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ABSTRACT

In this paper, we show that σ-reducibility is preserved under joins with
K, where K is the pseudovariety of semigroups in which idempotents are
left zeros. Reducibility of joins with D, the pseudovariety of semigroups
in which idempotents are right zeros, is also considered. In this case, we
were able to prove that σ-reducibility is preserved for joins with pseu-
dovarieties verifying a certain property of cancellation. As an example
involving the semidirect product, we prove that Sl ∗K is κ-tame, where
Sl stands for the pseudovariety of semilattices.

1. INTRODUCTION

As one recalls, the join V ∨W of two pseudovarieties V and W is the least pseudova-
riety containing both V and W. Decidability is not preserved by the join operator [1]
neither by some of the most common operators on pseudovarieties [14]. In particular,
Rhodes [14] has exhibited a decidable pseudovariety V, defined by a finite set of iden-
tities, such that Sl ∗ V is not decidable. Tameness is a property of pseudovarieties,
introduced by Almeida and Steinberg [6], stronger than decidability, which may be im-
portant to prove decidability of pseudovarieties constructed using those operators. If
tameness is preserved by the most common operators is still an open problem. As an
example, not so difficult, we prove the tameness of the semidirect product Sl ∗K, with
respect to the canonical signature κ consisting of multiplication together with the im-
plicit operation x 7→ xω−1. A much more difficult case is the pseudovariety Sl∗D, whose
κ-tameness was announced by Teixeira in collaboration with the author [11]. Notice that
the pseudovarieties K, D [9] and Sl are tame.

Let σ be an implicit signature. Proving the σ-tameness of a pseudovariety V involves
proving two properties: that the σ-word problem for V is decidable, and that V is
σ-reducible. This paper is concerned with the σ-reducibility of pseudovariety joins of
the form V ∨W, where V is one of the pseudovarieties K, D, N or LI, where N and
LI are respectively the pseudovarieties of all nilpotent and locally trivial semigroups.
These joins were studied by the author in [10], where they were computed for several
pseudovarieties V. Here, we prove that σ-reducibility is preserved for joins under K or
N; that is, if W is a σ-reducible pseudovariety, then K ∨W and N ∨W are also σ-
reducible. We deduce in particular that K∨W and N∨W are κ-tame for every κ-tame
pseudovariety W. The study of the σ-reducibility of joins with D is much more difficult
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and we were not able to obtain a general answer. We prove that D ∨V is σ-reducible
for σ-reducible pseudovarieties V verifying a certain property of cancellation. We then
derive some results for LI.

The fundamental idea in our proofs is very simple. It consists in applying the σ-
reducibility of W in such a way that the properties which determine the equality over
V are preserved. The same techniques are explored in a forthcoming paper of the
author in collaboration with Zeitoun [12] where we establish analogous results for the
pseudovarieties J and R of J -trivial and R-trivial semigroups respectively.

This work is organized as follows. In a section of preliminaries, we recall the usual
terminology and notation about words, pseudovarieties, graphs and σ-reducibility and
review some basic results. Section 3 is devoted to the reducibility problem for joins
with K. We next prove that Sl ∗K is κ-tame. Finally, Section 5 is dedicated to the
reducibility problem for joins with D.

2. PRELIMINARIES

This section presents a brief description of the basic definitions, notation and results
that are relevant to our study. The reader is referred to [2] for general background and
missing definitions on pseudovarieties and profinite semigroups, and to [4] for recent
developments on the subject, including the notion of tameness.

2.1. Words

An alphabet is a finite non-empty set A, whose elements are called letters. The free
semigroup (resp. free monoid, free group) generated by A is denoted by A+ (resp. A∗,
FG(A)). The content c(u) of a word u ∈ A+ is the set of all letters occurring in u and
the length of u is denoted by |u|. The empty word is denoted by 1.

A right-infinite (resp. left-infinite) word on A is a sequence w = (an)n of letters of A
indexed by N (resp. −N), also written

w = a1a2a3 · · · (resp. w = · · · a−3a−2a−1).

The sets of right-infinite and left-infinite words on A will be denoted, respectively, by
AN and A−N. We denote also A∞ = A+ ∪ AN and A−∞ = A+ ∪ A−N. The product of
two elements w and z of A∞ is defined as follows: if w, z ∈ A∗, then wz is defined as
usual; right-infinite words are left zeros; finally, if w = a1a2 · · · an (ai ∈ A) is a finite
word and z = b1b2 · · · (bj ∈ A) is a right-infinite word, then wz is the right-infinite word
wz = a1a2 · · · anb1b2 · · · . The product of two elements of A−∞ is defined symmetrically.
Now, we observe that AN, A−N, A∞ and A−∞ are semigroups.

A word u ∈ A∗ is a prefix of a word w ∈ A∞ if there exists z ∈ A∞ such that w = uz.
Symmetrically, u ∈ A∗ is a suffix of w ∈ A−∞ if there exists z ∈ A−∞ such that w = zu.

A right-infinite word of the form vu+∞ = vuuu · · · , with u ∈ A+ and v ∈ A∗, is said to
be ultimately periodic. Dually, we will use the notation u−∞v to represent the ultimately
periodic left-infinite word u−∞v = · · ·uuuv.

Two finite words w and z are said to be conjugate if there exist words u, v ∈ A∗ such
that w = uv and z = vu.

2.2. Pseudovarieties and implicit operations

For a semigroup S, we denote by S1 the smallest monoid containing S. Given an
element s of a finite semigroup (resp. compact topological semigroup), the subsemigroup
(resp. closed subsemigroup) generated by s has a unique idempotent, denoted by sω.
Moreover, sω−1 denotes the inverse of sω+1 = sωs in the maximal subgroup (resp. closed
subgroup) containing s. As usual, we denote by E(S) the set of idempotents of a
semigroup S.

