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Abstract

In this paper, we exhibit an infinite basis of ω-identities for the ω-variety generated
by the pseudovariety LSl, of semigroups which are locally semilattices, and we show
that this ω-variety is not finitely based.
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1 Introduction

This paper is concerned with a problem involving the pseudovariety LSl of all
finite semigroups which are locally semilattices, that is, semigroups S such
that eSe is an idempotent and commutative semigroup for all idempotents
e ∈ S. This pseudovariety corresponds, in Eilenberg’s correspondence, to the
well known variety of locally testable languages, as shown independently by
Brzozowski and Simon [5] and McNaughton [9]. Recall that a language L is
locally testable if membership of a given word u in L can be decided by con-
sidering the factors of a fixed length k of u and its prefix and suffix of length
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k − 1. In terms of automata, this corresponds to finite automata equipped
with a “sliding” window of size k through which the word is scanned. This
special kind of automata, called scanners, is considered as a model for compu-
tations that require only “local” information. The concept of locally testable
semigroup is similar and was introduced by Zalcstein in [10]. A semigroup S
is locally testable if there is a positive integer k such that, whenever two words
over the alphabet S have the same factors of length k and the same prefix and
suffix of length k− 1, the products in S determined by these words are equal.
Also in [10], Zalcstein proved that a language is locally testable if and only
if its syntactic semigroup is locally testable. So, the class of locally testable
semigroups is precisely the pseudovariety LSl.

An ω-term is a term obtained from letters of an alphabet A using the binary
concatenation, (x, y) 7→ x·y, and the unary ω-power, x 7→ xω. An ω-semigroup
is an algebra over the signature { · , ω}. Each finite semigroup has a natural
interpretation as an ω-semigroup, by interpreting concatenation as the semi-
group multiplication and sω as the unique idempotent of the subsemigroup
generated by s. For a pseudovariety V, let Vω be the variety of ω-semigroups
generated by V. The free ω-semigroup generated by A in the variety Vω is de-
noted by Ωω

AV and its elements are called ω-terms over V. In [3], Almeida and
Steinberg showed that detailed knowledge of these ω-semigroups is sufficient
to get important results about V.

An ω-identity is a formal equality u = v of ω-terms. By Birkhoff’s theorem,
the variety Vω is defined by ω-identities. The problem of finding a basis of
ω-identities for Vω (and so for Ωω

AV) has received some attention lately, since
it is intimately connected with the ω-word problem for V, that is, the problem
of determining whether two ω-terms represent the same element of Ωω

AV. The
case of the pseudovariety J of all J-trivial semigroups, solved by Almeida in [1],
constitutes an important example. Another remarkable example, which plays
an important role on the Krohn-Rhodes complexity problem, is given by the
pseudovariety A of all aperiodic semigroups. A basis for Aω was discovered by
McCammond [8]. More recently, Almeida and Zeitoun [4] found a basis for
Rω, where R is the pseudovariety of R-trivial semigroups. In this paper, we
exhibit a basis of ω-identities for LSlω. Although this basis is not used to solve
the ω-word problem for LSl, which was already described by the first author
in [6], the work presented here throws a new light on the subject.

The results obtained in this paper are mainly combinatorial. We describe a
normal form for ω-terms of rank 1, which is close to that given by McCam-
mond [8] for A. Contrary to the case of A, this normal form is not unique for
LSl in general. However, which is not totally surprising in view of the definition
of locally testable languages and semigroups, the equality of two such terms
depends only on the equality of their prefixes and suffixes involving a unique
ω-power and on the equality of the factors involving two ω-powers (which we

2



call 2-factors). So, the techniques involved in the proofs are designed to deal
with the combinatorics on these 2-factors.

2 Preliminaries

In this section, we briefly recall notation and basic definitions and results.
For general background about combinatorics on words and pseudovarieties of
semigroups, the reader is referred to [7,2].

2.1 Words

Throughout this paper, A denotes a finite non-empty set, called an alphabet.
The free semigroup (resp. the free monoid) generated by A is denoted by A+

(resp. by A∗). The length of a word w ∈ A∗ is denoted by |w|. The empty
word is denoted by 1. A word w ∈ A∗ is a prefix (resp. a suffix, a factor) of a
word z ∈ A∗ if there exist words x, y ∈ A∗ such that z = wy (resp. z = xw,
z = xwy).

The following result is known as Fine and Wilf’s Theorem (see [7]).

Proposition 2.1 Let u, v ∈ A+. If two powers uk and vn of u and v have a
common prefix (resp. suffix) of length at least |u| + |v| − gcd(|u|, |v|), then u
and v are powers of the same word.

A word w ∈ A+ is said to be primitive if it is not a power of another word;
that is, if w = un for some u ∈ A+ and n ≥ 1, then w = u (and n = 1).
Two words w and z are said to be conjugate if there exist words u, v ∈ A∗

such that w = uv and z = vu. We notice that, if w is a primitive word and
z is a conjugate of w, then z is also primitive. Let a total order be fixed for
the letters of the alphabet A. A Lyndon word is a primitive word which is
minimal, with respect to the lexicographic ordering, in its conjugation class.

2.2 Pseudovarieties, ω-terms and ω-identities

A semigroup pseudovariety is a class V of finite semigroups closed under taking
subsemigroups, homomorphic images and finite direct products. We denote by
S the pseudovariety of all finite semigroups.

The variety Vω is the Birkhoff variety generated by all structures (S, · , ω),
where (S, · ) is a finite semigroup of V and where sω is interpreted as the
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only idempotent power of s ∈ S. For a given alphabet A, we denote by Ωω
AV

the V-free ω-semigroup over A. Elements of Ωω
AV are called ω-terms over V.

An ω-identity is a pair (u, v) of ω-terms over S, and is usually denoted by u = v.
A finite semigroup S satisfies an ω-identity π = ρ if, for every homomorphism
ϕ : Ωω

AS−→S, ϕ(π) = ϕ(ρ). A class C of finite semigroups satisfies an ω-
identity π = ρ, and we write C |= π = ρ, if every element of C satisfies it. It
is well known that LSl is defined by the two ω-identities xωyxωyxω = xωyxω

and xωyxωzxω = xωzxωyxω, in the sense that LSl is the class of all finite
semigroups that satisfy these ω-identities. Notice also that A is defined by
xω = xωx = xxω, and that LSl is a subpseudovariety of A.

3 The ω-word problem for LSl

In this section we briefly recall the solution of the ω-word problem for LSl
obtained by the first author [6].

