of correctness
presented for the question 3, is the lowest value in the chart. Several factors could
have affected the obtained result: the kind of question is one of them.

Question 3 (defined in Figure B.3 under Task 3) asks the participants to change
a Karel’s Language program’s code. As the participants did not know neither the
language’s syntax nor its semantics, writing such a code, with a score of 100%
respecting the correctness, could have been a cumbersome task. In the brief talk,
given in the beginning of the experiment sessions, the language was exposed, but
maybe it was not sufficient. Still in this case, it is likely that the participants did
not used Alma2 to confirm whether their solution was correct or not, and perhaps
have used the system only to perceive the base program.

The other questions concerning the use of Alma2 present higher correctness val-
ues on their answers. Much assumptions and theories may be created to discuss
the truthfulness of the results. An obvious assumption is that the problem domain
visualizations could have helped a lot on performing the tasks. The fact of being
provided higher level visualizations leads the user to build a more concrete mental
model of the program under study. A second assumption is the continuous synchro-
nization of the several views provided by Alma2. The problem and program domain
visualizations when synchronized with each other may have helped the participant
to adopt a top-down, bottom-up or even to blend both strategies, leading to a better
comprehension of the program.

An intermediate conclusion, from this analysis and the analysis made to the time
variable is that despite the participants spent more time answering the questions
using Alma2to analyze and explore the programs, they achieve better results con-
cerning the correctness of the answers. A possible reason for this result may lie
on the fact that the participants, relying on problem domain visualizations, tend
to examine, with more caution, the programs, which requires more time spent. A
thorough analysis leads to a greater comprehension, then, answering the proposed
questions is easier and more correct.

109

Improving Program Comprehension Tools for DSLs

Importance

The hypothesisH3 states that the problem domain visualizations and their synchro-
nization with the program domain visualizations offered by Alma2 are important to
the process of comprehending a program. During the experiment, the participants
were asked to score the importance of these aspects on performing the proposed
task, based on the following grades: 1 - None; 2 - Negligible; 3 - Medium; 4 - High;
5 - Excellent. The results based on the participants’ evaluation are used, through
this section, to discuss the hypothesis.

In Table 7.5 and the bar chart in Figure 7.7 (left) is presented the average of
the scores given by the participants to each one of the questions, concerning the
help of the problem domain visualizations and the synchronization of visualizations.
As Alma does not provide problem domain visualizations, the users were asked to
classify the help that these aspects would have given to solve the question.

Table 7.5: Average Importance of Problem Domain Visualizations and Views Syn-
chronizations per Question (score 1 to 5)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Average 2,9 2,65 3,9 3,35 3,3 2,55 3,1 2,65
Stdev. 1,21 1,09 1,07 1,23 1,63 1,28 1,21 1,31

Figure 7.7: Importance Results per Question (left) and per System (right)

Concerning the even questions (Q2, Q4, Q6 and Q8), there occurred a problem
which compromises all their scores. The participants, principally those that fre-
quented the first experiment session, did not understand quite well the objective of
this evaluation when using Alma. So, they scored the help offered by the visualiza-
tions that Alma provides, and scored it low, instead of scoring whether the problem
domain visualizations would or would not help. It is a true fact, because many of
the participants, after the session, claimed that if the problem domain visualiza-
tions were available in the even questions, it would be a great help. However, in the
second session, even after explaining better the propose of these scores in the brief
presentation, a small part of the participants have done the same error.

110

7.3. Final Results

As it is obvious, contemplating such wrong scores to produce the final results, the
average is lowered. But as it is not known who were the participants committing
this error (the questionnaires were anonymous), it was preferable to keep all the
scores contributing to the final average. So, in order to not produce a tampered
discussion about the even questions scores, they will not be taken into account.

Lets concentrate then, in the scores of the odd questions (Q1, Q3, Q5 and Q7).
Unfortunately these scores are not as higher as expected. However they are all
close to each other. Q3 was the question scoring higher. Its score of 3,9 can be
rounded to the grade 4, meaning that the help of the problem domain visualizations
on that question was High. However in average the problem domain visualizations
were given the third grade of importance (3,30 — see the bar concerning Alma2

in Figure 7.7 (right)), meaning that their help is considerable but is not high or
extremely important.

Since that is a subjective classification, assumptions or theories to explain these
results are not produced.

In conclusion, H3 is true. The problem domain visualizations offered by Alma2

are indeed important to comprehend a program. They are not extremely important
in the extent that a program can not be comprehended if they are absent. But they
hold a considerable importance, not only because of the results of the importance
variable, but also because of the discussion done about the correctness variable.

7.3.2 Threats to Validity

There are many threats that can compromise the results of an empirical experiment.
Human threats like the uneven personality of the participants in the experiment,
as well as their competence to do the job, or the lack of motivation to perform it.
Circumstances threats like the difference on the computers where the experiment is
being performed or the noise at the time of the experiment. Author threats like the
possibility of the questions being directed to a convenient answer or the imposed
difficulty on the questions, and so forth. For a list of threats complementing those
given, the reader may want to read [42].

All these threats are valid to the experiment being reported in this chapter.
However it is important to list some specific threats that were caught during this
experiment. Concerning the participants’ characteristics, the following are identi-
fied:

• The group of participants was not as heterogenous (there participated more
males than females), so, the results may not correspond to the reality of the
society;

• The number of participants may have been too low. In this context, the results
may as well be not realistic;

• The majority of the participants have background on informatics, and are not
used to use PCTools. This way, they are accustomed to retrieve information
from code, meaning that they may have discarded the visualizations in most
of their actions.

111

Improving Program Comprehension Tools for DSLs

• The participants did not understand the propose of questions. This happened
when they classified the problem domain visualizations and the views synchro-
nization on Alma. The classification they give have compromised an important
part of the questionnaire.

Concerning the systems, there are some independent variables that may have
conditioned the results of the dependent variables (time, correctness and impor-
tance). The following can be identified:

• Four sub-windows in a single window. Although this is not a big problem, it
has already been identified, during the discussion of the variable time, that the
addition of a new view (comparing with Alma) may add also a small overhead
on the time spent to changing the look from a view to another.

• Specific to analyze programs. As both Alma and Alma2, were created to analyze
the programs by exploring it through different views, an overhead on timing
could have been added while changing between the context of exploring the
program and evolving the same.

Finally, concerning the questionnaire, is possible to rise the following threats:

• The questions may have not comprised the same difficulty. This threat was
raised by one of the experts involved in the off-the-record experiment. He
claimed that some pairs of questions concerning the same type of PC task
(perceive or evolve), had not the same difficulty. This means that some ques-
tions answered with Alma2 could have been harder than some answered with
Alma, and vice-versa.

• The questions could have been biased to achieve the desired results. This is
always a possible threat to the validity of the experiment, since the question-
naires were prepared by humans.

These threats must be taken into account to discuss the results, having a more
sober-minded perspective about them.

7.4 Summary — Theorem Validation
The objective of this chapter was to prove Theorem 1, which states that the compre-
hension of a program is easier when synchronized visualizations of the program and
problem domains are provided. To prove it, an experiment was conducted, involving
Alma, Alma2, and a set of eight questions to retrieve results from the usage of these
systems under traditional PC tasks. The experiment followed, as close as possible,
the steps adopted by Cornelissen et al. in [42].

In this context, three variables (time, correctness and importance) were mea-
sured for both Alma and Alma2. This way, a discussion of results could be made by
assuming Alma results as the base, and comparing them with the results of Alma2.
A summary of these results is presented in Table 7.6. Each three rows of the table
show the individual values for the three variables.

112

7.4. Summary — Theorem Validation

Table 7.6: Summary of the Experiment’s Results

Mean Diff Min Max Stdev.
Time minutes

Alma 7,85 1 45 8,79
Alma2 8,18 +3,98% 1 28 6,33

Correctness %
Alma 68,90% 0% 100% 37,96%

Alma2 76,31% +9,71% 0% 100% 38,54%

Importance score
Alma 2,80 1 5 1,35
Alma2 3,30 +15,15% 1 5 1,25

To help proving the theorem, one research question was raised and divided into
three smaller ones.

The first research question asked if, using Alma2, the time spent to perform PC
tasks is decreased. By the analysis and discussion made before about hypothesis
H1, and for the results presented in table 7.6, is easy to see that using Alma2, the
participants were 3,98% slower than when using Alma. The difference is not big, but
it can not be neglected. So, the first research question has a negative answer.

The second research question asked if, using Alma2, the correctness of the answers
in PC tasks would increase. Again, relying on the discussion made for the hypothesis
H2 and the results in Table 7.6, is concluded that there is, indeed, an increased
percentage of correct answers when using Alma2. The difference between the systems
is of 9,71%. This way, the second research question has a positive answer.

Concerning the third research question, it asked if, using Alma2, the problem
domain visualizations and the synchronization of views play an important role in
the comprehension of programs. The analysis made for hypothesis H3 is conclusive,
because the participants classified these aspects of the system as having an aver-
age importance, and missed the problem domain visualizations when using Alma.
The latter fact is not consistent with the results presented in Table 7.6, because
the participants did not understand the purpose of the question, however, during
conversation after the sessions they revealed the missing of such higher level visual-
izations.

The main research question of this experiment asked whether the synchronized
visualization of the program and problem domains help users on understanding
DSLPs. Given the results, the analysis and the answers of the sub-research ques-
tions, a positive answer can be given to this main question. Although it is spent
more time performing PC tasks, the answers are more correct and the synchronized
visualizations give a great help here.

