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Abstract

In this paper, we exhibit an infinite basis of w-identities for the w-variety generated
by the pseudovariety LS|, of semigroups which are locally semilattices, and we show
that this w-variety is not finitely based.
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1 Introduction

This paper is concerned with a problem involving the pseudovariety LSI of all
finite semigroups which are locally semilattices, that is, semigroups S such
that eSe is an idempotent and commutative semigroup for all idempotents
e € S. This pseudovariety corresponds, in Eilenberg’s correspondence, to the
well known variety of locally testable languages, as shown independently by
Brzozowski and Simon [5] and McNaughton [9]. Recall that a language L is
locally testable if membership of a given word u in L can be decided by con-
sidering the factors of a fixed length £ of u and its prefix and suffix of length
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k — 1. In terms of automata, this corresponds to finite automata equipped
with a “sliding” window of size k£ through which the word is scanned. This
special kind of automata, called scanners, is considered as a model for compu-
tations that require only “local” information. The concept of locally testable
semigroup is similar and was introduced by Zalcstein in [10]. A semigroup S
is locally testable if there is a positive integer k such that, whenever two words
over the alphabet S have the same factors of length £ and the same prefix and
suffix of length k£ — 1, the products in S determined by these words are equal.
Also in [10], Zalcstein proved that a language is locally testable if and only
if its syntactic semigroup is locally testable. So, the class of locally testable
semigroups is precisely the pseudovariety LSI.

An w-term is a term obtained from letters of an alphabet A using the binary
concatenation, (z,y) — z-y, and the unary w-power, x — z*. An w-semigroup
is an algebra over the signature {_- _, “}. Each finite semigroup has a natural
interpretation as an w-semigroup, by interpreting concatenation as the semi-
group multiplication and s¥ as the unique idempotent of the subsemigroup
generated by s. For a pseudovariety V, let V¥ be the variety of w-semigroups
generated by V. The free w-semigroup generated by A in the variety V¥ is de-
noted by 4V and its elements are called w-terms over V. In [3], Almeida and
Steinberg showed that detailed knowledge of these w-semigroups is sufficient
to get important results about V.

An w-identity is a formal equality u = v of w-terms. By Birkhoff’s theorem,
the variety V¥ is defined by w-identities. The problem of finding a basis of
w-identities for V¥ (and so for Q4V) has received some attention lately, since
it is intimately connected with the w-word problem for V, that is, the problem
of determining whether two w-terms represent the same element of 24V. The
case of the pseudovariety J of all J-trivial semigroups, solved by Almeida in [1],
constitutes an important example. Another remarkable example, which plays
an important role on the Krohn-Rhodes complexity problem, is given by the
pseudovariety A of all aperiodic semigroups. A basis for A was discovered by
McCammond [8]. More recently, Almeida and Zeitoun [4] found a basis for
R¥, where R is the pseudovariety of R-trivial semigroups. In this paper, we
exhibit a basis of w-identities for LSI”. Although this basis is not used to solve
the w-word problem for LSI, which was already described by the first author
in [6], the work presented here throws a new light on the subject.

The results obtained in this paper are mainly combinatorial. We describe a
normal form for w-terms of rank 1, which is close to that given by McCam-
mond [8] for A. Contrary to the case of A, this normal form is not unique for
LSl in general. However, which is not totally surprising in view of the definition
of locally testable languages and semigroups, the equality of two such terms
depends only on the equality of their prefixes and suffixes involving a unique
w-power and on the equality of the factors involving two w-powers (which we



call 2-factors). So, the techniques involved in the proofs are designed to deal
with the combinatorics on these 2-factors.

2 Preliminaries

In this section, we briefly recall notation and basic definitions and results.
For general background about combinatorics on words and pseudovarieties of
semigroups, the reader is referred to [7,2].

2.1 Words

Throughout this paper, A denotes a finite non-empty set, called an alphabet.
The free semigroup (resp. the free monoid) generated by A is denoted by A
(resp. by A*). The length of a word w € A* is denoted by |w|. The empty
word is denoted by 1. A word w € A* is a prefix (resp. a suffiz, a factor) of a
word z € A* if there exist words x,y € A* such that z = wy (resp. z = 2w,
z = zwy).

The following result is known as Fine and Wilf’s Theorem (see [7]).

Proposition 2.1 Let u,v € AT. If two powers u* and v™ of u and v have a
common prefix (resp. suffix) of length at least |u| + |v| — gcd(|ul, |v|), then u
and v are powers of the same word.

A word w € A" is said to be primitive if it is not a power of another word;
that is, if w = u" for some u € AT and n > 1, then w = u (and n = 1).
Two words w and z are said to be conjugate if there exist words u,v € A*
such that w = wv and z = vu. We notice that, if w is a primitive word and
z is a conjugate of w, then z is also primitive. Let a total order be fixed for
the letters of the alphabet A. A Lyndon word is a primitive word which is
minimal, with respect to the lexicographic ordering, in its conjugation class.

2.2  Pseudovarieties, w-terms and w-identities

A semigroup pseudovariety is a class V of finite semigroups closed under taking
subsemigroups, homomorphic images and finite direct products. We denote by
S the pseudovariety of all finite semigroups.

The variety V¥ is the Birkhoff variety generated by all structures (S,_- _, “),
where (S,_-_) is a finite semigroup of V and where s* is interpreted as the



only idempotent power of s € S. For a given alphabet A, we denote by Q4V
the V-free w-semigroup over A. Elements of 24V are called w-terms over V.

