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Abstract

In this paper we prove that the pseudovariety LS] of local semilattices is com-
pletely k-reducible, where « is the implicit signature consisting of the multiplication
and the w-power. Informally speaking, given a finite equation system with rational
constraints, the existence of a solution by pseudowords of the system over LSI im-
plies the existence of a solution by k-words of the system over LSI satisfying the
same constraints.
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1 Introduction

A semigroup pseudovariety (a class of finite semigroups closed under taking homomor-
phic images, subsemigroups, and finite direct products) is said to be decidable if there is
an algorithm to test membership of a given finite semigroup in that pseudovariety. One
of the main motivations to study decidability comes from its applications in computer
science, where many questions are related with this membership problem. It is known
that decidability is not preserved by some of the most common pseudovariety operators,
such as semidirect product, block product, Mal’cev product, join and power [1, 20} 13].
Since pseudovarieties are often obtained from other ones by using these operators, sev-
eral authors have been exploring the idea of establishing stronger conditions which are
expected to be useful in proving decidability of pseudovarieties [5, 21]. In this context
several concepts were introduced, such as the notion of tameness introduced by Almeida
and Steinberg as a tool for proving decidability of the membership problem for semidirect
products of pseudovarieties [10} 11].

The tameness property is parameterized by an implicit signature o, and we speak
of o-tameness. Each finite semigroup can be naturally interpreted as an algebra for
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the signature o, and such algebras are called o-semigroups. Given an alphabet A and a
pseudovariety V, the V-free o-semigroup over A is denoted by 29V and its elements are
called o-terms over V. A pseudovariety V is said to be o-tame if the word problem for
o-terms over V is decidable, and if V is o-reducible, which means, informally speaking,
the following: if a finite graph equation system with rational constraints has a solution
in the free profinite semigroup “modulo” V, then it has also a solution given by o-terms
and satisfying the same constraints. More generally, when not only graph equation
systems but every finite systems of o-term equations are considered, V is said to be
completely o-reducible (and completely o-tame when, furthermore, the word problem
for o-terms over V is decidable). This extension of the notion of reducibility, was
defined by Almeida [5] mainly because various kinds of such more general systems appear
when different pseudovariety operators are considered. Moreover, unlike reducibility,
the complete reducibility property is inherited by the dual pseudovariety. The notion of
complete reducibility was introduced independently by Rhodes and Steinberg [21], using
the different terminology of inevitable substitutions, in a more general setting, that of
pseudovarieties of relational morphisms and not just of semigroups.

The implicit signature which is most commonly encountered in the literature is the
canonical signature k = {ab,a“~1} consisting of two pseudowords: ab, representing
semigroup multiplication, and a*~!, the unary pseudoinverse which, evaluated on an
element s of a profinite semigroup, takes the value of the unique inverse of se in the
maximal subgroup of the closed subsemigroup generated by s, where e denotes the
idempotent of that subgroup.

There are several examples of reducibility results in the literature but relatively
few results of complete reducibility. We recall some of these results. It is known, for
instance, that the pseudovariety G of all finite groups is k-tame [12} 3, [10] but it is not
completely r-tame [16]. Whether G is completely o-tame for some other signature o
is still an open question. The pseudovariety Gy, of all finite p-groups, with p prime, is
not x-tame [10] but Almeida has exhibited an infinite implicit signature with respect
to which it is tame [4]. The pseudovariety Ab of all finite abelian groups is completely
r-tame [9]. For aperiodic examples, we should mention the pseudovarieties J and R
of all finite semigroups in which, respectively, the Green relations J and R are trivial.
The complete k-tameness of J is proved explicitly in [5], but it is also implicit in the
proofs of [22] as is the k-tameness of JV G. The proof of complete x-tameness of R was
obtained recently [7, 8], while its k-tameness had already been established by the same
authors in [6], where several joins involving R, namely R V G, were also shown to be
K-tame.

Let LSI be the pseudovariety of all finite semigroups which are locally semilattices,
that is, semigroups S such that eSe € Sl for all idempotents e € S. Notice that LSI
is the pseudovariety associated, via Eilenberg’s correspondence, to the variety of locally
testable languages, which as one recalls is formed by the languages L whose membership
of a given word v in L can be decided by considering the factors of a fixed length n of
u and its prefix and suffix of length n — 1. This pseudovariety is already known to
be k-tame [15]. A weaker property, the pointlike subsets of a finite semigroup being
decidable with respect to LSl, was first proved in [23]. In this paper, we extend the
above mentioned work of the first author and Teixeira [15] by proving the complete
r-tameness of LSI.

This work is organized as follows. After a section of preliminaries, where we introduce
some notation and review some basic results on semigroups, pseudovarieties and words,



we present the notions of complete x-reducibility and complete xk-tameness in Section 3.
Section 4! is devoted to recall the basic facts about the pseudovariety LSI, namely the
solution of the k-word problem for LSI, which are needed to prove the main result
of the paper. We next present some technical results on combinatoric of words which
are essential for our purposes. Finally, Section 6/ gives the proof of the complete x-
reducibility of LSI.

2 Preliminaries

In this section, we briefly recall notation, basic definitions and results that will be needed
in the following sections. The reader is referred to [2 5] for general background about
the classical theories of semigroups, pseudovarieties and profinite semigroups and to [17]
for further details about combinatorics on words.

2.1 Words

Throughout this paper, A denotes a finite non-empty set called alphabet. The free
semigroup (resp. the free monoid) generated by A is denoted by AT (resp. A*). The
length of a word w € A* is denoted by |w|. The empty word is denoted by 1 and its
length is 0. The following result is known as Fine and Wilf’s Theorem (see [17]).

Proposition 2.1 Let u,v € A*. If two powers u* and v™ of u and v have a common
prefic (resp. suffiz) of length at least |u| + |v| — ged(|ul, |v]), then u and v are powers of
the same word.

A word w € AT is said to be primitive if it is not a power of another word; that is,
if w = u" for some v € A* and n > 1 implies w = u (and n = 1). Two words w and z
are said to be conjugate if there exist words u,v € A* such that w = wv and z = vu. We
notice that, if w is a primitive word and z is a conjugate of w, then z is also primitive.
Let an order be fixed for the letters of the alphabet A. A Lyndon word is a primitive
word which is minimal, with respect to the lexicographic ordering, in its conjugation
class.

A bi-infinite (resp. right-infinite, left-infinite) word on A is a sequence w = (ay, ), of
letters of A indexed by Z (resp. N, —N). We denote w(n) = a,, and say that a,, is the
letter of w at position n. The sets of bi-infinite, right-infinite and left-infinite words on
A will be denoted, respectively, by A%, AN and A~N.

Let w be a word. For integers ¢ and j such that ¢ < j, we denote by wli, j] the
word a;---aj. In case w € AZ (vesp. w € AN) and i € Z (resp. i € N), we denote
by wli, +oo[ the right-infinite word a;a;+1--- and say that this word is a suffix of w.
Dually, if w € A% (resp. w € A™N) and i € Z (resp. i € —N), we denote by w] — 00, ]
the left-infinite word - - - a;_1a; and say that this word is a prefix of w.

A word x € A* is a factor of a word w, and w is an extension of z, if x = 1 or
x = wli, j], for some integers i and j with ¢ < j. In such case, wl[i, j| is said to be an
occurrence of the factor x in w. We say that two occurrences wli, j] and wlk, (] of factors
in a word w are disjoint (or that they do not overlap) if the integer intervals [i, j] and
[k, 1] are disjoint sets. For each pair of words w,z € A*, we denote by occ(z,w) the
number of occurrences of x in w, and by docc(x,w) the maximal number of disjoint
occurrences of x in w.



We let
A® = At u AN and A > =Atu4aN

The product of two elements w, z of A% is defined as follows: if w, 2 € AT, then wz is
defined in the usual way; right-infinite words are left zeros; finally, if w is finite and z is
a right-infinite word, then wz is a right-infinite word defined by

(w2)y = wy, ifn < |w
" Zn—|w| Otherwise.

The product of elements of A~ is defined symmetrically. It is a straightforward obser-
vation that AN, A™N A% and A~ are semigroups.

A word x € A* is a prefix of a word w € A%, and w is a right-extension of x, if there
exists z € A* such that w = zz. Dually, x € A* is a suffit of w € A7, and w is a
left-extension of x, if there exists z € A~ such that w = zx.

A right-infinite word of the form vu* = vuuu - - -, with u € AT and v € A*, is said
to be ultimately periodic and v is said to be a period of vut°. Each ultimately periodic
word w € AN admits a unique representation w = vu, called the normal form of w,
such that w is a Lyndon word and u is not a suffix of v. Ultimately periodic left-infinite
words are defined symmetrically as being words of the form v = ---uuuv. Each
ultimately periodic word w € A™N admits a unique representation w = 1 v, called the
normal form of w, such that u is a Lyndon word and u is not a prefix of v. An ultimately
periodic word w € AN (resp. w € A™N) which can be written in the form w = u* (resp.
w = u™°) for some u € A, is said to be periodic.

When writing a specific bi-infinite word, we need to specify which is the letter at
position 0. We do this by putting a “” on the left of the letter. For instance, given
words 2 = (z;)ic_n € A™N and y = (y;)ien € AY, we denote by x -y the bi-infinite word
W= "---T_ox_1-Y1Y2---. A bi-infinite word w = x-y is said to be left-ultimately periodic
(resp. right-ultimately periodic) if the left-infinite word z € A~ (resp. the right-infinite
word y € AV) is ultimately periodic. The word w is said to be ultimately periodic if it
is both left-ultimately and right-ultimately periodic, and it is said to be periodic if one
can choose z = v and y = u*>® for some u € AT.

The shift operator on A% is the function o : A% — A% which sends each (a;);ez to
(ai11)icz. The relation ~ on A% given by

w~z ifandonly if Ine€Z, w=0o"(z)

is an equivalence relation. The equivalence class of an element w € AZ relative to ~ is
called the orbit of w and is denoted by O(w). Most of the times in this paper, we will be
interested in a bi-infinite word only because of its factors. Since any two ~-equivalent
bi-infinite words have the same factors, we will usually not distinguish a bi-infinite word
from its orbit.

It is well known that a bi-infinite word w is periodic if and only if w = ¢™(w) for
some n > 0 if and only if O(w) is a finite set. For instance, the orbit of the periodic
word w = (aba) ™ - (aba)™ is

O(w) = {w, (baa)™ - (baa)"™, (aab)™ - (aab)**}. (2.1)

Given a left-infinite word z € AN and a right-infinite word y € AY, we denote by zy
the orbit of the bi-infinite word z-y. For u € AT, we denote u™ = w=°u"°. For instance,
(aba)™ represents the orbit O(w) in (2.1).



2.2 Implicit operations and implicit signatures

For a semigroup S, we denote by S' the smallest monoid containing S. Given an element
s of a finite semigroup (resp. compact topological semigroup), the subsemigroup (resp.
the closed subsemigroup) generated by s contains a unique idempotent, denoted by
5. Moreover, s“~! denotes the inverse of s“*1(= s*s) in the maximal subgroup (resp.
closed subgroup) containing s*. As usual, we denote by E(S) the set of idempotents of
a semigroup S.

A proof of the following classical result can be found in [2, Proposition 3.7.1].