As this research question can be seen as the question form of Theorem 1, and
it has an affirmative answer based on the experiment results, the theorem may be
considered proved, and valid.

113

Improving Program Comprehension Tools for DSLs

114

Chapter 8

Conclusion

It’s more fun to arrive a conclusion than to justify it.

Malcolm Forbes

This document is a master degree dissertation in the area of Program Compreen-
sion (PC) applied to Domain-Specific Languages (DSL). Along the initial chapters
it was defined a line to conduct the work to be done; the work already done by
other researchers in this area was shown. The central chapters of this dissertation
presented the formalization and of a theory, its concretization, and the prove of its
influence when used on the real world.

In the present chapter, conclusions about the work done are drawn, and topics
for future research are pointed. But first, a small summary about the contents of
each chapter, is provided.

Chapter II — Domain Specific Languages In this chapter was presented a
deep study on DSLs. A list of characteristics of these languages, advantages and dis-
advantages on their usage and on their development was provided. Also, techniques
to support their creation were presented. From this study, one important conclusion
can be drawn: using DSLs it is easier to infer their problem domain, and to create
mappings between the concepts of both program and problem domains. This dues
essentially to the fact of being high-level and abstract languages. This conclusion
was important for the continuation of the work, because it led to the definition of a
conducting line for the process of defining problem domain visualizations.

Chapter III — Program Comprehension In this chapter, an introduction
to the topics within the PC field was given. Topics like software visualization and
cognitive models were addressed to provide an overview on the basis of this thesis.
Also, some Program Comprehension Tools (PCTools) were reviewed, by analyzing
important aspects and features they provide or should provide. From this study,
a main conclusion was drawn: in spite of existing many program comprehension
tools, the majority of them only address a small set of General-purpose Programming
Languages (GPL) and do not take advantage of the problem domain and consequently,

115

Improving Program Comprehension Tools for DSLs

do not connect both program and problem domains to enhance the comprehension
of programs.

A thorough study of tools for analysis of Domain-Specific Language based Pro-
grams (DSLP) was also done. But again, they do not take advantage of the DSLs’
characteristics and are mostly debuggers or similar tools and approaches.

Chapter IV — An Idea to Comprehend DSLs In this chapter, an approach
for program comprehension to be applied to DSLs was designed. It was chosen a
PCTool from those analyzed in the previous chapter, in order to use its program
comprehension technique as basis for the construction of an improved approach for
DSLPs comprehension.

The new approach designed, called Decorated with animation patterns Abstract
Syntax Tree (DapAST), is based on the abstract tree representation of the program,
decorated with semantic and animation patterns. This tree is then traversed and
its nodes are processed to create the animation and visualization of both program
and problem domains.

The main conclusion of this chapter is that program comprehension techniques
for GPLs can also be applied to DSLs, after appropriate changes.

Chapter V — Alma2 In this chapter, a description about the implementation
of Alma2 was provided. Also the tool’s architecture and internal structure was
presented, and finally, a small tutorial on how to use the system, regarding two
types of users, was given.

Alma2, is the extension of Alma to produce the problem domain visualizations and
the synchronization of visualizations at both domains, using the approach designed
in the previous chapter. From the development of this extension an important
conclusion was drawn: it is possible to improve existent PCTools to enhance the
understanding of DSL programs. This improvement allows the interconnection of
domains, and the synchronized visualization of both program and problem domains.

Chapter VI — Case Studies In this chapter, two case studies were defined,
described and analyzed. The first one was focused on the use of Alma2 to provide the
synchronized visualizations of both domains of an imperative DSL. The second case
followed the same strategy, but to cope with a declarative DSL. From the case studies,
as conclusion, a systematic way to create the connections between the domains can
be used, and this approach copes with different types of DSLs.

Chapter VII — Approach Assessment This chapter presented and described
the contours of an experiment to assess wether the provision of synchronized visu-
alizations of both program and problem domains are useful for the achievement of
program comprehension. The results of this empirical experiment were displayed
and analyzed with criticism, raising several conclusions about the approach con-
ceived in this master thesis. The main conclusion drawn in that chapter is depicted
in Figure 8.1, in the bottom balloon.

116

8. Conclusion

Figure 8.1: Final Theorem

117

Improving Program Comprehension Tools for DSLs

Figure 8.1, summing up the main outcomes from the experimental assessment,
shows that all the three objectives of this M.Sc. work were fully reached and sup-
ported.

8.1 Discussion and Conclusions
In this thesis, the main goal was to prove that program comprehension is easier
when synchronized visualizations of the problem and program domains are provided
(c.f. Theorem 1). To achieve this goal, an approach (DapAST) and a program com-
prehension tool (Alma2) were created based on an existing PCTool for GPLs that did
not provided the desired characteristics.

The design of the new approach for program comprehension is based on the
well known advantages of the DSLs. The easiness on inferring their problem domain
and on finding and creating mappings between both program and problem domains
opens doors to the creation of higher level visualizations and to the synchroniza-
tion of the visualizations at both domains. As this approach reuses, adapts, and
extends another approach used for comprehending programs written in GPLs, it can
be concluded (c.f. Theorem 2) that it is possible to find program comprehension
techniques for GPLs, that can be applied to DSLs.

In the same way, the development of Alma2, carried out the conclusion that
existent PCTools can be improved to cope with DSLs, enhancing the comprehension
of the programs written in such languages (c.f. Theorem 3), and also, it allowed to
conclude that it is possible to bridge the conceptual gap between the program and
the problem domains.

By providing the synchronized visualizations of these two domains, the answer to
the question what are the effects of the program in the entities of problem domain?
is given. The user of such a tool is able to create a thorough mental model of the
program under analysis, no matter if following a top-down, a bottom-up or even a
mixed strategy, but certainly creating a knowledge base following an action-effect
paradigm.

In this thesis it was not intended to defend the use of DSLs. It was just advocated
that PCTools can be adapted to easily comprehend DSLs, going along with their high
level of abstraction, and taking advantage of the specific domain. Doing this with
GPLs is hard, because it is not visible the problem domain, and it is very hard to
infer it, or even impossible if not searched on the correct resources.

It is known that programs written in DSLs are easy to comprehend, or at least,
are easier to comprehend than programs written in GPLs. However when the size
of the programs is bigger, even in DSLs it can become cumbersome to understand.
In this context, Alma2 would give a great help. Also, Alma2 has the particularity
of being perfectly usable for teaching purposes, giving the students a consistent
apprehension of the DSL.

Alma2 is ready to cope with almost all DSL. But as the number of DSLs is great,
there must be created a FE, which can be seen as a door to let the programs of a
DSL in, and be interpreted using the Alma2’s BE. Of course that an effort is required
to set this FE up. It is necessary to have some expertise on compiler techniques and
attribute grammars, and it is important to know how to articulate all the semantic

118

8.2. Future Work

and animation patterns to extract the semantic representation of the program, and
prepare the visualizations of the problem domain.

Concerning the initial sentence of the previous paragraph, it is just a speculation
and a belief, based on the fact that: as long as it is possible to find operational
behavior for the language, concepts at both problem and program levels, and images
to represent the concepts, an Alma2 FE for that DSL can be prepared. Bigger and more
real DSLs like DOT and XAML are in the scope of Alma2. Actually they could have been
used to support the consistency of the tool in the case studies effectuated; however,
as their output is already visual, it was decided to use DSLs with a more abstract
output, in order to highlight the relation between the actions on the program and
their effects on the problem domain.

But the use of bigger languages may compromise the scalability of the tool. The
scalability problem, in this case, is directly related with the size of the language’s
application domain. If the application domain is big, the number of concepts em-
bodied in the language would also be big, and the same would happen with the
relations between the images used to represent these concepts. This is a very well
known problem underlying every software visualization systems. This way, the ap-
proach followed by Alma2, thoroughly explained in this dissertation, is prepared to
offer partial visualizations of the program. In this approach, it is not required that
every node of the DapAST have animation patterns associated; so, the expert user,
when defining the visualizations may customize them, in order to focus only on a
part of the programs. This way, the problem of visual scalability may be solved.
However, test concerning the scalability of the tool have not been made yet.

Concerning tests, only the effectiveness and usefulness of the synchronized visu-
alizations of both domains were tested. In this experiment, interesting results were
obtained. It was concluded that the time used to comprehend programs is higher
when provided visualizations of both domains, but the correctness of the answers
is also higher, and it is higher the bigger is the program. This dues to (or it is
speculated to ought to) the fact that for small programs, program visualizations
are sufficient, nonetheless people spend some time viewing the problem domain an-
imations, to enrich their mental model. Concluding this, visualizations at program
level are effective for small programs, and visualizations at problem level are more
effective for big ones. The synchronization of both visualizations, eases the process
of creating mental models, helping on bridging the gap between both domains. Fur-
thermore, Alma2 promotes the use of a top-down strategy to comprehend a program,
in the extent that the user would start to see the final effects in the problem domain,
identifying the several steps of the program’s execution in order to reach the piece
of code responsible for that action. However it does not discards the possibility of
using other strategies, but always reaching an action-effect comprehension of the
program.