An w-identity is a pair (u, v) of w-terms over S, and is usually denoted by u = v.
A finite semigroup S satisfies an w-identity m = p if, for every homomorphism
© : Q4S—5, p(m) = ¢(p). A class C of finite semigroups satisfies an w-
identity m = p, and we write C' |= 1 = p, if every element of C satisfies it. It
is well known that LSl is defined by the two w-identities x“yx“yx* = a“yx*”
and x¥yx¥zx® = x¥zaxyx®, in the sense that LS| is the class of all finite
semigroups that satisfy these w-identities. Notice also that A is defined by
¥ = z¥r = xx¥, and that LSl is a subpseudovariety of A.

3 The w-word problem for LSI

In this section we briefly recall the solution of the w-word problem for LSI
obtained by the first author [6].

A term of rank 0 is an w-term not involving the w-power. A term of rank 1 is
an w-term 7 of the form

T = UpXT UL Xy - - - Toty, (3.1)
with n > 1, ug,...,u, € A* and x1,...,2, € A". For an integer 1 < ¢ < n,
an (-factor of 7 is any subterm of 7 of the type

(i, 04+ 0 — 1) = x7ux - 2704
with i + ¢ — 1 < n. We denote by F,(m) the set of (-factors of 7.

Definition 3.1 (normal w-term) A normal w-term is a rank 1 term of the
form (3.1) where:

(1) each x; is a Lyndon word;
(2) x is not a suffic of ug;
(3) x, is not a prefiz of u,;
(4) if x“yx* is a 2-factor of w, then x*yx* has exactly one occurrence in 7;
(5) each 2-factor x*uy” of m verifies the three following conditions:
(a) u is not a prefix of x7 for any integer j;
(b) w is not a suffir of y? for any integer j;
(c) if u = 2/u' or u = u'y’ for some integer j > 1, then x*u'y* fails at
least (a) or (b).
We notice that this normal form for 2-factors was defined by McCammond
in [8]. His construction of these normal forms is used in the fifth step of
the proof of Theorem 4.3 below.



We will be particularly interested in normal w-terms of the form

w

_ w w
T = x1u1x2 "'I’n.

A term of this type will be called a reduced w-term, and the number n will be
called the w-length of 7 and denoted by |r|,. In this case the ¢-factor m(1, /)
(resp. m(n—{+1,n)) is called the (-prefiz (resp. the ¢-suffiz) of m. An (-factor
v of 7 is said to occur in position i when v = 7(i,i + ¢ — 1). Of course an
(-factor may occur in different positions. For instance, the 2-factor a”aab(ab)”
of the reduced term

7 = (aab)”aabb(ab)*ba” aab(ab)”abaaa®bba® aab(ab)” (3.2)

has two occurrences in 7, in positions 3 and 6. Moreover, it is a 2-suffix of .
The number of occurrences of an ¢-factor v in 7 will be denoted by occ(~, 7).

The following property, over LSI, of w-terms with non-null rank, permits to
reduce the w-word problem for LS| to identities involving only w-terms of rank
at most 1.

Lemma 3.2 If 7w € Q4S\ A*, then LS| = 7% = 72,

Proof.  We can write 7 = uv“w for some w-terms u, v and w, with u and
w possibly empty. Then, since LSI satisfies the w-identity x*yz“yx® = x¥yx*,
we have that LS| verifies

(7%)? = (w*w)* = (w*w)? = 72

This shows that 72 is idempotent over LSI, whence LS| 7 = 72 ]

Notice now that, if an w-identity = = p holds in LSI, then either 7 and p are
the same finite word or they both are not words. Therefore, on the w-word
problem for LSI it suffices to consider w-identities involving w-terms of rank
at least 1. The following characterization of the w-identities satisfied by LSl is
a simple reformulation of [6, Theorem 7.1].

Proposition 3.3 Let m € Q4S \ A" be an w-term. Then, there is a normal
w-term © = ugx{uixy - - - v¥u, such that LS| satisfies m = 7'.

Moreover, if p € Q4S5 \ AT is another w-term and p' = voy{v1yy -« - Y= vy 08
a normal w-term which is equal to p over LS|, then LS| satisfies m = p if and
only if

i) uoxf = voyy;
i) LU, = YL Vs
iin) Fo(m') = Fy(p') (i.e., " and p' have the same 2-factors).



Furthermore, it is effectively decidable whether LS| satisfies m = p.

Of course (its a consequence of the previous proposition), an w-term 7 from
04S \ AT may be equal to more than one normal w-term over LSI. How-
ever, we illustrate in the next example a procedure (described in the proof of
Theorem 4.3 below, in another context) which, as one can convince himself,
is convergent in the sense that departing from 7 it produces a unique such
normal w-term 7’

Example 3.4 Consider the w-term
= b(babbab)*ba (a”)*b(ab)*aba) " (ba)“baa

and assume that a < b. The pseudovariety LS| verifies the following w-identities

= b((bab)2>wba((a5)“’b(ab)‘“aba>Z(ba)‘“baa by Lemma 3.2
= b(bab)*baa”b(ab)”abaa“b(ab)”aba(ba)“baa as LSl = (27)¥ = av
= bbab(bab)“baa”b(ab)”abaa”b(ab)*aba(ba)“baa as LS| = 2% = za¥
= bb(abb)¥abbaa”b(ab)*abaa“b(ab)”ab(ab)“abaa as LS| E z(yx)* = (zy)“x
= bb(abb)“abbaa®’b(ab)”abaa’b(ab)”ab(ab)“a as LSl | a¥ = z¥z
= bb(abb)“abbaa’b(ab)”abaa“b(ab)“a as LSl | ¥z = a¥ = a¥z¥
= bb(abb)®abbaaa® aab(ab)”abaaa®aab(ab)’aa  as LS| = 2% = a¥z = xa®.