Lemma 2.2 Let S be a finite semigroup and k = |S|. For any si,...,sx € S, there
exist integers 1 <1i < j <k, such that, s1---sp =51+ 8i—1(5 -+ 5j)“Sjs1 " Sk-

A morphism of semigroups is an application ¢ : S — T between semigroups S and
T that respects the multiplication operation of the semigroups. A relational morphism
of semigroups is a binary relation 0 : S—e— T between semigroups S and 7' with domain
S which is a subsemigroup of S x T

By a profinite semigroup, we mean a compact and totally disconnected semigroup.
Equivalently, profinite semigroups are projective limits of finite semigroups. For a
pseudovariety V, a pro-V semigroup is a projective limit of semigroups of V. We
consider finite sets endowed with discrete topology. For an alphabet A, the A-generated
elements of V form a directed system and the respective projective limit will be denoted
by Q4V. Elements of Q4V are called pseudowords (over V). The semigroup QAV is
the free semigroup over A for the class of all pro-V semigroups, which means that, for
each pro-V semigroup S and each function ¢ : A—.S, there is a unique continuous
morphism % : Q4 V—S extending ¢. The mapping % is also said to be induced by .
In particular, if A is a subset of a finite set B, then the unique continuous morphism
Q4V — QpV induced by the inclusion mapping A — B is injective. We will iden-
tify Q4V with its image and therefore view 4V as the closed subsemigroup of QpV
generated by A. Moreover, this leads to a natural interpretation of the pseudowords as
(A-ary) implicit operations: to each m € Q4 V is associated an operation g : S4——S
which maps ¢ € S4 to @(n). The subsemigroup of 24V generated by A is denoted by
4V and is a dense subsemigroup of 04V whose elements are said to be finite pseudo-
words (or ezplicit operations) over V. As important examples of implicit operations, we
mention the binary implicit operation ab of multiplication, and the two unary implicit
operations a*, w-power, and a“~!, (w — 1)-power, which associate to each element s, of
a profinite semigroup S, the elements s* and s“~! of S, respectively.

The pseudovariety of all finite semigroups is denoted by S and, for each pseudovariety
V, pv denotes the canonical projection from Q48 into Q4V. In particular, we write ¢
instead of pg), where Sl is the pseudovariety of semilattices, and we call ¢(m) the content
of 7. Recall that the semigroup Q48Sl is isomorphic to (P(A),U) and ¢(a) = {a} for all
a€ A

A pseudoidentity is a formal equality m = p where 7, p € QS for some alphabet
A. When 7,p € Q4S, m = p is also called an identity. A finite semigroup S satisfies
a pseudoidentity m = p if mg = pg. A pseudovariety V satisfies a pseudoidentity = =
p, written V = 7 = p, if every semigroup in V satisfies m = p, which means that
pv(m) = pv(p). By Reiterman’s theorem [19], each pseudovariety is defined by a set ¥
of pseudoidentities. The pseudovariety defined by ¥ is denoted by [X].



Given m € Q48S, we say that p € QS is a factor (resp. a prefix, a suffix) of 7 if
there are 7,7 € (24S)! such that 7 = 7 pmy (vesp. 7™ = pme, © = 71p). A bi-infinite
word w is a (bi-infinite) factor of 7 if every finite word which is a factor of w is also a
factor of m. Notice that a bi-infinite word w is a factor of 7 if and only if every element
of O(w) is a factor of .

An implicit signature o is a set of implicit operations containing the multiplication.
Every profinite semigroup has a natural structure of a o-semigroup, via the interpreta-
tion of implicit operations as operations on profinite semigroups. For a pseudovariety V,
we denote by 29V the free o-semigroup generated by A in the variety of o-semigroups
generated by V. The elements of 0V are called o-terms over V, and elements of 29 S
are called o-terms. We denote by py : 24S—Q9V the morphism of o-semigroups
determined by the choice of generators. Notice that this notation is consistent since
29S may be seen as a subsemigroup of Q4S, whence this morphism is the restriction of
pv : Q4S — Q4V to Q9%S. The o-word problem for V consists in determining whether
two o-terms represent the same element of Q4 V.

The most commonly used signature is k = {ab,a*~'}. However, since we are going
to work with the aperiodic pseudovariety LS1, which therefore satisfies a* = a*~!, in
this paper we are going to work instead with the implicit signature {ab, a*}, still denoted
by k.

3 Complete reducibility

We assume the reader is acquainted with the notion of reducibility. For an introduction
to this notion and for more details, the reader is referred to [, 8]. We start with the
formal setup of the problem of complete reducibility of a system of equations for a
generic pseudovariety V of semigroups.

Let ¢ be an implicit signature and let X and P be finite disjoint sets. Elements
of X are called variables and elements of P are called parameters. Let S be a finite
A-generated semigroup.

In general, we are given a finite system § of o-equations

U; = Uy (izl,...,h), (3.1)

where each of the pseudowords u; and v; belong to the semigroup Q% pS.
Assume that we are given the following mappings, pictured in the diagram

Q4S
M M
P 1 AT PE—

Solution § and involved mappings
where:
e 1) : QS — S is a continuous morphism that respects the choice of generators;

e 7v: X — S gives a constraint in S for each variable;



e ©: P — Q48 is an evaluation of the parameters such that ¢(P) C Q9S;
e §: X — Q48 is an evaluation of the variables by pseudowords;
o (: 0% pS — Q48 is the o-morphism defined by (x =6 and (|p = .

We say that 0 is a solution of the system 8 over 'V with respect to (p,,) if

{Vie{l,...,h} V E () = ¢(v;)
Pod=r.

Furthermore, if §(X) C Q98S, then 6 is called a o-solution of § over V with respect to
(p,7,v). The triple (¢,7,1) will be sometimes understood. If P = (), then we just
speak about solutions with respect to (v,1). In this case, we will use the notation ¢
to represent both the evaluation of the variables and its extension to a o-morphism
Q%S — QuS.

A pseudovariety V is said to be o-reducible for a system 8 if the existence of a solution
d of 8 over V with respect to a triple (p,~, 1) entails the existence of a o-solution ¢’
of 8§ over V with respect to (¢,7,1). We say that V is completely o-reducible if it is
o-reducible for every such system. If V is g-reducible for every system of equations
associated with finite graphs, then we say that V is o-reducible.

In the language of [21, Chapter 3|, where the same concept is developed, + is said to
be a V-inevitable substitution with respect to the system 8 if a solution ¢ exists.

We say that a recursively enumerable pseudovariety V is (completely) o-tame if it
is (completely) o-reducible and the o-word problem for V is decidable. Finally, we say
that a pseudovariety is (completely) tame if it is (completely) o-tame with respect to a
recursively enumerable implicit signature o consisting of computable implicit operations.

4 Implicit operations on LSI
This section gathers some basic statements about the free pro-LSI semigroup.

4.1 Basic properties of LSI
Recall that LSI is the pseudovariety defined by the pseudoidentities

yxyr” = a¥yx”, aYyz¥za® = 2¥za%yx”.

The pseudovarieties K = 2y = 2*] and D = [yz* = 2], of all finite semigroups
whose idempotents are respectively left zeros and right zeros, are two important sub-
pseudovarieties of LSI. Notice also that LI = [a“yz* = 2¥2*], the pseudovariety of
locally trivial semigroups, is the join of K and D. This means that a pseudoidentity
m = p is satisfied by LI if and only if it is satisfied by both K and D. Now we recall
that, each V € {K, D, LI, LS1} does not satisfy any non-trivial identity, whence we may
identify the free semigroup A+ with the subsemigroup Q4V of Q4 V. Moreover Q4K
and Q4D are isomorphic to A and A=, respectively. In Q4K, the right-infinite word
vut®, where v € A* and u € AT, corresponds to the pseudoword vu®. A dual remark
holds for D.



Let n be a positive integer. We denote by =,, the congruence on Q48 given, for
every m,p € Q4S, by

m=,p if wand p have the same prefix, suffix and factors of length n.

The following proposition summarizes some properties of the pseudoidentities satis-
fied by LSI1. This result is an immediate consequence of [14, Theorem 3.3].

Proposition 4.1 Let 7,p € Q4S. The following conditions are equivalent:
(1) pLsi(m) = pLsi(p);
(ii) m =y p for every n € N;
(#i7) pri(m) = pri(p) and ™ and p have the same finite factors;
(iv) pri(m) = pLi(p) and m and p have the same bi-infinite factors.

Moreover, if T and p are infinite pseudowords, then a bi-infinite word w € A” is a factor
of mp if and only if w is a factor of ™ or a factor of p, or w € O(Tp) where Tp is the
bi-infinite word pp(7) - px(p).

As an immediate consequence, we have the following cancelation properties.

Corollary 4.2 Let my,m9,p € Q4S be such that LS1 verifies pwy = pme OT TP = Wap.
If p is a finite word or c(p) is disjoint with both c¢(m1) and c(me), then LS1 = m = mo.

Another consequence of Proposition [4.1] is the following factorization property.

Lemma 4.3 Let m,..., 7., p1,p2 € QaS be infinite pseudowords and suppose that

LSl | 7y -, = p1p2. Then, either pips ~ wmiri for some i € {1,...,r — 1}, or
there exists a j € {1,...,r} and infinite pseudowords 7, 7} € Q4S8 such that 7; = wim]

>
S !
and p1pg = ;T .

Proof. For each positive integer k let uy and v be, respectively, the suffix and the

prefix of pp(p1) and pk(p2) of length k. Since uyvy is a factor of p;ps and LSI verifies
. < | p—

T -+ T = p1P2, URVE is also a factor of 71 -+ - m,.. Suppose that pips # mmi1 for every

i €{1,...,r —1}. Then, there is a j € {1,...,r} such that uzvy is a factor of 7; for

every k. Hence, there is a factorization 7; = zpupviyy for every k and, since 248 is

compact, we may assume that both sequences (zjuy)r and (viyg)r converge, say to 7r§-

7 : i S !
and 7 respectively. Therefore 7; = mm} and prpg = pp(p1) - P (p2) = Ty O
A proof of the following simple, but fundamental, result can be found in [15].

Lemma 4.4 Let S be a finite semigroup and let n be a positive integer. If m € QS
is an infinite pseudoword, then there exists a word w € AT such that w =, 7™ and S
satisfies w = 7.

The next result ([2, Corollary 5.6.2]) presents an useful decomposition of the infinite
elements of the semigroups Q4 V.



Lemma 4.5 Let'V be a pseudovariety of semigroups and let m be an infinite pseudoword
of QaAV. Then there exist w1, p,m0 € L4V such that m = 71 p%ma.

As an easy consequence, we derive the following property of the infinite elements of
Q4LSL

Corollary 4.6 If 7 € Q4LSI\AT, then 7% = 7.
The next result presents a well-known property of pseudowords over K.

Lemma 4.7 Let 7, p € Q4S be infinite pseudowords such that pk(7) = pk(p). Then
there exist factorizations m = myme and p = w1 p2 where w1, p1, p2 are infinite. Moreover,
if pr(m) = vu'™ where v € A* and uw € AT, then one can choose m = vu®.

A dual result holds for D.

4.2 The k-word problem for LSI

In this subsection we briefly recall the solution of the k-word problem for LSI obtained
by the first author [14].