A term of rank 0 is an ω-term not involving the ω-power. A term of rank 1 is
an ω-term π of the form

π = u0x
ω
1 u1x

ω
2 · · ·xω

nun (3.1)

with n ≥ 1, u0, . . . , un ∈ A∗ and x1, . . . , xn ∈ A+. For an integer 1 ≤ ` ≤ n,
an `-factor of π is any subterm of π of the type

π(i, i + `− 1) = xω
i uix

ω
i+1 · · ·xω

i+`−1

with i + `− 1 ≤ n. We denote by F`(π) the set of `-factors of π.

Definition 3.1 (normal ω-term) A normal ω-term is a rank 1 term of the
form (3.1) where:

(1) each xi is a Lyndon word;
(2) x1 is not a suffix of u0;
(3) xn is not a prefix of un;
(4) if xωyxω is a 2-factor of π, then xωyxω has exactly one occurrence in π;
(5) each 2-factor xωuyω of π verifies the three following conditions:

(a) u is not a prefix of xj for any integer j;
(b) u is not a suffix of yj for any integer j;
(c) if u = xju′ or u = u′yj for some integer j ≥ 1, then xωu′yω fails at

least (a) or (b).
We notice that this normal form for 2-factors was defined by McCammond
in [8]. His construction of these normal forms is used in the fifth step of
the proof of Theorem 4.3 below.
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We will be particularly interested in normal ω-terms of the form

π = xω
1 u1x

ω
2 · · ·xω

n.

A term of this type will be called a reduced ω-term, and the number n will be
called the ω-length of π and denoted by |π|ω. In this case the `-factor π(1, `)
(resp. π(n− `+1, n)) is called the `-prefix (resp. the `-suffix) of π. An `-factor
γ of π is said to occur in position i when γ = π(i, i + ` − 1). Of course an
`-factor may occur in different positions. For instance, the 2-factor aωaab(ab)ω

of the reduced term

π = (aab)ωaabb(ab)ωbaωaab(ab)ωabaaaωbbaωaab(ab)ω (3.2)

has two occurrences in π, in positions 3 and 6. Moreover, it is a 2-suffix of π.
The number of occurrences of an `-factor γ in π will be denoted by occ(γ, π).

The following property, over LSl, of ω-terms with non-null rank, permits to
reduce the ω-word problem for LSl to identities involving only ω-terms of rank
at most 1.

Lemma 3.2 If π ∈ Ωω
AS \ A+, then LSl |= πω = π2.

Proof. We can write π = uvωw for some ω-terms u, v and w, with u and
w possibly empty. Then, since LSl satisfies the ω-identity xωyxωyxω = xωyxω,
we have that LSl verifies

(π2)2 = (uvωw)4 = (uvωw)2 = π2.

This shows that π2 is idempotent over LSl, whence LSl |= πω = π2.

Notice now that, if an ω-identity π = ρ holds in LSl, then either π and ρ are
the same finite word or they both are not words. Therefore, on the ω-word
problem for LSl it suffices to consider ω-identities involving ω-terms of rank
at least 1. The following characterization of the ω-identities satisfied by LSl is
a simple reformulation of [6, Theorem 7.1].

Proposition 3.3 Let π ∈ Ωω
AS \ A+ be an ω-term. Then, there is a normal

ω-term π′ = u0x
ω
1 u1x

ω
2 · · ·xω

nun such that LSl satisfies π = π′.

Moreover, if ρ ∈ Ωω
AS \ A+ is another ω-term and ρ′ = v0y

ω
1 v1y

ω
2 · · · yω

mvm is
a normal ω-term which is equal to ρ over LSl, then LSl satisfies π = ρ if and
only if

i) u0x
ω
1 = v0y

ω
1 ;

ii) xω
nun = yω

mvm;
iii) F2(π

′) = F2(ρ
′) (i.e., π′ and ρ′ have the same 2-factors).
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Furthermore, it is effectively decidable whether LSl satisfies π = ρ.

Of course (its a consequence of the previous proposition), an ω-term π from
Ωω

AS \ A+ may be equal to more than one normal ω-term over LSl. How-
ever, we illustrate in the next example a procedure (described in the proof of
Theorem 4.3 below, in another context) which, as one can convince himself,
is convergent in the sense that departing from π it produces a unique such
normal ω-term π′.

Example 3.4 Consider the ω-term

π = b(babbab)ωba
(
(a5)ωb(ab)ωaba

)ω
(ba)ωbaa

and assume that a < b. The pseudovariety LSl verifies the following ω-identities

π = b
(
(bab)2

)ω
ba

(
(a5)ωb(ab)ωaba

)2
(ba)ωbaa by Lemma 3.2

= b(bab)ωbaaωb(ab)ωabaaωb(ab)ωaba(ba)ωbaa as LSl |= (xr)ω = xω

= bbab(bab)ωbaaωb(ab)ωabaaωb(ab)ωaba(ba)ωbaa as LSl |= xω = xxω

= bb(abb)ωabbaaωb(ab)ωabaaωb(ab)ωab(ab)ωabaa as LSl |= x(yx)ω = (xy)ωx

= bb(abb)ωabbaaωb(ab)ωabaaωb(ab)ωab(ab)ωaa as LSl |= xω = xωx

= bb(abb)ωabbaaωb(ab)ωabaaωb(ab)ωaa as LSl |= xωx = xω = xωxω

= bb(abb)ωabbaaaωaab(ab)ωabaaaωaab(ab)ωaa as LSl |= xω = xωx = xxω.

Then, π′ = bb(abb)ωabbaaaωaab(ab)ωabaaaωaab(ab)ωaa since this ω-term is
already in normal form.

A normal term ρ is said to be a 2-permutation of a normal term π, when π
and ρ are equal over LSl and they have the same number of occurrences of
each 2-factor. For instance,

ρ = (aab)ωaabb(ab)ωabaaaωbbaωaab(ab)ωbaωaab(ab)ω

is a 2-permutation of the normal term π in (3.2). Evidently, two normal terms
need not to be 2-permutations one of the other to be equal over LSl. An
example of this fact is given by

aωbcωabωacωbaω and aωbcωbaωbcωabωacωbaω.
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4 The ω-variety generated by LSl

In this section, we study bases of ω-identities for the ω-variety LSlω generated
by the pseudovariety LSl. In Subsection 4.1, we introduce one such basis Σ
and show that there is not a finite one. The proof that Σ is indeed a basis is
completed in Subsections 4.2 and 4.3.