Then, @' = bb(abb)®abbaaa”aab(ab)®abaaa“aab(ab)”aa since this w-term is
already in normal form.

A normal term p is said to be a 2-permutation of a normal term 7, when 7w
and p are equal over LS| and they have the same number of occurrences of
each 2-factor. For instance,

p = (aab)®aabb(ab)®abaaa“bba” aab(ab)”ba® aab(ab)”
is a 2-permutation of the normal term 7 in (3.2). Evidently, two normal terms
need not to be 2-permutations one of the other to be equal over LSI. An

example of this fact is given by

a“bc”ab’ac’ba” and a*bc’ba”be’ ab® ac’ba” .



4 The w-variety generated by LSI

In this section, we study bases of w-identities for the w-variety LSI¥ generated
by the pseudovariety LSI. In Subsection 4.1, we introduce one such basis X
and show that there is not a finite one. The proof that ¥ is indeed a basis is
completed in Subsections 4.2 and 4.3.

4.1 The basis X

Let ¥ be the following set of w-identities:

(") = a®, r>2
¥ =¥,
¥ = vt

(X) 4 (ey)*z

S o i
SN N S SN SOOI R

(4.1)
(4.2)
(4.3)
= z(yz)”, (4.4)
(4.5)
(4.6)
(4.7)

¥yrtza” = x¥zx¥yx”,
where 2% denotes either 2%z or zz*. Notice that ¥z = za* is a consequence
of identities (4.1) and (4.4). Indeed, from them we derive

w

= (xx)’r = x(zx)” = xa®.

The notation Y = v = v will be used to indicate that the w-identity u = v is
provable from X.

Fact 4.1 By (4.3) and (4.4), we have that ¥ F (xy)* = xy(zy)” = z(yzr)“y.
It is important to refer the following three other w-identities which are conse-

quences of X..

Lemma 4.2 The set X implies the following w-identities.

(x“)” = a“, (4.8)
yx ety = ayr’za?, (4.9)
1Yy zn 2y = 123y a2y (4.10)

Proof.  The w-identity (4.8) is a consequence of (4.2) and (4.5). Indeed,
from these w-identities we may deduce that

(xw)w (xwxwxw)w (l,wl,wxw)2 Pl



Now, from (4.7) and (4.6) we obtain w-identity (4.9) as follows
yr? zayx”? = ayx¥yrt za® = x¥ya” za”.

Finally, we have that (where we underline the w-powers which are used to
derive the next term)

Y E a2y mx 2y = ¥ 21y 200 23yY 202 23y” by (4.6)
= 1¥23Y* 2a¥ 21y 20x 23y~ by (4.7)

= 2% 23" 200" 23y 202 21y by (4.7)

(4.6)

= %23y~ 200 21Y* by
which establishes (4.10). u

In this section, we prove the main result of the paper.

Theorem 4.3 1) The set ¥ is a basis of w-identities for LSI”.
2) The w-variety LSI” has no finite basis of w-identities.

Proof.  For the proof of 2), it suffices to follow step by step the proof of [4,
Theorem 5.2 (2)], where Almeida and Zeitoun show that R“ is not finitely
based. We will include it here only for the sake of completeness. By equational
completeness, and assuming 1), it suffices to prove that no finite subset of X
defines the variety LSI”. For each positive integer, let S, be the semigroup
presented by

S,=(a,e,f:a? =1, ea=ef =e*=¢, fa= fe= f*= ],
ae =e, af = f).

This semigroup has p+2 elements and is realized for instance as the semigroup
of transformations of the set {1,...,p,p+1,p+ 2}, where a acts on {1,...,p}
as the cycle (1, ..., p) and fixes the other two points, and e and f are constant
maps, respectively with values p + 1 and p + 2. Let 7 be the unary operation
defined on S, by

Te)=e, 7(f)=f, 7(1) =e¢, 7(a") = f (k€ Z\ pZ),

which determines a unary semigroup 8, = (5,, -, 7). Note that 7(a?) = 7(1) =
e # f = 7(a) and so §, does not satisfy the identity (2?)* = z*. Now it is
simply a matter of routine to verify that 8, verifies the identities (4.2)-(4.7)
and (4.1) for r relatively prime with p, which completes the proof of statement

2).



For 1), we have to prove that, for all w-terms m, p € Q4S,
LSIEm=p ifandonlyif X+ 7 =p.

To prove the only if part, it suffices to notice that LSl = 3. Indeed, w-
identities (4.1), (4.2) and (4.4) are verified by any finite semigroup. On the
other hand, LSl is aperiodic and is defined by the w-identities (4.6) and (4.7).
Therefore it satisfies (4.3), (4.6) and (4.7). Finally, it follows immediately from
Lemma 3.2 that (4.5) is valid in LSI.

We now show that, given an w-term a € Q4S\ AT, ¥ F a = ' for some
normal w-term o € Q4S. The following procedure to compute one such term
o’ consists in 6 steps (see Example 3.4 for an illustration of this algorithm).
The term obtained after the jth step will be denoted by «;, and o’ = «ag. First,
as in the proof of (4.8), using w-identities (4.5) and (4.2) if necessary, we derive
from « an w-term «; of rank 1. Then, with the application of (4.1) one gets a
rank 1 w-term s whose 1-factors x* are all such that x is a primitive word.
Next, by Fact 4.1, we deduce from as a rank 1 w-term ag of the form

a3 = UpTiU Ty - - T

nun

where xq,...,x, are Lyndon words. This term satisfies condition (1) of the
definition of normal term (Definition 3.1), and the remaining steps of reduction
will not change this situation. In step 4, we apply identity (4.3) to cancel from
ug the greatest power of x; which is a suffix of ugy, and to cancel from u,, the
greatest power of x, which is a prefix of w,. The resulting term «, satisfies
conditions (2) and (3) of Definition 3.1.