A term of rank 0 is a k-term not involving the w-power, that is, is an element of
Q4S (= A"). A term of rank 1 is a sk-term 7 of the form

/ / !/
T = uguuus - - U U,

with m > 1, u),...,u,, € A* and uq,...,u, € A", It is clear that pk(7) is the right-
infinite word uyul™ and pp () is the left-infinite word w,;°w,. The k-term 7 is said to
be in reduced form when: u; is a Lyndon word for j = 1,...,m; ujul™ and w;u, are
words in normal form; u;mu;u;j‘il is a non-periodic word for j = 1,...,m — 1. In this
case, we denote by B, the set of all non-periodic bi-infinite factors of 7, that is,

B = {u;"ou;uﬁl li=1,...,m—1}. (4.1)

Recall that, if a pseudoidentity m = p holds in LSI, then either 7 and p are the same
finite word or they both are infinite pseudowords. The following decision criterion to
test if two infinite k-terms (i.e., k-terms of rank at least 1) are equal over LS1 is a simple
reformulation of [14, Theorem 7.1].

Proposition 4.8 Let m € QS be an infinite k-term. Then, there is a rank 1 k-term
= upuiuiug - ulul,, in reduced form, such that LSl = m = .

Moreover, if p € QU4S is another infinite k-term and p1 = vouivivg - - - vg'vy, is a rank
1 k-term in reduced form such that LSl |= p = p1, then LS verifies m = p if and only if
UGUT® = VGUT, U Uy, = V70, and Br, = By, . Furthermore, it is effectively decidable
whether LS1 verifies m = p or not.

Let m € Q48 be an infinite pseudoword such that LSI = m = w for some s-term w.
As a consequence of Proposition 4.8, we may define B, as being the set By, , where 7
is any rank 1 k-term in reduced form such that LSl = 7 = 7.

5 Some combinatorial results

In this section, we briefly recall some definitions on words and some results of [15]
Section 4] that will be used latter.



5.1 Centers of bi-infinite words

Let w € A" and let w = w[l,7] be an occurrence of a factor u in w. An occurrence
v = wll,r'], with r < /) of a factor v in w is said to be a right-extension of the
occurrence w|l,r]. In this case, the word v itself is said to be a right-extension (in w) of
the occurrence w(l, r].

Definition 5.1 (allowed occurrence) Letu € AT andlet & € AT be a right-extension
of u. We say that an occurrence u = w(l,r] in a word w € A" is allowed in w relative
to W if W is a right-extension in w of the occurrence wll,r].

For instance, let u = aba and let W = abaabc. Then w = cababaabcaabaabaabe
has two allowed occurrences of u : w[4,6] and w[14,16]; and two occurrences of u not
allowed: w(2,4] and w[11,13]. If W = ababb then u has no allowed occurrences in w.

Definition 5.2 (centers of a bi-infinite word) Let w € AZ be a bi-infinite word.
For every pair of integers p,q € Ny, the factor w[—p,q| is said to be a center of w.

The dual (for left-extensions) of the following result was proved in [15, Lemma 4.2].

Lemma 5.3 Let B = {wy,...,wy,} be a finite set of non-periodic bi-infinite words such
that w; o wj for every i,j € {1,...,n} with i # j. For each £ € {1,...,n} let also
ce = Wy[—pe, qo] be a center of wy with py > @Q for a fivred Q (depending on B) chosen
sufficiently large.

For each { there is a center ¢; = wy[—pe, qé] of wp with qp < qz (so that @ isa right-
extension of ¢g) such that the following property is verified, for every i,j € {1,...,n}
(where i and j may be the same):

any two distinct occurrences of ¢; and ¢j in a finite word w € AT,

1
which are allowed relative to ¢; and c_j respectively, are disjoint. (5.1)

This property (5.1), of allowed occurrences of certain centers of bi-infinite words
being necessarily disjoint, is essential to our purposes. Indeed, in Section |6, we will
need to transform occurrences of certain factors (which are centers of bi-infinite words)
in a word and, so, we need these occurrences to be disjoint. The definition of allowed
occurrences in a word was introduced with this purpose. We will transform only allowed
occurrences of these centers.

5.2 Marked factors

In what follows we recall some notions, and their basic properties, introduced in [15].
We will also fix several integers already used in that paper. Let us begin by recalling
some of them.

Definition 5.4 (constants k, &’ and k") We let:

e k represent the number |S| of elements of a finite A-generated semigroup S. We
assume for the rest of the paper that S and k are fized.

10



o k' = 6Kk|A]’*, and notice that this constant is large enough to guarantee that, if
U1, ..., U are all the factors of a word w € AT with 2k < |u;| < 3k and if docc(u;, w) >
k' —2 for every 1 < i < r, then it is possible to choose one occurrence of each factor u;
such that these occurrences are pairwise disjoint. We will be interested in these factors
u; because they can be factored in the form w; = w;1u; 2u; 3 with |u; 1| = |u; 3| = k and
|ui,2\ < k.

o k' = [2k/(3k — 1)]AP* 1 and observe that the definition of K" is motivated by
Lemma 5.6 below.

A finite word v is said to be k’-abundant if docc(y,v) > k' for all factors y of v with
length 3k — 1.

Let w = ajaz -+ - a, (a; € A) be a finite word, with n > 3k — 1. A k”-neighborhood of
an occurrence u = wli, j| of a factor v in w is an occurrence v = wli’, j'] extending wli, j]
(i.e., such that i <7 and j° > j) and such that |v| < k”. An occurrence v = wli, j| of a
factor u of length 3k — 1 in w will be said to be free if there exists a k”-neighborhood
v of wli, j] such that v is k’-abundant. Notice that, in this case, every occurrence of a
factor y, of length 3k — 1, in the k”-neighborhood v is free. The occurrence u = wli, j]
and the letters a;, ajt1, ..., a; will be said to be marked if wi, j] is not free.

The next lemma follows easily from the above definitions.
Lemma 5.5 There is a unique factorization
W = WoUW1V2 - - - VgWyq
such that
e q>0;
o wo,wg € A", wy,..., Wy—1,V1,...,V € At
o for each 1 <1 < q, the letters of v; are marked;
o for each 0 < j < g, the letters of w; are not marked.

This factorization is called the marked factorization of w (for k). The factors vy, ..., v4
(resp. wo, . .., wq) are said to be the marked factors (resp. the free factors) of w (for k).

The above process of marking letters of a given word w € A7 is a way to identify the
factors of a given length 3k — 1 that (locally) have “few” occurrences: the definition of
what “few” means is made in such a way that the marked factors have bounded lengths,
as shown by the following lemma. On the contrary the free factors are “big” and have
no bounds on its lengths.

Lemma 5.6 Let w = woviwivs - - - vgwy be the marked factorization of a word w € At
of length at least 3k — 1. If ¢ > 1, then 3k — 1 < |v;| < k" for every 1 <i <gq.

11



6 Complete k-reducibility of LSI

In this section, we prove the main result of the paper.
Theorem 6.1 The pseudovariety LS is completely k-reducible.

The proof is spread over subsections 6.1/ to 6.6. Since the xk-word problem for LSI
is decidable by Proposition [4.8), the complete tameness of LSI follows immediately from
Theorem 6.1\

Theorem 6.2 The pseudovariety LS is completely x-tame.

A decidability consequence of complete tameness of LS1 is presented in Theorem [6.3
below, a result which follows from [21, Chapter 3]. The reader is referred to this book
for details and missing definitions. For a pseudovariety R of relational morphisms and
a pseudovariety V of semigroups, denote by Rq(V) the following pseudovariety of semi-
groups,

Rq(V)={S €S: thereexists ) € Rand T' € V with 6 : S—=T'}.

Theorem 6.3 The pseudovariety Rq(LS1) is decidable whenever R is a pseudovariety
of relational morphisms with a finite basis of pseudoidentities of the form (A,u = v,8)
with 8 being a finite system of k-equations.

6.1 Initial considerations

Suppose that we are given a finite system § of k-equations and a solution § of 8 over
LS1 with respect to a triple (¢,7,1). To prove the complete x-reducibility of LSI, we
need to construct a k-solution &’ of 8 over LSI with respect to (¢, v,%). As we observe
below, the liberty to choose the ¢’ label of some variables is very restricted.

Obs. 1. Suppose that z € X is a variable such that §(z) = u with u € AT. By
definition of complete x-reducibility, we must have 1pod = v = 1pod’. Thus, in particular,
(8" (z)) = ¥(u). Since we are given a morphism ¢ : Q48 — S into a fixed (but
arbitrary) finite semigroup S, it is possible that the equality (¢'(z)) = ¥ (u) holds only
when 6’(z) = w. This is the case, for instance, when u = a and S = {a,0} is the
monogenic semigroup generated by a, defined by the relation a? = 0. Therefore, in that
case we would not have any choice; we would be obliged to define §'(x) = u. However,
since we want to define an algorithm to construct ¢’ that should work with any given
system and solution, we thus “need” to define §'(x) = v = §(x) in general.

Obs. 2. Now, suppose that x € X is such that LSl | §(z) = u* with u € AT. Since
8 is an arbitrary system of k-terms, it could include, for instance, the equation z = y*
with y a variable such that d(y) = u, because in that case LSl = §(z) = §(y)“. As
LSl | §'(z) = §(y)“, and we “must have” §'(y) = u by Obs. [I, we thus “need” to choose
for ¢'(z) a k-term such that LS1 = ¢'(z) = u* = §(z).

More generally, suppose that d(x) is given by a non-explicit k-term when projected into
Q4LSI (see Example [6.17 for a case in which §(z) is not itself a k-term). By Propo-
sition 4.8/ this is equivalent to the existence of a rank 1 sk-term w = voufviug - - - u¥v,
in reduced form such that LS] = §(z) = w. Therefore, by similarity with the situation
above, it is not difficult to deduce that we should have LSl = §'(x) = w = 6(x).
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Obs. 3. Suppose at last that z € X is such that K = 6(x) = vu® with v € A* and
u € At. Then, §(x) = vr for some pseudoword 7 such that K = 7 = u¥. Then, by
Proposition 4.1, its clear that LSl = © = um, and we may assume that = = yz and
z = tz are equations of 8§ with d(y) = v, 6(z) = 7 and §(t) = u. Hence, LSI must
verify §'(x) = ¢'(y)d0'(z) and §'(z) = §'(t)d'(2) = ud’(z), which implies that K verifies
0'(z) = u¥ and so also §'(z) = §'(y)d'(z) = vu® = 6(x).

Dually, if € X is such that D = §(z) = u“v with v € A* and u € A", then we should
have D | §'(x) = u¥v = §(x).

Observations (1l and 2/ above suggest that, for a variable z labeled under § by a x-
term when projected into Q4LSI, we should choose for §'(x) a k-term verifying LSI =
d'(x) = d(z). On the other hand, Observation [3 suggests that, if x is a variable such that
the projection of §(x) into Q4K (resp. into 24D) is an ultimately periodic word vu®
(resp. u°v), then we should choose for &’ () a k-term whose projection into Q4K (resp.
into 24D) is also vut™ (resp. w°v). The s-solution &', to be defined in Subsection 6.5
below, will respect these constraints.

6.2 Simplifications on the system of equations

Let us proceed with the simplifications which are the objective of this subsection. By the
following result, proved in [8, Proposition 3.1], we may restrict the problem to consider
only systems without parameters.