4.1 The basis Σ

Let Σ be the following set of ω-identities:

(Σ)



(xr)ω = xω, r ≥ 2 (4.1)

xωxω = xω, (4.2)

xω = xω+1, (4.3)

(xy)ωx = x(yx)ω, (4.4)

(xyωz)ω = (xyωz)2, (4.5)

xωyxω = xωyxωyxω, (4.6)

xωyxωzxω = xωzxωyxω, (4.7)

where xω+1 denotes either xωx or xxω. Notice that xωx = xxω is a consequence
of identities (4.1) and (4.4). Indeed, from them we derive

xωx = (xx)ωx = x(xx)ω = xxω.

The notation Σ ` u = v will be used to indicate that the ω-identity u = v is
provable from Σ.

Fact 4.1 By (4.3) and (4.4), we have that Σ ` (xy)ω = xy(xy)ω = x(yx)ωy.

It is important to refer the following three other ω-identities which are conse-
quences of Σ.

Lemma 4.2 The set Σ implies the following ω-identities.
(xω)ω = xω, (4.8)

xωyxωzxωyxω = xωyxωzxω, (4.9)

xωz1y
ωz2x

ωz3y
ω = xωz3y

ωz2x
ωz1y

ω. (4.10)

Proof. The ω-identity (4.8) is a consequence of (4.2) and (4.5). Indeed,
from these ω-identities we may deduce that

(xω)ω = (xωxωxω)ω = (xωxωxω)2 = xω.
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Now, from (4.7) and (4.6) we obtain ω-identity (4.9) as follows

xωyxωzxωyxω = xωyxωyxωzxω = xωyxωzxω.

Finally, we have that (where we underline the ω-powers which are used to
derive the next term)

Σ ` xωz1y
ωz2x

ωz3y
ω = xωz1y

ωz2x
ωz3y

ωz2x
ωz3y

ω by (4.6)

= xωz3y
ωz2x

ωz1y
ωz2x

ωz3y
ω by (4.7)

= xωz3y
ωz2x

ωz3y
ωz2x

ωz1y
ω by (4.7)

= xωz3y
ωz2x

ωz1y
ω by (4.6)

which establishes (4.10).

In this section, we prove the main result of the paper.

Theorem 4.3 1) The set Σ is a basis of ω-identities for LSlω.
2) The ω-variety LSlω has no finite basis of ω-identities.

Proof. For the proof of 2), it suffices to follow step by step the proof of [4,
Theorem 5.2 (2)], where Almeida and Zeitoun show that Rω is not finitely
based. We will include it here only for the sake of completeness. By equational
completeness, and assuming 1), it suffices to prove that no finite subset of Σ
defines the variety LSlω. For each positive integer, let Sp be the semigroup
presented by

Sp = 〈a, e, f : ap = 1, ea = ef = e2 = e, fa = fe = f 2 = f,

ae = e, af = f〉.

This semigroup has p+2 elements and is realized for instance as the semigroup
of transformations of the set {1, . . . , p, p+1, p+2}, where a acts on {1, . . . , p}
as the cycle (1, . . . , p) and fixes the other two points, and e and f are constant
maps, respectively with values p + 1 and p + 2. Let τ be the unary operation
defined on Sp by

τ(e) = e, τ(f) = f, τ(1) = e, τ(ak) = f (k ∈ Z \ pZ),

which determines a unary semigroup Sp = (Sp, ·, τ). Note that τ(ap) = τ(1) =
e 6= f = τ(a) and so Sp does not satisfy the identity (xp)ω = xω. Now it is
simply a matter of routine to verify that Sp verifies the identities (4.2)-(4.7)
and (4.1) for r relatively prime with p, which completes the proof of statement
2).
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For 1), we have to prove that, for all ω-terms π, ρ ∈ Ωω
AS,

LSl |= π = ρ if and only if Σ ` π = ρ.

To prove the only if part, it suffices to notice that LSl |= Σ. Indeed, ω-
identities (4.1), (4.2) and (4.4) are verified by any finite semigroup. On the
other hand, LSl is aperiodic and is defined by the ω-identities (4.6) and (4.7).
Therefore it satisfies (4.3), (4.6) and (4.7). Finally, it follows immediately from
Lemma 3.2 that (4.5) is valid in LSl.

We now show that, given an ω-term α ∈ Ωω
AS \ A+, Σ ` α = α′ for some

normal ω-term α′ ∈ Ωω
AS. The following procedure to compute one such term

α′ consists in 6 steps (see Example 3.4 for an illustration of this algorithm).
The term obtained after the jth step will be denoted by αj, and α′ = α6. First,
as in the proof of (4.8), using ω-identities (4.5) and (4.2) if necessary, we derive
from α an ω-term α1 of rank 1. Then, with the application of (4.1) one gets a
rank 1 ω-term α2 whose 1-factors xω are all such that x is a primitive word.
Next, by Fact 4.1, we deduce from α2 a rank 1 ω-term α3 of the form

α3 = u0x
ω
1 u1x

ω
2 · · ·xω

nun

where x1, . . . , xn are Lyndon words. This term satisfies condition (1) of the
definition of normal term (Definition 3.1), and the remaining steps of reduction
will not change this situation. In step 4, we apply identity (4.3) to cancel from
u0 the greatest power of x1 which is a suffix of u0, and to cancel from un the
greatest power of xn which is a prefix of un. The resulting term α4 satisfies
conditions (2) and (3) of Definition 3.1.

After the fifth step, applied to term α4, all 2-factors will be in normal form.
First, we apply ω-identities (4.3) and (4.2) to eliminate 2-factors of the form
xωxjxω, where j ≥ 0. Next, let β = xωuyω be a 2-factor of the resulting
term and let j, k ≥ 1 be the smallest integers such that |xj| ≥ |x| + |y| and
|yk| ≥ |x|+ |y|. The term β1 = xωxjuykyω is a consequence of (4.3). Moreover,
since β is not of the form xωxjxω, we claim that Proposition 2.1 guarantees
that β1 satisfies conditions (a) and (b) of Definition 3.1. Indeed, suppose for
instance that (a) is not verified. Then xjuyk is a prefix of a power of x, whence
uyk also is. Hence yk is a factor of a power of x, so that yk is a prefix of some
power zp of some conjugate z of x. Therefore, since |z| = |x| and |yk| ≥ |x|+|y|,
yk and zp have a common prefix of length at least |y|+ |z|−gcd(|y|, |z|). Then,
Proposition 2.1 implies that y and z are powers of the same word. As y and
z are both primitive, it follows that they are the same word so that z is a
Lyndon word. Since z is a conjugate of x and they are both Lyndon words,
we deduce that x = z and, whence, that x = y. Therefore uxk is a prefix of
a power of x. Now, the fact that x is a primitive word implies that u = x` is
a power of x since, otherwise, we would have x = rs = sr for some r, s ∈ A+

and, as a consequence, r = tp, s = tq and x = tp+q for some t ∈ A+ and
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p, q ≥ 1. We conclude that β = xωx`xω, which contradicts our assumptions
and proves the claim.