8.2 Future Work
All the objectives proposed in the first chapter of this dissertation were achieved.
Some rough parts of the approach conceived and the prototype built can always be
sharpened. For instance, the interaction with the tool can be improved for a better

119

Improving Program Comprehension Tools for DSLs

user experience and new features can be provided, regarding the users needs.
Concerning possible features missing in the tool, they can be provided regarding

the results of usability tests not yet performed, but to be done in the future. It is
important to left clear that the usability tests have nothing to do with the approach
assessment experiment made during this master thesis.

During discussions and principally after exposition of the theme of this the-
sis in international conferences [143, 140, 142], the comments from the community
were very interesting, raising important questions which were envisaged as further
research topics. Some of them are listed below:

• AlmaLAB. This topic is concerned with the extension of the Alma2 interface
to define a more customizable one, regarding the possibility of hiding/showing
some of the four fixed views provided by the actual tool. Such topic was
raised after discussing the results of the experiment, in the extent that would
be interesting to repeat the experiments but this time depriving the user from
looking to all the visualizations.

• Automatic mapping of domains. This is an interesting research topic, be-
cause at the moment, the process of creating the visualizations for a given DSL
is completely manual, requiring expertise on compiler techniques and attribute
grammars.

• Dynamic Visualization. This topic concerns with allowing the edition of
code inside Alma2, rather then just reading it, and with the possibility of
creating an interactive visualization of the problem domain concepts, always
synchronized with the program domain concepts. The latter means that the
user would able to give a run-time behavior to the objects of the program
domain, according to the semantic operations available.

These are only some of the topics that open new perspectives to Alma2 usage
and research.

120

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley, August
2006.

[2] M. Anlauff, R. Chaussee, P. W. Kutter, and A. Pierantonio. Domain specific
languages in software engineering, 1998.

[3] M. Anlauff, P. W. Kutter, and A. Pierantonio. Montages/gem-mex: A meta
visual programming generator. In VL ’98: Proceedings of the IEEE Sympo-
sium on Visual Languages, pages 304–305, Washington, DC, USA, 1998. IEEE
Computer Society.

[4] Fumihiko Anma, Taketoshi Ando, Ryoji Itoh, Tatsuhiro Konishi, and Yuki-
hiro Itoh. The method to visualize the domain-oriented-explanation of pro-
gram’s behaviors. In ICCE ’02: Proceedings of the International Conference
on Computers in Education, pages 910–911, Washington, DC, USA, 2002.
IEEE Computer Society.

[5] Fumihiko Anma, Tomonori Kato, Tatsuhiro Konishi, Yukihiro Itoh, and
Toshio Okamoto. An educational system that explains the domain-oriented-
explanation of program’s behaviors. Advanced Learning Technologies, IEEE
International Conference on, 0:198–199, 2007.

[6] G. Arango. Domain analysis: from art form to engineering discipline. SIG-
SOFT Softw. Eng. Notes, 14(3):152–159, May 1989.

[7] Christoph Aschwanden and Martha Crosby. Code scanning patterns in pro-
gram comprehension. In Proceedings of the 39th Hawaii International Confer-
ence on System Sciences (HICSS), Kauai, Hawaii, 2006.

[8] Aybüke Aurum and Claes Wohlin. Engineering and Managing Software Re-
quirements. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[9] Roland C. Backhouse. Syntax of Programming Languages: Theory and Prac-
tice. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1979.

[10] T. Ball and S. G. Eick. Software visualization in the large. Computer, 29(4):33–
43, 1996.

121

Improving Program Comprehension Tools for DSLs

[11] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge through families
of experiments. Software Engineering, IEEE Transactions on, 25(4):456–473,
1999.

[12] Victor R. Basili and Harlan D. Mills. Understanding and documenting pro-
grams. IEEE Transactions on Software Engineering, 8(3):270–283, 1982.

[13] Anindya Basu. A language-based approach to protocol construction. PhD
thesis, Cornell University, Ithaca, NY, USA, 1998.

[14] Berndt Bellay and Harald Gall. A comparison of four reverse engineering
tools. In WCRE ’97: Proceedings of the Fourth Working Conference on Re-
verse Engineering (WCRE ’97), pages 2+, Washington, DC, USA, 1997. IEEE
Computer Society.

[15] C. Bennett, D. Myers, M. A. Storey, D. M. German, D. Ouellet, M. Salois,
and P. Charland. A survey and evaluation of tool features for understanding
reverse-engineered sequence diagrams. J. Softw. Maint. Evol., 20(4):291–315,
2008.

[16] Jon Bentley. Programming pearls: little languages. Commun. ACM,
29(8):711–721, August 1986.

[17] Joseph Bergin, Jim Roberts, Richard Pattis, and Mark Stehlik. Karel++: A
Gentle Introduction to the Art of Object-Oriented Programming. John Wiley
& Sons, Inc., New York, NY, USA, 1996.

[18] M. Beron, P. Henriques, M. Varanda, and R. Uzal. PICS un sistema de
comprensión e inspección de programas. Congreso Argentino de Ciencias de
la Computación CACIC 2007, 13:462–473, 2007.

[19] Mario Berón. Program inspection to interconnect the behavioral and opera-
tional views for program comprehension. Technical report, National University
of San Luis & University of Minho, 2009.

[20] Mario Berón, Daniela da Cruz, Maria João Varanda Pereira, Pedro R. Hen-
riques, and Roberto Uzal. Evaluation criteria of software visualization systems
used for program comprehension. In Universidade de Évora, editor, Inter-
acção’08 – 3a Conferência Interacção Pessoa-Máquina, October 2008.

[21] Mario Berón, Pedro R. Henriques, Pereira, and Roberto Uzal. A system to
understand programs written in c language by code annotation. In European
Joint Conference on Theory and Practice of Software (ETAPS 2007), pages
1–7, 2007.

[22] Mario Berón, Pedro R. Henriques, Maria J. V. Pereira, and Roberto Uzal.
Static and dynamic strategies to understand c programs by code annotation.
In OpenCert’07, 1st Int. Workshop on Fondations and Techniques for Open
Source Software Certification (collocated with ETAPS’07), 2007.

122

BIBLIOGRAPHY

[23] Mario Berón, Pedro R. Henriques, Maria João Varanda Pereira, and Roberto
Uzal. Program inspection to incerconnect behavioral and operational view for
program comprehension. In York Doctoral Symposium, 2007. University of
York, UK, 2007.

[24] Mario Berón, Pedro R. Henriques, Maria João Varanda Pereira, Roberto Uzal,
and G. Montejano. A language processing tool for program comprehension.
In CACIC’06 - XII Argentine Congress on Computer Science, Universidad
Nacional de San Luis, Argentina, 2006.

[25] A. Beszédes, T. Gergely, and T. Gyimóthy. Graph-less dynamic dependence-
based dynamic slicing algorithms. In Source Code Analysis and Manipulation,
2006. SCAM ’06. Sixth IEEE International Workshop on, pages 21–30, 2006.

[26] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept
assignment problem in program understanding. In ICSE ’93: Proceedings of
the 15th international conference on Software Engineering, pages 482–498, Los
Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[27] A. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda,
M. Kutar, M. Loomes, C. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong,
and R. Young. Cognitive dimensions of notations: Design tools for cognitive
technology. In Cognitive Technology: Instruments of Mind, pages 325–341.
Springer-Verlag, 2001.

[28] Benjamin S. Bloom and David R. Krathwohl. Taxonomy of Educational Objec-
tives, Handbook 1: Cognitive Domain. Addison Wesley Publishing Company,
October 1956.

[29] Barry W. Boehm. Software Engineering Economics. Prentice Hall PTR, 1981.

[30] David Bonyuet, Matt Ma, and Kamal Jaffrey. 3D visualization for software
development. In ICWS ’04: Proceedings of the IEEE International Confer-
ence on Web Services, pages 708–715, Washington, DC, USA, 2004. IEEE
Computer Society.

[31] Ruven Brooks. Using a behavioral theory of program comprehension in soft-
ware engineering. In ICSE ’78: Proceedings of the 3rd international conference
on Software engineering, pages 196–201, Piscataway, NJ, USA, 1978. IEEE
Press.

[32] Ruven Brooks. Towards a theory of the comprehension of computer pro-
grams. International Journal of Man-Machine Studies, 18(6):543–554, Novem-
ber 1983.

[33] D. Bruce. What makes a good domain-specific language? apostle, and its
approach to parallel discrete event simulation. In S. Kamin, editor, DSL’97 -
First ACM SIGPLAN Workshop on Domain-Specific Languages, in Associa-
tion with POPL’97, Paris, France, January 1997.

123

Improving Program Comprehension Tools for DSLs

[34] Tim Bull. Software Maintenance by Program Transformation in a Wide Spec-
trum Language. PhD thesis, University of Durham, Durham, England, 1994.

[35] Tim Bull. Comprehension of safety-critical systems using domain-specific lan-
guages. In Program Comprehension, 1996, Proceedings., Fourth Workshop on,
pages 108–122, 1996.

[36] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in Infor-
mation Visualization: Using Vision to Think. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, January 1999.

[37] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design
recovery: A taxonomy. Software, IEEE, 7(1):13–17, 1990.

[38] Steven Clark and Curtis Becker. Using the cognitive dimensions framework to
evaluate the usability of a class library. In M. Petre and B. Budgen, editors,
Proc. Joint Conf. EASE & PPIG, pages 359–366, April 2003.

[39] Richard Clayton, Spencer Rugaber, Lyman Taylor, and Linda Wills. A case
study of domain-based program understanding. In WPC ’97: Proceedings of
the 5th International Workshop on Program Comprehension (WPC ’97), pages
102–110, Washington, DC, USA, 1997. IEEE Computer Society.