Proposition 6.4 Let V be an arbitrary pseudovariety and let o be any implicit signa-
ture. If V is o-reducible for systems of equations of o-terms without parameters, then
V is completely o-reducible.

For the rest of the paper, we will work only with the pseudovariety LSI and all the
solutions that we consider are over LSI1. So, by Proposition 6.4, it suffices to consider a
finite system § of x-equations

U; = Uy (i:1,...,h), (6.1)

with u;, v; € Q5 S. Consider also a solution ¢ of § over LSI with respect to a pair (v, ).
Before describing new simplifications on the system and the solution, we illustrate
them with an example.

Example 6.5 Suppose that X = {x,y, z,w,t} is the set of variables and that 8 has the
unique equation of k-terms of rank < 2

(z¥y)¥z = (wt)“z.
Since § is a solution over LSI, it follows that LSI verifies
§((z¥y)“z)=0((wt)“z).

As § is a k-morphism and so, in particular, commutes with w-powers, we deduce that
LSI satisfies

(6(2)*8(y))"0(2) = (8(w)d(t))“8(2).
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Now, applying Corollary 4.6, we obtain

LSI = 6(2)“0(y)d(x)“3(y)d(2) = (8(w)3(t)) 6 (2).

Then, ¢ is a solution over LS1 with respect to (v,1) of the system 8¢y with the single
equation of k-terms of rank <1

yax¥yz = (wt)?z.

We suppose furthermore that 6(w) and 6(t) are finite pseudowords and that 6(x) is an
infinite pseudoword. We consider a new variable v and a new equation v = wt and define
mappings 91 and y1 extending 0 and v to X1 = X U {v} by defining 61(v) = 6(w)d(t)
and v1(v) = 0 01(v). Therefore, again by Corollary 4.6, LSl verifies

61(2)01(2)d1(y)01(2)d1(2)01(y)d1(2) = 01(v)“1(2).

Then, 1 is a solution over LS] with respect to (y1,) of the following system 8;

rryrryz = vz
v = wt.

Suppose that 81 admits a k-solution &) over LSl with respect to (v1,) such that
01 (x) is infinite. [We will prove in Subsection 6.5 that such a k-solution exists for such
type of equations.] Then 0" = &}|x is a k-solution of 8§ over LS] with respect to (7,1).

Motivated by this example, we will consider finite systems of k-equations
Uil e Uip; = Uipi4+1 7" Uiy, (i=1,....h), (6.2)

with solutions ¢ over LSI with respect to a pair (v, ) where, for each j € {1,...,4;},
u;,; is either a variable or w; j = 27, with x; ; a variable such that 6(z; ;) € AT,
Example 6.5 (namely the property required by the x-solution 07) also motivates the

following definition.

Definition 6.6 (FT x-reducibility) We will say that LSl is FT (“first type”) k-redu-
cible if, for each system 8 and solution & of form (6.2) there exists a k-solution &' over
LSI such that, for each x € X, 0'(x) is infinite when 6(x) is infinite.

Now we show that the complete k-reducibility of LSI is a consequence of its FT
k-reducibility.

Proposition 6.7 If LSl is F'T' k-reducible, then LSI is completely k-reducible.

Proof. By Proposition 6.4} it suffices to consider a finite system 8 of type (6.1). Let §
be a solution of 8§ over LSI with respect to a pair (v,), and let us apply the process
illustrated in Example [6.5.

We choose any subterm of the form «“, with «w an infinite x-term, and we replace u®
by u?. We repeat the same step in the new system thus obtained, and we iterate this
process until possible. Since the rank of the subterms replaced decrease, this process
must stop with a system 8g of equations of k-terms of rank < 1. Notice that §¢ is
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unique, that is, 8p does not dependent on the order of the substitutions. Moreover, ¢ is
a solution of 8y over LSI with respect to (v,).

Now, we consider each subterm, of the equations of 8, of the form u* (with v € X+
of course). If §(u) is an infinite pseudoword, then we replace u* by u?. Otherwise §(u) is
a finite word. In this case we add a new variable v, to the set of variables, we add a new
equation v, = u to the system of equations, and we extend § and - to new mappings d;
and 1 by letting d1(v,) = d(u) and v1(v,) = ¥ 0 d1(vy). We obtain a finite system 8; of
form (6.2) having ¢; as a solution over LS1 with respect to (y1,%). By hypothesis there
exists a k-solution 0] of 8; over LSI with respect to (v1,%) such that 6} (z) is infinite
when 01 (z) is infinite. Therefore §' = §}|x is a k-solution of 8§ over LSI with respect to

(v, 9). 0

We proceed with our next reduction on the problem. We consider a system of word
equations, that is a system & of equations of the form

Tilc Tip, = Tip+1Tig, (G=1,...,h) (6.3)

where z; ; is a variable for all j € {1,...,¢;}, and let § be a solution of § over LSI with
respect to a pair (v, ), labeling each variable by an infinite pseudoword.

Definition 6.8 (ST k-reducibility) We will say that LSl is ST (“second type”) k-
reducible if, for every system 8 and solution § of form (6.3) and every integer M > 1,
there exists a k-solution &' = (8,0, M) over LS] with respect to (v,v) such that for
each variable ¢ € X,

(ST.1) ¢'(x) is infinite;

(ST.2) if LS1 = 6(z) = vu®, where u # 1 and v are finite words, then LS = ¢'(x) =
o(z);

(ST.3) if 6(x) = um, where u € A* with |u| < M and 7 € Q4S, then §'(x) = un’ where
'€ QS is such that ¢Y(m) = (7).
Moreover, if y is another variable, v € A* with |v| < M and p € QA4S are such
that 6(y) = vp and LS |= m = p, then §'(y) = vp’ where p' € QS is such that
P(p) = Y(p) and LS | 7' = p'. In particular, if LS1 = 6(x) = d(y), then
LSl = ¢ (z) = &' (y).

As one notices by this definition, to permit the simplification of the system and the
solution, we need to require more complex properties to be preserved. On the other
hand, although LSI is an autodual pseudovariety, conditions (ST.2)-(ST.3) above are
not symmetric. This happens because (cf. the proof of Proposition [6.9/ below) in order
to reduce the problem to a system 8 and solution § of form (6.3), when a general system
and solution are given we “absorb” the variables which are labeled by finite pseudowords
into the variables to their right.

Proposition 6.9 If LSI is ST k-reducible, then LS1 is completely k-reducible.

Proof. By Proposition 6.7, it suffices to show that ST k-reducibility implies FT -
reducibility of LSIL. So, let 8§ be a finite system and let § be a solution of 8 over LSI
with respect to a pair (v, 1), of type (6.2). That is 8 is a system of equations

Ui Uipy = Wippd =~ Uig, (0= 1,05 h)
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where u; ; is either a variable or u; ; = :L“‘Z"j with z; ; a variable such that 6(xz; ;) € AT,

We first reduce to the case in which the last factors u; ,, and w; 4, of each equation i are
labelled under § by infinite pseudowords. That is, we assume that for such systems and
solutions there exists a k-solution, and prove that a system 8 and solution § without this
extra condition also yields a k-solution. We consider an enlarged alphabet B = Aw {b},
an extended set of variables Y = X W {#} and a new system 8; with equations

Uil - Ui, = Uip41 - Uig# ((=1,...,h)

obtained from the equations of 8 simply by the multiplication of both sides of the
equation by #. As pointed out in Subsection 2.2, 48 can be viewed as a subsemigroup
of Q5S. So, we let 61 be the extension of § to Y such that §1(#) = b*. Now, we consider
the finite semigroup S; = S! x P(B), where P(B) = QpSl is the power set of B. Let
Y1 : QS — Sp be the unique continuous morphism such that 1 (b) = (1,{b}) and
P1(a) = (Y(a),{a}) for each a € A, and let 71 : Y — S; be defined by 1 = 91 0 d;.
Since ¢ is a solution of § over LSI1 with respect to (7,1)), it is clear that d; is a solution
of 81 over LS with respect to (71,11). By assumption there exists a r-solution &} of 81
over LS] with respect to (y1,%1). Therefore

Vi € {1, ey h} LSl ‘: (51(11,1'71 s ui,Pi#) = 5/1(ui7pi+1 s umi#), (64)
Y108 =y =1h1 001, (6.5)
By the definition of 11, it follows from (6.5) that
Bod =od=r (6.6)
cod) =cody, 6.7)

where &' : X — Q48 is the restriction of §] to X. Notice that ¢’ is well-defined since,
by (6.7), c(01(z)) C A for every x € X. Moreover c(87(#)) = c(d1(#)) = {b}, so that,
by (6.4) and Corollary 4.2,

Vi € {1, ey h} LS1 ): (5’(ui,1 <o ui,pi) = 5’(ui,pi+1 . -umi).

Since ¥ 0 ¢’ =~ by (6.6), we deduce that ¢’ is a r-solution of 8§ over LSI with respect to
(7,1), which concludes the first reduction.

So, we assume that the above system 8 and solution ¢ are such that d(u;yp,) and
0(u;q,) are infinite pseudowords, and show how to transform these data into a finite
system 8; and a solution 01 of 8; over LSI with respect to a pair (7y1,%) of the special
form (6.3). The new set of variables, denoted by X, will be an extension of X, and §;
and 7, will be extensions of § and v to X;.

Suppose that some u; ; is labelled under 0 by an infinite pseudoword and that ¢ < j
is minimal such that w; g, ..., u; j—1 are variables labelled under ¢ by finite pseudowords.
In this case, we let y; ; be a new variable, substitute the subterm

Ug 0+ Uj j—1Uj,5 (6.8)
by i ; in the i-th equation of 8, and define 01 (y; ;) = d(uiz) - - - 0(ui j—1)0(u;i ;) and

w

) Y(wie) - - y(wij—1)y(uiy) if u;; is a variable
M\Yij) = .
Y(uie) -+ y(wij—1)y(@iy)” if uiy = a7
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This way, all variables of the form wu;,, labelled under ¢ by finite pseudowords are
substituted. Suppose now that some subterm of the form u;; = z7; still remains in the
new system. In this case, d(z; ;) is finite and we substitute u; ; by a new variable z; ;
and define 01(z; ;) = 0(z;;)* and v1(zi;) = v(zs;)”. After all these substitutions are
made, the process of construction of 8; is concluded. Moreover ¢§; is clearly a solution
of 81 over LSI with respect to (y1,).

Fix an integer

M> I 16(uim)l. (6.9)

1<i<h,1<m<gq;
5(u; m)EAT
By hypothesis LSl is ST k-reducible. Therefore, there exists a s-solution ¢ =
01(81, 01, M) of 81 over LS] with respect to (71, ) satisfying conditions (ST.1) to (ST.3).
We use ] to construct a s-solution ¢, of the original system 8, over LSI1 with respect
to (v,%) as follows. Let z € X.

e If §(x) is finite, then we let §'(z) = d(x).

o If §(x) is infinite and = does not occur in some equation of the original system 8, then
we let &' (x) = 87 (x).

e Suppose that d(x) is infinite and that x occurs in (some equation of) 8. Notice that x
may have various occurrences in 8. We will see that each such occurrence determines
a candidate for ¢'(x) and we will prove that all the candidates are equal over LSI, so
that any of the candidates can be chosen to be the value of §'(z).

