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Resumo 

Recentes técnicas de sequenciação genómica e abordagens estão a aumentar constantemente, a 

uma taxa exponencial, os dados biológicos disponíveis. Esta informação está se tornar ainda mais 

acessível com o desenvolvimento de novas tecnologias de high-throughout, fazendo com que a 

simulação in silico de sistemas vivos ou sintéticos se torne mais atrativa. A crescente investigação 

dos últimos dez anos permitiu o desenvolvimento de modelos matemáticos sofisticados que, por 

meio de engenharia metabólica, são utilizados numa tentativa de otimizar as funções do organismo, 

modificando-os geneticamente para produzir compostos de interesse industrial. 

Em relação ao uso dos modelos de simulação de fenótipo, métodos como o Flux Balance 

Analysis são utilizados para identificar conjuntos de manipulações genéticas que resultam em 

estirpes mutantes capazes de produzir compostos desejados. Variações desses métodos têm 

rapidamente surgido e, em paralelo, um grande número de ferramentas computacionais surgiram 

com a capacidade de realizar esses métodos. Todas estas ferramentas estão disponíveis para a 

comunidade e construídas em diferentes sistemas e linguagens. No entanto, nenhuma inclui todos 

os métodos relevantes, o que resulta numa necessidade de recurso a mais do que uma ferramenta 

para realizar certas tarefas. 

Neste trabalho, uma plataforma que pode integrar todos estes métodos é apresentada com o 

objetivo de centralizar e integrar os métodos de simulação de fenótipo mais relevantes e também 

permitir a sua extensão fácil com outros métodos. Para este trabalho, foi realizado um estudo dos 

métodos e ferramentas mais relevantes de modo a que esta plataforma possa integrar os métodos e 

ferramentas mais significativas. Esta plataforma é dividida em duas camadas: uma camada de 

ligação que é responsável pela troca de informação através das ferramentas computacionais e 

línguas, e uma camada de formulação responsável por executar os métodos dessas ferramentas e 

também apresentar os seus resultados. 

Através destas camadas, a plataforma pode executar métodos de qualquer ferramenta 

disponível construída em qualquer linguagem computacional e fornecer aos investigadores o acesso 

a todos os métodos em uma única plataforma. Como aplicação prática desta plataforma, foi 

desenvolvido um plugin e integrado no OptFlux, um software de código aberto para apoiar as 

tarefas de engenharia metabólica, e encontra-se disponível em www.optflux.org. Este plugin 

http://www.optflux.org/
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oferece uma ligação com a ferramenta COBRA e executa os métodos de simulação metabólicas mais 

relevantes presentes no último. 
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Abstract 

Modern sequencing techniques and omics approaches are constantly increasing available biological 

data at an exponential rate. This information is becoming even more accessible with the 

development of new high-throughout technologies, making in silico simulation of living and 

synthetic systems more attractive. The growing research in the past decade allowed the 

development of sophisticated mathematical models that, through Metabolic Engineering, are used 

in an attempt to optimize organism's functions, genetically modifying them to produce compounds 

of industrial interest. 

Regarding the use of models for phenotype simulation, methods such as Flux Balance Analysis 

are used to identify sets of genetic manipulations that result in mutant strains capable of producing 

desired compounds. Variations of these methods have rapidly appeared and in parallel, a great 

number of computational tools emerged with the capability of performing these methods. All these 

tools are available for the community and built in different systems and languages. However, none 

includes all the relevant methods, which results in a need of recurring to more than one tool to 

accomplish certain tasks. 

In this work, a platform that can integrate all these methods is presented with the goal of 

centralizing and integrating the most relevant existing phenotype simulation methods and also 

enabling their easy extension with other methods. For this work, a study of the most relevant 

methods and tools was made so that this platform could integrate the most significant methods and 

tools. This platform is divided in two layers: a connection layer that is responsible for exchanging 

information through the computational tools and languages, and a formulation layer responsible for 

performing the methods from these tools and also presenting the results. 

Through these layers, the platform can perform methods from any available tool built in any 

computational language and provide to the researchers the access to all methods in a single 

platform. As a practical implementation of this platform, a plugin was developed and integrated in 

OptFlux, an open-source software to support metabolic engineering tasks, available at 

www.optflux.org. This plugin provides a connection with the COBRA Toolbox and performs the most 

relevant metabolic simulation methods present in the latter. 
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Chapter 1 

1. Introduction 

1.1. Context and motivation 

The field of Metabolic Engineering (ME) studies the optimization of living organisms’ metabolic 

processes, by genetically modifying them to achieve a certain goal, such as increasing production of 

a desired compound or allowing production of a new product, playing an important role in the 

biotechnology industry [1]. Over these last few years, computational tools have been used as a way 

to improve ME methods by computational screening of strains and strain optimization based on 

computer simulations. 

Indeed, in the past decades, biological data increased at an exponential rate, information 

became even more accessible with the development of new technologies, making in silico 

simulation of living and synthetic systems more attractive [2]. The increase of research in the past 

years allowed the development of sophisticated mathematical models capable of predicting cellular 

behavior. 

Modelling of cells has been traditionally achieved through the use of dynamic models. 

However, since these require information typically difficult to determine, their applicability is limited 

to small-scale systems. As an alternative, recent efforts allowed the development of genome-scale 

metabolic models (GSMMs) for several organisms, taking advantage on the growing number of 

sequenced genomes and the availability of Bioinformatics tools for automatic genome annotation 

[3]. These models allowed the study of the metabolism of different organisms through several 

methods for phenotype simulation and structural analysis. 
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Regarding the use of GSMMs for phenotype simulation, algorithms such as Flux Balance 

Analysis (FBA) [4] or Minimization of Metabolic Adjustment (MOMA) [5] were proposed and quickly 

became popular. In recent years, the number of methods proposed for this task has been growing 

rapidly, including variants of the objective function, imposed constraints, optimization methods or 

inputs (for instance, including different types of omics data). 