[40] Brendan Cleary and Chris Exton. Chive - a program source visualisation
framework. In IWPC ’04: Proceedings of the 12th IEEE International Work-
shop on Program Comprehension, pages 268–269, Washington, DC, USA,
2004. IEEE Computer Society.

[41] Charles Consel, Fabien Latry, Laurent Réveillère, and Pierre. Cointe. A gen-
erative programming approach to developing dsl compilers. In R. Gluck and
M. Lowry, editors, Fourth International Conference on Generative Program-
ming and Component Engineering (GPCE), volume 3676 of Lecture Notes in
Computer Science, pages 29–46, Tallinn, Estonia, sep 2005. Springer-Verlag.

[42] B. Cornelissen, A. Zaidman, A. van Deursen, and B. van Rompaey. Trace
visualization for program comprehension: A controlled experiment. In Pro-
gram Comprehension, 2009. ICPC ’09. IEEE 17th International Conference
on, pages 100–109, 2009.

[43] K. Craik. The Nature of Explanation. Cambridge University Press, Cambridge,
England, 1943.

[44] Jesús S. Cuadrado and Jesús G. Molina. Building domain-specific languages
for model-driven development. IEEE Software, 24(5):48–55, 2007.

[45] J. V. Cugini. General purpose programming languages. Petrocelli Books, Inc.,
Princeton, NJ, USA, 1986.

[46] John V. Cugini. Selection and Use of General-Purpose Programming Lan-
guages – Overview, volume 1. Superintendent of Documents, U.S. Government
Printing Office, Washington, DC 20402., October 1984.

124

BIBLIOGRAPHY

[47] Conrad H. Cunningham. A little language for surveys: Constructing an inter-
nal DSL in Ruby. In Proceedings of the ACM SouthEast Conference, Auburn,
Alabama, March 2008.

[48] Daniela da Cruz, Pedro Rangel Henriques, and Maria João Varanda Pereira.
Constructing program animations using a pattern-based approach. ComSIS –
Computer Science an Information Systems Journal, Special Issue on Advances
in Programming Languages, 4(2):97–114, 2007.

[49] Daniela da Cruz, Pedro Rangel Henriques, and Maria João Varanda Pereira.
Alma vs DDD. ComSIS – Computer Science an Information Systems Journal,
Special Issue on Advances in Programming Languages, 2, December 2008.

[50] Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. Code
analysis: Past and present. In Proceedings of the Third International Work-
shop on Foundations and Techniques for Open Source Software Certification
(OpenCert 2009), March 2009.

[51] Daniela da Cruz, Maria João Vranda Pereira, Mario Beron, Rúben Fonseca,
and Pedro Rangel Henriques. Comparing generators for language-based tools.
In Proceedings of the 1.st Conference on Compiler Related Technologies and
Applications, CoRTA’07 — Universidade da Beira Interior, Portugal, July
2007.

[52] Brian de Alwis, Gail C. Murphy, and Martin P. Robillard. A comparative
study of three program exploration tools. In ICPC ’07: Proceedings of the
15th IEEE International Conference on Program Comprehension, pages 103–
112, Washington, DC, USA, 2007. IEEE Computer Society.

[53] Yunbo Deng and Suraj Kothari. Recovering conceptual roles of data in a pro-
gram. In ICSM ’02: Proceedings of the International Conference on Software
Maintenance (ICSM’02), pages 342–351, Washington, DC, USA, 2002. IEEE
Computer Society.

[54] Michael Denny. Ontology building: A survey of editing tools, November 2002.
http://www.xml.com/pub/a/2002/11/06/ontologies.html.

[55] Massimiliano Di Penta, R. E. K. Stirewalt, and Eileen Kraemer. Designing
your next empirical study on program comprehension. In ICPC ’07: Proceed-
ings of the 15th IEEE International Conference on Program Comprehension,
pages 281–285, Washington, DC, USA, 2007. IEEE Computer Society.

[56] Stephan Diehl. Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2007.

[57] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an extensible
language-independent environment for reengineering object-oriented systems.
In Proceedings of the Second International Symposium on Constructing Soft-
ware Engineering Tools (CoSET 2000), June 2000.

125

Improving Program Comprehension Tools for DSLs

[58] Marc Eaddy, Alfred V. Aho, Giuliano Antoniol, and Yann-Gaël Guéhéneuc.
CERBERUS: Tracing requirements to source code using information retrieval,
dynamic analysis, and program analysis. In ICPC ’08: Proceedings of the 2008
The 16th IEEE International Conference on Program Comprehension, pages
53–62, Washington, DC, USA, 2008. IEEE Computer Society.

[59] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-
braic Graph Transformation (Monographs in Theoretical Computer Science.
An EATCS Series). Springer, March 2006.

[60] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Aiding program com-
prehension by static and dynamic feature analysis. In ICSM ’01: Proceedings
of the IEEE International Conference on Software Maintenance (ICSM’01),
pages 602–611, Washington, DC, USA, 2001. IEEE Computer Society.

[61] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler.
SIGPLAN Not., 42(10):1–18, 2007.

[62] Christopher Exton. Constructivism and program comprehension strategies.
In IWPC ’02: Proceedings of the 10th International Workshop on Program
Comprehension, Washington, DC, USA, 2002. IEEE Computer Society.

[63] Rickard E. Faith, Lars S. Nyland, and Jan F. Prins. Khepera: a system
for rapid implementation of domain specific languages. In DSL’97: Pro-
ceedings of the Conference on Domain-Specific Languages on Conference on
Domain-Specific Languages (DSL), 1997, pages 19–31, Berkeley, CA, USA,
1997. USENIX Association.

[64] Ricardo Falbo, Giancarlo Guizzardi, and Katia Duarte. An ontological ap-
proach to domain engineering. In SEKE ’02: Proceedings of the 14th interna-
tional conference on Software engineering and knowledge engineering, pages
351–358, New York, NY, USA, 2002. ACM.

[65] R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study:
Report to our respondents. In Proceedings GUIDE 48, April 1983.

[66] Martin Fowler and Eric Evans. Fluent interfaces, December 2005. Available
at: http://www.martinfowler.com/bliki/FluentInterface.html; Visited
on May 2009.

[67] William Frakes, Ruben P. Diaz, and Christopher Fox. DARE: Domain analysis
and reuse environment. Ann. Softw. Eng., 5:125–141, 1998.

[68] Steve Freeman and Nat Pryce. Evolving an embedded domain-specific lan-
guage in java. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN con-
ference on Object-oriented programming systems, languages, and applications,
pages 855–865, New York, NY, USA, 2006. ACM.

[69] E. M. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler frame-
work. In Technology of Object-Oriented Languages, 1998. TOOLS 26. Proceed-
ings, pages 140–154, 1998.

126

BIBLIOGRAPHY

[70] Jeff Gray, Kathleen Fisher, Charles Consel, Gabor Karsai, Marjan Mernik,
and Juha P. Tolvanen. Dsls: the good, the bad, and the ugly. In OOP-
SLA Companion ’08: Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, pages 791–
794, New York, NY, USA, 2008. ACM.

[71] T. R. G. Green. Cognitive dimensions of notations. In A. Sutcliffe and
L. Macaulay, editors, Proceedings of the fifth conference of the British Com-
puter Society, Human-Computer Interaction Specialist Group on People and
computers V, pages 443–460, Cambridge, UK, 1989. Cambridge University
Press.

[72] T. R. G. Green. The cognitive dimension of viscosity: A sticky problem for hci.
In INTERACT ’90: Proceedings of the IFIP TC13 Third Interantional Con-
ference on Human-Computer Interaction, pages 79–86. North-Holland, 1990.

[73] T. R. G. Green and A. Blackwell. Cognitive dimensions of information arte-
facts: A tutorial, October 1998.

[74] T. R. G. Green, A. E. Blandford, L. Church, C. R. Roast, and S. Clarke. Cog-
nitive dimensions: achievements, new directions, and open questions. Journal
of Visual Languages & Computing, 17(4):328–365, August 2006.

[75] Yann-Gaël Guéhéneuc. A theory of program comprehension: Joining vision
science and program comprehension. International Journal of Software Science
and Computational Intelligence, 1(2):54–72, 2009.

[76] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti. Relating
software requirements and architectures using problem frames. In RE ’02:
Proceedings of the 10th Anniversary IEEE Joint International Conference on
Requirements Engineering, pages 137–144, Washington, DC, USA, 2002. IEEE
Computer Society.

[77] Donald E. Harter, Mayuram S. Krishnan, and Sandra A. Slaughter. The life
cycle effects of software process improvement: a longitudinal analysis. In ICIS
’98: Proceedings of the international conference on Information systems, pages
346–351, Atlanta, GA, USA, 1998. Association for Information Systems.

[78] Jan Heering. Developments in domain-specific languages, November
2007. Colloquium Talk. Available at: http://homepages.cwi.nl/~jan/
Developments_in_DSLs.pdf.

[79] P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenic, J. Gray, and H. Wu.
Automatic generation of language-based tools using the lisa system. Software,
IEE Proceedings -, 152(2):54–69, 2005.

[80] Luis M. Gómez Henríquez. Software visualization: An overview. UPGRADE,
2(2):4–7, April 2001.

