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Abstract. Deformulation of medicines is of undeniable importance, since it can be utilized 

both to unravel the chemical composition of the excipients integrating a pharmaceutical 

formulation of a specific medicine and as an important tool to conduct morphometric studies of 

the formulation under study. Such strategy may be utilized in analytical studies aiming at 

quantifying the components of reference drugs, or in the identification of putative counterfeit 

pharmaceuticals. Deformulation makes use of physicochemical analysis tools to characterize, 

from the chemical point of view, the components integrating medicine pharmaceutical 

formulations and from the physical point of view, the morphological part of the pharmaceutical 

formulation. The techniques of computer tomography (SkyScan 1174 - Bruker microCT) and 

X-ray fluorescence analyses (using an X-ray source with W-anode from Hammatsu Photonics 

and Silicon Drift detector from Amptek) were successfully used in performing a process of 

deformulation of a solid pharmaceutical formulation of tablets, utilized herein as a model 

medicine for controlled drug release. The analytical methods used in this work, proved their 

effectiveness for the main goal of this study, which aimed to characterize a pharmaceutical 

formulation via its deconstruction. 

1. Introduction 

Deformulation has been increasingly practiced by pharmaceutical companies whose primary 

production focus is the manufacture of medicines marketed under the name of Generic. A Generic 

medicine is one that contains the same drug (active ingredient) in the same dose and dosage form, is 

administered via the same route and with the same therapeutic indication, and shall present the same 

biological safety as the reference drug in the country. To be interchangeable with the reference drug, 

the Generic product must pass and be approved in bioequivalence testing [1]. To achieve both the 

same therapeutic performance and safety of (so-called Reference) medicines, pharmacotechnical and 

technological development is required, together with significant financial investment and skilled labor. 

To facilitate copying into a Generic (a simpler and less expensive in investment), deformulation of the 

reference medicine is practiced in order to acquire knowledge about the chemical composition of the 
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compounds present in these medicines and to know the physical characteristics of the formulation, 

such as the mechanism of drug release, the thickness of the coating, the porosity, the morphological 

features, the process of drug release, etc. Deformulation enables both the decomposition of the 

medicine to copy and the identification of counterfeit medicines. Non-destructive analysis techniques 

such as computed tomography via X-ray transmission (CT) and X-ray fluorescence (XRF) are useful 

for deconstruction, because the former can provide the physical characteristics whereas the second 

provides information on the elemental constitution of the formulation, i.e. chemical composition. The 

results of the analyses are easily comparable and may be confronted in case of rebuttal. CT began to 

be used back in 2003 in the pharmaceutical field as a new tool for the nondestructive analysis of solid 

dosage forms, by Farber et al. [2] and Ozeki et al. [3]. The great advantage in the use of CT when 

compared to more traditional techniques, lies in the fact that it can be used to view not only the 

surface, but also the inside of objects with varying dimensions, shapes and densities, without any loss 

of sample. Additionally, CT enables the morphological characterization of regions inaccessible to 

other analytical equipments. By using CT, it is possible to determine the coating thickness of a tablet 

or even analyze the several layers of tablet materials subjected processing via multiple compression. 

Traini et al. [4] emphasize that the main analytical methods used to characterize the interior of solid 

dosage forms are the use of techniques of mercury porosimetry and gas adsorption. However, these 

researchers make it clear that, if the purpose is to conduct dynamic studies, i.e. to track changes in the 

internal structure of the tablets following changes in porosity during the disintegration process, the 

aforementioned porosimetry techniques cannot be used since they are destructive techniques 

preventing the use of the sample in more than one type of analysis, and recommend in these cases the 

use of CT. Li et al. [5] propose the use of the CT technique to study processes of drug release, using 

three-dimensional tomographic imaging with X-rays from synchrotron light. Oliveira Jr. et al. [6] 

showed, in a recent study, that it is possible to use the computed tomography technique for studies of 

disintegration of solid dosage forms. Scanning electron microscopy (SEM), X-ray diffraction analysis 

(XRD), X-ray attenuation and CT scans are analytical techniques indicated for morphological studies 

[7, 8, 9], whereas atomic force microscopy has been used in the analysis of the effects produced by 

mechanical processing upon the surface of pharmaceutical powders [10]. X-ray fluorescence analysis 

(XRF) [11] has been used not only to display but also to quantify the presence of trace elements in 

pharmaceutical formulations [12]. Computed tomography via X-ray transmission (CT) and X-ray 

fluorescence analysis (XRF) were utilized to perform deformulation of a solid pharmaceutical form. 