We now apply (4.3) to cancel from xjuyk any prefix x` and any suffix ym which
preserve properties (a) and (b). The resulting term β2 is in normal form, that
is, it satisfies conditions (a), (b) and (c). The term α5 is obtained by replacing
each such 2-factor β by β2. The term α5 clearly verifies conditions (1)-(3)
and (5) of Definition 3.1.

Finally, we apply ω-identity (4.9) to eliminate in α5 all occurrences, except
one (say the leftmost one), of each 2-factor of the form xωuxω. The resulting
ω-term α6 is in normal form and, taking α′ = α6, we have that Σ ` α = α′.

Therefore, to complete the proof of the theorem it suffices to prove that, for
all ω-terms π and ρ in normal form,

LSl |= π = ρ ⇒ Σ ` π = ρ. (4.11)

This will be done in the remaining of this section.

Recall that, if π = u0x
ω
1 u1x

ω
2 · · ·xω

nun and ρ = v0y
ω
1 v1y

ω
2 · · · yω

mvm are ω-terms
in normal form such that LSl satisfies π = ρ, then, by Proposition 3.3, u0x

ω
1 =

v0y
ω
1 , xω

nun = yω
mvm and π and ρ have the same 2-factors. In particular u0 = v0,

x1 = y1, xn = ym and un = vm, and LSl verifies xω
1 u1x

ω
2 · · ·xω

n = yω
1 v1y

ω
2 · · · yω

m.
We may therefore assume in (4.11), without loss of generality, that π and ρ
are reduced ω-terms

π = xω
1 u1x

ω
2 · · ·xω

n, ρ = yω
1 v1y

ω
2 · · · yω

m,

with x1 = y1 and xn = ym. More formally, to establish Theorem 4.3 it remains
to prove the following result.

Theorem 4.4 Let π and ρ be two reduced ω-terms such that LSl verifies the
ω-identity π = ρ. Then the ω-identity π = ρ is a consequence of Σ.

4.2 Intermediate results

In Subsection 4.3 below, it will be shown that the equality over LSl of two
ω-terms π and ρ is characterized by the equality over LSl of certain subterms
(which we call “blocks”) of π and ρ. Therefore, the proof of Theorem 4.4
will be reduced to blocks. In the present subsection, we prove some technical
intermediate results. Informally speaking, the general idea of the algorithm is
to derive (under certain conditions, which are verified by blocks) from given
ω-terms π and ρ such that LSl |= π = ρ, new ω-terms π′ and ρ′ with an equal
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prefix α of sufficiently large ω-length and then to cancel the suffixes. This way,
we are able to pass from π to ρ (π → π′ → α → ρ′ → ρ) using the ω-identities
from Σ, which shows that Σ ` π = ρ.

We begin by showing that ρ can be reduced to a new ω-term with an equal
2-prefix of π.

Proposition 4.5 Let π = xω
1 u1x

ω
2 · · ·xω

n and ρ = yω
1 v1y

ω
2 · · · yω

m be reduced
ω-terms such that LSl |= π = ρ.

i) If n ≤ 2, then π = ρ.
ii) If n > 2, then there exists a 2-permutation ρ1 of ρ such that Σ ` ρ = ρ1

and xω
1 u1x

ω
2 is the 2-prefix (resp. xω

n−1un−1x
ω
n is the 2-suffix) of ρ1.

Proof. If n = 1, then π = xω
1 and it does not have 2-factors. Therefore,

since LSl |= π = ρ, ρ does not have 2-factors too, which means that m = 1,
and so ρ = yω

1 = xω
1 = π. Suppose now that n = 2 so that π = xω

1 u1x
ω
2 . If

x1 6= x2, it is clear that ρ coincides with π since they both have the unique
2-factor xω

1 u1x
ω
2 . If x1 = x2, then ρ also coincides with π since, by definition

of reduced form, xω
1 u1x

ω
1 has only one occurrence in ρ. This proves i).

We prove statement ii) in the prefix case. The suffix case is proved symmet-
rically. Let n > 2, so that also m > 2. Since x1 = y1, if v1 = u1 and y2 = x2,
then we take ρ1 = ρ. Otherwise, since LSl |= π = ρ, the 2-factor xω

1 u1x
ω
2 of π is

also a 2-factor of ρ and the 2-factor xω
1 v1y

ω
2 of ρ is also a 2-factor of π. Suppose

that they have occurrences at position i in ρ and j in π, respectively. Then
i, j 6= 1 and π and ρ are of the form (where π′ and ρ′ are, possibly empty,
ω-terms)

π = xω
1 u1x

ω
2 · · ·xω

j−1uj−1x
ω
1 v1y

ω
2 π′,

ρ = xω
1 v1y

ω
2 · · · yω

i−1vi−1x
ω
1 u1x

ω
2 ρ′.

If j = 2, then x2 = x1. In this case,

ρ = xω
1 v1y

ω
2 · · · yω

i−1vi−1x
ω
1 u1x

ω
1 ρ′ (4.12)

and we take ρ1 = xω
1 u1x

ω
1 v1y

ω
2 · · · yω

i−1vi−1x
ω
1 ρ′. Hence ρ1 and π have the same

2-prefix xω
1 u1x

ω
1 , and Σ ` ρ = ρ1 by (4.7). Assume now that j > 2. We will

define an iterative process which will produce the desired ω-term ρ1 in at most
j − 2 steps.

Step 1. Since xω
2 u2x

ω
3 is a 2-factor of π, it occurs in ρ, say in position k1. If

k1 = 1, then x1 = x2 and this case was treated above (ρ is of form (4.12)). If
1 < k1 < i, since xω

2 occurs in position k1, then ρ can be factored as (where
α1 and α2 are ω-terms)

ρ = xω
1 α1x

ω
2 α2x

ω
1 u1x

ω
2 ρ′.