Also, in parallel, a number of computational tools and integrated platforms have been 

proposed for ME tasks. Notable examples are the COBRA toolbox [6], which works over MATLAB (a 

more recent version in Python has also been proposed) or CellNetAnalyser [7], just to name a few. 

Within the host group for this thesis, the OptFlux ME platform has also been developed over the 

past few years [8] aiming to be a reference tool in the field. 

While all these tools are available for the community, none includes all the relevant methods, 

impairing their straightforward comparison for a given task. In many cases, methods are proposed in 

a publication being tested with few case studies, while their thorough validation is hard to achieve 

and typically not done. 

 

1.2. Goals 

The main goal of this work will be the design and development of an integrated platform for in silico 

phenotype simulation of microbial strains. This platform should integrate the most relevant existing 

simulation methods from different platforms built in different computational languages. This 

platform should also enable its easy extension with other methods and tools that may be 

developed. The developed platform will be integrated with the OptFlux workbench for ME, 

developed by the host group of this work. 

This work implies the following scientific/technological objectives: 

 Review the existent phenotype simulation methods and the ME computational tools that 

implement them; 

 Select and make a detailed study of the most relevant methods and tools; 
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 Design and implement these methods within an integrated computational platform that will 

also allow to integrate different ME platforms written over different systems and 

programming languages; 

 Develop a user-friendly interface, in the form of a plugin for OptFlux that allows the use of 

the developed platform and all implemented phenotype simulation methods; 

 Validate the performance and accuracy of the developed methods with selected case 

studies. 

 

1.3. Structure of the document 

This document is organized in the following way: 

Chapter 2 

Metabolic engineering: concepts and methods 

An introduction to the Metabolic Engineering field and along with it a brief presentation of 

the genome-scale models used in the area. Some phenotype prediction algorithms will be presented 

that use these models, together with a review of some relevant ME tools. 

Chapter 3 

Core computational frameworks analysis 

Introduce the frameworks OptFlux and COBRA toolbox. Explain how the model is created and 

used in both tools. Describe the structure of the constraint-based methods in these tools. 

Chapter 4 

Results and Development 

Explained how the implementation of the platform was performed and also explain the 

development of the OptFlux plugin. Validate the plugin through case studies. 
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Chapter 5 

Conclusions and future work 

The summary of the work accomplished for this thesis and the future improvements and 

implementations. 
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Chapter 2 

2. Metabolic engineering: concepts and methods 

2.1. Background 

Nowadays, chemical and pharmaceutical industries are strongly exploiting the metabolic capabilities 

of different microorganisms for the production of valuable compounds. Indeed, there is an 

increasing trend to replace chemical production processes with biotechnological methods based on 

microbial fermentations. Typically, microorganisms evolve to be adapted to their natural habitats 

and this implies requirements distinct from the industrial ones. So, to obtain a desired phenotype 

for industrial purposes, it is often needed to rearrange the genotype of the organism, to create so 

called cell factories. The recent development of genetic engineering techniques to make targeted 

changes over the genomes, made the reproduction of metabolic potentials of many different 

microorganisms possible. The field that handles the definition of the desired metabolic changes 

towards industrial goals is referred as Metabolic Engineering (ME) [9]. 

ME provides an integrated approach towards the conception of new cell factories by 

providing rational conception procedures and valuable mathematical and experimental tools. 

Mathematical models or in silico (computational) models play a vital role for phenotypic analysis, 

being used for the design of optimal metabolic network structures. Recurring to these models, it is 

possible to design improved metabolic networks by performing changes over the genotype of a 

selected host microorganism. Afterwards, an experimental evaluation can be done to check the 

results of the performed changes validating in silico predictions [10]. 
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The nature of cellular metabolism and regulation is not always easy to understand and 

normally raises difficulties. Therefore, an analysis of the metabolism as a whole is usually required. 

The increasing amount of complete sequenced genomes for a large number of microorganisms, 

together with powerful Bioinformatics tools for genome annotation, provided the opportunity to 

develop genome-scale metabolic models (GSMMs). Also, these advances led to the creation of a 

large number of databases with experimental data, offering plenty information from different 

microorganisms. On the other hand, a question arises, how to extract relevant information from 

these large repositories of data to correctly use them to develop efficient industrial processes. 

Therefore, the main challenge of ME of this post-genomic era is to extend its design methodologies 

to include biological data on the whole-genome scale. The first stage of this challenge involves the 

reconstruction of genome-scale models and to study how the consistency and exactness of the 

predictions conceived using the model are associated to the nature and abstraction degree of the 

used model [10]. 

 

2.2. Genome-Scale Models 

The reconstruction of metabolic networks has long been an objective of biochemistry. With the 

recent advances in genome sequencing, it became possible to convert these reconstructions into a 

mathematical format that represents the genotype-phenotype relations in the metabolism of a 

specific microorganism [11]. These mathematical formats, or models, contain biochemical, genetic 

and genomic information, which have been gradually incorporated into GSMMs. These models 

support the development of distinct methods for the computation of phenotypic behaviors in the 

form of fluxes for metabolic reactions [11], [12]. 

In the end of the 1990s, the first metabolic genome-scale reconstruction and GSMM was 

published [13]. Since then, there has been an exponential growth in the field of genome-scale 

metabolic network analysis. At the date of writing of this text, well over one hundred genome-scale 

metabolic reconstructions have already been published [14]. Two lists of models are available in the 

following web sites: http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms and 

http://darwin.di.uminho.pt/models. 