As a model for the study undertaken, one used a medicine in the form of coated tablets, the purpose of 

which is the controlled release of the drug through the increase in the osmotic pressure of the system 

following water absorption - Osmotic Release Oral System (OROS™). There is currently a great 

interest within the pharmaceutical industry in the production of these tablets, since due to expiration of 

the protection periods of their patents there is no longer the need to perform new clinical trials, and 

thus this type of medicines may be marketed immediately. 

2. Materials and methods 

2.1. Materials 

2.1.1. Chemicals.  

As model medicine, one utilized Adalat Oros™ tablets (30 mg nifedipine, Lot MS-1.0429.0001.137-9, 

Bayer AG, Leverkusen, NRW, Germany), acquired in a local Brazilian drug store. 

2.1.2. Analytical equipment.  

A computed tomographer via X-ray transmission from Bruker microCT (model SkyScan 1174, 

Kontich, Belgium), and an X-ray fluorescence spectrometer (XRF) from Amptek Inc. (Bedford MA, 

U.S.A.) were utilized in all non-destructive analyses. The analysis software utilized for processing the 
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tomographic images were CTVox™ (version 2.6.0 r908-64bit, from Bruker microCT) and CTan™ 

(version 1.13.5.1-64bit, from Bruker microCT). 

2.2. Experimental procedures 

In this work, one utilized either dry tablets of Adalat Oros™ or tablets maintained submerged in 

ultrapure water during predetermined intervals of time. The tomographic images were gathered under 

two different conditions: (i) dry tablets, and (ii) tablets submerged in ultrapure water for a period of 

1225 and 1440 min, followed by an air drying period of 48 h in a room free from dust at room 

temperature and in the dark. The tablets were then placed in the interior of the tomograph chamber so 

as to produce the tomographic images. The tomographic images were obtained using the following 

configurations of the tomographic system: operating voltage set at 35 kV and electric current of 800 

μA. The technique employed for obtaining a tomographic image involved the acquisition of a large 

number of radiographs of the object, obtained by measuring the intensity of X-rays transmitted 

through the sample, at different angular positions. The angular step utilized was 1°, the samples were 

rotated 180 degrees, producing 180 radiographs (projections) per image, each containing 652×652 

pixels with spatial resolution of 19.52 µm. At the outlet of the X-ray source one utilized a filter of Al 

with 0.25 mm thickness. Appropriate mathematical algorithms were then used to reconstruct the three-

dimensional tomographic images (3D) of the object, through the appropriate composition of bi-

dimensional images (2D). In the present research work, the three-dimensional images possessed 

652×652×652 pixels and the same spatial resolution of the 2D images, and thus the volume of data 

generated for each tablet is isotropic with relation to the spatial resolution. In addition, a tomographic 

image of a dry tablet with a better spatial resolution was also produced, using the following 

experimental configurations: operating voltage set at 50 kV and electric current of 800 μA, Al filter 

with 0.5 mm thickness at the outlet of the X-ray source, 180° spatial rotation of the object with angular 

increments of 0.7°, thus generating three-dimensional images with 984×984×984 pixels and with a 

spatial resolution of 9.76 µm. Having all the projections (radiographs gathered at each angular 

position), one utilized the software NRecon™ from Bruker (version 1.6.9.4, Kontich, Belgium), which 

uses the algorithm of Feldkamp et al. [13] in the process of reconstruction of the tomographic images. 