The next classical result follows immediately from [2, Proposition 3.7.1].
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Lemma 2.1. Let S be a finite semigroup and k = |S|. For any s1, . . . , sk ∈ S, there
exist integers 1 ≤ i ≤ j ≤ k, such that, s1 · · · sk = s1 · · · si−1(si · · · sj)ωsj+1 · · · sk. 2

A semigroup pseudovariety is a class of finite semigroups closed under taking sub-
semigroups, homomorphic images and finite direct products. A profinite semigroup is
a projective limit of finite semigroups. For a pseudovariety V, a pro-V semigroup is a
projective limit of semigroups of V. The A-generated elements of V form a directed
system and the respective projective limit will be denoted by ΩAV. The semigroup
ΩAV is a pro-V semigroup which is relatively free with respect to V in the sense that,
for each pro-V semigroup S and each mapping ϕ : A−→S, there is a unique continuous
morphism ϕ : ΩAV−→S extending ϕ. This leads to a natural interpretation of elements
of ΩAV as (A-ary) implicit operations: to each π ∈ ΩAV is associated an operation
πS : SA−→S which maps ϕ ∈ SA to ϕ(π). The subsemigroup of ΩAV generated by
A, denoted by ΩAV, is a dense subsemigroup of ΩAV whose elements are said to be
explicit. For an implicit operation π of finite arity A, if we fix an ordering a1, . . . , ar for
the elements of A, we also write π = π(a1, . . . , ar). As important examples of implicit
operations we mention the (binary) operation of multiplication and the two (unary) ope-
rations x 7→ xω and x 7→ xω−1. Notice that the composition of implicit operations is
also an implicit operation.

The pseudovariety of all finite semigroups is denoted by S and, for each pseudovariety
V, qV : ΩAS−→ΩAV denotes the continuous morphism mapping the generators of ΩAS
to the generators of ΩAV. In particular, qSl is usually denoted by c. Notice that ΩASl is
P(A), the power set of A, under union. The morphism c is called the content morphism
and, as one recalls, c extends to implicit operations the notion of content for words of
A+.

A pseudoidentity is a formal equality π = ρ where π, ρ ∈ ΩAS. A finite semigroup S
satisfies a pseudoidentity π = ρ if πS = ρS . A pseudovariety V satisfies a pseudoidentity
π = ρ if every semigroup in V satisfies π = ρ, which means that qV(π) = qV(ρ). By
Reiterman’s theorem [13], each pseudovariety is defined by a set Σ of pseudoidentities.
The pseudovariety defined by Σ is denoted by [[Σ]].

We recall a result (see [2, Corollary 5.6.2]) which presents an useful decomposition of
the non-explicit operations and constitutes a sort of analogue of Lemma 2.1.

Lemma 2.2. Let π be a non-explicit element of ΩAS. Then, there exist π1, ρ, π2 ∈ ΩAS
such that π = π1ρ

ωπ2. 2

2.3. Graphs

A (directed) graph Γ is a set V(Γ)
◦∪ E(Γ) with two sorts of elements, called vertices

and edges respectively, together with two operations α, ω : E(Γ) → V(Γ) which define
the orientation of the edges. For any edge e ∈ E(Γ), α(e) and ω(e) are, respectively, the
beginning and the end of e.

A (directed) path in Γ is a finite sequence of edges e1, e2, . . . , en such that ω(ei) =
α(ei+1) for i = 1, . . . , n − 1. The path is a circuit if α(e1) = ω(en). Given a sequence
of edges e1, . . . , en, if it is possible to invert the orientation of some edges in such a way
to obtain a directed path, we say that e1, . . . , en is an undirected path. By similarity, an
undirected path is an undirected circuit if it is possible to invert the orientation of some
edges in such a way to obtain a circuit.

A labelling of a graph Γ by a semigroup S is a mapping δ : Γ−→S1 such that δ(E(Γ)) ⊆
S. The label of a path e1, . . . , en is by definition δ(e1) · · · δ(en). A labelling δ is consistent
if δ(α(e)) · δ(e) = δ(ω(e)), for all e ∈ E(Γ). If γ : E(Γ)−→A+ is a function, the label of
an undirected path e1, . . . , en is the reduced form of the word γ(e1)ε1 · · · γ(en)εn in the
free group generated by A, where εi = 1 if the edge ei is read in the direct way, in the
undirected path, and εi = −1 otherwise. We say that the function γ commutes if the
label of any undirected circuit is 1.
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2.4. σ-reducibility and σ-tameness

An implicit signature σ is a set of implicit operations on S containing the basic
semigroup multiplication. Every profinite semigroup has a natural structure of a σ-
semigroup, via the interpretation of implicit operations as operations on profinite semi-
groups. For a pseudovariety V, we denote by Ωσ

AV the free σ-semigroup generated by
A in the variety of σ-semigroups generated by V, which as one can observe is the σ-
subsemigroup of ΩAV generated by A. The elements of Ωσ

AS are called σ-terms. We
denote by pV : Ωσ

AS−→Ωσ
AV the morphism of σ-semigroups determined by the choice

of generators. That is, pV is the restriction of qV to Ωσ
AS. The σ-word problem for V

is the problem of deciding equality of σ-terms in V.
A labelling γ : Γ−→S1 of a finite graph Γ by a finite A-generated semigroup S is

V-inevitable if there exists a labelling δ of Γ by ΩAS such that ψ ◦ δ = γ, where the
morphism ψ : ΩAS → S respects the choice of generators, and qV ◦ δ is consistent. The
pseudovariety V is said to be σ-reducible if for each V-inevitable labelling γ, and δ and
ψ as above, there exists a labelling δ′ such that ψ ◦ δ′ = γ and pV ◦ δ′ is consistent.
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Figure 1. A commuting diagram expressing σ-reducibility

A recursively enumerable pseudovariety V is said to be σ-tame if it is σ-reducible and
the σ-word problem for V is decidable. The next observation is crucial in what follows.

Lemma 2.3. Let V be a σ-reducible pseudovariety for a non-trivial (i.e., containing a
non-explicit operation) implicit signature σ, let γ : Γ−→S1 be a labelling of a finite graph
Γ by a finite A-generated semigroup S and let δ : Γ → ΩAS be such that ψ ◦ δ = γ and
qV ◦ δ is consistent, where the morphism ψ : ΩAS → S respects the choice of generators.
Then, there is a labelling δ′ : Γ → Ωσ

AS such that,
i) ψ ◦ δ′ = γ and pV ◦ δ′ is consistent;
ii) if e ∈ E(Γ) is an edge labelled under δ by a non-explicit operation, then δ′(e) is

also non-explicit;
iii) if g ∈ Γ is labelled under δ by an explicit operation, then δ′(g) = δ(g).