After the fifth step, applied to term g, all 2-factors will be in normal form.
First, we apply w-identities (4.3) and (4.2) to eliminate 2-factors of the form
2¥x/z*, where j > 0. Next, let 3 = a¥uy” be a 2-factor of the resulting
term and let j,k > 1 be the smallest integers such that |27| > |z] + |y| and
|y*| > |z|+|y|. The term 3, = x*2/uy*y* is a consequence of (4.3). Moreover,
since 3 is not of the form z*z72¥, we claim that Proposition 2.1 guarantees
that (; satisfies conditions (a) and (b) of Definition 3.1. Indeed, suppose for
instance that (a) is not verified. Then z7uy® is a prefix of a power of , whence
wy” also is. Hence y* is a factor of a power of z, so that y* is a prefix of some
power zP of some conjugate z of . Therefore, since |z| = |z| and |y*| > |2|+|y|,
y* and z? have a common prefix of length at least |y|+ |z| — ged(|y], |2|). Then,
Proposition 2.1 implies that y and z are powers of the same word. As y and
z are both primitive, it follows that they are the same word so that z is a
Lyndon word. Since z is a conjugate of z and they are both Lyndon words,
we deduce that © = z and, whence, that x = y. Therefore uz® is a prefix of
a power of z. Now, the fact that x is a primitive word implies that u = z* is
a power of z since, otherwise, we would have x = rs = sr for some r,s € A™
and, as a consequence, v = tP, s = t¢ and x = t**? for some t € AT and



p,q > 1. We conclude that # = z*z‘2*, which contradicts our assumptions
and proves the claim.

We now apply (4.3) to cancel from z/uy* any prefix 2* and any suffix y™ which
preserve properties (a) and (b). The resulting term (5 is in normal form, that
is, it satisfies conditions (), (b) and (¢). The term a5 is obtained by replacing
each such 2-factor § by (. The term «s clearly verifies conditions (1)-(3)
and (5) of Definition 3.1.

Finally, we apply w-identity (4.9) to eliminate in «j all occurrences, except
one (say the leftmost one), of each 2-factor of the form x“uxz®. The resulting
w-term g is in normal form and, taking o = ag, we have that X F o = /.

Therefore, to complete the proof of the theorem it suffices to prove that, for
all w-terms 7 and p in normal form,

LSlEn=p = Xkrn=np. (4.11)

This will be done in the remaining of this section. [ |

Recall that, if 7 = upr{ui2§ - - - x%u, and p = voysv1y5 - - - Yo, Uy, are w-terms
in normal form such that LS| satisfies m = p, then, by Proposition 3.3, upzy =
VoY, TEu, = y¥ v, and m and p have the same 2-factors. In particular uy = vy,
T1 = Y1, Tn, = Ym and u, = vy, and LS| verifies xfu 2% - - - 2% = ySu195 - - -y
We may therefore assume in (4.11), without loss of generality, that 7 and p
are reduced w-terms
T=a{was T, p=Yruys Y,

with 1 = y; and z,, = y,,,. More formally, to establish Theorem 4.3 it remains
to prove the following result.

Theorem 4.4 Let m and p be two reduced w-terms such that LS| verifies the
w-identity m = p. Then the w-identity m = p is a consequence of 3.

4.2 Intermediate results

In Subsection 4.3 below, it will be shown that the equality over LS| of two
w-terms 7w and p is characterized by the equality over LS| of certain subterms
(which we call “blocks”) of m and p. Therefore, the proof of Theorem 4.4
will be reduced to blocks. In the present subsection, we prove some technical
intermediate results. Informally speaking, the general idea of the algorithm is
to derive (under certain conditions, which are verified by blocks) from given
w-terms 7 and p such that LS| = 71 = p, new w-terms 7" and p’ with an equal

10



prefix « of sufficiently large w-length and then to cancel the suffixes. This way,
we are able to pass from 7 to p (1 — 7’ — o — p — p) using the w-identities
from ¥, which shows that ¥ - 7 = p.

We begin by showing that p can be reduced to a new w-term with an equal
2-prefix of 7.

w

Proposition 4.5 Let 1 = a{uix8 - - x¥

w-terms such that LS| =7 = p.

and p = yYv1ys - -y be reduced

i) If n <2, then ™ = p.
it) If n > 2, then there ezists a 2-permutation py of p such that X+ p = p;
and x{uyxy is the 2-prefic (resp. x%_ju, 12 is the 2-suffix) of p1.

Proof. If n =1, then 7 = 2 and it does not have 2-factors. Therefore,
since LS| = 7 = p, p does not have 2-factors too, which means that m = 1,
and so p = yy = 2 = w. Suppose now that n = 2 so that 7 = zYu 25. If
1 # g, it is clear that p coincides with 7 since they both have the unique
2-factor au zy. If 1 = 9, then p also coincides with 7 since, by definition
of reduced form, z{u;2¢ has only one occurrence in p. This proves i).

We prove statement i) in the prefix case. The suffix case is proved symmet-
rically. Let n > 2, so that also m > 2. Since x1 = yq, if v; = uy and Yy, = 9,
then we take p; = p. Otherwise, since LS| = m = p, the 2-factor z{u 24 of 7 is
also a 2-factor of p and the 2-factor x5v,y5 of p is also a 2-factor of . Suppose
that they have occurrences at position 7 in p and j in 7, respectively. Then
i,7 # 1 and 7 and p are of the form (where 7’ and p’ are, possibly empty,
w-terms)

J— w w w w W !