The X-ray fluorescence equipment utilized consisted in a compact system from Amptek Inc. (Bedford 

MA, U.S.A.) and was composed by a silicon detector (Silicon Drift Detector) with an area of 25 mm
2
 

and 500 µm thickness, protected by a Beryllium window of 12.5 µm. The X-ray source utilized in 

excitation of samples is equipment manufactured by Hamamatsu Photonics Company, model L6731-

01, that uses a target of tungsten and operates with variable voltages from 20 kV to 80 kV and 

maximum electric current of 100 μA. To acquire the X-ray fluorescence data one utilized the software 

DppMCA™ from Amptek Inc. (version 1.0.0.12, Bedford MA, U.S.A.) whereas the data gathered was 

analysed using the software XRF-FP™ also from Amptek Inc. (version 5.2.9). The process of 

excitation of samples was carried out using an Al collimator with 2-mm orifice opening at the outlet of 

the X-ray source. The X-ray source was configured to operate at a voltage of 25 kV and electric 

current of 99 µA. Due to the fact that each chemical element possesses a unique set of atomic energy 

levels, each chemical element also emits a unique set of characteristic X-rays when properly excited, 

that are characteristic of the element that emitted them. Additionally, the intensity of a line of 

characteristic X-rays depends on the number of corresponding atoms that have been excited in the 

sample. The fluorescence technique used in this study was X-ray Fluorescence by Energy Dispersion 

(EDXRF), also known as non-dispersive X-ray fluorescence. In this technique, the characteristic X-

rays are selected and quantified by using a detection system which operates with detectors able to 

discriminate between X-rays of close energies. The technique of X-ray fluorescence requires a 

minimal sample preparation, and the measurements performed in this study were conducted by setting 

to 900 s the time of sample excitation. The X-ray fluorescence analyses were carried out both at the 

surface and interior of dry Adalat Oros™ tablets. The fluorescence system was calibrated using a 

reference standard sample supplied by the “National Institute of Standards and Technology – NIST” 

(Stainless Steel SS316), containing the chemical elements Cr, Mn, Fe, Ni, Cu and Mo at known 
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concentrations and using samples especially prepared for this purpose, containing known 

concentrations of the following elements: Mg, P, Cl, K, Ca and Ti. Quali-quantitative analysis of 

fluorescence data was performed using the software XRF-FP™ from Amptek Inc. 

3. Results and discussion 

In the process of deformulation of a pharmaceutical form, the greater the detail of the physicochemical 

characteristics of the dosage form being studied, the easier one can reproduce it. Figure 1 shows a 

typical tomographic image of a tablet of Adalat Oros™. In figure 1A one can see the outside of the 

pharmaceutical form, in figure 1B the interior of a dried tablet can be seen after a digital cut of the 

image and in figures 1C and 1D the interior of the tablets after a digital cut of the images gathered 

following submersion of the tablets in ultrapure water for a period of 1225 and 1440 min, respectively. 

 

 

Figure 1. External part of the intact tablet of Adalat Oros™ (A), sight of its interior showing the drug 

(upper part) and the osmotic agent (lower part) (B), tablet of Adalat Oros™ after 1225 min (C) and 

1440 min (D) of submersion in ultrapure water followed by static air drying at room temperature 

during 48 h prior to gathering the tomographic images. 

 

The images in figure 1 show important details for the deformulation process of the pharmaceutical 

form. Through the analysis of the images in figures 1A and 1B one can obtain of morphological 

information of the dosage form, such as the size of the orifice through which the drug is expelled, the 

dimensions of the surface polymer that coats the tablet, the density and/or porosity of the drug 

packaged in the core of the dried pharmaceutical form, the thickness of the layer of sodium chloride 

crystals working as osmotic agent (osmotic pump), etc. Tomographic images like the ones displayed in 
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figures 1C and 1D can be used for dynamic studies on the process of tablet disintegration. By 

calculating the initial volume of drug present in the interior of the dosage form and comparing with the 

volumes after each period of time under submersion in ultrapure water, it is possible to determine the 

rate of disintegration of the tablet. All these morphological information are susceptible to be extracted 

from a CT image, since materials having different densities absorb different amounts of radiation, and 

thus appear in the tomographic images with different shades or colours, depending on whether the 

images were reconstructed in shades of a single colour (8-bit) or using several colours (16-bit or 24-

bit). The morphological information gathered from the dosage form under study is displayed in Table 

1.  