Let u; ; be an occurrence of x. If the subterm w; ; was not replaced in the substitutions
that gave origin to system 81, then we let m;; = &}(z) be a candidate for ¢'(x).
Otherwise u; ; (the subterm (6.8) to be more precise) was replaced by the new variable
vi ;. In this case 61 (y;,j) = um; j, where u = 8(u;¢) - - - 6(u;j—1) € AT and m; ; = 6(u;j).
By (6.9), M > |u|. Therefore, by condition (ST.3), 0} (yi;) = um; ; where 7 ; € Q%S
is such that ¢(m; ;) = ¥(; ;), and we let 7; ; be a candidate for ¢'(x).

Suppose now that 7, ; and 7, ;. are two candidates for ¢'(x). It follows immediately
from the definition of the candidates and from the second part of condition (ST.3)
that LSl = m] ; =, . . Therefore, we choose for §'(z) any one of its candidates.

By construction ¢’ is a s-solution of 8§ over LSI with respect to (v,%). Indeed, the
equality 1 o & = v is a simple consequence of ¢ o § = . Moreover, it should be clear

from the statements above that to show
Vie{l,....,h} LSLE & (uig-uip;,) =06 (Wip41 -+ Uig)
it suffices to verify that:
(a) LS1 = &) (yi ;) = 0" (uig---u; ;) for every substitution of the form w; - - ;i ; — vi j;
(b) LSI1 = 67 (2,5) = ' (us,5) for every substitution of the form u; j — z; ;.

The other case being analogous, we only prove this when u; ; is a subterm of the form
¥, and so z; ; € X is a variable such that 0(z; ;) is a finite pseudoword.

For (a), we have 81(y; ;) = ud(z;;)*, where u = 6(u;z)---6(u;j—1) € AT. Hence,
by condition (ST.2), LSI satisfies ¢} (y;;) = 01(yi;) and so it satisfies also &7 (y; ;) =

T
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8" (s - - - u;,5) since, by definition of ¢’, 0'(z; ;) = 0(z;,;) and 6’ (uim) = 6(uim) for every
me{l,....j5—1}
For (b), we have 61(z; ;) = 6(x; ;)* and, using again (ST.2), we deduce successively

LSl |= 61 (215) = 01(2i,5) = 6(@i3)* = 0'(ij)” = 0 (uij)-

Therefore ¢’ is a k-solution of § over LSI with respect to (v,%). To conclude the
proof of the proposition notice that for each variable x € X, §'(z) is infinite when §(x)
is infinite. 0

To achieve our last reduction on the problem, we need to introduce some notation.
Although we will reduce to a more complicated system, this will simplify the description
of the solution of the problem. We assume there are given a system and a solution of
form (6.3)). Notice first that we may as well assume that, if LSI is ST x-reducible, then
each variable z € X has one and only one occurrence in 8. Indeed if a variable does not
occur in 8, we may remove it from the set X. On the other hand, if a variable x has
more than one occurrence in 8, then we may replace each extra occurrence of x by a
new variable labelled by §(z). If y is one of these new variables and ¢} is a x-solution of
the new system, then LSI |= ¢} (x) = §7(y) by condition (ST.3). Hence, for each variable
x € X, we may choose ¢'(z) = 0} (x) to obtain a solution of the original system 8.

In the rest of the paper, we will introduce several functions defined on the set of
variables. For one such function f and a variable x € X, the value of x under f will be
denoted by f;. When we are interested in identifying the (unique) place where = occurs
in 8, say when z = w;;, we will also denote f, by f;; (and we will freely adopt this
double notation).

Definition 6.10 (words k,, d;, w(; ;) and sets Kg, Ds, Ws) For each variable x, we
denote by k, € AN and d, € A7N the projections of §(z) into QK and QaD, respec-
tively, and let
Kg:{kx|$6X} and DSZ{dx|$€X}.
For each pair of integers (i,7) with i € {1,...,h} and j € {2,...,pi,pi +2,...,¢},
we denote by w(; jy the bi-infinite word

W(’LJ) = divj_l ’ kzv]

which is determined by the factor x;j_1x;; of the i-th equation of 8 (i.e., W(; ;) =

—>
0(zij-1)6(xiy)), and let W represent the set of all such words w; ;).
For each i € {1,...,h} we let further

Ki(0) =1k [j=1,....pi}, Ki(1)=Akij|j=pi+1,... a4},
D;i(0)={di; |j=1,....pi}, Di(1)={dijli=pi+1,...,4},
Wi(0) ={wu1i=2,...,pi}, Wi(l) ={wg, |i=pi+2,...,4q}

Notice that Wg may be empty (when each equation is of the type z;1 = x;2). This
case is easier and it could be treated separately. However, to avoid having to consider
two cases, we may assume that this set is non-empty since we could, for instance, proceed
as in the proof of Proposition 6.9 and multiply both sides of one equation of § by a new
variable #.
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We say that two right-infinite words wy,ws € AN are confinal if they have a common
suffix v € AN, that is, if w; = wjv and wy = ugv for some words uy,us € A*. As one
easily verifies, the relation 6; defined, for each k,, k, € Kg, by

k,01k, if and only if k, and k, are confinal

is an equivalence on Kg. The notion of left-infinite confinal words can be introduced
symmetrically. An equivalence 6y on Dg can also be defined by symmetry.
Notice that, since ¢ is a solution of § both over K and over D, we have the equalities

ki1 =kip,+1 and d;,, =d; g, forall i € {1,...,h}. (6.10)

Definition 6.11 (synchronized system) We say that the pair (8,6) is synchronized
if the following conditions are verified:

(Sy.1) If d, and dy are two confinal words of Dg, then d, = d,. Moreover, if d, is
ultimately periodic, then d, = v where u is a Lyndon word;

(Sy.2) If wijy, Wiem) € Ws are such that W jy ~ W, then W jy = W

(Sy.3) W;(0) = W;(1) for everyi. Therefore, by (6.10), also K;(0) = K;(1) and D;(0) =

(Sy.4) Wi(0) contains the set Bs, ;) of non-periodic bi-infinite factors 0£5(xi,j)7 for
every variable x; j such that (5(1‘2‘,]‘) is a k-term when projected into QA LSI;

(Sy.5) Wg does not contain periodic words.

When the solution is understood, we will simply say that system 8 is synchronized.

Definition 6.12 (TT k-reducibility) We will say that LSl is TT (“third type”) k-
reducible if, for every synchronized pair (8,0) and every integer M > 1, there exists a
k-solution 0" = 0'(8,0, M) over LSl with respect to (v,v) such that for each variable
reX,

TT.1) &'(x) is infinite;

TT.2) if K | §(z) = vu®, where u # 1 and v are finite words, then K = ¢'(z) = §(x);

(TT.1) 6
(TT.2)
(TT.3) if D |= §(x) = u®, where u # 1 is a finite word, then D |= &' (x) = §(x);
(TT.4) if LS | §(z) = w for some r-term w, then LS |= &' (z) = 8(x);
(TT.5)

TT.5 zf<5 x) = um, where u € A* with |u| < M and 7 € QAS, then &' (x) = un’ where

' € Q5 S is such that Y(m) = P(n’).

Moreover, if y is another variable, v € A* with |v| < M and p € QS are such
that 6(y) = vp and LSl |= 7 = p, then ¢§'(y) = vp' where p' € Q%S is such that
¥(p) = Y(p') and LSY = 7' = p'. In particular, if LS] |= 6(z) = 0(y), then
LS1 =6 (z) = 8 (y).

We will prove in the remaining subsections that LSl is T'T k-reducible. For now,

we show that indeed the T'T k-reducibility of LSI implies the complete k-reducibility of
LSL
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Proposition 6.13 If LSl is TT k-reducible, then LSI is completely k-reducible.

Proof. By Proposition 6.9 it suffices to show that TT k-reducibility implies ST -
reducibility of LS1. So, let § be a finite system, let § be a solution of § over LSI with
respect to a pair (v,v) of type (6.3), and let M > 1 be an integer. We show that we
can reduce to the case in which the system and solution are synchronized.

Indeed, for|(Sy.1), let © be an arbitrary fg-class. Then there exists a word sg € A~
and words u, € A*, for each variable x with d, € ©, such that

d, = sou,.

Notice that, if d; is ultimately periodic, then we may choose sg of the form u > where
u € A" is the unique period of d, which is a Lyndon word. Hence there exists a
pseudoword pe (whose projection into Q4D is sg) and, for each variable x with d, € ©,
there exist pseudowords 7, such that §(z) = mypeu,. Again proceeding as in the proof
of Proposition 6.9/ if necessary, we may assume that for each such variable x there is a
variable 2’ such that zz’ occurs in 8. We substitute the variables x and x’ by variables
z1 and 2, respectively, and let d1(z1) = mype and 01(2)) = u,d(2"). This defines a
solution d; of a new system 8; satisfying condition (Sy.1). Let M; > M + |ug|. If
8 = 61(81,81, My) is a k-solution of this new system and verifies conditions |(TT.1)-
(TT.5), then by (TT.5) ¢i(z)) is of form ¢)(z}) = uyn’, for some pseudoword =/,
whence we may obtain a k-solution &' = §(8,d, M) of 8 satisfying conditions (TT.1)
(TT.5) by setting ¢'(x) = 6}(z1)u, and ¢’'(z’) = 7,. Therefore we may assume that 8
verifies condition (Sy.1). Notice that the dual of condition (Sy.1) for confinal words of
Kg cannot be assumed since it cannot be guaranteed simultaneously with |(Sy.1).

Condition (Sy.2) is a consequence of (Sy.1) in case w; jy, W) € Ws are words
such that w; jy ~ W(g,,) and w(; ;) is not left-ultimately periodic (and so nor is W) )-
If wi; ;) = dij—1-k; is left-ultimately periodic, then w(,,) = dgm—1 - kem is also left-
ultimately periodic and, by (Sy.1), d; j—1 = d¢m—1 = v where u is a Lyndon word.
Since w(; jy ~ Wy ), then we may assume, without loss of generality, that k¢, = uPk; ;
for some integer p > 0. So, as in the case of condition (Sy.l), we may transfer the
suffix P from &(x; ;1) to 6(x; ;). This does not change the value of d; j—; and makes
kim = kij, so that w( jy = W(g,,) in the new system. We may therefore assume
that (Sy.2) is verified by 8.

Now, notice that by Lemma 4.3 we may assume that a word w; ;) belongs to W;(0)
if and only if there is a word wy; ) in W;(1) such that w; jy ~ W(; ). So, the equality
W;(0) = W;(1) is a consequence of condition (Sy.2), which shows that condition |(Sy.3)
may also be assumed.

Let © = m;; be a variable such that §(z) is a k-term when projected into ©4LSI.
The set Bs,) of non-periodic bi-infinite factors of d(x) is finite. Therefore, since each
element of By, is a factor of d(ziq1 - xip,), we may assume, again by Lemma 4.3, that
By € Wi(0). Therefore, we may also assume condition (Sy.4).