— /
p=TT01Ys Y Vi T U TS P

If j = 2, then x5 = x1. In this case,

p=rivys -y vzt p’ (4.12)

and we take p; = x{uixfviyy - -y vim12$p’. Hence p; and m have the same
2-prefix afu 2y, and ¥ F p = p; by (4.7). Assume now that j > 2. We will
define an iterative process which will produce the desired w-term p; in at most
7 — 2 steps.

Step 1. Since z5uqxy is a 2-factor of 7, it occurs in p, say in position k;. If
ki1 =1, then z; = x5 and this case was treated above (p is of form (4.12)). If

1 < ky < i, since x4 occurs in position ki, then p can be factored as (where
ap and ap are w-terms)

w

11



We then take p; = z4¥uia§aozaixy p’, which is a consequence of (4.10) and
so of Y.

Notice that k; can not be equal to ¢. Indeed, k1 = ¢ would imply that
{urxy = xugxy, and so x1 = x9 = x3 and u; = uy which is not possible
since 7 is in reduced form.

Suppose now that k; > ¢. Then 2§ occurs in p in a position greater than
v+ 1.

Step ¢ (with 1 < /¢ < j—2). In step ¢ we consider the 2-factor x, jus1 127, ,
of m and suppose that it occurs in p in position k. For each p < ¢, we assume
that k£, > ¢, which means that z,,, has an occurrence in p in a position
greater than 7 + 1.

If k, =1 or ky = i, then 7 = z4;. Since we are assuming, from step
p={—1, that 27 | has an occurrence in p in a position greater than i + 1,
then p is of the form (where a3z may be empty)

p = riaqrur s asras. (4.13)

In this case we consider p; = x4u12% asxy 12 ag, which clearly satisfies the
properties of the statement.

Suppose now that 1 < k; < 7. Then
w
1

p=1

w w w w
Oél$z+1042$71’u/11’2 063$£+1Ck4.

We then take py = 2{u125asxy, pxf a2y, a4, which as above has the
desired form.

Suppose at last that k, > 2. We assume at this point that we reached
the last step, that is, we assume that ¢ = j — 2. Then ¢/ 4+ 2 = j and
TP U1 T e = 25 _qujqxy, which is equal to x5_ju; 127 and occurs in p in
a position > 7. In particular z{ occurs after position 7 + 1 and therefore p
is of the form (4.13) and p; is defined as in that case.

Notice that since the only w-identities used to derive p; from p were (4.7)
and (4.10), which do not transform the 2-factors and do not change their
number of occurrences, p; is a 2-permutation of p. This concludes the proof
of the proposition. [ ]

Under certain conditions, one can apply repeatedly Proposition 4.5 to obtain
equal prefixes with a greater w-length.
Proposition 4.6 Let m1 = z{uizs ---2¥ and p = yyv1ys - - - yw be reduced
w-terms such that LS| = © = p. For each 1 < r < n, denote by o, =
xfurzy - - x¥ the r-prefiz of w. For a fivred 1 < < n, suppose that the follow-
ing condition

(Cy) Yy € Fy(ay—1), either occ(y, ) = occ(7, p),

or OCC(’% 7T>7 OCC(’% p) > OCC(’% O{g_1>
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is verified. Then there exists a 2-permutation p,—y of p of the form pe_1 = ayp;
such that X+ p = ps_1.

Proof. @ We prove the result by induction on ¢. The case ¢{ = 2 is an im-
mediate consequence of Proposition 4.5. Let now 2 < ¢ < n and suppose
that (Cy) is verified. Then it is clear that (Cy_1) is also verified. Suppose, by
induction hypothesis, that the result is valid for /—1, whence there exists a
2-permutation p;_o = ay_1py_; of p such that

YEp=pio. (4.14)

Then LSI = py_s = p = 7 and therefore, by Proposition 3.3, 7, p and py_s have
the same 2-factors. Since p;_o is a 2-permutation of p, p and p,—_» have the
same number of occurrences of each 2-factor (whence, in particular, |ps_2|, =
|p|l. = m). Therefore, it follows from the hypotheses that, for each 2-factor v of
ay_1, either occ(y, ) = occ(y, pr—a), or occ(7y, ), occ(y, pe—2) > occ(y, ap—1).
In both cases, we deduce that

LSl = w(0—1,n) = 2 jue_yzy -+ 22 = a5 ph_y.

Indeed, 0 = w({—1,n) = 2z} w12y - 22 and 7 = 27 ,p;_, have the

same 1-prefix, the same 1-suffix and the same 2-factors (which are precisely
the 2-factors of = and p, except those v such that occ(vy,7) = occ(v,p) =

occ(y, ap_1)).

Therefore, applying Proposition 4.5 to the w-terms o and 7, we obtain a 2-
permutation 7 = x§_jup_1257" of 7 such that

ST =m1. (4.15)
It follows that
Sk p=pes by (4.14)
= 1), by definition of p,_o
=ay T GUup_2xY Py by definition of ay_;
=ay - xf qup_oT by definition of 7
=Y ay yup_oT by (4.15)

=y xf gup_oxy qup_1xyT by definition of 7

=ap 1 by definition of «y.

We then take p,_1 = ay 7/, which concludes the proof. [ ]

The next result is a simple corollary of the dual of Proposition 4.6 for suffixes,
and presents a sort of absorption law.
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Corollary 4.7 Let w be a reduced w-term of the form m = apx¥asz®. If each
2-factor of x“anx® has at least two occurrences in aqx®, then X F 1 = ajx¥.