 

Table 1. Morphologic characteristics of a dry tablet of Adalat Oros™. The data is presented as the 

average of 10 measurements together with their respective standard deviations.  

Morphologic characteristics Average value Standard deviation 

Width (mm) 9.13 0.03 

Height (mm) 5.3 0.5 

Orifice diameter (mm) 0.48 0.04 

Thickness of the coating layer (mm) 0.095 0.005 

Thickness of the layer of sodium chloride crystals (mm) 1.34 0.02 

Porosity of the nifedipine drug (%) 9.1 2.4 

Total volume of the tablet (mm
3
) 258 6 

Volume of the nifedipine drug (mm
3
) 

 

164 8 

 

Another important issue regarding deformulation is the knowledge of the elemental constituents 

present in the original formulation, the drug and excipients. There are many techniques of elementary 

analysis, but in most cases one single technique is not able to identify and/or quantify all the elemental 

present in the formulation, thus requiring the use of more than one analytical technique, since some of 

these are sensitive to organic elements, others to the presence of inorganic elements, some are 

destructive, some do not possess the required accuracy, and so on. In this context, we discuss the use 

of the technique of X-ray fluorescence (XRF) in the analysis of medicines, due to the fact that its use 

is relatively recent in the pharmaceutical industry, by being non-destructive, not requiring specialized 

technical personnel to use it, because of its relatively low cost and because it does not require any 

previous sample preparation. XRF, with the detectors and X-ray sources currently available on the 

market, can be used to quantify chemical elements present in a formulation, as long as they have an 

atomic number higher than that of the chemical element Magnesium (Z=12) through chemical element 

Fermium (Z=100), with an accuracy of approximately a few parts per million (ppm). If the 

fluorescence system is contained within an apparatus able to allow vacuum, it is possible to perform 

elemental analysis departing from the chemical element Boron (Z=5). The X-ray fluorescence 

analyses of tablets of Adalat Oros™ were made in both the external and internal parts of the tablets. In 

the inner part of the medicine, the analysis was conducted in two distinct regions, the region that 

concentrates the elements responsible for the osmotic pump and the region where the drug nifedipine 

resides. Figure 2A shows the results obtained in the elemental analysis of the external part of Adalat 

Oros™ tablets, with the following main chemical elements being identified: titanium (Ekα = 4.51 keV 

and Ekβ = 4.93 keV), and iron (Ekα = 6.40 keV and Ekβ = 7.06 keV).  
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Figure 2. X-ray fluorescence spectra of the external part (A) and of the inner part of a tablet 

of Adalat Oros™, i.e. the region of osmotic pump (B) and the region that contains the drug 

nifedipine (C). 
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The element tungsten (ELα = 8.40 keV, ELβ = 9.67 keV, among other lines of tungsten) appears due to 

the target used in the X-ray source and the element argon (Ekα = 2.96 keV) appears due to its presence 

in the atmospheric air. Figure 2B shows the chemical elements identified in the inner part of the tablet 

of Adalat Oros™, of the side of the tablet where is located the osmotic pump. The main elements 

found in this region were: chlorine (Ekα = 2.62 keV), calcium (Ekα = 3.69 keV), titanium (Ekα = 4.51 

keV), iron (Ekα = 6.40 keV and Ekβ = 7.06 keV) and copper (Ekα = 8.04 keV) in addition to elements 

argon (Ekα = 2.96 keV) and tungsten (ELα = 8.40 keV, ELβ = 9.67 keV), among other lines of tungsten). 

Figure 2C shows the chemical elements identified in the inner part of the tablet of Adalat Oros™, in 

the region that contains the drug nifedipine. The main elements found in this region were: magnesium 

(Ekα = 1.25 keV), chlorine (Ekα = 2.62 keV), calcium (Ekα = 3.69 keV), titanium (Ekα = 4.51 keV), 

manganese (Ekα = 5.89 keV), iron (Ekα = 6.40 keV and Ekβ = 7.06 keV) and copper (Ekα = 8.04 keV) in 

addition to element argon (Ekα = 2.96 keV) and tungsten (ELα = 8.40 keV, ELβ = 9.67 keV), among 

other lines of tungsten). Table 2 displays the amounts of each chemical element found both in the 

coating (external) and in the inner parts of the tablets, as percentages of the total tablet mass. 