Finally, suppose that Ws contains a periodic word w; ;jy = u*. Then d; ;1 = u™
and k; ; = u*. We let b, be a new letter and we modify the system of equations by
introducing a new variable ¥y ,,, labeled by b, between all pairs of variables x;,,_1 and
T¢m (and so, in particular, between w; ;1 and w; ;) such that w, ) = u™. Iterating
this procedure, and since by |(Sy.3) W;(0) = W;(1) for every i, we obtain a new system
81 and a new solution §; over LSI satisfying condition (Sy.5). If 6] = §1(81,01, M) is
a k-solution of this new system and verifies conditions (TT.1)-(TT.5), then by |(TT.2)
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and (TT.3) D = 8 (z¢m-1) = 61(zem—1) = v and K = 61 (z¢,m) = d1(z¢m) = v, and
by ((TT.4) LS1 = &) (ye,m) = 01(ye,m) = b%. Therefore, the restriction of ] to X clearly
defines a k-solution over LSI of the original system 8. This proves that condition |(Sy.5)
may also be assumed and concludes the proof of the proposition. O

The objective of the rest of the paper is to prove the TT k-reducibility of LS1. We
assume therefore that 8 is a fixed finite system of word equations of the form

Li1 - Tip; = Lipi+1 " Lig (Z =1... h) (6'11)

where each z; ; is a variable, and let ¢ be a solution of 8 over LS] with respect to a pair
(7,1), labeling each variable by an infinite pseudoword. We further assume that this
system and solution are synchronized and that each variable occurs exactly once in S.
We also suppose that a positive integer M is fixed (cf. Definition [6.12). The objective is
therefore to construct a x-solution ¢’ = §'(8,0, M) of § over LSI1 with respect to (v,%)
satisfying conditions (TT.1) to (TT.5).

6.3 Reduction rule

The algorithm for the construction of the s-solution §" will closely follow some parts of
the one used by Teixeira and the first author in [15] to prove the s-reducibility of LSI.
We begin by giving a general description of the algorithm. Let n be a sufficiently
large integer (to be specified below). For each variable x € X, fix a word w, € AT, given
by Lemma 4.4, such that w, =, d(x) and ¥(w,) = ¥(6(x)). When we are interested
in identifying the (unique) place where x occurs in 8§, say when x = z; ;, we will also
denote W, by w; ;. Each of these words w, will be transformed, according to a process
described in Subsection 6.5, into a rank 1 k-term w, which will be selected to be §'(x).
This process of transformation consists of a single reduction rule, which substitutes
certain factors u of w, by certain rank 1 s-terms u. So, w, will be a rank 1 x-term of
the form w, = uyuiu] - Upnu,, with w, = ufuiu} - upul,. We proceed to describe
the reduction rule.
By Lemma 2.2, for each word u = aj ---ay € AT of length k = | S|, there is a rank 1
K-term
u=ay--- ai_l(ai <o aj)“aj+1 ce Qg (6.12)

such that ¢(u) = 1 (u). Now, suppose that u € AT\ A is a word such that the semigroup
S satisfies u = u¥. Let v € A" be the primitive root of u (i.e., v is the unique primitive
word such that u is a power of v). In this case, we let

u =" (6.13)
so that equality 1(u) = () also holds in this case. Let A be the alphabet
A=Adv{u|ue AT and u is defined}.

Let w € AT\ AT. We say that a factor w’ of w is essential if w’ is of the form w7 273,
with w7, w3 € A\ A and 2z € A*, and w’ is not of the form wu™u, with @ = v* given
by (6.13) (i.e., w’ is not equal to @ over LSI). The unique prefix of w of the form 2w,
where 7 € A\ A and z € A*, is called the essential prefiv of w. The definition of the
essential suffix of w is dual.
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Definition 6.14 (reduction rule) The reduction rule (to be applied on terms in the
alphabet A) is the following:

(R) tiuty — tility, where ty,to € A*,u € AT and U is defined.

Notice that this rule defines a Noetherian system since it reduces the length of terms
in the alphabet A. Moreover, ¥ (tjuts) = (t1uts). Since, by Lemma 4.4, S satisfies
d(z) = w,, this equality will insure that ¢ o &' = ~. Therefore, to make §’ be a k-
solution of 8§ over LSI, it suffices to guarantee that the pseudoidentity ¢'(x;1--- i p,) =
8 (Tip;4+1- - Tig,), that is the pseudoidentity

@@z:mllﬁ’ (6.14)
holds over LSl for every ¢ € {1,...,h}. Notice that each w; ; may be seen as a word over

A. To make (6.14) hold over LI it suffices to assure that the essential prefixes of w;
and ml are the same, and that the essential suffixes of w; ,, and w; 4, also coincide.
Therefore, to guarantee that LSI verifies (6.14) it suffices, by Proposition 4.8, to insure
that the words w; 1 - - W;p, and W; p,11 - - W; 4, have the same essential factors.

6.4 Centers of §

As mentioned in the previous subsection, the k-solution ¢ will be defined, for each
variable z, as 0’(x) = w,. Moreover, by definition of the reduction rule, w, will be a
rank 1 x-term of the form w, = uyuiu] - - - Upu,, where w, = uguiu] - - - upul,.

The main objective of this subsection is to determine the prefix [, = u6u1 and the
suffix 7, = upul, of the word wy, that is, is to identify the first and the last occurrences
of factors of w, on which rule (R) is going to be applied. These uses of the rule will
determine the essential prefix and the essential suffix of w,. Notice that w, and 6(x)
have the same prefix and the same suffix of length n. So, we will choose a sufficiently
large n so that the words I, and r, will be also a prefix and a suffix of d(x) (which
is equivalent to saying that they are a prefix and a suffix of the projections k, € AN
and d, € A7 of §(x) into Q4K and Q4D, respectively). Moreover, since by condition
(TT.5)| we want to preserve prefixes of length M, we will impose that |uf| > M.

Notice that, if the above x is such that z = x;; with j € {2,...,pi,pi +2,..., ¢}
and w; j_1 = vV} - - - Ugv), then Tpvjufur (which is the product of the essential suffix
of w/”: and the essential prefix of w; ;) is an essential factor of w/lE@ and so, as
mentioned at the end of the previous subsection, we want to make Tgvjugur occur, in
the equality (6.14), in the opposite side of the variable . The finite word v vjugu1, that
is r; j—1l; j, will be called a center of the system.

Let © be a #;-class. Then there exists a word pg € AN and words p, € A*, for each
variable x with k, € ©, such that

k; = pape. (6.15)

We fix a factorization as in (6.15) satisfying certain conditions. First, we assume that
the length of each word p, is at least M. Next, if y is a variable such that k, = k,, then
we let p, = p,. Furthermore, if k, is ultimately periodic, then we assume that pg = u*
where u € A™ is the unique period of k, which is a Lyndon word. Other conditions
that (6.15) must satisfy will be imposed below.

22



On the other hand, and since condition (Sy.1) is valid, for each 6y-class © and each
variable x such that d, € O, there is a factorization

d, = se, (6.16)

with sg € A™N such that, if d, is ultimately periodic, then sg = v where v € A" is
the unique period of d, which is a Lyndon word.

~

Definition 6.15 (words Iz, Iy, 725 T2y (i j)s Ciy) and set Cs) Let x be a variable.
We fix a prefiz I, of ky, and a rank 1 k-term l;, as follows

~

l, = paue and Il = p o (6.17)
where:
e O is the 01-class of x;

e if po is non-ultimately periodic, then ug is the prefix of pe of length k and ug s given
by (6.12);

o if po = u™ is ultimately periodic, then ue = u’ for some (sufficiently large) integer
¢ > 0 such that S satisfies u* = u’ and Ug = u® is given by (6.13). In this case, we
say that 1, is ultimately periodic and the word u is called the period of l,.

Notice that, in particular, the words l, may be chosen so that
kp =k, <= l,=1l, andl, =1, (6.18)

We also fix a suffiz v of di, and a rank 1 k-term 74, as follows

Ty =ve and Ty = vgUQ (6.19)
where:
e O is the Oy-class of x;
e if sg is non-ultimately periodic, then vg = vgug is a suffix of se, where |vg| = k,

and vl is determined by (6.12);

o if so = v ™ is ultimately periodic, then vg = v for some integer m > 0 such that S
satisfies v* = v™ and vg = v¥ is determined by (6.13). In this case, we say that r,
is (ultimately) periodic and the word v is called the period of 7.

Notice that, in particular, the words r, may be chosen so that
d,=d, < ryz=ryandr, =", (6.20)
Finally, for a pair (i,j) of integers with i € {1,...,h} and j € {2,...,pi,pi +2,¢},
we let

e
lij

Clig) = Tig—1lij and ¢4 j) =Tij-1 (6.21)

and denote by Cg the set of all such words c(; jy.
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Notice that the word c(; ;) is a center of w; ;. Moreover,

—

W(ij) = W(em) <= Cij) = C(t;m) <= (i j) = C(t;m)- (6.22)

The set Cs will be said to be the set of centers of 8. A center c(; ;) will be called

ultimately periodic when the word wy; ;) is ultimately periodic (or equivalently r; ;1

and [; j are ultimately periodic), in which case c(; j) is of the form vmpiyjué . Notice that,

by |(Sy.5), none of the words wy; ;) is a periodic word. For this reason, we will say that

the ultimately periodic centers c¢(; ;) = vmpz-hjuz of Cg are non-periodic, meaning that

either v # u or, v = u and p; ; is not a power of v.

The words c(; j) and r; must satisfy also the three following conditions:

(Ce.1) If ¢(g,n) and w(; j) are ultimately periodic and w(g,,) # W(; j), then c(g ) is not
a factor of wy; j);

(Ce.2) For every w(; ;) € Ws and every variable =, if w(; ;) is not a bi-infinite factor of

(z), then c(; ;) is not a factor of 4(x);

i.9)

(Ce.3) |ry| > Q for every variable x, where @ is a positive integer in the conditions of
Lemma 5.3/ for B = Ws.

Since the word c(; ;) is a center of the element w; ;) of B = W5, and since |r; ;| > Q
by the last condition above, Lemma 5.3] guarantees the existence of a right-extension
C(i,j) of ¢(; ) such that, for every w; ), w(y,,) € Ws, and for every word w € AT,

if two distinct occurrences of ¢(; jy and ¢y .,y are allowed in w relative to

— — .

C(i,j) and ¢y ) respectively, then these occurrences of c(; j) and ¢y ) (6.23)
are disjoint.

The right-extension c(; ;) of ¢(; ;) will be called the extended-center of w; ;). Finally, we
fix the integer n, mentioned in the beginning of Subsection [6.3.

Definition 6.16 (constants L and n and words w,) Let L be an integer greater than
the lengths of all words ly, T, c(; j) and c(; jy. Then we fix an integer n > 3L + k" and,
for each variable z, we fir a word w, € AT such that w, =, §(x) and ¥(w,) = (6(x)).

6.5 Transformations on the words w,

In this subsection we describe the algorithm that permits to transform each word w,
into a rank 1 s-term w,, which is then defined to be ¢’(x). Recall that I, is a prefix and
rs is a suffix of w,, so that we can write

Wy = lywlry = prugwlve (6.24)

for some w!, € A™.