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
http://darwin.di.uminho.pt/models
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These models are able to predict which reactions occur in the cell and their fluxes, given 

specific conditions (e.g. media). The simulation of this behavior is based in external and internal 

variations. When these variations occur it may result in transformations in the cell in order to adapt 

and survive. The prediction of these fluxes is one of the main goals of the GSMMs. Therefore, ME 

aims to use these predictions to optimize an organism to achieve a certain goal, like the maximum 

production of a desired compound. [15]–[17]. 

Metabolic models can be grouped into two different types: stoichiometric models and kinetic 

models [9], [18], [19]. 

Kinetic models describe the metabolic system by joining kinetics information about particular 

cellular processes with known stoichiometry [18], [20], [21]. 

Kinetic models use the dynamic properties of the metabolic network, but an important 

problem related with defining these models is the lack of available kinetic data and the difference 

between in vivo and in vitro kinetic parameters, which leads to greater difficulties in reconstructing 

these type of models [22]. 

Given this difficulty this project will be aimed at the study of phenotype simulations using 

stoichiometric models. 

 

2.2.1. Stoichiometric models 

Stoichiometric models represent the metabolic network as a set of stoichiometric equations that 

desirably correspond to the full set of biochemical reactions in the system. The metabolic network 

consists of a set of nodes, defined by compounds and a set of edges that represent reactions. The 

knowledge of the biochemical reactions and their stoichiometries can be mined from several 

sources, as pathway databases (e.g. KEGG or MetaCyc), published literature or annotated genome 

information. Then, this information is used to build a stoichiometric matrix assuring the adequate 

mass balance. The rows of the matrix typically represent metabolites, while the columns represent 

reactions. This matrix is of great importance because it represents the interpretation of biological 

knowledge into mathematical expressions. 
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If a steady-state assumption is taken it is considered that the sum of all the fluxes that 

produce, transport and degrade an internal metabolite is zero and thus resulting in a stationary 

concentration. This assumption generates the following flux balance equation: 

       (2.1) 

In this equation, S is the matrix that encompasses the stoichiometry of the reactions, while v 

is the vector of metabolic fluxes for each reaction. 

This system of linear equations is usually underdetermined, since the number of fluxes 

typically surpasses the number of metabolites. Consequently, a multiplicity of solutions (flux 

distributions) exists. A particular solution may be found recurring to linear optimization, by declaring 

an objective function and looking for its maximal value within the stoichiometrically defined domain 

[12], [13]. 

Equation 2.1 describes all feasible flux distributions [23] instead of an individual solution. 

Although being feasible, that does not mean that those solutions have a biologically sense, which 

means that there is a need to further restrict the solution space. It is possible to restrict the model 

by limiting the value of the fluxes: 

          (2.2) 

where    is the value of the flux, and    and    are the bounds defined for the flux  . 

There are two main forms of restrictions, adjustable and non-adjustable. The former 

constraints may change through evolution and are specific for different organisms [24] and are 

usually used to validate the model under specific conditions. The non-adjustable restrictions are, for 

instance, restrictions imposed by thermodynamics or enzyme capacities. 

The restrictions shown in Equation 2.2 allow setting limits to the flux values and also providing 

ways to restrict the model from the reversibility of the reactions, or by restricting the fluxes to a 

constant value. A reaction is reversible if               , and irreversible if either    or    are 

zero. Setting the value of a flux is possible by giving the same value to    and   . Biologically 

speaking, these flux restrictions can be considered environmental and/or genetic conditions. 

The procedure of stoichiometric modelling of a cell starts by determining the stoichiometric 

matrix, which will give the mass balances, by assuming a pseudo steady state of the system 
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(Equation 2.1), following a constraint based approach and limiting the value of the fluxes through 

constraints (Equation 2.2). 

There are different approaches when performing analyzes over this system. When a single 

solution is desired, under a specific environment, the solution can be acquired by constraining 

and/or defining some of the fluxes. In metabolic flux analysis (MFA) some exchange fluxes are 

measured to try to render a determined equation system. This approach can also be combined with 

extra data provided by the measurement of labeling patterns of specific metabolites to determine 

the single solution, often referred to as metabolic network analysis (MNA) [14]–[16]. In predictive 

studies, the methodology of Flux Balance Analysis (FBA) uses an optimization approach, by reporting 

to linear programming to determine the optimum flux distribution using a specified objective 

function, for instance the growth maximization (maximizing a defined artificial biomass flux) or ATP 

production [17], [18]. 

Another approach is, instead of looking for a particular flux solution for the model, to perform 

analysis of the topology of the metabolic network through the use of convex analysis, determining 

sets of elementary flux modes or extreme pathways [19]–[22], which are minimal operating modes 

of the metabolic systems. 

 

2.3. Application of Metabolic Models in Metabolic 

Engineering 

The number of genome-scale models is growing year after year. These models are mostly 

stoichiometric and do not explicitly encompass kinetic information, regulatory mechanisms or other 

known cellular processes. The lack of information and some unawareness of complex cellular 

regulation are the major reasons for this. Consequently, it seems that the complete in silico 

representation of the cellular behavior is a goal still far from being achieved. Nevertheless, the 

actual stoichiometric GSMMs present challenges to understand, extract and use all the information 

that they encompass. As a result, the analysis of these models has revealed some potential in 

relating genotype with phenotype [25]. 
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As mentioned earlier, ME attempts to optimize the metabolic processes of microorganisms to 

obtain desired products. This objective has motivated the development of computational 

approaches to identify targets for genetic intervention, taking advantage of the recent progress in 

the reconstruction of GSMMs. Mainly, optimization-based approaches have been heavily used for 

the benefit of ME by identifying the best candidates where changes occurring in GSMMs could lead 

to improve the production of the intended compound [26]. These methods have been applied in a 

variety of biotechnology and biomedical applications for the identification of capable biochemical 

routes for the production of valuable chemicals using microorganisms [27]–[37], for the 

comprehension of disease metabolism [38]–[40] and the identification of drug targets [41], [42]. 