According to the pharmaceutical manufacturer of Adalat Oros™ tablets, the medicine contains in 

addition to nifedipine the following inert components: hydroxypropyl methylcellulose (HPMC), 

magnesium stearate, polyethylene oxide, sodium chloride, red iron oxide, cellulose acetate, 

polyethylene glycol, hydroxypropyl cellulose, propylene glycol and titanium dioxide. The technique of 

X-ray fluorescence analysis used in this study cannot separate and quantify constituents having atomic 

numbers below that of magnesium element. The chemical formula of nifedipine is C17H18N2O6 and, 

since all the elements present in the molecule have an atomic number lower than Z=12, we cannot 

quantify them. Regarding the chemical element sodium, by having atomic number Z=11, its 

characteristic X-rays cannot reach the detector, and thus they do not appear in the spectra of figure 2. 

The chemical elements calcium, manganese and copper are contaminants, since they do not appear in 

the patient information leaflet provided by the pharmaceutical manufacturer. The elements iron and 

titanium must have originated from the red iron oxide and the titanium dioxide used in the tablet 

coating process. Regarding the remaining contaminants, we cannot infer about their origin, but they 

are probably linked to the production process. The element chlorine is present in the sodium chloride 

used as osmotic agent, which is the responsible for the increase in pressure inside the pharmaceutical 

form and concomitant expulsion of the drug (osmotic pump). The element magnesium is one of the 

excipients indicated by the manufacturer used in formulating the medicine. In this work, we clearly 

demonstrated that XRF can be used as a powerful tool for elemental analysis, and that it can be used 

both in qualitative identification and quantification of the elements present in a pharmaceutical 

formulation. It is possible to perform a quantitative analysis of light elements (Z<12), but in this case 

there is the need to place the experimental setup (sample, X-ray source and detector) within an 

evacuated chamber. The major focus of the research work undertaken was to demonstrate the potential 

of using the techniques of computed tomography and X-ray fluorescence analysis to perform 

deformulation of medicines. 

4. Conclusion 

By using CT images, it was possible to make a detailed physical analysis of a pharmaceutical form, 

including dynamic studies of the drug release process. All the morphological characteristics of the 

tablets were studied using three-dimensional tomographic images. The region of the tablet housing the 

drug, the layer used as osmotic agent and the coating characteristics including the orifice used to 

equilibrate the osmotic pressure and release the drug, were clearly identified. One also demonstrated 

the possibility of using CT for dynamic studies, by measuring the porosity. The technique of X-ray 

fluorescence analysis complemented the information gathered from the tomographic images, by 

providing identification of the elemental constituents present in the dosage form both in the coating 

and in the tablet matrix. It was demonstrated, how the techniques of computed tomography and X-ray 

fluorescence analysis can be used together to perform deformulation of a modified release dosage 

form. 
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Table 2. Concentration of the chemical elements found in the external and inner parts of 

tablets of Adalat Oros™, expressed in percentage of the total tablet mass.  

Part of the Adalat Oros™ tablet Chemical element % (w/w) 

 

Exterior – coating 

Titanium  33.33 ± 0.09 

Iron 3.65 ± 0.02 

 

 

 

 

Interior - side of the osmotic pump 

Chlorine 10.3 ± 0.2 

Calcium 1.50 ± 0.05 

Titanium 0.54 ± 0.02 

Iron 3.80 ± 0.02 

Copper 0.024 ± 0.001 

 

 

 

 

 

Interior - side of the drug nifedipine 

Magnesium 6.4 ± 3 

Chlorine 1.5 ± 0.1 

Calcium 0.80 ± 0.03 

Titanium 1.54 ± 0.02 

Manganese 0.005 ± 0.001 

Iron 0.16 ± 0.003 

Copper 0.005 ± 0.0009 
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