Proof. A reduced w-term p is said to be 2-linear if each 2-factor has exactly
one occurrence in p. We prove first the result for the case where § = x¥asz® is
a 2-linear w-term. Then, for each 2-factor v of 3, occ(, f) = 1 < occ(7y, aa®).
Hence, since LS| = m = ayz* by the hypotheses, we deduce from the dual of
Proposition 4.6 that there exists an w-term of the form asx“asz® such that
Y F az¥ = azzasx®. Therefore,

YR =ox¥aa? by definition of 7
= a3r¥aar®apx® since X F ajz¥ = azr¥agx?
= azr’ax by w-identity (4.6)

= ¥ since X F ayx¥ = agr¥anr?,
which proves the result when z“asz® is 2-linear.
We now prove the general case. To show that
YE1=oa", (4.16)

it suffices to iterate the following procedure. If 2“asz* is 2-linear, then (4.16)
is already proved. Otherwise we choose any 2-linear subterm of x*asx® of the
form y“oy®, so that 7 = azy“oy“ay for some w-terms a3 and ay with ay
possibly empty. Since each 2-factor of y“oy“ has at least two occurrences in
azy”, we may apply the 2-linear case to eliminate the subterm oy*. We obtain
a reduced w-term m, X-equivalent to m, of the form m = aya¥alz®, where
||, < |azl,. Applying the same procedure to 7, and iterating it if necessary,
we eventually obtain, after a finite number of steps, the w-term a2, which
proves (4.16) and completes the proof of the corollary. [

4.8 Block factorization of a normal term

The objective of this subsection is to reduce Theorem 4.4 to the case where
7 and p are blocks (to be defined below). In this case, Proposition 4.6 may be
applied to obtain two w-terms n’ and p’ verifying the following conditions: 3
implies 7 = 7" and p = p/; #’ and p’ have the same “sufficiently large” prefix «;
the prefix « contains all the 2-factors of 7 (and p). We then use Corollary 4.7
to deduce that > implies m = a = p; and, as a consequence, to establish
Theorem 4.4.

A reduced term m = 2{us 2y - - -2 (n > 1) is said to be a block if either n = 2
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and x1 = x5, or n > 2 and
Vie{2,....n—1} I, re{l,...,n}, L <i<r, x/=ux,.

That is, 7 is a block if it can be “covered” by subterms of the form x“ax®.
Notice that, in particular, ¢ and z/ must have more than one occurrence in
.

The following property of blocks will be useful to show that Theorem 4.4 is
valid for blocks.

Lemma 4.8 Let m1 = x{wia§ ---x¥ be a block. There exists a block ©', -
equivalent to w, and a factorization ' = x4 1 x{ e such that every 2-factor of
7 (and 7') has at least one occurrence in a5 .

Proof.  Let ¢ be the greatest position of m containing an occurrence of x¥.
By definition of a block, z > 1 and so

w

W w w w w
™= .’131 ulxz R .’Ei_lui_llEl UI.CEZ_H A Z‘n

Let f(m) be the number of 2-factors of 7 which do not occur in the i-prefix
(i) = afuyxy - - - ¥ ju;_ 2y of . That is f(7) is the number of 2-factors that
fail to have the property desired for n’. The proof proceeds by induction on
k = f(m). If k = 0, there is nothing to prove. It suffices to take 7’ = 7 in this
case.

Suppose now that £ > 1 and assume, by induction hypothesis, that the result
holds for every block p with f(p) < k. Let p be the least position of m where
occurs a 2-factor which does not occur in 7(i). Then 2w,z | is the referred
2-factor and, obviously, i < p < n.

Consider first that p = 4. In this case xyu,zy | = x{u;z,, and, by definition
of a block, there exist ¢, € {1,...,n} such that x, = z,, where either (1)
¢ <i+1l<ror(2)¢<i+1=n=r. Notice that, asr > i, x, # x; by
definition of i, whence ¢ < i. Therefore 7 is of the form

o} bray Goxiuia?,  Baay fa in case (1)
m =
25 B1a, Foruiat,,  in case (2).
In the first case, we let
w w w w w w w w
T = 27 f1ay Poxf win sy Osxy o ui 'y By P
The w-identity @ = 7 is a consequence of ¥, since 7 is obtained from =

using w-identity (4.6). However m; is possibly not reduced since in z¥(x¥
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or in xy ;f3x¥ may occur 2-factors of the form y“vy“ and, therefore, they
appear two times in . It suffices, in that situation, to apply identity (4.9)
to eliminate the rightmost occurrence of each of those 2-factors. We obtain a
reduced w-term (a block to be more precise)

my = 2§ Bray Bor i Osy By wi?, \ B a,

which has an occurrence of #¢ to the right of an occurrence of x{u;z¥,; (and
of all the 2-factors of 7(i)). Therefore f(ms) < k. The case (2) can be treated
analogously and, so, the result for blocks 7 such that f(m) = k follows by
induction.

Let us now consider the case in which p > . By definition of p, the 2-factor
T, _qup—12y occurs in 7 in a position ¢ < i. To be more precise ¢ < i — 1 since
x, # x1. Therefore, ) occurs in position ¢+1 < 4 and 7 admits a factorization
of the form

T = 27 f10, (217 37 upTy s 1 B (4.17)
Since 7 is a block, there exist ¢,r € {1,...,n} such that z, = x,., where either
(<p+l<rorl<p+1=n=r Ilfz, =z, we proceed as above in the
case p = 4, using the occurrences of x,, in positions ¢ +1 <7 and r > p + 1,
to obtain a block my such that f(me) < k. The result for f(m) = k then
follows by the induction hypothesis. The case in which ¢ < ¢ can be treated
analogously, using the occurrences of x, in positions ¢ < ¢ and r > p + 1.
Hence, we may assume that z, # z,, whence ¢ < p, and that ¢ > i. Therefore,
the factorization (4.17) of m can be refined as follows (the case r = i+ 1 being
similar, we assume that r > i+ 1)

LW w w ! w Al W w ! w QN
T = 33151@@%53& 3357pup33p+1ﬁ4$7r 4-

Applying identity (4.10), we obtain a block
T2 = Y B up B B o' By B

such that f(my) < k. Then, the induction hypothesis implies the validity of
result in the case f(m) = k.