Proof. By Lemma 2.2, for each edge e such that δ(e) is non-explicit, there exist
πe,1, πe,2, ρe ∈ ΩAS such that δ(e) = πe,1ρ

ω
e πe,1. For each such e, add to graph Γ a

new vertex we and three new edges fe,1 (from α(e) to we), fe,2 (from we to we) and fe,3
(from we to ω(e)). The graph obtained is denoted by Γ1. Let δ1 be the extension of δ to
Γ1 such that δ1(we) = δ(α(e)) ·πe,1ρ

ω
e , δ1(fe,1) = πe,1ρ

ω
e , δ1(fe,2) = ρω

e and δ1(fe,3) = πe,2.
Since qV ◦ δ is consistent, it is clear that qV ◦ δ1 is also consistent.

Let now m be an integer greater than the maximal length of the labels of Γ under δ
which are explicit, let Km = [[x1x2 · · ·xmy = x1x2 · · ·xm]] and let S1 be the semigroup
S × Km where Km = ΩAKm. The semigroup S1 is finite and A-generated, since Km

may be seen as the set of all words on the alphabet A of length at most m, where the
product of two words is the longest prefix of length at most m of their usual product. Let
ψ1 : ΩAS → S1 be the morphism defined, for each π ∈ ΩAS, by ψ1(π) = (ψ(π), qKm(π)),
and let γ1 : Γ1 → S1 be the labelling of Γ1 by S1 such that γ1 = ψ1 ◦ δ1. Hence,
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since ψ1 respects the choice of generators and qV ◦ δ1 is consistent, γ1 is a V-inevitable
labelling of Γ1 by S1. Therefore, since V is σ-reducible there exists a labelling δ′1 of Γ1

by Ωσ
AS such that ψ1 ◦ δ′1 = γ1 and pV ◦ δ′1 is consistent. This implies in particular that

ψ1 ◦ δ′1 = ψ1 ◦ δ1, whence ψ ◦ δ′1 = ψ ◦ δ1 and qKm ◦ δ′1 = qKm ◦ δ1.
For each edge e such that δ(e) is non-explicit and each i ∈ {1, 2, 3}, let te,i = δ′1(fe,i).

By consistency of pV ◦ δ′1, V satisfies

(1) δ′1(ω(e)) = δ′1(α(e))te,1te,3 = δ′1(α(e))te,1tn
e,2te,3

for every positive integer n. On the other hand, since ψ is a morphism and verifies
ψ ◦ δ′1 = ψ ◦ δ1,

ψ(te,1tn
e,2te,3) = ψ(te,1)ψ(te,2)nψ(te,3) = ψ(πe,1ρ

ω
e )ψ(ρω

e )nψ(πe,2) = ψ(πe,1ρ
ω
e πe,2).

Therefore, since ψ ◦ δ = γ,

(2) ψ(te,1tn
e,2te,3) = ψ(δ(e)) = γ(e).

Let now %(a1, . . . , ar) be a non-explicit element of the implicit signature σ and let
(wi(a1, . . . , ar))i be a sequence of explicit operations converging to %(a1, . . . , ar). Then
(wi(te,2, . . . , te,2))i is a sequence which converges to the non-explicit σ-term %(te,2, . . . , te,2).
Since for each i there exists an integer ni such that wi(te,2, . . . , te,2) = tni

e,2, we de-
duce from (2) that the non-explicit σ-term te = te,1%(te,2, . . . , te,2)te,3 is such that
ψ(te) = γ(e). Moreover, by (1), pV(δ′1(ω(e))) = pV(δ′1(α(e)))pV(te). Let δ′ coincide
with δ′1 on Γ \ {e | δ(e) is non-explicit} and let δ′(e) = te for each edge e such that δ(e)
is non-explicit. Therefore δ′ is a labelling of Γ by Ωσ

AS verifying i) and ii).
Now, let g ∈ Γ be such that δ(g) is explicit. Then

qKm ◦ δ′(g) = qKm ◦ δ′1(g) by definition of δ′
= qKm ◦ δ1(g) since qKm ◦ δ′1 = qKm ◦ δ1

= qKm ◦ δ(g) since δ1 and δ coincide on Γ

Since δ(g) is a word of length at most m− 1, we deduce that qKm ◦ δ′(g) = δ(g), whence
δ′(g) = δ(g). This proves iii) and concludes the proof of the lemma. 2

2.5. Basic Lemmas

This section gathers some basic statements about the free pro-V semigroups, with
V ∈ {N,K,D,LI,Sl ∗K}, which will be used in this work. Recall first that

N = [[xωy = xω = yxω]], K = [[xωy = xω]], D = [[yxω = xω]]

LI = [[xωyzω = xωzω]], Sl ∗K = [[xωy2 = xωy, xωyz = xωzy]].

Notice also that N = K ∩D, LI = K ∨D and K ⊆ Sl ∗K. The following properties
are well known (see [2], for instance).

Lemma 2.4. Let V be one of the pseudovarieties N, K or D. Then, ΩAV is isomor-
phic to A+ and E(ΩAV) is an ideal consisting of the non-explicit operations of ΩAV.
Moreover,

i) The unique idempotent of ΩAN is a zero;
ii) E(ΩAK) is isomorphic to AN, and ΩAK is isomorphic to A∞;
iii) E(ΩAD) is isomorphic to A−N, and ΩAD is isomorphic to A−∞. 2

In view of this lemma, we shall identify explicit operations (on N, K or D) with finite
words. Moreover, the idempotents of ΩAK and ΩAD may be identified, respectively,
with right-infinite words and left-infinite words. Notice that in ΩAK, the right-infinite
word yx+∞, where y ∈ A∗ and x ∈ A+, corresponds to the implicit operation yxω. A
dual remark holds for D.