 

2.3.1. Structure of a Mathematical Optimization 

Problem 

A mathematical optimization problem consists in finding the best solution from a set of existing 

possibilities that obey the constraints defined for the specific problem. These conditions comprise 

an objective function and a series of constraints. The objective function is the property of the 

system that will be maximized or minimized. As for the constraints, they are represented in two 

groups, the steady-state conditions for the reactions are equations, while inequalities are imposed 

by flux bounds. 

As regards the types of problem variables, these can be continuous or discrete, while some 

problems combine variables of both types. Continuous variables represent continuous properties of 

the system such as reaction fluxes. Discrete variables are used in discrete decisions like the number 

of reactions that should be added to the metabolic model or ‘yes/no’ decisions, such as ‘the reaction 

X will be knocked out or not’ which are represented by a specific type of discrete variables, binary 

variables. 

These mathematical problems can be divided in different mathematical programming 

paradigms. In a linear programming (LP) problem, both the objective function and constraints are 

linear and all variables are continuous. If one of the terms is non-linear, then it is named a nonlinear 

programming (NLP) problem. In the cases where there are both continuous and discrete (integer or 

binary) variables, the problem is named mixed-integer programming (MIP), which can be MILP or 

MINLP for linear or nonlinear cases respectively. The bi-level programming is another group of 
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mathematical optimization problems, which in a nutshell span the cases where there is a problem 

within another problem. Here, the inner problem is normally considered a phenotype simulation 

layer and the outer problem the strain optimization layer which optimizes changes to impose to the 

organism. This bi-level programming supports both continuous and integer variables and linear or 

nonlinear objective function and constraints [26]. 

 

2.3.2. Algorithms for Phenotype Simulations 

There are several methods to generate and explore predictions based on metabolic models (Table 

1). These methods have distinct objectives, such as to estimate the maximum theoretical yields, 

classify the reactions relations, quantify fluxes based on experimental data and analyze results of 

genetic mutations. Some of these methods will be briefly explained below, while a more 

comprehensive overview is provided in Table 1 [26]. 

Flux Balance Analysis (FBA) is one of the dominant and most studied mathematical 

approaches for phenotype prediction based on GSMMs [44]–[46]. It is an approach that, given the 

reaction stoichiometry of a microorganism, has the ability to quantitatively predict its growth rate or 

the production rate of a specific metabolite, being this feature that makes this method so 

appreciated [47]. The FBA prerequisites are the existence of a metabolic model, a defined biological 

objective and the environmental conditions. 

FBA uses LP to determine the steady-state flux distribution in a metabolic network by 

maximizing an objective function, for instance, the biomass flux or ATP production. Biomass 

production is one of the most used objective functions, based on the premise that the metabolic 

objective of the cell is to maximize growth. On the other hand, the FBA approach can also be used 

for the phenotype simulation of mutant strains, for instance predicting the effects of disabling one 

or multiple genes (or reactions). These are considered genetic conditions, where the value of the 

reactions encoded by these genes is restricted to null. 

Although FBA can be used for predicting fluxes in mutant strains, usually these organisms are 

created in the laboratory and are not exposed to the same evolutionary pressure as the wild-type. 

Taking this into account, the use of FBA is debatable, and probably is not the best. Alternatively, 

some studies considered the variation of the objective function resulting in another group of 
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techniques, which include for example, the minimization of metabolic adjustments (MOMA) [5]. The 

MOMA approach assumes that the mutant cell attempts to minimize the perturbation caused by the 

mutation in terms of flux variation. This means that, considering a given wild type reference flux 

distribution (known or obtained using FBA), the MOMA solution will be as close as possible from the 

reference distribution. In this case, the objective function is the minimization of the quadratic 

distance of the flux values from both solutions, and therefore is formulated as a quadratic 

programming (QP) problem. 

On the other hand, regulatory on/off minimization (ROOM) [43], is a similar method that 

minimizes the total number of significant flux changes from the reference flux distribution. This is 

performed under the assumption that the cell minimizes the effort of adaptation to the new 

mutation, and it has been shown that there has been evolutionary pressure to minimize the cost of 

gene expression [43]. In terms of mathematical optimization problem, ROOM is formulated as a 

mixed integer linear programming (MILP) problem. 

In ROOM's predictions, the flux distributions are very different from FBA's predictions, but the 

value of the growth rate is actually very close, while MOMA's are typically significantly lower. In fact, 

flux distributions from ROOM are claimed to be more correlated with experimental data than the 

two other methods [43]. 

As mentioned above, FBA has some limitations in its predictions, limitations that can be 

addressed by the addition of constraints to the optimization problem. By adding some features, 

other methods were developed, incorporating regulatory information, such as regulatory FBA (rFBA) 

[48], steady-state regulatory FBA (SR-FBA) [49], and probabilistic regulation of metabolism (PROM) 

[51]. 

Other studies have focused mostly in the identification or prediction of a physiological 

relevant objective function based on experimental flux data and developed other kind of algorithms 

[17], [44], such as ObjFind and BOSS. The former, a bi-level optimization procedure that gives a 

quantitative score to the reliability of an objective function [17], and the latter, a method that infers 

new objective functions so that the difference between model prediction flux distribution and 

measured fluxes is minimized [44]. 