127

Improving Program Comprehension Tools for DSLs

[81] R. M. Herndon and V. A. Berzins. The realizable benefits of a language
prototyping language. IEEE Transactions on Software Engineering, 14(6):803–
809, 1988.

[82] Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4):196–202, June 1996.

[83] Paul Hudak. Modular domain specific languages and tools. In ICSR ’98: Pro-
ceedings of the 5th International Conference on Software Reuse, Washington,
DC, USA, 1998. IEEE Computer Society.

[84] Brad L. Hutchings and Brent E. Nelson. Using general-purpose programming
languages for FPGA design. In DAC ’00: Proceedings of the 37th conference
on Design automation, pages 561–566, New York, NY, USA, 2000. ACM.

[85] Darrel C. Ince and Derek Andrews, editors. The Software Life Cycle.
Butterworth-Heinemann, Newton, MA, USA, 1990.

[86] Michael Jackson. Software Requirements And Specifications: A Lexicon of
Practice, Principles and Prejudices. Addison-Wesley Professional, August
1995.

[87] Michael Jackson. Problem frames and software engineering. Information and
Software Technology, 47(14):903–912, November 2005.

[88] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Program-
mer’s Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New
York, NY, USA, 1979.

[89] Jevgeni Kabanov and Rein Raudjärv. Embedded typesafe domain specific lan-
guages for java. In PPPJ ’08: Proceedings of the 6th international symposium
on Principles and practice of programming in Java, pages 189–197, New York,
NY, USA, 2008. ACM.

[90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering Institute, November 1990.

[91] Amela Karahasanovic, Annette K. Levine, and Richard Thomas. Compre-
hension strategies and difficulties in maintaining object-oriented systems: An
explorative study. J. Syst. Softw., 80(9):1541–1559, 2007.

[92] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society Pr, March 2008.

[93] Babak Khazaei and Emma Triffitt. Applying cognitive dimensions to evaluate
and improve the usability of z formalism. In SEKE ’02: Proceedings of the 14th
international conference on Software engineering and knowledge engineering,
pages 571–577, New York, NY, USA, 2002. ACM.

128

BIBLIOGRAPHY

[94] Richard B. Kieburtz, Laura Mckinney, Jeffrey M. Bell, James Hook, Alex
Kotov, Jeffrey Lewis, Dino P. Oliva, Tim Sheard, Ira Smith, and Lisa Walton.
A software engineering experiment in software component generation. In ICSE
’96: Proceedings of the 18th international conference on Software engineering,
pages 542–552, Washington, DC, USA, 1996. IEEE Computer Society.

[95] Holger M. Kienle and Hausi A. Müller. Requirements of software visualiza-
tion tools: A literature survey. Visualizing Software for Understanding and
Analysis, International Workshop on, 0:2–9, 2007.

[96] Bill Kinnersley. The language list. Available at: http://people.ku.edu/
~nkinners/LangList/Extras/langlist.htm; Visited on May 2009.

[97] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley Professional, 2008.

[98] Claire Knight. Visualisation for program comprehension: Information and
issues. Technical report, Visualisation Research Group, Centre for Software
Maintenance. Department of Computer Science, University of Durham, De-
cember 1998.

[99] Claire Knight and Malcolm Munro. Comprehension with[in] virtual environ-
ment visualisations. In Proceedings of the IEEE 7 th International Workshop
on Program Comprehension, pages 4–11, 1999.

[100] Claire Knight and Malcolm Munro. Virtual but visible software. In Infor-
mation Visualization, 2000. Proceedings. IEEE International Conference on,
pages 198–205, 2000.

[101] Donald E. Knuth. Semantics of context-free languages. Theory of Computing
Systems, 2(2):127–145, June 1968.

[102] Jürgen Koenemann and Scott P. Robertson. Expert problem solving strategies
for program comprehension. In CHI ’91: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 125–130, New York, NY, USA,
1991. ACM.

[103] Dimitrios S. Kolovos, Richard F. Paige, Tim Kelly, and Fiona A. C. Polack.
Requirements for domain-specific languages. In Proc. 1st ECOOP Workshop
on Domain-Specific Program Development (DSPD 2006), Nantes, France, July
2006.

[104] Fedor A. Kolpakov. BioUML - framework for visual modelling and simula-
tion biological systems. In Proceedings of the International Conference on
Bioinfermatics of Genome Regulation and Structure, 2002.

[105] Tomaž Kosar, Pablo E. Martínez López, Pablo A. Barrientos, and Marjan
Mernik. A preliminary study on various implementation approaches of domain-
specific language. Information and Software Technology., 50(5):390–405, April
2008.

129

Improving Program Comprehension Tools for DSLs

[106] Tomaž Kosar, Marjan Mernik, Matej Črepinšek, Pedro Rangel Henriques,
Daniela da Cruz, Maria João Varanda Pereira, and Nuno Oliveira. Influence
of domain-specific notation to program understanding. In Proceedings of the
International Multiconference on Computer Science and Information Technol-
ogy - 2nd Workshop on Advances in Programming Languages (WAPL’2009),
pages 673 — 680, Mragowo, Poland, October 2009. IEEE Computer Society
Press.

[107] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,
June 1992.

[108] David A. Ladd and Christopher J. Ramming. Two application languages in
software production. In VHLLS’94: USENIX 1994 Very High Level Languages
Symposium Proceedings, page 10, Berkeley, CA, USA, 1994. USENIX Associ-
ation.

[109] Michele Lanza. CodeCrawler - lessons learned in building a software visualiza-
tion tool. In CSMR ’03: Proceedings of the Seventh European Conference on
Software Maintenance and Reengineering, pages 409–418, Washington, DC,
USA, 2003. IEEE Computer Society.

[110] Michele Lanza and Stéphane Ducasse. A categorization of classes based on the
visualization of their internal structure: the class blueprint. In Proceedings of
OOPSLA 2001, pages 300–311, 2001.

[111] Seok W. Lee, Robin Gandhi, Divya Muthurajan, Deepak Yavagal, and Gail J.
Ahn. Building problem domain ontology from security requirements in regula-
tory documents. In SESS ’06: Proceedings of the 2006 international workshop
on Software engineering for secure systems, pages 43–50, New York, NY, USA,
2006. ACM.

[112] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer generator. UNIX: research
system, 2:375–387, 1990.

[113] Stanley Letovsky and Elliot Soloway. Delocalized plans and program compre-
hension. Software, IEEE, 3(3):41–49, 1986.

[114] Yang Li, Hongji Yang, and William Chu. A concept-oriented belief revision
approach to domain knowledge recovery from source code. Journal of Software
Maintenance, 13(1):31–52, 2001.

[115] Christian Lindig and Gregor Snelting. Assessing modular structure of legacy
code based on mathematical concept analysis. In ICSE ’97: Proceedings of
the 19th international conference on Software engineering, pages 349–359, New
York, NY, USA, 1997. ACM.

[116] Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xiaomin Wu.
Plugging-in visualization: experiences integrating a visualization tool with
eclipse. In SoftVis ’03: Proceedings of the 2003 ACM symposium on Software
visualization, pages 47–56, New York, NY, USA, 2003. ACM.

130

BIBLIOGRAPHY

[117] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Men-
tal models and software maintenance. J. Syst. Softw., 7(4):341–355, 1987.

[118] Na Liu, John Hosking, and John Grundy. MaramaTatau: Extending a domain
specific visual language meta tool with a declarative constraint mechanism. In
VLHCC ’07: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 95–103, Washington, DC, USA, 2007. IEEE
Computer Society.

[119] Linda Lohr and Shujen Chang. Psychology of learning for instruction. Edu-
cational Technology Research and Development, 53(1):108–110, March 2005.

[120] Andrian Marcus, Louis Feng, and Jonathan I. Maletic. 3D representations for
software visualization. In SoftVis ’03: Proceedings of the 2003 ACM sympo-
sium on Software visualization, pages 27–36, New York, NY, USA, 2003. ACM
Press.

[121] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I. Maletic.
An information retrieval approach to concept location in source code. In
WCRE ’04: Proceedings of the 11th Working Conference on Reverse Engineer-
ing, pages 214–223, Washington, DC, USA, 2004. IEEE Computer Society.

[122] Vijay Menon and Keshav Pingali. A case for source-level transformations in
matlab. In PLAN ’99: Proceedings of the 2nd conference on Domain-specific
languages, pages 53–65, New York, NY, USA, 1999. ACM.

[123] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Computing Surveys., 37(4):316–344,
December 2005.

[124] Marjan Mernik, Tomaž Kosar, Matej Črepinšek, Pedro Rangel Henriques,
Daniela da Cruz, Maria João Varanda Pereira, and Nuno Oliveira. Com-
parison of XAML and C# frorms using cognitive dimensions framework. In
INForum’09 — Simpósio de Informática: 3rd Compilers, Programming Lan-
guages, Related Technologies and Applications (CoRTA’2009), pages 180 —
191, Lisbon, Portugal, September 2009. Faculdade de Ciências da Universi-
dade de Lisboa.

[125] Marjan Mernik, Mitja Lenič, Enis Avdičaušević, and Viljem Žumer. Lisa: An
interactive environment for programming language development. In Compiler
Construction, pages 1–4. Springer Berlin / Heidelberg, 2002.

[126] Marjan Mernik and Viljem Žumer. Domain-specific languages for software
engineering. Hawaii International Conference on System Sciences, 9:9071+,
2001.