A variable y such that §(y) is a k-term when projected into Q4LSI will be called
from now on a k-variable. Although our procedure to obtain w, is generic, we prefer to
present first the suggestive case in which «x is a k-variable. We begin by illustrating this
case with an example.
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Example 6.17 Suppose that x is a variable such that
LSl | §(z) = d“ad”bd” (6.25)

with a,b,d € A, so that Bsy = {d>ad"™,d>bd**} C Wg by (Sy.4). Hence, by Defini-
tion 6,15, d‘d™adt,d'd™bd’ € Cs for some integers m, £ such that S satisfies d* = dt.
Notice that (6.25) does not mean that 6(x) is a k-term. This is illustrated by the
following example (which emerged in a collaboration of the first author with J. Almeida
and M. Zeitoun): §(z) is an accumulation point in Q4S of the sequence (m;); defined

by m = d¥a1dagd? - - - a;d¥, where ajasas - - - = abaababaabaababaababa - - - € {a, b}N 18
the Fibonacci word.
By definition, w, verifies 6(x) =, w,. Hence, there exist positive integers p, iy, ..., iy

such that wy, = d"byd®™ - - byd’ with {by,...,b,} = {a,b}. By the choice of n it follows
that I, = rp = d* and wy, = l,d" e1d® - - cpd’ery, with ¢; = d'd™b;d". We then let

Wy = L dVEd? - Gdieiy = d°d dCd™ by d“d’? - - - d°d™byd  dr d*,
which is clearly equal to 6(x) over LS. Thus §'(x) = w, verifies (TT.4).

First Case: z is a k-variable. Notice that this is equivalent to say that LSl |= 6(z) = ¢
for some r-term ¢ = ugufujus - - - uguy, in reduced form. Hence, each u; is a Lyndon word
and Bj(yy = {w; | i = 1,...,p—1}, where w; = u;*uju;¥,. Therefore, by Definition 6.15
and since system 8 is synchronized, we may assume that u}’D is the empty word and that,

Liomg o1 Aiva

for each i € {1,...,p — 1}, there is some center ¢; € Cg of the form ¢; = u; u;" wju;"’

for some integers m;, ¢; such that S satisfies u’ = ufl Moreover, by (6.22), ¢; = ¢; if
and only if w; = w;.

Lemma 6.18 Every occurrence of a center ¢; in w, is an allowed occurrence disjoint
from l, and r,.

. & mi 1 Lir1 s
Proof. Fix an occurrence ¢; = wg[m,m’] of a center ¢; = w;'u] "wju;\"] in w,. The

fact that 6(x) =,, wy and LSl = 6(z) = t implies that w, and uyu{™ have the same
prefix of length n. Now, we may assume that ¢; is greater than |uf| because it may
be chosen as large as we want. On the other hand ¢; is non-periodic, by (Sy.5), and
n > 3max{|lz|,|c;|}. Therefore, the occurrence of ¢; is necessarily disjoint from I,.
Symmetrically, every occurrence of ¢; is disjoint from r,. Moreover since n > 3|¢;|, for
the extended center ¢; of ¢;, and |¢;| > |ci|, ¢; does not occur in the suffix of w, of
length 2|¢;|, whence the fixed occurrence of ¢; admits a right-extension ¢, = w,[m,m"]

. : ma g L

such that |cf| = |¢/|. Notice that ¢, = c;v = uflu;mu;uiﬁlv for some word v € AT,
and that ¢ is a factor of ¢ since d(z) =, w,. Therefore ¢, is a factor of some bi-infinite
factor w; = uj"’uguﬁl of t. Since w; is non-periodic, there is an integer s > 0 such that

st "s o oo . . ' o
ujuzuiyy is not a factor of ;> nor of w;7;. Therefore, since {; and {;1; are arbitrarily

large, we may conclude that the prefix v’ of ¢; (and of uf’) of length |u;| + |u;| occurs in
u;”. Thus, «’ is a common prefix of a power of u; and of a power of a conjugate @; of u;.
Hence, by Fine and Wilf’s Theorem, u; and %; are powers of the same word. Since u; and
u; are both primitive words it follows that u; = %; and, consequently, #; is a Lyndon
word. But %; is a conjugate of the Lyndon word w;, whence u; = u;. We conclude
therefore that u; = u;. By symmetry, we also deduce that a sufficiently large suffix of
¢; occurs in uﬁl, which as above permits to conclude that w;41 = u;41. Moreover this
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permits also to deduce, together with the fact that ¢ = ¢;v is a right-extension of ¢,

2
that the suffix v of ¢} is of the form v = w, flu for some integer £;,; > 0 and some prefix
@ of u;+1. Therefore ¢, = ¢, which proves that the fixed occurrence ¢; = wy[m,m’] is
an allowed occurrence and concludes the proof. ]

A consequence of this lemma is that the occurrences of centers ¢; in w, are pairwise
disjoint. Moreover, with similar arguments as in the proof of the lemma, one can show
that the word w, can be written in the two following forms

. . . v
/o1 do g __ 1 12 q
Wy = VUit v vy - vy = lpvytep v e vg' T (6.26)

where:

/ / .
d qz17v02u071}1:u17vq:up7

—o0 ./, +4oo

o {v vaH_l]izl,...,q—l}:B5(z)

. VA . Y4
e [, = pyue with p, = vju,* for some integer ¢; > 0 and ug = vfl, Ty = Ve = Ug;

i gioa Li1
® cp =V U VUL

We let
— N A 1A S AP
Wy = v, Crvg - Cpvg' T (6.27)
I Y /
B0, G101, la, B fql]q1/ Ly
= Pgl@Uy vy vy U057 vy - 0Ty U v 104" Uq e
Z 91,/ w Jq— w :1 w
— ’UO/Ul Ul Ul 'Ul Ul 7}1’1}2 ’U2 A q 17}(] 1 U l’U U q,

from which it follows immediately that LSl = w; = vpvfvivs - - vy v vy, Now,
Proposition 4.8 together with the equalities above, show that w, = d(x) over LSI.
Therefore, letting ¢'(z) = w,, conditions (TT.1) to (TT.4) hold for this variable z.

To verify that (TT.5) also holds for this variable x, suppose that d(x) = wym, where
wy € A* and m € 248 with |w| < M. Since |px] > M by definition (see the assumptions
after (6.15)), there is a factorization p, = wlwl, and we may certalnly assume that wy
was chosen in such away that ¥ (7 ) Q,Z)(wlue)vl Cf1U2 ey, vr). Hence &' (z) = win,
where 7’/ = w1u®v1 Cf1U2 -, vq 72 € Q4 8S, so that

-/

() = h(wiuevy' cp vy -+ ¢ vg're) = ().

Now, suppose that y is another variable and that §(y) = wap, where we € A* and
p € Q48 are such that |wy| < M and LSl = 7 = p. Since §(z) = wyn, §'(z) = win’
and LSl = §(z) = ¢'(z), it follows from Corollary 4.2 that LSl = 7© = «/, whence
LSl | 6(y) = wap = wom = wan’. Therefore, §(y) is a k-term when projected into
Q4LSI and, as above for x, we deduce that LSI = §'(y) = 6(y). Hence, &'(y) = wep’ for
some p' € %8S, and LS1 |= p' = p = 7 = 7/, which proves that (TT.5) is verified by .

Second Case: x is not a k-variable. In this case we apply the following algorithm:
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Step 1. We begin by localizing in w, every allowed occurrences of the centers c(y ) of
S (relative to its right-extensions C(g—m)) ). As observed above, the allowed occurrences of
centers are disjoint. Moreover, since we can choose the right-extensions C(Z—m)) as wider
as we want, we may assume that any allowed occurrence in w, of a center is disjoint
from the suffix r, of w,. On the other hand, we claim that any allowed occurrence in
w, of a center is disjoint from the prefix [, of w,. Indeed, suppose that z = x; ;. We
may assume that j ¢ {1,p; + 1} since, otherwise, we could reduce to a new system by
multiplying (on the left) the i-th equation of 8§ by a new variable # labeled by b* with
b a new letter. Therefore Clij) = i j—1lz. If there would exist an allowed occurrence
in w, of a center ¢y ,,), not disjoint from the prefix /,, then there would be an allowed
occurrence in 7; j_1wg of (g ), not disjoint from the prefix c(; j) = 7 j-1lz of rij—1w;.
This is not possible, thus proving the claim. Notice that we may assume not only that
the occurrences of allowed centers are disjoint, but that they are, furthermore, separated
by factors of length at least 3k — 1 (for this it would suffice to consider wider extended
centers).

This procedure determines a unique factorization

Wy = lxww,occc,lwz,lc;t,2 o Cri We i, T (628)
of w, such that
o iy >0
® Cy1,...,Cqy, are centers of §, called the allowed centers of wy;
® Wz 0,Wrly---,Wgi, € A* with \w%j\ > 3k — 1;

e the factorization contains every allowed occurrences of centers of 8 in w.

We then use this factorization of w, to transform w, into the following x-term

~

wm(l) = lzw:p,()c/ij:p,lc/:p-,\Q T Cm/;w:v,zz@ (629)

This concludes the first step of the algorithm.

Notice that in the First Case (see equation (6.27) above), the algorithm stopped at this
point. That was because w, had the same bi-infinite factors (all of them ultimately
periodic) and the same projection over LI as §(x), and that was the objective. In this
case we need to go further and transform also (some of) the words wy ;.

Notice also that the need to localize every allowed occurrences of centers c(y,,,,) in each
wy, which is illustrated in (6.26]) for x-variables, is to guarantee that both sides of (6.14))
will have the same essential factors, i.e., factors of the form wzv. Indeed, each allowed
occurrence of ¢(,,) will be transformed into % which is of this type wzv. On the
other hand ¢(s ) has an allowed occurrence in the word w;; ---wjp, if and only if it
has an allowed occurrence in wj p,41 - - w; g, Which guarantees that % is a factor
of W; 1+ Wiy, if and only if it is a factor of Ww;p, 41 W;,. However, the number of
allowed occurrences of Cleym) M Wi 1 - Wi p, and w; p, 41 - - - Wj ¢, May be very different. For
instance, w; 1 ---w;,, may have exactly one occurrence while wj p, 41 -+ - w; 4, may have
many ones; therefore, in this case, if we would not replace each allowed occurrence of
C(e,m) I Wip, 41"+ Wi g, by/c@, we could risk to create, in other steps of the algorithm,

—

new essential factors in w; p, 11 - - - W; 4 which could not be obtained in w; - - - W; p, -
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Step 2. In this step we transform the words w, j (j € {0,...,4,}) in factorization (6.29)
of w,(1). In fact, not all these words will be transformed. For each ¢ € {1,... i}, ¢z q is
some center ¢,y and (g m) = To,m—1lem. We then denote ry g = rpm—1 and ly g = lom
so that c; g = 74 ¢lz 4, and denote furthermore 7, ;,41 = r, and I, o = l;. Following the
procedure of the First Case, we will not transform the words w; ; for which [, ; and
Tz j+1 are ultimately periodic with the same period, say u, and w, ; is a power of w.
Notice that in this case . .

LSI1 ): lx,jwz,j"“/x,;dr\l = lx,j.

So, we consider a word wy ; (j € {0, ...,i;}) which is not of this form and show how to
transform it into a rank 1 k-term w,_;. This will be done in four substeps, which closely
follow [15, Subsection 6.5].