Another approach is provided by flux variability analysis (FVA), which demonstrates that the 

linear optimization can be used with other purposes than just identifying the maximum efficiency of 
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a product or biomass. FVA can identify metabolic flux variability, this is, the minimum and maximum 

flux values for each reaction in the network [45], possibly providing additional constraints (e.g. 

minimum biomass values). 

Flux coupling analysis (FCA) and its variations consist in a series of LPs performed for finding 

dependencies between fluxes of a metabolic network at steady-state. FCA verifies the feasibility of 

the network, when a reaction is blocked and the other is carrying flux [46], [47]. 

 

Table 1: Optimization algorithms to explore model predictions 

Name Task Accessibility Reference 

Flux balance 

analysis 

Uses LP to determine fluxes that maximize a given 

linear objective function, most commonly biomass or 

ATP 

Various, including 

MATLAB (via 

COBRA toolbox) 

[48]–[50] 

rFBA  Extends FBA to account for regulation N/A [51] 

SR-FBA  Extends FBA to account for regulation OptFlux [52] 

GIMME  Identify inactive reactions in a metabolic model 

under a particular condition or in a specific cell type 

GAMS [53] 

PROM Integrate transcriptional regulatory networks and 

constraint-based modeling 

N/A  [54] 

MOMA Calculate fluxes in response to genetic modifications COBRA and 

OptFlux 

[5] 

ROOM Calculate fluxes in response to genetic modifications OptFlux [43] 

Geometric 

FBA 

Extends FBA to provide a standard, central, 

reproducible solution. 

MATLAB (via 

COBRA toolbox) 

[55] 

ObjFind Identify hypothesized objective functions consistent 

with experimental flux measurements 

N/A  [17] 

BOSS Identify hypothesized objective functions consistent 

with experimental flux measurements 

N/A  [44] 

FVA Determine minimum and maximum flux values for 

each reaction in the network 

COBRA and 

OptFlux 

[45] 

fastFVA Determine minimum and maximum flux values for 

each reaction in the network 

MATLAB [56] 

FCF Identify flux couplings in a reaction network GAMS  [46] 
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FFCA Identify flux couplings in a reaction network  MATLAB  [47] 

F2C2 Identify flux couplings in a reaction network MATLAB [57] 

SL Finder Identify synthetic lethals in a genome-scale model GAMS [58] 

OptMeas Determine measurement sets that enable flux 

elucidation 

C [59] 

13C-FLUX MFA calculations N/A [60] 

Source: [26] 

 

2.3.3. Algorithms to Redesign Metabolic Networks 

The following algorithms (Table 2) represent approaches for the redesign of metabolic networks and 

can be divided into three groups: pinpointing gene/ reaction deletions, identification of non-native 

additional pathways and identification of combinations of knockouts, down-regulation and 

overexpression that lead to the overproduction of a chosen chemical. Some of the most used 

optimization methods are presented in Table 2 [26]. 

 

Gene/Reaction knockout identification 

Microorganisms can metabolize and secrete a large quantity of compounds. Most of these are not 

necessary when seeking to produce a specific target. Thus, a genetic intervention seeks to optimize 

the microorganism to maximize the production of a target, while minimizing the secretion of 

secondary compounds that are not profitable. Once a genetic intervention is performed, it is also 

important that cell growth is not affected significantly. 

The OptKnock algorithm was developed to suggest the deletion of specific reactions so that 

these two requirements are maintained. This method uses a bi-level optimization, searches the 

optimal set of reactions deletions that maximizes the desired product secretion rate, while subject 

to the inner layer problem that guarantees steady-state conditions and seeks to maximize the 

biological aim. A bi-level approach can be altered into a single level MILP [31]. This method can 

sometimes be overly optimistic, it attempts to determine reaction deletions that optimize product 

yield, but does not verify for cases where an alternate optimal solution might divert flux away from 

producing the desired compound. The RobustKnock method, by employing a bi-level max-min 
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optimization, assures a minimal production rate by considering alternate optima that produce less 

of the desired chemical [61]. 

To conduct a global search for ME strain designs is difficult because there are a large number 

of possible genetic manipulations in an organism. Genetic algorithms can be used to iteratively 

refine strain designs until a strain is found that is able to produce a compound of interest. In 

OptGene, a set of metabolic genes is provided for each member in an in silico population, as well as 

the number of desired gene deletions. Based on the desired objective, it is determined a fitness 

score for each individual. The gene vectors of the fittest members of the population are chosen for 

crossover and subjected to random mutation. Until a genotype providing a desired phenotype is 

found, this action is carried out [66]. 

The tilting of the objective function was introduced as an alternative to RobustKnock. It was 

implemented in OptGene and OptKnock and simulates the worst-case scenario for product 

formation. Tilting was implemented by adding the product transport to the objective weighting 

vector [62]. This method is easier to implement and more computationally tractable compared to 

RobustKnock. 

 

Identification of non-native additional pathways 

In OptStrain, in addition to designing growth-coupled production strains, foreign metabolic 

pathways may be added to expand the range of producible metabolites. Using curated databases 

containing known enzyme-catalyzed reactions, such as KEGG [63], MetaCyc [64] or BRENDA [65], the 

minimal number of reactions needed to synthesize a compound of interest is added to the 

metabolic network of the production strain. Afterwards, bi-level or MILP approaches can be used to 

identify a set of reaction deletions that optimizes the product of interest, subject to optimal in silico 

growth [66]. 

SimOptStrain identifies simultaneous gene deletions and non-native reaction additions. 

BiMOMA, instead of the maximization of the biomass, uses MOMA as the cellular objective in the 

inner problem to recognize gene knockouts that result in the overproduction of a sought compound 

[67]. 