[127] Tamás Mészáros and Tihamér Levendovszky. Visual specification of a DSL
processor debugger. In Proceedings of the 8th OOPSLA Workshop on Domain-
Specific Modeling, pages 67–72, Nashville, USA, 2008.

131

Improving Program Comprehension Tools for DSLs

[128] Thomas P. Moran and Stuart K. Card. Applying cognitive psychology to
computer systems: A graduate seminar in psychology. In Proceedings of the
1982 conference on Human factors in computing systems, pages 295–298, New
York, NY, USA, 1982. ACM.

[129] Jan-Erik Moström and David A. Carr. Programming paradigms and program
comprehension by novices. In PPIG’10 - Workshop 10 of the Psychology of
Programmers Interest Group, Milton Keynes, Great Britain, 1998.

[130] H. A. Müller and K. Klashinsky. Rigi-a system for programming-in-the-large.
In ICSE ’88: Proceedings of the 10th international conference on Software
engineering, pages 80–86, Los Alamitos, CA, USA, 1988. IEEE Computer
Society Press.

[131] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
bridging the gap between source and high-level models. In SIGSOFT ’95:
Proceedings of the 3rd ACM SIGSOFT symposium on Foundations of software
engineering, pages 18–28, New York, NY, USA, 1995. ACM Press.

[132] Brad A. Myers. Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, 1(1):97–123, March 1990.

[133] Danish Nadeen and Leo Sauermann. From philosophy and mental-models
to semantic desktop research: Theoretical overview. In Proceedings of I-
Semantics’ 07, 2007.

[134] Lloyd H. Nakatani and Mark A. Jones. Jargons and infocentrism. In In First
ACM SIGPLAN Workshop on Domain-Specific Languages, pages 59–74, 1997.

[135] Ulric Neisser. Cognitive Psychology. Appleton-Century-Crofts, New York,
1967.

[136] Michael L. Nelson. A survey of reverse engineering and program comprehen-
sion. In In ODU CS 551 - Software Engineering Survey, page 2, 1996.

[137] Hanne R. Nielson and Flemming Nielson. Semantics with applications: a
formal introduction. John Wiley & Sons, Inc., New York, NY, USA, 1992.

[138] Michael P. O’Brien. Software comprehension – a review & research direction.
Technical report, University of Limerick, November 2003.

[139] Nuno Oliveira, Pedro Rangel Henriques, Daniela da Cruz, and Maria
João Varanda Pereira. Visuallisa: Visual programming environment for at-
tribute grammars specification. In Proceedings of the International Multi-
conference on Computer Science and Information Technology - 2nd Work-
shop on Advances in Programming Languages (WAPL’2009), pages 689 – 696,
Mragowo, Poland, October 2009. IEEE Computer Society Press.

132

BIBLIOGRAPHY

[140] Nuno Oliveira, Pedro Rangel Henriques, Daniela da Cruz, Maria João Varanda
Pereira, Marjan Mernik, Tomaž Kosar, and Matej Črepinšek. Applying pro-
gram comprehension techniques to karel robot programs. In Proceedings of the
International Multiconference on Computer Science and Information Technol-
ogy - 2nd Workshop on Advances in Programming Languages (WAPL’2009),
pages 697–704, Mragowo, Poland, October 2009. IEEE Computer Society
Press.

[141] Nuno Oliveira, Maria João Varanda Pereira, Daniela da Cruz, and Pe-
dro Rangel Henriques. VisualLISA. Technical report, Universidade do Minho,
February 2009. www.di.uminho.pt/~gepl/VisualLISA/documentation.php.

[142] Nuno Oliveira, Maria João Varanda Pereira, Pedro Rangel Henriques, and
Daniela da Cruz. Domain specific languages: A theoretical survey. In INFo-
rum’09 — Simpósio de Informática: 3rd Compilers, Programming Languages,
Related Technologies and Applications (CoRTA’2009), pages 35 — 46, Lisbon,
Portugal, September 2009. Faculdade de Ciências da Universidade de Lisboa.

[143] Nuno Oliveira, Maria João Varanda Pereira, Pedro Rangel Henriques, and
Daniela da Cruz. Visualization of domain-specific program’s behavior. In Pro-
ceedings of VISSOFT 2009, 5th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pages 37–40, Edmonton, Alberta,
Canada, September 2009. IEEE Computer Society.

[144] Nuno Oliveira, Maria João Varanda Pereira, Pedro Rangel Henriques, Daniela
da Cruz, and Bastian Cramer. Visuallisa: A domain specific visual language
for attribute grammars. In INForum’09 — Simpósio de Informática: 3rd
Compilers, Programming Languages, Related Technologies and Applications
(CoRTA’2009), pages 155—167, Lisbon, Portugal, September 2009. Faculdade
de Ciências da Universidade de Lisboa.

[145] Cristóbal Pareja-Flores and J. Ángel Velázquez-Iturbide. Representing ab-
stractions. UPGRADE, 2(2):2–3, April 2001.

[146] Terence Parr and Russell W. Quong. AntLR: A predicated-LL(K) parser
generator. Software Practice and Experience, 25(7):789–810, July 1995.

[147] Richard Pattis. Karel, The Robot: A Gentle Introduction to the Art of Pro-
gramming. John Wiley and Sons, Inc., 1st edition, 1981.

[148] Ryan Paul. Designing and implementing a domain-specific language. Linux
J., 2005(135):7+, 2005.

[149] Luís Pedro, Vasco Amaral, and Didier Buchs. Foundations for a domain spe-
cific modeling language prototyping environment: A compositional approach.
In Proc. 8th OOPSLA ACM-SIGPLAN Workshop on Domain-Specific Model-
ing (DSM). University of Jyväskylän, October 2008.

[150] Nancy Pennington. Comprehension strategies in programming. Empirical
studies of programmers: second workshop, pages 100–113, 1987.

133

Improving Program Comprehension Tools for DSLs

[151] Nancy Pennington. Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19:295–341, 1987.

[152] Maria João Varanda Pereira and Pedro Rangel Henriques. Visualization/ani-
mation of programs in Alma: obtaining different results. In HCC ’03: Proceed-
ings of the 2003 IEEE Symposium on Human Centric Computing Languages
and Environments, pages 260–262, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[153] Maria João Varanda Pereira, Marjan Mernik, Daniela da Cruz, and Pe-
dro Rangel Henriques. Program comprehension for domain-specific languages.
ComSIS – Computer Science an Information Systems Journal, Special Issue
on Compilers, Related Technologies and Applications, 5(2):1–17, Dec 2008.

[154] John Peterson. A language for mathematical visualization. In Proceedings of
FPDE’02: Functional and Declarative Languages in Education, 2002.

[155] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Control-
ling robots with haskell. In PADL ’99: Proceedings of the First International
Workshop on Practical Aspects of Declarative Languages, pages 91–105, Lon-
don, UK, 1998. Springer-Verlag.

[156] Marian Petre and Ed de Quincey. A gentle overview of software visualisation.
Psychology of Programming Interest Group (PPIG), September 2006.

[157] M. Pinzger, K. Grafenhain, P. Knab, and H. C. Gall. A tool for visual un-
derstanding of source code dependencies. In Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on, pages 254–259, 2008.

[158] Denys Poshyvanyk, Andrian Marcus, and Yubo Dong. Jiriss - an eclipse plug-
in for source code exploration. In ICPC ’06: Proceedings of the 14th IEEE
International Conference on Program Comprehension, pages 252–255, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[159] James F. Power and Brian A. Malloy. A metrics suite for grammar-based
software: Research articles. J. Softw. Maint. Evol., 16(6):405–426, 2004.

[160] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled taxon-
omy of software visualization. Journal of Visual Languages and Computing,
4(3):211–266, September 1993.

[161] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. An introduction to
software visualization. In J. Stasko, J. Dominique, M. Brown, and B. Price, ed-
itors, Software Visualization, pages 4–26, London, England, 1998. MIT Press.

[162] Blaine A. Price, Ian S. Small, and Ronald M. Baecker. A taxonomy of software
visualization. Journal of Visual Languages and Computing, 4:211–221, 1992.

[163] Christophe Prud’homme. A domain specific embedded language in c++ for
automatic differentiation, projection, integration and variational formulations.
Sci. Program., 14(2):81–110, 2006.

134

BIBLIOGRAPHY

[164] Ayende Rahien. Building Domain-Specific Languages in Boo. Manning, Febru-
ary 2008. (Note: Unedited Draft).

[165] Václav Rajlich and Norman Wilde. The role of concepts in program compre-
hension. In IWPC ’02: Proceedings of the 10th International Workshop on
Program Comprehension, pages 271–278, Washington, DC, USA, 2002. IEEE
Computer Society.

[166] Vennila Ramalingam and Susan Wiedenbeck. An empirical study of novice
program comprehension in the imperative and object-oriented styles. In ESP
’97: Papers presented at the seventh workshop on Empirical studies of pro-
grammers, pages 124–139, New York, NY, USA, 1997. ACM Press.

[167] Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus - a tool suite for
program analysis and reverse engineering. In Reliable Software Technologies -
Ada-Europe 2006, pages 71–82. LNCS (4006), June 2006.

[168] Steven P. Reiss. An engine for the 3D visualization of program information.
Technical report, Brown University, Providence, RI, USA, 1995.

[169] Steven P. Reiss. Visual representations of executing programs. J. Vis. Lang.
Comput., 18(2):126–148, April 2007.

[170] G. C. Roman and K. C. Cox. A taxonomy of program visualization systems.
Computer, 26(12):11–24, 1993.