Step 2.1. Consider the marked factorization, described in Subsection 5.2,
wx,j = Wov1wi1v2 - - - vqwq

of wy ;. By definition of marked factors, if ¢ > 1, then |v;| > 2k for every i € {1,...,¢},
so that we can write v; = v; 1v; 2v; 3 for some words v; 1, v; 2 and v; 3 with |v; 1| = |v; 3| =
k. We define 0; = 731 v; 2 U5 3, and let w, ;(1) be the following rank 1 x-term

Wg,j (1) = wod1w1 Daws - - - We—10qWg.

Step 2.2. It is clear, from the definition of free factors, that each wj is either the empty
word (this can only happen for ¢ = 0 or i = ¢), or it has length greater than k (in fact
it is much larger than k). So, if wp is not the empty word, we define

wWo = W,1W0,2

where wo 1 is the prefix of length k of wo and wg = wop 1wp 2. Symmetrically, if wy # 1,
we let

Wq = Wq,1Wq2
where w2 is the suffix of length %k of w, and wy = wy1wg2. Now, let

Wg,j (2) = WoU1W1 D2W2 + +* Wg—1U4Wq.

Step 2.3. Let y € A" be a factor of w,; such that 2k < |y| < 3k. Two cases may
arise.

(Case I) Every extension of length 3k —1 in w, j, of an occurrence of y, is a marked
occurrence (see Subsection [5.2). In this case every occurrence of y in wy ;
is contained in the marked factors.

(Case II) There exists a free occurrence in w, ; of an extension ¢, of length 3k — 1,
of an occurrence of y. In this case, by definition of free occurrence (cf.
Subsection 5.2)), there exists a k”-neighborhood v of § such that v is &’-
abundant. In particular, docc(y,v) > k’. Furthermore, every occurrence
of a factor z of length 3k — 1 in the k”-neighborhood v is free. This
means that at least &/ — 2 of the disjoint occurrences of ¢ in v occur
disjoint from the marked factors. More precisely, there exists an integer
0 <14 < g such that doce(g, w;) > k' — 2. Hence, since y is a factor of g,
doce(y, w;) > k' — 2. In this case, we say that y has a free occurrence in
We,j-
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Consider the set F' of all factors y of w, ; such that 2k < |y| < 3k and y has a free
occurrence in w; ;. By the second case above, for each y € F' there exists an integer
0 < i < ¢ such that doce(y, w;) > k' — 2. Therefore, the choice of k' allows us to select
an occurrence for each y € F in such a way that these occurrences are pairwise disjoint.
These occurrences are selected in the factors w; and, if ¢ = 0 or ¢ = ¢, then we can select
them, respectively, in wp 2 and in wg 1. Since 2k < |y| < 3k, we can write

Y = Y192y3

for some words y1, y2 and y3 with |y1| = |y3| = k. We substitute in w; ; (2) the selected
occurrence of y by ¥ = 71 y2y3. We then obtain a term w, ; (3).

Step 2.4. In this step, we admit the substitution of any occurrence, in the factors
of wy ; (3) which were obtained from the transformations on the words w;, of a factor
y € AT of length k by y. We say that a term obtained from w, ;(3) using these
substitutions is irreducible when it is not possible to make more substitutions (that is,
when there are no more occurrences of factors y € AT of length k on the factors which
resulted from substitutions on the words w;). We choose an irreducible term and denote
it by wg,; (4). This concludes the process of transformation of the word w, ;.

We let w,; = wy ;i (4). This concludes the process of transformation of the factors
of w, in factorization (6.28)). We then let

—~ o —_—— —— A~
Wy = l:vwz,OCx,l c o Cpip Wi, T (630)

Definition 6.19 (labeling §') The labeling ' of X by (rank 1 k-terms of) QS is
defined by ¢'(x) = wy for any x € X.

That conditions |(TT.1) to (TT.3) are verified also by non k-variables is immediate.
Therefore, to establish TT k-reducibility of LSI, it remains to show that &' is a k-
solution of 8§ over LS1 with respect to (v,%) and that condition (TT.5) is verified by all
variables x that are not s-variables. This will be done in the next subsection.

6.6 Proof of TT k-reducibility

As mentioned in Subsection 6.3 the labeling ¢’ verifies 10’ = v and, so, to prove that ¢’
is a k-solution of 8§ over LS] with respect to (v, ), it suffices to show that pseudoidentity

0 (i) 0 (@ip,) = 0 (Tip1) -+ 0 (Tiyg,) (6.31)

holds over LSI for every ¢ € {1,...,h}. This is immediate if all variables z; ; are &-
variables. Indeed, in this case we have LSl = ¢'(z; ;) = 0(x;;), by condition (TT.4),
which is valid as shown in the First Case. Therefore, since ¢ is a solution of 8§ over LSI,
so that LSI verifies §(z;1) - - 0(zip,) = 0(xip,4+1) -+ 0(ziq), it is clear that (6.31) holds
over LSI.

So, we assume that at least one variable z; ; is not a s-variable (which means that at
least two variables x; j;, and w; j,, with j; < p; and j2 > p;, are not k-variables). Notice
first that, by (6.10), (6.18) a/nd\(6.2()) both sides of pseudoidentity (6.31) have the same

—

essential prefix (i.e., l;1 = l; p,+1) and the same essential suffix (i.e., 7;,, = 75 4,), which
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means that LI verifies (6.31). Therefore, by Proposition 4.8, it remains to prove that
the x-words

—

20 =10 (wi1) -0 (Tip,) = Wi~ Wip,

and

Zi = 5,(xi7pi+1) T (5,(.1'1'7%) = Wipi+1- - @
have the same non-periodic bi-infinite factors, for which it suffices to verify that they
have the same essential factors, as already mentioned in Subsection 6.3.

We begin by observing that, since ¢ is a solution over LSl and =, is a congruence
on Q4S, we deduce from Lemma 4.4 that zg =,, 21, where 2y = Wi Wip, and z1 =
Wi p;+1° " Wi q- Lhe observations in Lemma 6.20/ below are simple consequences of this
fact (see [15, Lemma 6.9] for a proof of a similar result). We say that an occurrence of
a factor of length 3k — 1 is relative-free in zp (resp. zp) if it occurs in some w; j, with
1 <j <p;(resp. pi+1<j <g), and it is free in w; ;. Analogously, we say that a factor
of zg (resp. z1) is relative-marked if it is a marked factor in some wj ;, with 1 < j < p;
(resp. pi +1 < j < ).

Lemma 6.20 The following statements hold.
a) zo and z1 have the same factors of length 3k — 1 with relative-free occurrences.

b) zo and z1 have the same relative-marked factors.

To prove that z{, and 2] have the same essential factors, we show that each essential
factor @z v of z{, is also a factor of 2] (the reverse follows by symmetry). The following
cases may arise:

Case 1. 27 overlaps two consecutive factors w; ;1 and w;; of 2§, with j € {2,...,p;}.
Then W27 = ¢(; ;) for the center c(; ;) of the system. By (Sy.3) and (6.22), it is then
clear that w27 is also an essential factor of z].

Case 2. T z7 occurs within some w; o with £ € {1,...,p;}. We denote by x the variable
z; ¢ and notice that Wy, = l;Ws 0Ce1 - €z Wz . 7x was defined in (6.30). The following
subcases may arise:

Case 2.1. UzU = ¢, for some j € {1,...,iz}. Since ¢, ; is a center of the system,
the conclusion follows as in Case (1.

Case 2.2. wzT overlaps [, and w, . Let wyo = woviwivs - --vqwy be the marked
factorization of w .

If wq is the empty word, then ¢ > 1 and it follows from Step 2.1 that wzv = l;m, where
v1,1 is the prefix of length k of the marked factor v; of wy 0. By Lemma 5.6, |v;] < k”.
Now, notice that l,v; is a prefix of w,, of length at most |I,| + k", which is lower than n
by definition of n. By (Sy.3), there is some variable y = x; ,, with m € {p; +1,..., ¢},
such that k, = k. Therefore, by definition of w, and wy, (), é(y), w, and w, have
all the same prefix of length n. Since n is large enough, it follows that v; is not only a
prefix of w, ¢ but also a marked factor of wy . Moreover, by (6.18), I, = [,. Therefore
UzU = l;m also occurs in zj.

~

If wyg is not the empty word, then wzv = [, wg 1 by Step 2.2, where wg ; is the prefix of
length k of wgy. This case can be treated as the above one.
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J— J— —_— A~ . . .
Case 2.3. wuz7 overlaps w,;, and r,. This case is symmetric to Case 2.2.

Case 2.4. uz7v overlaps w, ;1 and ¢, or it overlaps ¢, ; and w,, for some j €
{1,...,iz}. These cases are similar to Cases 2.2 and 2.3, and they can be treated
analogously using the fact that d(x) and w, (resp. zp and z1) have the same factors of
length n.

Case 2.5. wzT occurs within some w,; with j € {0,...,i;}. Consider the marked
factorization w, ; = woviwivs - - - vewg. By definition of uTz\] in Step 2, either w27 = v,,
and uzv = vy, for some marked factor v, of w, ; (and w2z v was created in Step 2.1), or
the corresponding occurrence of uzv in w, ; is contained in a free occurrence (and @z 7
was created in Step 2.3 or in Step 2.4). By Lemma 6.20, uzv is a relative-marked factor
of z1 in the first case and is contained in a relative-free occurrence in z; in the second
case. In both cases, it follows from Step 2 of the algorithm that @ z 7 is also an essential
factor of 2.

The above shows that z and 2] have the same essential factors, and concludes the
proof that ¢’ is a k-solution of § over LSI with respect to (v, ).

To deduce the TT k-reducibility of LSI, we finally show that condition (TT.5) is
verified by each variable x such that x is not a x-variable. The first part of this condition
states that every prefix u € A* of 6(z) with length at most M, is a prefix of §’(x) when
§'(z) is regarded as a word over the alphabet A. Or, this is a consequence of the fact
that, by (6.30), &’ (x) has l; as a prefix and, by (6.17), l; = p,ue with p, € AT assumed
(immediately after (6.15)) to be a word of length at least M.

To prove the second part of condition (TT.5), suppose that §(z) = ur and d(y) = vp,
where y is another variable and u,v € A* and 7,p € Q4S are such that |ul,|v] < M
and LS] = 7 = p. We know from the first part that §'(x) = ur’ and §'(y) = vp’. We
have to show that LSl = 7/ = p/. By Lemma 4.4, since LS] = 7 = p, we may assume
that w, = ww; and w, = vw, with w, =, w,. On the other hand, K E 7 = p and
so, as k, = u pk(m) and k, = v pk(p), we deduce that k, and k, are confinal, i.e.,
that k, 61 k,. But, by (6.15), k. = pype and k, = p,pe where O is the 6;-class of
x and y. Hence, p, = uz and p, = vz for some word z € A*. By (6.17), l; = P, U9
and l; = pylg, whence zug is the essential prefix of both ' and p’. That n’ and
p' also have the same essential suffix is a consequence of (6.20) and of the fact that
D = §(z) = 6(y). Finally, since wy =, w,, one can show that the words w, and
w, have the same allowed centers, the same factors of length 3k — 1 with relative-free
occurrences and the same relative-marked factors. Whence, the proof that 7/ and p’
have the same essential factors is analogous to the one above for z and z]. Therefore
LSl = 7’ = ¢/, and condition (TT.5)|is verified by z.

This establishes the TT k-reducibility of LS1. The complete k-reducibility of LSI,
that is Theorem 6.1, is then obtained as a direct application of Proposition 6.13.
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