11



We then take ρ1 = xω
1 u1x

ω
2 α2x

ω
1 α1x

ω
2 ρ′, which is a consequence of (4.10) and

so of Σ.
Notice that k1 can not be equal to i. Indeed, k1 = i would imply that

xω
1 u1x

ω
2 = xω

2 u2x
ω
3 , and so x1 = x2 = x3 and u1 = u2 which is not possible

since π is in reduced form.
Suppose now that k1 > i. Then xω

3 occurs in ρ in a position greater than
i + 1.

Step ` (with 1 < ` ≤ j − 2). In step ` we consider the 2-factor xω
`+1u`+1x

ω
`+2

of π and suppose that it occurs in ρ in position k`. For each p < `, we assume
that kp > i, which means that xω

p+2 has an occurrence in ρ in a position
greater than i + 1.

If k` = 1 or k` = i, then x1 = x`+1. Since we are assuming, from step
p = `− 1, that xω

`+1 has an occurrence in ρ in a position greater than i + 1,
then ρ is of the form (where α3 may be empty)

ρ = xω
1 α1x

ω
1 u1x

ω
2 α2x

ω
1 α3. (4.13)

In this case we consider ρ1 = xω
1 u1x

ω
2 α2x

ω
1 α1x

ω
1 α3, which clearly satisfies the

properties of the statement.
Suppose now that 1 < k` < i. Then

ρ = xω
1 α1x

ω
`+1α2x

ω
1 u1x

ω
2 α3x

ω
`+1α4.

We then take ρ1 = xω
1 u1x

ω
2 α3x

ω
`+1α2x

ω
1 α1x

ω
`+1α4, which as above has the

desired form.
Suppose at last that k` > i. We assume at this point that we reached

the last step, that is, we assume that ` = j − 2. Then ` + 2 = j and
xω

`+1u`+1x
ω
`+2 = xω

j−1uj−1x
ω
j , which is equal to xω

j−1uj−1x
ω
1 and occurs in ρ in

a position > i. In particular xω
1 occurs after position i + 1 and therefore ρ

is of the form (4.13) and ρ1 is defined as in that case.

Notice that since the only ω-identities used to derive ρ1 from ρ were (4.7)
and (4.10), which do not transform the 2-factors and do not change their
number of occurrences, ρ1 is a 2-permutation of ρ. This concludes the proof
of the proposition.

Under certain conditions, one can apply repeatedly Proposition 4.5 to obtain
equal prefixes with a greater ω-length.

Proposition 4.6 Let π = xω
1 u1x

ω
2 · · ·xω

n and ρ = yω
1 v1y

ω
2 · · · yω

m be reduced
ω-terms such that LSl |= π = ρ. For each 1 ≤ r ≤ n, denote by αr =
xω

1 u1x
ω
2 · · ·xω

r the r-prefix of π. For a fixed 1 < ` ≤ n, suppose that the follow-
ing condition

(C`) ∀γ ∈ F2(α`−1), either occ(γ, π) = occ(γ, ρ),

or occ(γ, π), occ(γ, ρ) > occ(γ, α`−1)

12



is verified. Then there exists a 2-permutation ρ`−1 of ρ of the form ρ`−1 = α`ρ
′
`

such that Σ ` ρ = ρ`−1.

Proof. We prove the result by induction on `. The case ` = 2 is an im-
mediate consequence of Proposition 4.5. Let now 2 < ` ≤ n and suppose
that (C`) is verified. Then it is clear that (C`−1) is also verified. Suppose, by
induction hypothesis, that the result is valid for `−1, whence there exists a
2-permutation ρ`−2 = α`−1ρ

′
`−1 of ρ such that

Σ ` ρ = ρ`−2. (4.14)

Then LSl |= ρ`−2 = ρ = π and therefore, by Proposition 3.3, π, ρ and ρ`−2 have
the same 2-factors. Since ρ`−2 is a 2-permutation of ρ, ρ and ρ`−2 have the
same number of occurrences of each 2-factor (whence, in particular, |ρ`−2|ω =
|ρ|ω = m). Therefore, it follows from the hypotheses that, for each 2-factor γ of
α`−1, either occ(γ, π) = occ(γ, ρ`−2), or occ(γ, π), occ(γ, ρ`−2) > occ(γ, α`−1).
In both cases, we deduce that

LSl |= π(`−1, n) = xω
`−1u`−1x

ω
` · · ·xω

n = xω
`−1ρ

′
`−1.

Indeed, σ = π(`− 1, n) = xω
`−1u`−1x

ω
` · · ·xω

n and τ = xω
`−1ρ

′
`−1 have the

same 1-prefix, the same 1-suffix and the same 2-factors (which are precisely
the 2-factors of π and ρ, except those γ such that occ(γ, π) = occ(γ, ρ) =
occ(γ, α`−1)).

Therefore, applying Proposition 4.5 to the ω-terms σ and τ , we obtain a 2-
permutation τ1 = xω

`−1u`−1x
ω
` τ ′ of τ such that

Σ ` τ = τ1. (4.15)

It follows that

Σ ` ρ = ρ`−2 by (4.14)

= α`−1ρ
′
`−1 by definition of ρ`−2

= xω
1 · · ·xω

`−2u`−2x
ω
`−1ρ

′
`−1 by definition of α`−1

= xω
1 · · ·xω

`−2u`−2τ by definition of τ

= xω
1 · · ·xω

`−2u`−2τ1 by (4.15)

= xω
1 · · ·xω

`−2u`−2x
ω
`−1u`−1x

ω
` τ ′ by definition of τ1

= α` τ ′ by definition of α`.

We then take ρ`−1 = α` τ ′, which concludes the proof.

The next result is a simple corollary of the dual of Proposition 4.6 for suffixes,
and presents a sort of absorption law.

13



Corollary 4.7 Let π be a reduced ω-term of the form π = α1x
ωα2x

ω. If each
2-factor of xωα2x

ω has at least two occurrences in α1x
ω, then Σ ` π = α1x

ω.