[171] S. Rugaber, S. B. Ornburn, and R. J. Leblanc. Recognizing design decisions
in programs. Software, IEEE, 7(1):46–54, 1990.

[172] Spencer Rugaber. Program comprehension. Technical report, Georgia Insti-
tute of Technology, May 1995.

[173] Spencer Rugaber. The use of domain knowledge in program understanding.
Annals of Software Engineering, 9(1-4):143–192, 2000.

[174] Kamran Sartipi, Lingdong Ye, and Hossein Safyallah. Alborz: An interactive
toolkit to extract static and dynamic views of a software system. In ICPC ’06:
Proceedings of the 14th IEEE International Conference on Program Compre-
hension, pages 256–259, Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

[175] Ben Shneiderman and Richard Mayer. Syntactic/semantic interactions in pro-
grammer behavior: A model and experimental results. International Journal
of Parallel Programming, 8(3):219–238, June 1979.

[176] João C. Silva, João Saraiva, and José C. Campos. A generic library for GUI
reasoning and testing. In SAC ’09: Proceedings of the 2009 ACM symposium
on Applied Computing, pages 121–128, New York, NY, USA, 2009. ACM.

135

Improving Program Comprehension Tools for DSLs

[177] Susan E. Sim, Margaret-Anne. Storey, and Andreas Winter. A structured
demonstration of five program comprehension tools: Lessons learnt. In WCRE
’00: Proceedings of the Seventh Working Conference on Reverse Engineering
(WCRE’00), page 210, Washington, DC, USA, 2000. IEEE Computer Society.

[178] Mark A. Simos. Organization domain modeling (ODM): formalizing the core
domain modeling life cycle. SIGSOFT Softw. Eng. Notes, 20(SI):196–205,
1995.

[179] Emin G. Sirer and Brian N. Bershad. Using production grammars in software
testing. In PLAN ’99: Proceedings of the 2nd conference on Domain-specific
languages, pages 1–13, New York, NY, USA, 1999. ACM.

[180] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge.
Software Reusability, 2:235–267, 1989.

[181] Diomidis Spinellis. Notable design patterns for domain-specific languages.
Journal of Systems and Software, 56(1):91–99, February 2001.

[182] Richard M. Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB -
The GNU Source-Level Debugger. GNU Press, March 2002.

[183] M. A. Storey, F. D. Fracchia, and H. A. Muller. Cognitive design elements
to support the construction of a mental model during software visualization.
Program Comprehension, 1997. IWPC’97. Proceedings of Fifth Iternational
Workshop on PC, pages 17–28, 1997.

[184] Margaret-Anne Storey. Designing a software exploration tool using a cognitive
framework of design elements. In Kang Zhang, editor, Software Visualization:
From Theory to Practice, pages 113–148. Springer, 2003.

[185] Margaret-Anne Storey. Theories, tools and research methods in program com-
prehension: past, present and future. Software Quality Journal, 14(3):187–208,
2006.

[186] Margaret-Anne Storey, Casey Best, Jeff Michaud, Derek Rayside, Marin
Litoiu, and Mark Musen. SHriMP views: an interactive environment for infor-
mation visualization and navigation. In CHI ’02: CHI ’02 extended abstracts
on Human factors in computing systems, pages 520–521, New York, NY, USA,
2002. ACM.

[187] Yu Sun, Zekai Demirezen, Marjan Mernik, Jeff Gray, and Barrett Bryant.
Is my dsl a modeling or programming language? In Proceedings of 2nd
International Workshop on Domain-Specific Program Development (DSPD),
Nashville, Tennessee, 2008.

[188] Richard N. Taylor, Will Tracz, and Lou Coglianese. Software development
using domain-specific software architectures. SIGSOFT Softw. Eng. Notes,
20(5):27–38, 1995.

136

BIBLIOGRAPHY

[189] Tim Tiemens. Cognitive models of program comprehension. Technical report,
Software Engineering Research Center, December 1989.

[190] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instrumentation for
code coverage testing. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 86–96, New
York, NY, USA, 2002. ACM.

[191] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121–189, 1995.

[192] Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. Empirical
studies in reverse engineering: state of the art and future trends. Empirical
Softw. Engg., 12(5):551–571, 2007.

[193] M. G. J. Van den Brand, B. Cornelissen, P. A. Oliver, and J. J. Vinju. TIDE:
A generic debugging framework - tool demonstration. Electronic Notes in
Theoretical Computer Science, 141(4):161–165, December 2005.

[194] Arie van Deursen, Jan Heering, and Paul Klint. Language Prototyping: An
Algebraic Specification Approach: Vol. V. World Scientific Publishing Co.,
Inc., 1996.

[195] Arie van Deursen and Paul Klint. Little languages: little maintenance? Tech-
nical report, University of Amsterdam, Amsterdam, The Netherlands, 1997.

[196] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
an annotated bibliography. ACM SIGPLAN Notices, 35:26–36, 2000.

[197] Eelco Visser. WebDSL: A case study in domain-specific language engineering.
In R. Lammel, J. Saraiva, and J. Visser, editors, Generative and Transforma-
tional Techniques in Software Engineering (GTTSE 2007), Lecture Notes in
Computer Science. Springer, 2008.

[198] A. von Mayrhauser and A. M. Vans. From program comprehension to tool
requirements for an industrial environment. In In Proceedings of IEEE Work-
shop on Program Comprehension, pages 78–86, 1993.

[199] A. von Mayrhauser and A. M. Vans. Program understanding - a survey. Tech-
nical report, Colorado State University, August 1994.

[200] A. von Mayrhauser and A. M. Vans. Program comprehension during software
maintenance and evolution. Computer, 28(8):44–55, 1995.

[201] David A. Watt. Programming language concepts and paradigms. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[202] David M. Weiss and Chi T. R. Lay. Software product-line engineering: a
family-based software development process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

137

Improving Program Comprehension Tools for DSLs

[203] Richard Wettel and Michele Lanza. Visualizing software systems as cities. In
Visualizing Software for Understanding and Analysis, 2007. VISSOFT 2007.
4th IEEE International Workshop on, pages 92–99, 2007.

[204] David S. Wile. Supporting the dsl spectrum. Journal of Computing and
Information Technology, 9(4):263–287, 2001.

[205] Hui Wu. Grammar-Driven Generation of Domain-Specific Language Testing
Tools Using Aspects. PhD thesis, University of Alabama, Birmingham, Al-
abma, 2007.

[206] Hui Wu, Jeff Gray, and Marjan Mernik. Grammar-driven generation of
domain-specific language debuggers. Softw. Pract. Exper., 38(10):1073–1103,
2008.

[207] Tao Xie, Jian Pei, and Ahmed E. Hassan. Mining software engineering data.
In Software Engineering - Companion, 2007. ICSE 2007 Companion. 29th
International Conference on, pages 172–173, 2007.

[208] Shaochun Xu. A cognitive model for program comprehension. In SERA ’05:
Proceedings of the Third ACIS Int’l Conference on Software Engineering Re-
search, Management and Applications, pages 392–398, Washington, DC, USA,
2005. IEEE Computer Society.

[209] Peter Young. Program comprehension, May 1996. Available at:
http://vrg.dur.ac.uk/misc/PeterYoung/pages/work/documents/
lit-survey/prog-comp/index.html; Visited on June 2009.

[210] Andy Zaidman, Bram Adams, and Kris De Schutter. Applying dynamic anal-
ysis in a legacy context: An industrial experience report. In Proceedings of
the 1st International Workshop on Program Comprehension Through Dynamic
Analysis (PCODA), Pittsburgh, PE, USA, 2005.

[211] Carmen Zannier, Grigori Melnik, and Frank Maurer. On the success of empir-
ical studies in the international conference on software engineering. In ICSE
’06: Proceeding of the 28th international conference on Software engineering,
pages 341–350, New York, NY, USA, 2006. ACM Press.

[212] Andreas Zeller and Dorothea Lütkehaus. DDD - a free graphical front-end for
UNIX debuggers. SIGPLAN Not., 31(1):22–27, January 1996.

[213] Qunxiong Zhu and Xiaoyong Lin. Top-down and bottom-up strategies for
incremental maintenance of frequent patterns. In Emerging Technologies in
Knowledge Discovery and Data Mining, pages 445–456. Springer Berlin / Hei-
delberg, 2009.

138

Appendix A

AnimXXXNode Family of Classes

The AnimXXXNode family of classes joins all the necessary constructs to build a
DapAST. See Chapter 5 for more information on this topic. In this appendix are listed
all the classes pertaining to that family. For each class is presented the name and
the most important attributes to be filled with information.

• AnimAssignNode — a Variable, a Statement , list of Animation Patterns

• AnimCallNode — an Identifier, Arguments , list of Animation Patterns

• AnimConstNode — a Constant, list of Animation Patterns

• AnimDeclNode — a Variable, a Type, a Structure, an AssignNode, a list of
Animation Patterns

• AnimFuncNode — a Variable, a Type , Arguments, a Body, list of Animation
Patterns

• AnimIfElseNode — a BoolOperation, a Body , a Body, list of Animation
Patterns

• AnimIfNode — a BoolOperation, aBody , list of Animation Patterns

• AnimOperNode — a Statement, a Statement , an Operation, list of Animation
Patterns

• AnimOperRelNode — a Statement, a Statement , an Operation, list of Ani-
mation Patterns

• AnimReadNode — a Variable, list of Animation Patterns

• AnimReturnNode — a Statement , list of Animation Patterns

• AnimVarNode — a Variable, a Type , list of Animation Patterns

• AnimWhileNode — a Test, a Body , list of Animation Patterns

• AnimWriteNode — a Statement , list of Animation Patterns

139

Improving Program Comprehension Tools for DSLs

Some Considerations. The common factor of these constructs is the list of an-
imation patterns. Some of them can be declared with less attributes than the pre-
sented here. The AnimOperRelNode is an example. Since it describes a logical
operation, the user may be interested in using an unary operator rather than a
binary one.