The lemma follows by induction. [ ]

We may now show that Theorem 4.4 is verified when 7 and p are blocks.

Proposition 4.9 If m and p are two blocks such that LS| = 7 = p, then
YEm=np.

Proof.  Suppose first that 7 has a unique 1-factor 2“. Since LS| =7 = p it

follows that x* is also the only 1-factor of p. In this case it is immediate that
Y F 7 = psince m = p is provable from w-identity (4.7).
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We now assume that 7 (and so also p) has at least two different 1-factors,
say ¥ and y* where x¥ is the l-prefix of 7 (and p). Let z¥ be the 1-suffix
of m (and p). From Lemma 4.8, there is a block m = z¥a32%as2¥ such that
Y7 =m and z*a;2* contains all the 2-factors of 7. In particular, y* and
2% are factors of a;. We apply w-identity (4.6) three times to derive from
a (possibly non-reduced) w-term 1y = (2*a;)*z*ay2*. The need of 4 copies
of x“ay should be clear by definition of the w-term 73 bellow obtained from
my. However we advance that: the prefix x“aj2“a 2 contains at least two
occurrences of each 2-factor, which will permit to apply Corollary 4.7 to m3;
the third copy of z“a; contains an occurrence of z*, which will appear as the
first distinguished occurrence in (4.18); the fourth copy permits to obtain an
extra occurrence of each 2-factor, which will guarantee that the total number
of occurrences of each 2-factor (not of the form v“uv*) in w3 will be greater
than the number of occurrences of that 2-factor in the prefix x“as2* of w3 and
which will permit to apply Proposition 4.6.

Now, using w-identity (4.9) in m to delete all except the leftmost occurrence
of each 2-factor of the form v“uv“, we obtain a reduced w-term 73 such that
Y Fm=m3 and

T3 = x%a32% a2 (4.18)

where:

i) LSI verifies the w-identity m3 = x“a32z* (which is equivalent to say that
each 2-factor of 73 occurs in z¥a3z%);
ii) each 2-factor of 73 occurs in z¥ayz* except those of the form v~ uv*;
iii) for each 2-factor v of z¥ayz%, occ(y, x“asz¥) > 2.

We notice that these conditions are indeed verified since the existence of the
1-factor y* guarantees the existence of 2-factors which are not of the form
vYuv®.

On the other hand, LSI = m = p by hypothesis. So, as above and applying,
if necessary, w-identities (4.6) and (4.9) a sufficiently large number of times,
we can find a reduced w-term p; such that > p = p; and, for each 2-factor
v of p1, occ(7y, p1) > occ(y,m3). In particular, for each 2-factor 7 of the form
v?uv®, occ(y, p1) = occ(y,m3) = 1. Therefore, since LS| = 13 = p;, we may
deduce from Proposition 4.6 a 2-permutation py of p;, of the form

po = x¥a32%asz”,
such that X F py = p1.
Now, by Corollary 4.7, ¥ F w3 = 2%a32¥ = po. Since the sequence of w-

identities m = m3 = py = p; = pis provable from X2, the proof of the proposition
is complete. [ ]
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We now introduce the block factorization of a normal w-term, which will al-
low to reduce Theorem 4.4 to blocks. Since we finished to solve that case in
Proposition 4.9, the general case will then be obtained. So, consider a normal
term

T = UpTTULTS * Ty Uy

If each 1-factor x% has exactly one occurrence in 7, then we define oy = 7.
Otherwise, let i1 be the least k € {1,...,m} such that = has at least two oc-
currences in 7, and define ag = uorfuy - - - 77 ui; 1. Now let j; be the great-
est k € {1y +1,...,m} such that = u; x5 | ---up_12f is a block, and define
T = XUy 5 4 - - ug 125 . Now, applying the same procedure to the subterm
p1 = ujlx;?1+1 s Uy, of m, we get subterms ap = ujlx;-”l+1uj1+1 C T Uiy
and Ty = T} u;,T; “Ujy 1T, We iterate this process until we get a,, = pn
in some step n + 1, where n > 0 and py = 7. Then 7 admits the following
factorization

T = Qo Ty -+ * Ty, (4.19)

called the block factorization of . Notice that the block factorization has the
following properties:

e for each 1 < i < n, the factor =; is a block;

e for each 1 < i < n, a; is non-empty. Indeed 7; ends with an w-power and
mix1 begins with another w-power and, by definition of normal w-term, 7
does not have two w-powers as consecutive factors;

e if a 1-factor z* has at least two occurrences in 7, then all the occurrences
of ¥ are contained in some unique block 7;;

e if a 1-factor of 7 occurs in some «;, then it has exactly one occurrence in 7.

However, the converse of this last property is not true. If a 1-factor of 7 has
exactly one occurrence, then this occurrence does not necessarily happen in
some «;. Indeed it can occur in some m; provided another 1-factor has an
occurrence before and another one after it in ;.

The next result states that for LS|, the w-word problem for arbitrary terms
can be reduced to the w-word problem for blocks.