Proof. A reduced ω-term ρ is said to be 2-linear if each 2-factor has exactly
one occurrence in ρ. We prove first the result for the case where β = xωα2x

ω is
a 2-linear ω-term. Then, for each 2-factor γ of β, occ(γ, β) = 1 < occ(γ, α1x

ω).
Hence, since LSl |= π = α1x

ω by the hypotheses, we deduce from the dual of
Proposition 4.6 that there exists an ω-term of the form α3x

ωα2x
ω such that

Σ ` α1x
ω = α3x

ωα2x
ω. Therefore,

Σ ` π = α1x
ωα2x

ω by definition of π

= α3x
ωα2x

ωα2x
ω since Σ ` α1x

ω = α3x
ωα2x

ω

= α3x
ωα2x

ω by ω-identity (4.6)

= α1x
ω since Σ ` α1x

ω = α3x
ωα2x

ω,

which proves the result when xωα2x
ω is 2-linear.

We now prove the general case. To show that

Σ ` π = α1x
ω, (4.16)

it suffices to iterate the following procedure. If xωα2x
ω is 2-linear, then (4.16)

is already proved. Otherwise we choose any 2-linear subterm of xωα2x
ω of the

form yωσyω, so that π = α3y
ωσyωα4 for some ω-terms α3 and α4 with α4

possibly empty. Since each 2-factor of yωσyω has at least two occurrences in
α3y

ω, we may apply the 2-linear case to eliminate the subterm σyω. We obtain
a reduced ω-term π1, Σ-equivalent to π, of the form π1 = α1x

ωα′
2x

ω, where
|α′

2|ω < |α2|ω. Applying the same procedure to π1, and iterating it if necessary,
we eventually obtain, after a finite number of steps, the ω-term α1x

ω, which
proves (4.16) and completes the proof of the corollary.

4.3 Block factorization of a normal term

The objective of this subsection is to reduce Theorem 4.4 to the case where
π and ρ are blocks (to be defined below). In this case, Proposition 4.6 may be
applied to obtain two ω-terms π′ and ρ′ verifying the following conditions: Σ
implies π = π′ and ρ = ρ′; π′ and ρ′ have the same “sufficiently large” prefix α;
the prefix α contains all the 2-factors of π (and ρ). We then use Corollary 4.7
to deduce that Σ implies π1 = α = ρ1 and, as a consequence, to establish
Theorem 4.4.

A reduced term π = xω
1 u1x

ω
2 · · ·xω

n (n > 1) is said to be a block if either n = 2

14



and x1 = x2, or n > 2 and

∀i ∈ {2, . . . , n− 1} ∃`, r ∈ {1, . . . , n}, ` < i < r, x` = xr.

That is, π is a block if it can be “covered” by subterms of the form xωαxω.
Notice that, in particular, xω

1 and xω
n must have more than one occurrence in

π.

The following property of blocks will be useful to show that Theorem 4.4 is
valid for blocks.

Lemma 4.8 Let π = xω
1 u1x

ω
2 · · ·xω

n be a block. There exists a block π′, Σ-
equivalent to π, and a factorization π′ = xω

1 α1x
ω
1 α2 such that every 2-factor of

π (and π′) has at least one occurrence in xω
1 α1x

ω
1 .

Proof. Let i be the greatest position of π containing an occurrence of xω
1 .

By definition of a block, i > 1 and so

π = xω
1 u1x

ω
2 · · ·xω

i−1ui−1x
ω
1 uix

ω
i+1 · · ·xω

n.

Let f(π) be the number of 2-factors of π which do not occur in the i-prefix
π(i) = xω

1 u1x
ω
2 · · ·xω

i−1ui−1x
ω
1 of π. That is f(π) is the number of 2-factors that

fail to have the property desired for π′. The proof proceeds by induction on
k = f(π). If k = 0, there is nothing to prove. It suffices to take π′ = π in this
case.

Suppose now that k ≥ 1 and assume, by induction hypothesis, that the result
holds for every block ρ with f(ρ) < k. Let p be the least position of π where
occurs a 2-factor which does not occur in π(i). Then xω

p upx
ω
p+1 is the referred

2-factor and, obviously, i ≤ p < n.

Consider first that p = i. In this case xω
p upx

ω
p+1 = xω

1 uix
ω
i+1 and, by definition

of a block, there exist `, r ∈ {1, . . . , n} such that x` = xr, where either (1)
` < i + 1 < r or (2) ` < i + 1 = n = r. Notice that, as r > i, xr 6= x1 by
definition of i, whence ` < i. Therefore π is of the form

π =


xω

1 β1x
ω
r β2x

ω
1 uix

ω
i+1β3x

ω
r β4 in case (1)

xω
1 β1x

ω
i+1β2x

ω
1 uix

ω
i+1 in case (2).

In the first case, we let

π1 = xω
1 β1x

ω
r β2x

ω
1 uix

ω
i+1β3x

ω
r β2x

ω
1 uix

ω
i+1β3x

ω
r β4.

The ω-identity π = π1 is a consequence of Σ, since π1 is obtained from π
using ω-identity (4.6). However π1 is possibly not reduced since in xω

r β2x
ω
1
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or in xω
i+1β3x

ω
r may occur 2-factors of the form yωvyω and, therefore, they

appear two times in π1. It suffices, in that situation, to apply identity (4.9)
to eliminate the rightmost occurrence of each of those 2-factors. We obtain a
reduced ω-term (a block to be more precise)

π2 = xω
1 β1x

ω
r β2x

ω
1 uix

ω
i+1β3x

ω
r β′

2x
ω
1 uix

ω
i+1β

′
3x

ω
r β4,

which has an occurrence of xω
1 to the right of an occurrence of xω

1 uix
ω
i+1 (and

of all the 2-factors of π(i)). Therefore f(π2) < k. The case (2) can be treated
analogously and, so, the result for blocks π such that f(π) = k follows by
induction.

Let us now consider the case in which p > i. By definition of p, the 2-factor
xω

p−1up−1x
ω
p occurs in π in a position q < i. To be more precise q < i− 1 since

xp 6= x1. Therefore, xω
p occurs in position q+1 < i and π admits a factorization

of the form
π = xω

1 β1x
ω
p β2x

ω
1 β3x

ω
p upx

ω
p+1β4. (4.17)

Since π is a block, there exist `, r ∈ {1, . . . , n} such that x` = xr, where either
` < p + 1 < r or ` < p + 1 = n = r. If xr = xp, we proceed as above in the
case p = i, using the occurrences of xp in positions q + 1 < i and r ≥ p + 1,
to obtain a block π2 such that f(π2) < k. The result for f(π) = k then
follows by the induction hypothesis. The case in which ` < i can be treated
analogously, using the occurrences of xr in positions ` < i and r ≥ p + 1.
Hence, we may assume that xr 6= xp, whence ` < p, and that ` > i. Therefore,
the factorization (4.17) of π can be refined as follows (the case r = i+1 being
similar, we assume that r > i + 1)

π = xω
1 β1x

ω
p β2x

ω
1 β′

3x
ω
r β′′

3xω
p upx

ω
p+1β

′
4x

ω
r β′′

4 .