 



 
 

2.3 Application of Metabolic Models in Metabolic Engineering 
________________________________________________________________ 

16 
 
 

Identification of multiple types of genetic interventions 

Desired products can be obtained not only through the deletion of extant metabolic reactions, but 

also through the up- and down-regulation of other reactions. These modifications can be identified 

in silico. The OptReg extends OptKnock and allows for the prediction of reactions that can be up or 

down-regulated to aid in strain design [68]. 

The Genetic Design through Local Search (GDLS) method provides a flux modulation 

evaluation from the viewpoint of fitness of recombinant strains. It relies on local searches with 

multiple search paths to find combinations of genetic interventions. A heuristic approach is defined 

in which it is established the k number of genetic manipulations and the number of M best solutions 

desired. MILP is then used to make k more genetic changes and keep the M best solutions. These 

are then used as new initial points for k more changes. This is iterated until no more improved 

solutions are found. A faster computation of more complex gene modifications sets is possible 

through this method, but it is not guaranteed to provide a global optima [69]. 

Flux scanning based on enforced objective flux (FSEOF) identifies reaction amplification 

targets to make a product of interest. This method assesses all metabolic fluxes to find the ones that 

increase when the product flux is forced [70]. 

OptORF uses a MILP formulation and integrates transcription regulatory rules to identify 

optimal gene deletions and over expressions to maximize the production of a desired compound 

[71]. 

OptForce identifies possible genetic manipulations by classifying whether the reaction flux 

must change to overproduce a particular compound of interest. The method further identifies a 

minimal set of fluxes that must be forced through manipulations so that the network is consistent 

with the overall objective of overproduction of the compound of interest [72]. 

Enhancing Metabolism with Iterative Linear Optimization (EMILiO) identifies sets of reactions 

that may augment the production of a growth-coupled product by optimizing their flux. It also 

predicts the flux range that would maximize yield [73]. 
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Table 2: Optimization algorithm store design metabolic networks 

Name Type of 

optimization 

problem 

Type of intervention Accessibility Reference 

OptKnock Bi-level, MILP Knockouts GAMS, OptFlux 

and COBRA 

[31] 

RobustKnock Multi-level, MILP Knockouts MATLAB [61] 

OptGene Evolutionary Knockouts OptFlux and 

COBRA toolbox 

[74] 

Objective 

tilting 

Bi-level, MILP Knockouts MATLAB (via 

COBRA toolbox) 

[62] 

OptStrain Bi-level, MILP Addition of non-native 

reactions/pathways 

N/A [66] 

SimOptStrain Bi-level, MILP Knockouts and addition of non-

native reactions/pathways 

N/A [67] 

BiMOMA Bi-level, MINLP Knockouts N/A [67] 

OptReg Bi-level, MILP Knockouts, up regulations and 

down regulations 

N/A [68] 

GDLS Heuristic Knockouts, up regulations and 

down regulations 

MATLAB (via 

COBRA toolbox) 

[69] 

FSEOF LP Up regulations and down 

regulations 

N/A [70] 

OptORF Bi-level, MILP Knockouts and over expressions 

(of both metabolic and 

regulatory genes) 

N/A [71] 

OptForce Bi-level, MILP Knockouts, up regulations and 

down regulations 

GAMS [72] 

EMILiO Bi-level, MILP Knockouts, up regulations and 

down regulations 

N/A [73] 

Source: [26] 
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2.3.4. Further algorithms 

The previous tables (Table 1 and Table 2) show some of the most important methods used in ME, 

and some of the most relevant to this project. Despite this fact, this is just a small sample when 

compared to the dozen of methods and variations that have been studied and developed so far. 

Table 3 [26] shows another group of methods with a brief explanation of its purpose. These are 

procedures to curate GSMMs by (i) pinpointing and filling network gaps, (ii) identifying and fixing 

growth and flux prediction inconsistencies and (iii) restoring thermodynamic feasibility [26]. A more 

complete list is being updated regularly by the systems biology research group of the University of 

California, San Diego and can be found online: http://sbrg.ucsd.edu/cobra-predictions-app/. This list 

shows more than six hundred papers related to all kind of methods and applications, which can be 

filtered by year, prediction application, computational prediction or the organisms used in the case 

studies. 

 

Table 3: Optimization algorithms to correct/improve models of metabolism 

Name Task Accessibility Reference 

GapFind Identify dead-end metabolites GAMS and 

MATLAB(via 

COBRA toolbox) 

[75] 

GapFill Bridge the gaps (i.e., dead-end metabolites) GAMS and 

MATLAB(via 

COBRA toolbox) 

[75] 

SMILEY Reconcile growth prediction inconsistencies (single gene 

mutations) 

MATLAB (via 

COBRA toolbox) 

[76] 

GrowMatch Reconcile growth prediction inconsistencies (single gene 

mutations) 

GAMS [75] 

Modified 

GrowMatch 

Reconcile growth prediction in consistencies (single gene 

mutations) 

N/A [77] 

Extended 

GrowMatch 

Reconcile growth prediction inconsistencies (double and 

higher order gene mutations) 

N/A [78] 

GeneForce Identify and correct transcriptional regulatory rules using 

growth prediction inconsistencies (single gene 

mutations) 

N/A [79]   

http://sbrg.ucsd.edu/cobra-predictions-app/
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OMNI Reconcile flux prediction inconsistencies N/A [80] 

TMFA Eliminate thermodynamically infeasible pathways and 

loops 

N/A [81] 

ll-COBRA Eliminate thermodynamically infeasible loops MATLAB (via 

COBRA toolbox) 

[82] 

Source: [26] 

 

2.4. Constraint-based analysis computational tools 

With the development and widespread use of methods developed to support ME, some 

computational tools were implemented to improve and enhance the evolution that has occurred in 

this field. 