Proposition 4.10 Let m = agmiay -+ T, and p = Bop1r -+ pmBm be the
block factorizations of two normal w-terms m and p. Then, LS| =7 = p if and

only if

i) n=m;
i) a; = B, for everyi € {0,1,...,n};
iii) LS| = m; = pj, for every j € {1,...,n}.

Proof.  The sufficient condition is trivial. Conversely, assume without loss
of generality that n < m and that m and p are reduced. The proof is made by
induction on n.
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Suppose first that n = 0. Then m = ay and ag is non-empty, say
oo = x{uTy - .

If £ < 2, then the result follows immediately from Proposition 4.5 7). So,
we assume that k& > 2. By definition of block factorization, x4 has a unique
occurrence in 7. Hence, as LS| = m = p by hypothesis, x¥ is the 1-prefix of
p and has a unique occurrence in p, since otherwise p (and so also 7) would
have a 2-factor of the form y“wvx¥. Therefore (3, is non-empty, say

Bo = yyviys - - ‘yZJ

with 1, = x1. Now, since x{ has only one occurrence in p and x%u 2% is a
2-factor of p, z{u 2§ has a unique occurrence in p, in position 1 to be more
precise. Moreover, x5 has a unique occurrence in 7, which implies that it has
also a unique occurrence in p, since otherwise p (and so also ) would have
a 2-factor of the form y“vz§ distinct of xYu 2% . This implies that ¢ > 2 and
that u; = vy and x5 = 5. Iterating the above process, we deduce that ¢ > k
and that v,y = v, and z; = y; for every ¢« < k. Now, since x{ has precisely
one occurrence in m, we conclude, as above, that necessarily p = 3, (whence
m = 0) and oy = (.

Suppose now that n > 1 (so that also m > 1) and assume, by induction
hypothesis, that the result is valid for n — 1. Let

w w w w w w
m =€} fies e and  pp=gihigs gy

As above one can show that ag is non-empty if and only if 3, is non-empty.
In this case, if ag = 2Yu2§ - - 2Fug and By = ySv1y5 - - - Y7 ve, one can show
that & = ¢, u;—1 = v;—1 and z; = y; for every 1 < ¢ < k. Moreover, x{uey
occurs in p in position k, since x = y; and y¢ has only one occurrence in p.
Therefore uy, = v, and e; = ¢;. This proves that oy = 3y and that m; and p;
have the same 1-prefix. To prove that LS| = m; = p;, we now show that the
blocks 7 and p; have the same 2-factors.

Suppose that there exists some 2-factor €7 fie;’ ; of m that does not occur in
p1 and assume that 1 <7 < r is minimal with this property. Since e¥ occurs
in p; (and in p it does not occur outside p;), e¥ fie¥,, occurs in p in the last
position of py, so that e, is the first w-power to the right of p;. Consider now
the 2-factors

w w w w
e fiv1€iig, - € fraa€]
3 w w w 3
of m (and of p). Since none of the 1-factors ef, ,, e, ..., e may occur in p

both inside and outside p;, we deduce that all these 2-factors occur to the right
of p;. But 7 is a block, whence there exist p,q € {1,...,r}, with p < i < ¢
or 1 =p =1 < g, such that e, = e;, which is absurd since e, occurs in p; by
minimality of i. Therefore, all the 2-factors of m; occur in p;. By symmetry, we

19



deduce that m; and p; have the same 2-factors. To establish that LSI = m = py,
it remains to prove that e, = g,.

Suppose that the suffix
7 = aqmy - Ty,

of 7 is non-empty and let uz* be the unique prefix of 7’ with v,z € A™. Then
eYuzr” is a 2-factor of m with a unique occurrence, since otherwise z* could
not occur outside m;. Hence eXuz® is also a 2-factor of p and, as above, one
can show that it has a unique occurrence in p, in the last position of p; to be
more precise. Therefore e, = g5 and the suffix

Pl = Bip2- - PmbBm

of p is non-empty. We conclude in particular that LS| = m = p;. Moreover, if
vy“ is the unique prefix of p’ with v,y € A*, then u = v and x = y. Notice
that, by the above arguments, it is now clear that 7’ is empty if and only
p' is empty. In this case e and ¢¥ are, respectively, the 1-suffixes of 7 and
p. Therefore they coincide, since LS| verifies 7 = p by hypothesis, and the
result is proved. So, we may assume that 7’ and p’ are both non-empty. We
let 7 and p” be the reduced w-terms obtained from 7" and p’, respectively, by
deleting the prefix u. Then
I_SI ): 7_‘_I/ — pl/

since 7 and p” have the same 1-prefix ¥, the same 1-suffix (which is the
one of 7 and p) and the same 2-factors (which are the ones of 7 and p except
those occurring in agmux®). Moreover the block factorizations of 7" and p”
are precisely 7" = oy - - - M, and p” = B pa - - pfm where o) and 3] are
the w-terms obtained from «; and (3, respectively, by deleting the prefix w.
The result is now an immediate consequence of the induction hypothesis. =

We are finally able to complete the proof that ¥ is a basis of w-identities for
LSI¥.

Proof of Theorem 4.4. Let 7 = amy -+, and p = Bopr - - - pmfBm be
the block factorizations of m and p. Then, by Proposition 4.10,

i) n=m;
i) a; =0, for every i € {0,1,...,n};
iii) LSl = 7m; = p;, for every j € {1,...,n}.

Hence, from condition iii) and Proposition 4.9, we deduce that ¥ - 7; = p;,

for every j € {1,...,n}. Therefore, it follows immediately from conditions i)
and ii) that X F m = p. This proves Theorem 4.4 and, therefore, completes
the proof of Theorem 4.3. [ ]
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