A proof of the following useful result can be found in [9].
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Lemma 2.5. Let π, ρ ∈ ΩAS be non-explicit operations such that qD(π) = qD(ρ). Then
there exist factorizations π = π1π2 and ρ = ρ1π2 where π2 is non-explicit. Moreover, if
qD(π) = u−∞v with u ∈ A+ and v ∈ A∗, then we can choose π2 = uωv. 2

For an alphabet A and an infinite word v ∈ AN, we let c(v) be the set of letters
occurring in v and let c∞(v) be the set of letters occurring infinitely often in v. Almeida
and Weil [7] gave the description of the free pro-(Sl∗K) semigroups and solved the word
problem for them. These results are presented in the next theorem.

Theorem 2.6. Let A be an alphabet. Then

ΩA(Sl ∗K) = A+ ∪ {(v,B) ∈ AN × P(A) | c∞(v) ⊆ B},
and the product is given, for all u, u′ ∈ A+ and (v, B), (v′, B′) ∈ AN × P(A) such that
c∞(v) ⊆ B and c∞(v′) ⊆ B′, by:

u · u′ = uu′

u · (v, B) = (uv, B)
(v, B) · u = (v, B ∪ c(u))

(v,B) · (v′, B′) = (v, B ∪ c(v′) ∪B′).

Each non-explicit operation π ∈ ΩA(Sl ∗K) admits a factorization of the form π =
u0π1u1 where u0, u1 ∈ A∗, π1 is idempotent, the last letter of u0 (if u0 is non-empty)
is not in c(π1), the word u1 is linear (i.e. each letter appears at most once in u1) and
c(u1)∩c(π1) = ∅. Furthermore, this factorization is unique up to a permutation of u1. To
be more precise, if π = (v,B) ∈ AN×P(A), then u0 is uniquely determined as the shortest
prefix u of v such that c(u−1v) = c∞(v), π1 = (u−1

0 v, c∞(v)) and c(u1) = B \ c∞(v). 2

We will use also the following dual of Lemma 2.5.

Lemma 2.7. Let π, ρ ∈ ΩAS be non-explicit operations such that qK(π) = qK(ρ) = v
and let u ∈ A∗ be any prefix of v. Then there exist factorizations π = uπ1π2 and
ρ = uπ1ρ2 where π1 is non-explicit. Moreover, qSl∗K(π) = qSl∗K(ρ) if and only if
c∞(v) ∪ c(π2) = c∞(v) ∪ c(ρ2).

Proof. The first part of the lemma is an easy adaptation of the dual of Lemma 2.5.
Notice that, in particular, qK(uπ1) = v. Therefore, the second part is an immediate
consequence of Theorem 2.6 and of the fact that the content morphism is continuous.2

3. REDUCIBILITY OF JOINS WITH K

In this section, we show that the property of being σ-reducible is preserved under
joins with K.

Theorem 3.1. If V is a σ-reducible pseudovariety for a non-trivial implicit signature
σ, then K ∨V is σ-reducible.

Proof. Let γ be a (K∨V)-inevitable labelling of a finite graph Γ by a finite A-generated
semigroup S and let ψ be the unique morphism from ΩAS to S which respects the choice
of generators. Then, there is a labelling δ of Γ by ΩAS such that ψ◦δ = γ and qK∨V◦δ is
consistent. Notice that this implies that qK◦δ and qV◦δ are both consistent. We have to
construct a labelling δ′ : Γ → Ωσ

AS such that ψ ◦ δ′ = γ and pK∨V ◦ δ′ is consistent. The
beginning of the construction of δ′ will follow step by step the construction of Almeida
and Zeitoun [9] for the corresponding labelling in the case of K.

Let Vω be the set of vertices v ∈ V(Γ) such that δ(v) is a non-explicit operation and
let V0 = V(Γ) \ Vω. Let Eω be the set of edges e ∈ E(Γ) such that α(e) ∈ Vω, and let
E0 = E(Γ) \ Eω. Let θ be the equivalence relation on Vω generated by the relation

{(v,w) | v,w ∈ Vω and there is an edge from v to w}
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and denote by θ(v) the θ-class of v. Finally, let Eθ(v) be the subset of E0 consisting of all
edges e such that ω(e) ∈ θ(v).

Let v ∈ Vω. Notice that, for every edge e ∈ Eθ(v), the label δ(α(e)) is explicit and the
label δ(e) is non-explicit. So we can consider the integer

mθ(v) = max{|δ(α(e))| | e ∈ Eθ(v)}
and let, respectively, pθ(v) be the word of length mθ(v) and wθ(v) ∈ ΩAK be the non-
explicit operation such that

(3) qK(δ(v)) = pθ(v)wθ(v).

The choice of mθ(v) and the fact that qK ◦δ is consistent, imply that wθ(v) is also a suffix
of qK(δ(e)), for every edge e ∈ Eθ(v), so that

(4) qK(δ(e)) = pewθ(v)

where pe is the word such that

(5) δ(α(e)) · pe = pθ(v).

By Lemma 2.7, the factorizations (3) and (4) imply the existence of implicit operations
πθ(v), ρv and ρe, with πθ(v) non-explicit, such that

δ(v) = pθ(v) · πθ(v) · ρv,(6)

δ(e) = pe · πθ(v) · ρe for every edge e ∈ Eθ(v).(7)

Notice that for a vertex v ∈ Vω, if Eθ(v) is the empty set, then we may choose for pθ(v)

any prefix of qK(δ(v)) and deduce a factorization of δ(v) analogous to (6).
We extend graph Γ to a graph Γ1 and let γ1 and δ1 be respectively the extensions of

γ and δ to Γ1 as follows. For each θ-class Θ,
• there are two vertices wΘ,1 and wΘ,2, and an edge fΘ (from wΘ,1 to wΘ,2) labelled

under δ1 by pΘ, pΘπΘ and πΘ, respectively;
• for each vertex v ∈ Θ, there is an edge fv from wΘ,2 to v labelled under δ1 by ρv;
• for each edge e ∈ EΘ, there is an edge fe from wΘ,2 to ω(e) labelled under δ1 by

ρe;
• for each g ∈ Γ1 \ Γ, γ1(g) = ψ ◦ δ1(g).