140

Appendix B

Experiment Questionnaires

In this appendix are presented all the pages composing the structured questionnaires
used in the experiment reported in Chapter 7.

Figure B.1 presents the form used to identify the participants, and retrieve im-
portant characteristics to the analysis of the results obtained from the experiment.

Figures B.2 to B.6 show the eight tasks proposed to the participants, spread by
the five pages of the questionnaire.

141

Improving Program Comprehension Tools for DSLs

Experimental Proof:  
Alma2, a DSL Program Comprehension Tool 

Master in Informatics – Nuno Oliveira 

Participant Identification

This part of the document is used to identify the characteristics of the participants in the experiment.
Please answer the questions with sincerity, for a correct evaluation of the experiment’s results. Thank
you for your attention!

1. Gender: ___ M ___F

2. Academic Degree:

___ B.Sc. Student (Bachelor of Science – equivalent to the first cycle of Bologna’s)

___ M.Sc. Student (Master of Science – equivalent to the second cycle of Bologna’s)

___ Ph.D. Student (Philosophy Doctor)

___ Other. Name it: __

3. Informatics Area: ___

4. The following table presents a set of questions to evaluate the experience of the participants
on performing some tasks related with the experiment being realized. Use the numbers from 1
to 5 to score the times () you performed these tasks, when developing software or related
jobs. Use again the numbers from 1 to 5 to score your expertise () on these tasks.

TASK

Reading programs to understand their functionalities (it involves analysis of
the source-code, read documentation, etc.)

Using Program Comprehension tools (e.g. CodeCrawler, SHriMP, Bauhaus,
Rigi, etc.)

Using IDEs with debugging features to develop software (e.g. Eclipse,
Netbeans, Visual Studio, etc.)

Using Domain Specific Languages (DSLs) to develop software or to other
purposes (e.g. LaTeX, HTML, VHDL, DOT, etc.)

Comprehending Programs written in DSLs

Assume scores as:

1 – Never 1 – Null

2 – Rarely 2 – Low

3 – Sometimes 3 – Medium

4 – Several times 4 – High

5 – Always 5 – Expert

Figure B.1: Participant Identification Form

142

B. Experiment Questionnaires

Experimental Proof:  
Alma2, a DSL Program Comprehension Tool 

 
Master in Informatics – Nuno Oliveira 

Questionnaire
Before starting:
The following questionnaire is composed of 8 (eight) tasks. Each task has four steps:

1. The participant is invited to stamp the time at the beginning of the task execution.
2. A question (Q) is asked, concerning a program written either in Karel or Lavanda Languages.

Besides the question, it is provided a set of tips (T) to execute Alma or Alma2, and when
needed, some tips to help solving the question. In the end, a space for answer (A) is given
when it is required an open answer, or four possible answers are provided when it is required a
multiple-choice answer.

3. The participant is invited to score the utility of the problem domain visualizations. For this the
participant must use the numbers from 1 to 5, according to the following:

1 – None
2 – Negligible
3 – Medium
4 – High
5 – Excellent

4. The participant is invited to stamp the time at the end of the task execution.

Thank you very much!

Task 1 – Karel Language with Alma2 (PQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
Identify the function, which always provokes the following output:
- 3 beepers picked up and
- The robot is turned 270º.

 T: - Invoke run.sh 1 (run.bat 1 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma2.

A: Choose the correct answer:
1. __ func1 3. __ func3
2. __ func2 4. __ func4

Please, classify the help that problem domain animation synchronized with the program
domain visualization gave you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Figure B.2: Questionnaire — Page 1

143

Improving Program Comprehension Tools for DSLs

Experimental Proof:  
Alma2, a DSL Program Comprehension Tool 

Master in Informatics – Nuno Oliveira 

Task 2 – Karel Language with Alma (PQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
Identify the functions, which may provoke, exactly, the following output:
- 1 beeper picked up;
- 1 beeper dropped and
- The robot steps twice in a direction and steps once in a different direction.

 T: - Invoke run.sh 2 (run.bat 2 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma.

A: Choose the correct answer(s):
1. __ func1 3. __ func3
2. __ func2 4. __ func4

Please, classify the help that problem domain animation synchronized with the program
domain visualization, seen before in Alma2, would have given you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Task 3 – Karel Language with Alma2 (EQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
Modify the program (or explain how you’d do it) in order to make the robot catch

two beepers in three distinct rows.

 T: - Invoke run.sh 3 (run.bat 3 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma2.
 - You can change the source program in the following path: ./Source/q3.txt, and
invoke run.sh 3 again to verify your answer.

A: Write your answer (use the back of this sheet if you don’t have space):

Please, classify the help that problem domain animation synchronized with the program

domain visualization gave you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Figure B.3: Questionnaire — Page 2

144

B. Experiment Questionnaires

Experimental Proof:  
Alma2, a DSL Program Comprehension Tool 

Master in Informatics – Nuno Oliveira 

Task 4 – Karel Language with Alma (EQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
Improve the robot’s efficiency, by removing all the pairs of instructions1 that cancel2

each other, in the main program.

 T: - Invoke run.sh 4 (run.bat 4 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma.
 - 1 By pair of instructions is intended 2 sequent instructions in the program: e.g. if i1
and i2 cancel each other, they form a pair in this sequence: i1 i2 i3, but not in this sequence i1, i3, i2.
 - 2 Two instructions cancel each other if the robot’s state before executing the first
instruction is the same after executing the second instruction.

A: Name all the pairs (use the back of this sheet if you don’t have space):

Note: write your answer following this format: 1 – {inst1, inst2}; 2 – {inst3, inst4}; …

Please, classify the help that problem domain animation synchronized with the program
domain visualization, seen before in Alma2, would have given you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Task 5 – Lavanda Language with Alma2 (PQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
How many pieces (in the overall) exist with the following configuration:
- body-color-wool

 T: - Invoke run.sh 5 (run.bat 5 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma2.

A: Choose the correct answer:
1. __ 5 (five) 3. __ 6 (six)

2. __ 7 (seven) 4. __ 8 (eight)
5. __ 9 (nine) 6. __ 10 (ten)

Please, classify the help that problem domain animation synchronized with the program
domain visualization gave you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Figure B.4: Questionnaire — Page 3

145

Improving Program Comprehension Tools for DSLs

Experimental Proof:  
Alma2, a DSL Program Comprehension Tool 

Master in Informatics – Nuno Oliveira 

Task 6 – Lavanda Language with Alma (PQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
In how many bags exist 5 (five) or more pieces with the following configuration:
- house-white-fiber

 T: - Invoke run.sh 6 (run.bat 6 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma.

A: Choose the correct answer:
1. __ 1 (one) 3. __ 2 (two)

2. __ 3 (three) 4. __ 4 (four)

Please, classify the help that problem domain animation synchronized with the program
domain visualization, seen before in Alma2, would have given you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Task 7 – Lavanda Language with Alma2 (EQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
Remove one bag, in order to have 24 pieces of body cloth, in the overall.

 T: - Invoke run.sh 7 (run.bat 7 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma2.

A: Write the name of the removed bag’s owner:
1. _____________________

Please, classify the help that problem domain animation synchronized with the program
domain visualization gave you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Figure B.5: Questionnaire — Page 4

146

B. Experiment Questionnaires

Experimental Proof:  
Alma2, a DSL Program Comprehension Tool 

Master in Informatics – Nuno Oliveira 

Task 8 – Lavanda Language with Alma (EQ)

 __________ (Please, stamp the start time)

Q: Read carefully:
What bag should be added to have, in the overall, the indicated number of pieces

with the following configuration (notice that the other possible configurations may exist in the
bags):

- body-color-cotton = 10
- body-white-wool = 5
- house-color-fiber = 8

 T: - Invoke run.sh 8 (run.bat 8 on windows) on command line inside the folder
‘Experiment’ to access the program in Alma.

A: Choose the correct answer:
1. __

5 Ulysses
 (body-color-cotton 1,
 house-white-fiber 4,
 house-color-cotton 2)

3. __
5 Ulysses
 (house-color-fiber 2,
 body-white-fiber 4,
 body-color-cotton 10,
 body-white-wool 1)

2. __

5 Ulysses
 (body-color-cotton 8,
 body-white-wool 4,
 house-color-cotton 2)

4. __

5 Ulysses
 (house-color-fiber 1,
 body-color-cotton 10,
 body-white-cotton 2,
 body-white-wool 3)

Please, classify the help that problem domain animation synchronized with the program
domain visualization, seen before in Alma2, would have given you on the resolution of this task:

 _________ (Regard classification table above)
 __________ (Please, stamp the finish time)

Figure B.6: Questionnaire — Page 5

147

	Nuno Ernesto Salgado Oliveira.pdf
	Página 1
	Página 2
	Página 3