Applying identity (4.10), we obtain a block

π2 = xω
1 β1x

ω
p upx

ω
p+1β

′
4x

ω
r β′′

3xω
p β2x

ω
1 β′

3x
ω
r β′′

4

such that f(π2) < k. Then, the induction hypothesis implies the validity of
result in the case f(π) = k.

The lemma follows by induction.

We may now show that Theorem 4.4 is verified when π and ρ are blocks.

Proposition 4.9 If π and ρ are two blocks such that LSl |= π = ρ, then
Σ ` π = ρ.

Proof. Suppose first that π has a unique 1-factor xω. Since LSl |= π = ρ it
follows that xω is also the only 1-factor of ρ. In this case it is immediate that
Σ ` π = ρ since π = ρ is provable from ω-identity (4.7).
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We now assume that π (and so also ρ) has at least two different 1-factors,
say xω and yω where xω is the 1-prefix of π (and ρ). Let zω be the 1-suffix
of π (and ρ). From Lemma 4.8, there is a block π1 = xωα1x

ωα2z
ω such that

Σ ` π = π1 and xωα1x
ω contains all the 2-factors of π. In particular, yω and

zω are factors of α1. We apply ω-identity (4.6) three times to derive from π1

a (possibly non-reduced) ω-term π2 = (xωα1)
4xωα2z

ω. The need of 4 copies
of xωα1 should be clear by definition of the ω-term π3 bellow obtained from
π2. However we advance that: the prefix xωα1x

ωα1x
ω contains at least two

occurrences of each 2-factor, which will permit to apply Corollary 4.7 to π3;
the third copy of xωα1 contains an occurrence of zω, which will appear as the
first distinguished occurrence in (4.18); the fourth copy permits to obtain an
extra occurrence of each 2-factor, which will guarantee that the total number
of occurrences of each 2-factor (not of the form vωuvω) in π3 will be greater
than the number of occurrences of that 2-factor in the prefix xωα3z

ω of π3 and
which will permit to apply Proposition 4.6.

Now, using ω-identity (4.9) in π2 to delete all except the leftmost occurrence
of each 2-factor of the form vωuvω, we obtain a reduced ω-term π3 such that
Σ ` π = π3 and

π3 = xωα3z
ωα4z

ω (4.18)

where:

i) LSl verifies the ω-identity π3 = xωα3z
ω (which is equivalent to say that

each 2-factor of π3 occurs in xωα3z
ω);

ii) each 2-factor of π3 occurs in zωα4z
ω except those of the form vωuvω;

iii) for each 2-factor γ of zωα4z
ω, occ(γ, xωα3z

ω) ≥ 2.

We notice that these conditions are indeed verified since the existence of the
1-factor yω guarantees the existence of 2-factors which are not of the form
vωuvω.

On the other hand, LSl |= π = ρ by hypothesis. So, as above and applying,
if necessary, ω-identities (4.6) and (4.9) a sufficiently large number of times,
we can find a reduced ω-term ρ1 such that Σ ` ρ = ρ1 and, for each 2-factor
γ of ρ1, occ(γ, ρ1) ≥ occ(γ, π3). In particular, for each 2-factor γ of the form
vωuvω, occ(γ, ρ1) = occ(γ, π3) = 1. Therefore, since LSl |= π3 = ρ1, we may
deduce from Proposition 4.6 a 2-permutation ρ2 of ρ1, of the form

ρ2 = xωα3z
ωα5z

ω,

such that Σ ` ρ2 = ρ1.

Now, by Corollary 4.7, Σ ` π3 = xωα3z
ω = ρ2. Since the sequence of ω-

identities π = π3 = ρ2 = ρ1 = ρ is provable from Σ, the proof of the proposition
is complete.
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We now introduce the block factorization of a normal ω-term, which will al-
low to reduce Theorem 4.4 to blocks. Since we finished to solve that case in
Proposition 4.9, the general case will then be obtained. So, consider a normal
term

π = u0x
ω
1 u1x

ω
2 · · ·xω

mum.

If each 1-factor xω
k has exactly one occurrence in π, then we define α0 = π.

Otherwise, let i1 be the least k ∈ {1, . . . ,m} such that xω
k has at least two oc-

currences in π, and define α0 = u0x
ω
1 u1 · · ·xω

i1−1ui1−1. Now let j1 be the great-
est k ∈ {i1 + 1, . . . ,m} such that xω

i1
ui1x

ω
i1+1 · · ·uk−1x

ω
k is a block, and define

π1 = xω
i1
ui1x

ω
i1+1 · · ·uj1−1x

ω
j1

. Now, applying the same procedure to the subterm
ρ1 = uj1x

ω
j1+1 · · ·xω

mum of π, we get subterms α1 = uj1x
ω
j1+1uj1+1 · · ·xω

i2−1ui2−1

and π2 = xω
i2
ui2x

ω
i2+1 · · ·uj2−1x

ω
j2

. We iterate this process until we get αn = ρn

in some step n + 1, where n ≥ 0 and ρ0 = π. Then π admits the following
factorization

π = α0π1α1π2 · · ·πnαn (4.19)

called the block factorization of π. Notice that the block factorization has the
following properties:

• for each 1 ≤ i ≤ n, the factor πi is a block;
• for each 1 ≤ i < n, αi is non-empty. Indeed πi ends with an ω-power and

πi+1 begins with another ω-power and, by definition of normal ω-term, π
does not have two ω-powers as consecutive factors;

• if a 1-factor xω has at least two occurrences in π, then all the occurrences
of xω are contained in some unique block πi;

• if a 1-factor of π occurs in some αi, then it has exactly one occurrence in π.

However, the converse of this last property is not true. If a 1-factor of π has
exactly one occurrence, then this occurrence does not necessarily happen in
some αi. Indeed it can occur in some πi provided another 1-factor has an
occurrence before and another one after it in πi.

The next result states that for LSl, the ω-word problem for arbitrary terms
can be reduced to the ω-word problem for blocks.

Proposition 4.10 Let π = α0π1α1 · · ·πnαn and ρ = β0ρ1β1 · · · ρmβm be the
block factorizations of two normal ω-terms π and ρ. Then, LSl |= π = ρ if and
only if

i) n = m;
ii) αi = βi, for every i ∈ {0, 1, . . . , n};
iii) LSl |= πj = ρj, for every j ∈ {1, . . . , n}.