Since ψ ◦ δ = γ and qK∨V ◦ δ is consistent, we deduce by construction that ψ ◦ δ1 = γ1

and qK∨V ◦ δ1 is consistent. In particular, qV ◦ δ1 is consistent. Therefore, since V is
σ-reducible there exists a labelling δ′1 of Γ1 by Ωσ

AS such that ψ ◦ δ′1 = γ1 and pV ◦ δ′1
is consistent. Moreover, by Lemma 2.3, we may assume that δ′1(fΘ) is non-explicit for
every θ-class Θ and that δ′1(g) = δ1(g) for every g ∈ Γ1 such that δ1(g) is explicit. Notice
that, in particular, δ′1(g) = δ(g) for every g ∈ Γ such that δ(g) is explicit.

We define δ′ to be the labelling of Γ by Ωσ
AS as follows:

• δ′ coincides with δ on vertices and edges labelled by explicit operations;
• δ′(e) = δ′1(e) for any edge e ∈ Eω;
• for each vertex v ∈ Vω and each edge e ∈ Eθ(v), δ′(v) = pθ(v)δ

′
1(fθ(v))δ

′
1(fv) and

δ′(e) = peδ
′
1(fθ(v))δ

′
1(fe).

By construction, ψ ◦ δ′ = γ. Indeed, let for instance v ∈ Vω. We have

ψ ◦ δ′(v) = ψ(pθ(v)δ
′
1(fθ(v))δ

′
1(fv))

= ψ(pθ(v)δ1(fθ(v))δ1(fv)) since ψ ◦ δ′1 = ψ ◦ δ1

= ψ(pθ(v)πθ(v)ρv) by definition of δ1

= ψ ◦ δ(v) by (6)
= γ(v).

Moreover, since pV ◦ δ′1 is consistent one deduces that pV ◦ δ′ is consistent. On the
other hand pK ◦ δ′ is also consistent. Indeed, let e be an edge of Γ and let v = ω(e).
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We have to prove that pK(δ′(α(e))) · pK(δ′(e)) = pK(δ′(v)). The case in which δ(e) is
explicit is immediate. If α(e) ∈ Vω, then α(e) and v belong both to the same θ-class
and since δ′1(fθ(v)) is non-explicit, we deduce from the definition of δ′(α(e)) and δ′(v)
that the equality also holds in this case. Suppose now that e ∈ Eθ(v), whence δ(α(e)) is
explicit and δ(e) is non-explicit. We have

pK(δ′(α(e))) · pK(δ′(e)) =
= pK(δ(α(e))peδ

′
1(fθ(v))δ

′
1(fe))

= pK(δ(α(e))peδ
′
1(fθ(v))δ

′
1(fv)) since δ′1(fθ(v)) is non-explicit

= pK(δ′(v)) by (5).

Hence pV ◦ δ′ and pK ◦ δ′ are both consistent. Therefore pK∨V ◦ δ′1 is consistent. This
concludes the proof of the theorem. 2

Now notice that if the σ-word problem is decidable for two pseudovarieties V and W,
then the σ-word problem for V ∨W is decidable. Therefore, as a consequence of the
last theorem, we deduce that σ-tameness is preserved under joins with K.

Corollary 3.2. Let σ be a non-trivial implicit signature. If V is a σ-tame pseudovariety
and the σ-word problem for K is decidable, then K ∨V is σ-tame. 2

The canonical signature κ is the most commonly used signature: most of the pseudova-
rieties which are known to be tame are proved to be κ-tame. It is known, for instance,
that K, D [9], G [6], Ab [5] and J [8] are κ-tame. Hence, for σ = κ, Corollary 3.2 can
be stated as follows.

Corollary 3.3. If V is a κ-tame pseudovariety, then K ∨V is κ-tame. 2

In particular, we have that LI = K ∨D, K ∨G, K ∨Ab and K ∨ J are κ-tame.
The results of this section are easily shown to hold with K replaced by N.

4. TAMENESS OF Sl ∗K

In this section, we show that the semidirect product Sl ∗K is κ-tame. Since Sl ∗K is
aperiodic, i.e., Sl∗K verifies xω = xω+1, we use the implicit operation x 7→ xω instead of
x 7→ xω−1 since the two coincide over aperiodic semigroups and the former is expressible
in terms of the latter.

4.1. The κ-word problem for Sl ∗K

We first observe that two κ-terms which do not involve the operation x 7→ xω are
equal over Sl ∗K if and only if they are the same term. Secondly, if two κ-terms are
equal over Sl ∗K, then either they both involve the operation x 7→ xω or neither does.
This reduces the κ-word problem for Sl ∗K to κ-terms involving the operation x 7→ xω.
Observe at last that the following reduction rules are valid for Sl ∗K (i.e. the two sides
of any rule coincide over Sl ∗K):

r1) xωyzω → xωyz x, z 6= 1,

r2) xωyz → xωy x, z 6= 1, c(z) ⊆ c(xy),
r3) (yxωz)ω → yxωzy x 6= 1,

r4) (xn)ω → xω x 6= 1,

r5) x(yx)ω → (xy)ω x 6= 1.

This system is Nœtherian since the rules reduce the length of terms. We say that a term
is irreducible if it is not possible to apply a reduction rule to it. By rules r1) and r3), an
irreducible term is of the form uvωw where u, v and w are finite words. Moreover, by
rule r2), w is a linear word such that c(w) ∩ c(v) = ∅ and, by rule r4), v is a primitive
word. Finally, by rule r5), no non-trivial suffix of u is a suffix of v. To conclude, it
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suffices to show that the equality of two irreducible terms t1 = u1v
ω
1 w1 and t2 = u2v

ω
2 w2

is decidable for Sl ∗K. Let u′1 ∈ A∗ be the longest prefix of u1 such that the last letter
(if it exists) of u′1 does not belong to c(v1), and let u′2 be the analogous word for the
second term. Therefore,

t1 = u′1u
′′
1v

ω
1 w1 and t2 = u′2u

′′
2v

ω
2 w2

for some words u′′1 and u′′2 such that c(u′′1) ⊆ c(v1) and c(u′′2) ⊆ c(v2). Notice that
u′′1v

ω
1 and u′′2v

ω
2 are idempotents over Sl ∗K. It follows from Theorem 2.6 that t1 and

t2 coincide over Sl ∗ K if and only if u′1 = u′2, u′′1 = u′′2, v1 = v2 and c(w1) = c(w2).
Therefore, the κ-word problem for Sl ∗K is decidable.