 

2.4.1. Systems Biology Research Tool 

The Systems Biology Research Tool (SBRT) is an open-source and multiplatform tool designed to give 

the user greater ease in performing tasks of systems biology. This tool supports more than 30 

methods for analyzing stoichiometric networks, like FBA, FVA or reaction deletions tasks, and more 

than a dozen methods from fields like graph theory, geometry, algebra, and combinatorics. It is also 

an application that allows independent software developers to improve it by adding new 

functionalities [83]. 

 

2.4.2. CellNetAnalyzer 

CellNetAnalyzer (CNA) is a toolbox for MATLAB (MATrix LABoratory is a commercial computing 

environment) that offers an extensive and user-friendly environment for structural and functional 

analysis of metabolic, signaling and regulatory networks. CNA particular strengths are methods for 

functional network analysis, i.e. methods that describe functional states, pinpointing intervention 

strategies, identifying functional dependencies, or expose qualitative predictions of the 

perturbations effects. The capability of the user to call external algorithms from external programs is 

also one of the strengths of the CNA [7]. 
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2.4.3. COBRA toolbox 

COnstraint-Based Reconstruction and Analysis (COBRA) toolbox is a package for MATLAB and one of 

the most complete computational tools used in ME. It is a tool with methods that simulate, analyze 

and predict a diversity of metabolic phenotypes resorting to GSMMs. These models can be imported 

and exported in different formats, a feature that is a great advantage over most tools. 

 

Figure 1 - Overview of the COBRA Toolbox 

Figure 1 represents an overview of most of the components present in this tool. The tool 

consists in several categories of COBRA methods and its wide use by a large number of researchers 

is due to the quality and quantity of these methods. Operations like FBA, FVA, MOMA, 

GeometricFBA, Gap Filling, OptGene or OptKnock are available in this toolbox. In terms of solvers, 

COBRA toolbox contains solver interface functions for LP, MILP, QP, nonlinear programming 

problems and supports the IBM ILOG CPLEX Optimization Studio (CPLEX), Gurobi and GNU Linear 

Programming Kit (GLPK) solvers. 
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One of the disadvantages of this tool is that it is MATLAB-based. MATLAB is a numerical 

computing environment that requires a commercial license. Nevertheless, the growth of COBRA 

triggered its conversion to a Python-base framework (free programming language) [84] but this is 

still quite incomplete. 

 

2.4.4. OptFlux 

OptFlux is a free and open source software developed by the Bioinformatics and Systems Biology 

research group of the University of Minho. The goal of this tool is to provide a user-friendly 

computational tool for ME applications becoming a reference in this field. 

This tool enables importation and exportation of GSMMs, and with it, metabolites, reactions 

and gene-reaction associations. This tool supports several flat file formats and it is compatible with 

the standard machine-readable format for representing models, Systems Biology Markup Language 

(SBML) files [85]. OptFlux also has a model repository that presents already curated models ready to 

be used. 

In OptFlux, GSMMs can be used for phenotype simulation of both wild-type and mutant 

organisms, strain optimization, elementary modes analysis and flux variability analysis. The 

phenotype simulations are performed by methods such as FBA, ROOM and MOMA, while strain 

optimization is executed through the OptKnock algorithm, Evolutionary Algorithms or Simulated 

Annealing. The latter algorithms provide the identification of sets of reaction deletions that 

maximize a certain objective function, its major goal is to identify genetic modifications that result in 

a mandatory change of the microorganism to produce a specific metabolite without minimize its 

biomass production. 

In terms of solvers, this software can use free or commercial solvers provided users have 

compatible licenses, including the Coin-or Linear Programming (CLP), the GLPK and CPLEX. 

OptFlux’s architecture is based in plugins, which allows, with some ease, its extension with 

new functionalities and thus a constant growth and evolution. It is implemented in Java on top of 

AIBench (http://www.aibench.org), which is a software development framework that was created as 

a cooperative project between the research group of the University of Minho and researchers from 

the University of Vigo in Spain. AIBench is a lightweight, non-intrusive, MVC-based Java application 
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framework that simplifies the connection, execution and integration of operations with well-defined 

input/output, leading to units of work with good consistency that can be simply combined and 

reused [8]. 

 

2.4.5. Other computational tools 

The presented computational tools are some of the most relevant in the ME field. Beside then, some 

others were developed and are often used in this area. Tools such as BioMet Toolbox [86], FASIMU 

[87], SurrayFBA [88], TIGER [89] and RAVEN [90] are capable of performing phenotype simulations 

or optimization analyzes and other significant ME tasks. 
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Chapter 3 

3. Computational frameworks analysis 

In this chapter, two of the main frameworks for ME, the OptFlux framework and the COBRA toolbox 

will be explained in further detail, from the model representation to the constraint-based methods 

included and how they are performed. These tools have been the ones used in this study, and 

therefore their knowledge is important to be able to create a connection between them. 

 

3.1. Model structure 

The GSMMs representation presented in the previous chapter is used both by OptFlux and COBRA 

to perform several methods, including phenotype simulation, strain optimization, analysis, and 

model modification. Although the models are built and computationally represented differently in 

each of these tools, the underlying mathematical framework is the same. The present section seeks 

to explain how the tools perform the model construction and also how its structure is represented 

in both these tools. 

 

3.1.1. Metabolic 

The GSMMs in OptFlux is built and managed through two different software projects. These projects 

are the BioComponents and the Metabolic. 
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BioComponents project 

The BioComponents is a project with a significant Input/Output (I/O) component that is responsible 

for the creation and management of a structure named Container, which is used as the major data 

structure to keep the whole set of information needed for a GSMM. 

The Container structure consists of several kinds of information about a certain organism and 

allows the creation of the organism model. 