Proof. The sufficient condition is trivial. Conversely, assume without loss
of generality that n ≤ m and that π and ρ are reduced. The proof is made by
induction on n.
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Suppose first that n = 0. Then π = α0 and α0 is non-empty, say

α0 = xω
1 u1x

ω
2 · · ·xω

k .

If k ≤ 2, then the result follows immediately from Proposition 4.5 i). So,
we assume that k > 2. By definition of block factorization, xω

1 has a unique
occurrence in π. Hence, as LSl |= π = ρ by hypothesis, xω

1 is the 1-prefix of
ρ and has a unique occurrence in ρ, since otherwise ρ (and so also π) would
have a 2-factor of the form yωvxω

1 . Therefore β0 is non-empty, say

β0 = yω
1 v1y

ω
2 · · · yω

`

with y1 = x1. Now, since xω
1 has only one occurrence in ρ and xω

1 u1x
ω
2 is a

2-factor of ρ, xω
1 u1x

ω
2 has a unique occurrence in ρ, in position 1 to be more

precise. Moreover, xω
2 has a unique occurrence in π, which implies that it has

also a unique occurrence in ρ, since otherwise ρ (and so also π) would have
a 2-factor of the form yωvxω

2 distinct of xω
1 u1x

ω
2 . This implies that ` ≥ 2 and

that u1 = v1 and x2 = y2. Iterating the above process, we deduce that ` ≥ k
and that ui−1 = vi−1 and xi = yi for every i ≤ k. Now, since xω

k has precisely
one occurrence in π, we conclude, as above, that necessarily ρ = β0 (whence
m = 0) and α0 = β0.

Suppose now that n ≥ 1 (so that also m ≥ 1) and assume, by induction
hypothesis, that the result is valid for n− 1. Let

π1 = eω
1 f1e

ω
2 · · · eω

r and ρ1 = gω
1 h1g

ω
2 · · · gω

s .

As above one can show that α0 is non-empty if and only if β0 is non-empty.
In this case, if α0 = xω

1 u1x
ω
2 · · ·xω

kuk and β0 = yω
1 v1y

ω
2 · · · yω

` v`, one can show
that k = `, ui−1 = vi−1 and xi = yi for every 1 ≤ i ≤ k. Moreover, xω

kuke
ω
1

occurs in ρ in position k, since xk = yk and yω
k has only one occurrence in ρ.

Therefore uk = vk and e1 = g1. This proves that α0 = β0 and that π1 and ρ1

have the same 1-prefix. To prove that LSl |= π1 = ρ1, we now show that the
blocks π1 and ρ1 have the same 2-factors.

Suppose that there exists some 2-factor eω
i fie

ω
i+1 of π1 that does not occur in

ρ1 and assume that 1 ≤ i < r is minimal with this property. Since eω
i occurs

in ρ1 (and in ρ it does not occur outside ρ1), eω
i fie

ω
i+1 occurs in ρ in the last

position of ρ1, so that eω
i+1 is the first ω-power to the right of ρ1. Consider now

the 2-factors
eω

i+1fi+1e
ω
i+2, . . . , e

ω
r−1fr−1e

ω
r

of π1 (and of ρ). Since none of the 1-factors eω
i+1, e

ω
i+2, . . . , e

ω
r may occur in ρ

both inside and outside ρ1, we deduce that all these 2-factors occur to the right
of ρ1. But π1 is a block, whence there exist p, q ∈ {1, . . . , r}, with p < i < q
or 1 = p = i < q, such that ep = eq, which is absurd since eω

p occurs in ρ1 by
minimality of i. Therefore, all the 2-factors of π1 occur in ρ1. By symmetry, we
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deduce that π1 and ρ1 have the same 2-factors. To establish that LSl |= π1 = ρ1,
it remains to prove that er = gs.

Suppose that the suffix

π′ = α1π2 · · ·πnαn

of π is non-empty and let uxω be the unique prefix of π′ with u, x ∈ A+. Then
eω

r uxω is a 2-factor of π with a unique occurrence, since otherwise xω could
not occur outside π1. Hence eω

r uxω is also a 2-factor of ρ and, as above, one
can show that it has a unique occurrence in ρ, in the last position of ρ1 to be
more precise. Therefore er = gs and the suffix

ρ′ = β1ρ2 · · · ρmβm

of ρ is non-empty. We conclude in particular that LSl |= π1 = ρ1. Moreover, if
vyω is the unique prefix of ρ′ with v, y ∈ A+, then u = v and x = y. Notice
that, by the above arguments, it is now clear that π′ is empty if and only
ρ′ is empty. In this case eω

r and gω
s are, respectively, the 1-suffixes of π and

ρ. Therefore they coincide, since LSl verifies π = ρ by hypothesis, and the
result is proved. So, we may assume that π′ and ρ′ are both non-empty. We
let π′′ and ρ′′ be the reduced ω-terms obtained from π′ and ρ′, respectively, by
deleting the prefix u. Then

LSl |= π′′ = ρ′′

since π′′ and ρ′′ have the same 1-prefix xω, the same 1-suffix (which is the
one of π and ρ) and the same 2-factors (which are the ones of π and ρ except
those occurring in α0π1uxω). Moreover the block factorizations of π′′ and ρ′′

are precisely π′′ = α′
1π2 · · ·πnαn and ρ′′ = β′

1ρ2 · · · ρmβm where α′
1 and β′

1 are
the ω-terms obtained from α1 and β1, respectively, by deleting the prefix u.
The result is now an immediate consequence of the induction hypothesis.

We are finally able to complete the proof that Σ is a basis of ω-identities for
LSlω.

Proof of Theorem 4.4. Let π = α0π1 · · ·πnαn and ρ = β0ρ1 · · · ρmβm be
the block factorizations of π and ρ. Then, by Proposition 4.10,

i) n = m;
ii) αi = βi, for every i ∈ {0, 1, . . . , n};
iii) LSl |= πj = ρj, for every j ∈ {1, . . . , n}.

Hence, from condition iii) and Proposition 4.9, we deduce that Σ ` πj = ρj,
for every j ∈ {1, . . . , n}. Therefore, it follows immediately from conditions i)
and ii) that Σ ` π = ρ. This proves Theorem 4.4 and, therefore, completes
the proof of Theorem 4.3.
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