4.2. κ-reducibility of Sl ∗K

The proof of the κ-reducibility of Sl ∗K is a simple adaptation of Theorem 3.1.
Let γ be a (Sl ∗ K)-inevitable labelling of a finite graph Γ by a finite A-generated

semigroup S and let ψ be the unique morphism from ΩAS to S which respects the choice
of generators. Hence, there is a labelling δ of Γ by ΩAS such that ψ ◦δ = γ and qSl∗K ◦δ
is consistent. Notice that since K is a subpseudovariety of Sl∗K, this implies that qK◦δ
is also consistent. To prove the κ-reducibility of Sl ∗K, we have to construct a labelling
δ′ : Γ → Ωκ

AS such that ψ ◦ δ′ = γ and pSl∗K ◦ δ′ is consistent.
Using the same notations and following the construction of δ′ in Theorem 3.1, one

can show that equalities (3), (4) and (5) can also be deduced for this case. Therefore,
by Lemma 2.7, the factorizations (3) and (4) imply the existence of implicit operations
πθ(v), ρv and ρe, with πθ(v) non-explicit, such that

δ(v) = pθ(v) · uv · πθ(v) · ρv,(8)
δ(e) = pe · uv · πθ(v) · ρe for every edge e ∈ Eθ(v),(9)

where uv ∈ A+ is the prefix of wθ(v) such that |v| = |S| and u ∈ A∗ is the longest prefix
of wθ(v) such that the last letter (if it exists) of u does not belong to c∞(wθ(v)). By
Lemma 2.1, if k = |S| and v = a1 · · · ak, then there exists a κ-term

v = a1 · · · ai−1(ai · · · aj)ωaj+1 · · · ak

such that ψ(v) = ψ(v). Moreover, since A+ is dense in ΩAS and the content morphism is
continuous, there exist words xθ(v), yv and ye such that c(πθ(v)) = c(xθ(v)), c(ρg) = c(yg)
and S satisfies πθ(v) = xθ(v) and ρg = yg, for g = v, e. We define δ′ to be the labelling of
Γ by Ωκ

AS as follows:
• δ′ coincides with δ on vertices and edges labelled by explicit operations;
• δ′(v) = pθ(v)uvxθ(v)yv for any vertex v ∈ Vω;
• δ′(e) = peuvxθ(v)ye for any edge e ∈ Eθ(v);
• δ′(e) is any explicit operation with content c(δ(e)) which coincides with δ(e) over

S, for any edge e ∈ Eω.
By construction, ψ ◦ δ′ = γ. Now, notice that c(xθ(v)) = c(πθ(v)) = c∞(wθ(v)).

Therefore, by (5) and by consistency of qSl∗K ◦ δ, the consistency of pSl∗K ◦ δ′ is an easy
consequence of the second part of Lemma 2.7.

This proves the following theorem.

Theorem 4.1. The pseudovariety Sl ∗K is κ-tame.

5. REDUCIBILITY OF JOINS WITH D

In this section, we show that the property of being σ-reducible is preserved for certain
joins with D.

Let V be a pseudovariety. We say that V satisfies property (Cr) (of right-cancellation)
if, for every π1, π2, ρ ∈ ΩAS with π1 and π2 non-explicit, if qD∨V(π1ρ) = qD∨V(π2ρ),
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then qD∨V(π1) = qD∨V(π2). Notice that any pseudovariety V verifying qV(πρ) = qV(π)
for every π, ρ ∈ ΩAS with π non-explicit clearly satisfies (Cr). This is the case for
instance of any subpseudovariety of K. Other examples of pseudovarieties satisfying
(Cr) are: Com of commutative semigroups (by the considerations of [2, pp. 91-92]); J of
J -trivial semigroups (by the description of the pseudoidentities satisfied by J [2]); any
pseudovariety H of groups (since ΩAH satisfies the cancellation law).

Theorem 5.1. Let σ be a non-trivial implicit signature. If V is a σ-reducible pseu-
dovariety satisfying (Cr), then D ∨V is σ-reducible.

Proof. Let γ be a (D∨V)-inevitable labelling of a finite graph Γ by a finite A-generated
semigroup S and let δ be a labelling of Γ by ΩAS such that ψ ◦ δ = γ and qD∨V ◦ δ
is consistent. Therefore qD ◦ δ and qV ◦ δ are both consistent. We have to construct a
labelling δ′ : Γ → Ωσ

AS such that ψ ◦ δ′ = γ and pD∨V ◦ δ′ is consistent.
Let Vω be the set of vertices v ∈ V(Γ) such that δ(v) is a non-explicit operation. Let

φ be the equivalence relation on Vω generated by the relation

{(v, w) | v, w ∈ Vω and there is an edge e from v to w such that δ(e) is explicit}.
For each v ∈ Vω, let φ(v) be the φ-class of v and let

• Eφ(v),0 be the set of edges e ∈ E(Γ) such that ω(e) ∈ φ(v) and δ(e) is explicit
(and so also α(e) ∈ φ(v));

• Ev,ω be the set of edges e ∈ E(Γ) such that ω(e) = v and δ(e) is non-explicit.
Let Φ be a φ-class such that EΦ,0 is non-empty and select a vertex vΦ ∈ Φ. Let mΦ be

the maximal length of labels of undirected paths, having no repeated edges, consisting
of edges of EΦ,0. Since δ(vΦ) is non-explicit, there is a factorization

(10) qD(δ(vΦ)) = zΦsvΦ

where svΦ is a word of length mΦ and zΦ ∈ ΩAD is a non-explicit operation. Let v ∈ Φ.
Select an undirected path from vΦ to v consisting of edges of EΦ,0 with minimal length
of labels. Let h be the label of this path and put sv = svΦh. Since the length of h is at
most mΦ, and since the action h on svΦ is defined, sv belongs to A∗. By consistency of
qD ◦ δ, we have

qD(δ(v)) = zΦsv.

Moreover, for every edge e ∈ Ev,ω,

(11) qD(δ(e)) = qD(δ(v)) = zΦsv.

Now, we deduce from Lemma 2.5 the existence of non-explicit operations πΦ, ρv and ρe

such that

δ(v) = ρv · πΦ · sv,(12)
δ(e) = ρe · πΦ · sv for any edge e ∈ Ev,ω.(13)

Notice that for a vertex v ∈ Vω, if Eφ(v),0 is the empty set, then φ(v) = {v} and
factorizations (12) and (13) can be deduced with sv the empty word.

Let us notice the following observation.

Lemma 5.2. For each vertex v ∈ Φ and each edge e ∈ Ev,ω, qD∨V(ρvΦ) = qD∨V(ρv) =
qD∨V(δ(α(e)) · ρe).

Proof. Let Pv be the undirected path e1, e2, . . . , en from vΦ to v used in the definition
of sv and let h be the label of this path, so that sv = svΦh. We prove the first equality
by induction on n. If n = 1, then e1 is either an edge from vΦ to v or from v to vΦ. In
the first case sv = svΦδ(e1) and, by (12) and the fact that qD∨V ◦ δ is consistent,

qD∨V(ρvΦπΦsvΦδ(e1)) = qD∨V(ρvπΦsv).

Therefore, qD∨V(ρvΦπΦsvΦδ(e1)) = qD∨V(ρvπΦsvΦδ(e1)). Hence, since V satisfies pro-
perty (Cr), we deduce that qD∨V(ρvΦ) = qD∨V(ρv). The second case is symmetric.
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Let now n > 1 and assume by induction hypothesis that the lemma is true for all
vertices v′ for which Pv′ has n − 1 edges. Let v′ be the end vertex of the undirected
path e1, e2, . . . , en−1. We may assume that this path is Pv′ so that sv = sv′δ(en)ε,
where ε = 1 if the edge α(en) = v′ and ε = −1 otherwise. By induction hypothesis
qD∨V(ρvΦ) = qD∨V(ρv′) and, as in the case n = 1, one can prove that qD∨V(ρv) =
qD∨V(ρv′). Therefore qD∨V(ρvΦ) = qD∨V(ρv). The first equality follows by induction.
The second equality follows from (12) and (13) and the facts that qD∨V ◦ δ is consistent
and V satisfies property (Cr). 2

Suppose now that the restriction of δ to EΦ,0 is not a commuting labelling. Then, by
Lemma 2.5 of [9], for any vertex v ∈ Φ, qD(δ(v)) = u−∞Φ vv for some words uΦ 6= 1 and
vv, with |vv| ≤ mΦ. In particular,

qD(δ(vΦ)) = zΦsvΦ = y−∞Φ svΦ

for a conjugate yΦ of uΦ, and, by Lemma 2.5, one can choose πΦ = yω
Φ . Let e ∈ EΦ,0 be

an edge such that
sα(e)δ(e) 6= sω(e).

Since qD(δ(α(e))δ(e)) = qD(δ(ω(e)), we deduce that qD(yω
Φsα(e)δ(e)) = qD(yω

Φsω(e)).
That is,

(14) y−∞Φ sα(e)δ(e) = y−∞Φ sω(e).

By definition of the words sα(e) and sω(e) (by paths with minimal lengths of labels) one
deduces that |δ(e)| < |sω(e)| < |sα(e)δ(e)|. Therefore, (14) implies that

(15) sω(e) = xδ(e) and sα(e) = zx

for some words x, z ∈ A+. Moreover, by cancelling sω(e), we have y−∞Φ z = y−∞Φ which
implies that z = y k

Φ for some integer k. Now, by consistency of qD∨V ◦ δ,

qD∨V(ρα(e)y
ω
Φsα(e)δ(e)) = qD∨V(ρω(e)y

ω
Φsω(e)).

Hence, since V satisfies property (Cr), qD∨V(ρα(e)y
ω
Φy k

Φ) = qD∨V(ρω(e)y
ω
Φ), so that, by

Lemma 5.2, qD∨V(ρvΦyω
Φy k

Φ) = qD∨V(ρvΦyω
Φ), where vΦ is the representative of the φ-

class Φ. Let l ∈ N be the minimal integer such that qD∨V(ρvΦyω
Φy l

Φ) = qD∨V(ρvΦyω
Φ).

We may assume l = 1, since otherwise we could choose πΦ = (y l
Φ)ω. Therefore

(16) qD∨V(ρvΦyω
ΦyΦ) = qD∨V(ρvΦyω

Φ).

We extend graph Γ to a graph Γ1 and let γ1 and δ1 be respectively the extensions of
γ and δ to Γ1 as follows. For each φ-class Φ write πΦ = πΦ,1πΦ,2 with πΦ,2 non-explicit
(if the restriction of δ to EΦ,0 is not a commuting labelling, let πΦ,1 = πΦ,2 = yω

Φ). Then,
• there are two vertices wΦ,1 and wΦ,2, and an edge fΦ,1 (from wΦ,1 to wΦ,2) labelled

under δ1 by ρvΦπΦ,1, ρvΦπΦ and πΦ,2, respectively, where vΦ is the vertex fixed
in Φ ;

• for each vertex v ∈ Φ, there is a vertex wv and two edges fv,1 (from wv to wΦ,1)
and fv,2 (from wΦ,2 to v) labelled under δ1 by ρv, πΦ,1 and sv, respectively.

• for each edge e ∈ Ev,ω with v ∈ Φ, there is an edge fe (from α(e) to wΦ,1) labelled
under δ1 by ρeπΦ,1.

• if the restriction of δ to EΦ,0 is not a commuting labelling, there is an edge fΦ,2

(from wΦ,2 to wΦ,2) labelled under δ1 by yΦ;
• for each element g ∈ Γ1 \ Γ, γ1(g) = ψ(δ1(g)).

By construction ψ ◦ δ1 = γ1. On the other hand, by Lemma 5.2,

qD∨V(ρv) = qD∨V(ρv′) = qD∨V(δ(α(e)) · ρe)

for each vertex v ∈ Vω, each v′ ∈ φ(v) and each e ∈ Ev,ω. Therefore, as qD∨V ◦ δ is
consistent, we deduce from (12), (13) and (16) that qD∨V◦δ1 is consistent. In particular,
qV ◦ δ1 is consistent. Therefore, since V is σ-reducible there exists a labelling δ′1 of Γ1
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by Ωσ
AS such that ψ ◦ δ′1 = γ1 and pV ◦ δ′1 is consistent. Moreover, by Lemma 2.3, we

may assume that δ′1(fΦ,1) is non-explicit for every φ-class Φ and that δ′1(g) = δ1(g) for
every g ∈ Γ1 such that δ1(g) is explicit. In particular, δ′1(g) = δ(g) for every g ∈ Γ such
that δ(g) is explicit.

We define δ′ to be the labelling of Γ by Ωσ
AS as follows.

1) δ′ coincides with δ on vertices and edges labelled by explicit operations;
2) Let v ∈ Vω be a vertex such that the restriction of δ to Eφ(v),0 is a commuting

labelling. Let Φ = φ(v). In this case, the label of an undirected path consisting
of edges of EΦ,0 only depends on its initial and terminal vertices. Therefore,
sα(e)δ(e) = sω(e) for each edge e ∈ EΦ,0. In this case, we define

δ′(v) = δ′1(wv)δ′1(fv,1)δ
′
1(fΦ,1)δ′1(fv,2) = δ′1(wv)δ′1(fv,1)δ

′
1(fΦ,1)sv.

Moreover, for each edge e ∈ Ev,ω, let δ′(e) = δ′1(fe)δ
′
1(fΦ,1)sv.

3) Let now v ∈ Vω be a vertex such that the restriction of δ to Eφ(v),0 is not a
commuting labelling. Let Φ = φ(v). In this case, there is an edge fΦ,2 in Γ1

(from wΦ,2 to wΦ,2) labelled under δ1 by the explicit operation yΦ. Therefore,
δ′1(fΦ,2) = yΦ and, since fΦ,2 is a loop in vertex wΦ,2 and pV ◦ δ′1 is consistent, V
satisfies

(17) δ′1(wΦ,2) = δ′1(wΦ,2)yΦ = δ′1(wΦ,2)yn
Φ

for every positive integer n. Let l be an integer such that S satisfies y l
Φ =

yω
Φ and let z = y l

Φ. Let now %(a1, . . . , ar) be a non-explicit element of the
implicit signature σ and let (wi(a1, . . . , ar))i be a sequence of explicit operations
converging to %(a1, . . . , ar). Then (wi(z, . . . , z))i is a sequence which converges
to the non-explicit σ-term %(z, . . . , z) which we denote by tΦ. Notice that

(18) ψ(tΦ) = ψ(yω
Φ) and pD(tΦ) = pD(yω

Φ).

We define

δ′(v) = δ′1(wv)δ′1(fv,1)δ
′
1(fΦ,1)tΦδ′1(fv,2) = δ′1(wv)δ′1(fv,1)δ

′
1(fΦ,1)tΦsv.

Moreover, for each edge e ∈ Ev,ω, let δ′(e) = δ′1(fe)δ
′
1(fΦ,1)tΦsv. Notice that

ψ(δ′1(fΦ,1)tΦ) =
= ψ(δ′1(fΦ,1))ψ(tΦ)
= ψ(yω

Φ)ψ(yω
Φ)

since ψ ◦ δ′1 = ψ ◦ δ1, δ1(fΦ,1) = πΦ,1 = yω
Φ and by (18)

= ψ(yω
Φ)

= ψ(δ′1(fΦ,1)).

Therefore ψ ◦ δ′(v) = γ(v), ψ ◦ δ′(e) = γ(e) and, by (18) and since tΦ is non-
explicit,

(19) pD(δ′(v)) = pD(δ′(e)) = pD(tΦsv) = pD(yω
Φsv)

for every edge e ∈ Ev,ω.

By construction, it is clear that δ′ is a labelling of Γ by Ωσ
AS such that ψ ◦ δ′ = γ and,

since pV ◦ δ′1 is consistent, that pV ◦ δ′ is consistent. Let us now show that pD ◦ δ′ is also
consistent. Indeed, it is clear that the equality pD(δ′(α(e))) · pD(δ′(e)) = pD(δ′(ω(e)))
holds for edges e such that δ(e) is non-explicit or such that δ(ω(e)) is explicit. Let
now e be an edge such that δ(e) is explicit and ω(e) ∈ Vω. Then α(e) ∈ Vω and
φ(α(e)) = φ(ω(e)). Let Φ = φ(α(e)). If sα(e)δ(e) = sω(e), then it is also clear that the
equality above holds. If sα(e)δ(e) 6= sω(e), then the restriction of δ to Eφ(v),0 is not a
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commuting labelling. Moreover, by (15) and the arguments following it, sω(e) = xδ(e)
and sα(e) = y k

Φx with x ∈ A+ and k ∈ N. Then

pD(δ′(α(e))) · pD(δ′(e)) =
= pD(yω

Φsα(e)δ(e)) by (19) and since δ′(e) = δ(e)
= pD(yω

Φy k
Φxδ(e))

= pD(yω
Φsω(e)) since D satisfies the pseudoidentity xωx = xω

= pD(δ′(ω(e))) again by (19).

This proves that pD ◦ δ′ is consistent. As pV ◦ δ′ is also consistent, we deduce that
pD∨V ◦ δ′1 is consistent. This concludes the proof of the theorem. 2

As a consequence of this theorem, we deduce that σ-tameness is preserved under joins
with D for pseudovarieties satisfying (Cr).

Corollary 5.3. If V is a pseudovariety satisfying (Cr) which is tame with respect to a
non-trivial implicit signature σ and the σ-word problem for D is decidable, then D∨V is
also σ-tame. In particular, D∨V is κ-tame for every κ-tame pseudovariety V satisfying
(Cr). 2

So, for instance, D ∨G, D ∨Ab and D ∨ J are κ-tame.
Since LI = K ∨D, we deduce from the results of Section 3 that the results of this

section hold with D replaced by LI.
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