The Container structure holds all the information in smaller data structures and lists: 

 The organism name; 

 The biomass reaction identifier; 

 A list of CompartmentCI objects, which holds the information of all organism’s 

compartments, their names and a list of all their associated metabolites; 

 A list of MetaboliteCI objects, which holds the information of all organism’s metabolites, its 

name and a list of all its associated reactions; 

 A list of ReactionCI objects, which holds the information of all organism’s reactions. It is a 

structure slightly more complex than CompartmentCI or MetaboliteCI. Here, the name of 

the reaction, its reversibility, and two lists with the reactants and the products, are kept. The 

reactants/ products lists contain the name of the metabolite and the StoichiometricValueCI 

structure which has the name of the metabolite, in which compartment it is presented and 

its stoichiometric value in the reaction; 

 A list of ReactionConstraintsCI, which holds the constraint values (the upper and lower 

bounds) for each reaction of the organism. 
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Figure 2 - BioComponents class diagram 
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This Container structure was built to have a better manipulation of all organisms’ information. 

This manipulation has the capability of adding, changing or even removing all the existent data. With 

this capability, it is possible, for instance, to add new compartments or reactions to the organism, to 

change in which compartment a specific metabolite is present, to remove reactions, to change its 

constraints or even to change the stoichiometric value that a specific metabolite has in a certain 

reaction. 

All this Container information is obtained from different readers. These readers are structures 

responsible for getting and handling data from different sources. Usually, the information needed 

for a constraint-based model can be found in files with different formats, and thus different readers 

were implemented. In the BioComponents project, there are a significant number of readers that 

cover almost all types of information sources, such as SBML, CSV Files, FlatFiles or Metatool. 

Each reader implements the interface IContainerBuilder. This interface obliges the 

implemented reader to reply to all the information essential to create the model by implementing 

the interface methods. All readers must get information such as the list of compartments, 

metabolites and reactions from its source to fulfill the agreement with the IContainerBuilder. This 

treaty allows that, although the information sources can be very different, a Container is created 

using the IContainerBuilder and the Metabolic project is responsible to convert this structure in a 

constraint based model. 

 

Metabolic project 

Metabolic is a project where constraint-based methods for simulation, optimization and analysis are 

implemented. Also, it is responsible for the creation of GSMMs and their use using constraint-based 

methods. 
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Figure 3 - Metabolic class diagram - Model view 

Figure 3 represents the class diagram responsible for the creation of the GSMMs in the 

Metabolic project. In this project the model is represented by a structure named SteadyStateModel 

(SSM) that implements the interface ISteadyStateModel. Although the SSM holds information also 

present in the Container, its representation and organization are different, since the SSM handles 
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structures that are oriented for numerical computation to support constraint-based methods. One 

of the major differences is the stoichiometric matrix that exists in the SSM organizing stoichiometric 

coefficients in a suitable matrix representation. The need of having two similar structures lies in the 

manipulation of both structures, for instance, while in the container it is easy to remove 

reactions/metabolites, in the SSM that manipulation is more complex, since the data in this 

structure is indexed and linked in the matrix. 

This structure was created with the purpose of being used for simulation, optimization and 

other constraint-based methods. This project has a class named ContainerConverter that, using all 

the necessary information present in the Container, creates a structure that implements the 

interface ISteadyStateModel, in this case the SSM. 

Similarly to the Container, the SSM structure is composed by a set of data structures that 

represent the model. These structures are: 

 A list of compartments represented by the Compartment structure. This structure consists in 

the compartment name and a list of associated metabolites; 

 A list of metabolites represented by the Metabolite structure. This structure consists in the 

name of the metabolite and the name of the compartment. 

 A list of reactions represented by the Reaction structure. This structure is slightly different 

from the Container’s ReactionCI because it does not have information about the associated 

metabolites, on the other hand it contains the name of the reaction, its reversibility and the 

ReactionConstraint structure, which consists in the upper and lower bounds that a reaction 

can have; 

 The IStoichiometricMatrix structure, it does not exist in the Container and it is the base of 

the constraint-based model. This structure represents the bond between metabolites and 

reactions. It is a matrix m X n in where m represents the number rows (metabolites), n 

represents the number of columns (reactions). The value of each matrix’s cell is obtained 

from the Container’s ReactionCI where the connection metabolite-reaction is presented. 

All the structures that implement the ISteadyStateModel, such as SSM, are obligated to 

implement some essential functions to most of the constraint-based methods. These functions are 

the list of reactions, the list of metabolites, the whole stoichiometric matrix and the value of a 

certain matrix’s cell. With these the constraint-based methods have full access to the constraint-
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based model to perform all its operations. This is the major reason for the development of the 

ISteadyStateModel interface in the Metabolic project. 

 

3.1.2. COBRA 

Since COBRA is a toolbox developed in the MATLAB environment it has its own ways of data 

management. The COBRA toolbox uses MATLAB and its numerical computing environment to hold 

data in a workspace. This workspace contains all the variables used and created in this environment. 

Here, there is not an order or even a data distribution by categories or classes in the same way other 

structured programming languages do. In this workspace, all the structures or variables are at the 

same level and there is complete freedom in the management of their content. The GSMM is a 

structure array that groups related data using data containers called fields. This structure in the 

COBRA toolbox consists of several fields, such as: 

 Rxns, a string vector where each element represents the ID of a reaction; 

 Mets, a string vector where each element represents the ID of a metabolite; 

 S, the stoichiometric matrix. It is a matrix m X n where m represent the number of rows 

(metabolites) and n represents the number of columns (reactions); 

 Rev, a numeric vector with the same number of elements as the Rxns field and where each 

element represents the reversibility of the correspondent reaction (binary value); 

 Lb, a numeric vector with the same number of elements as the Rxns field and where each 

element represents the lower bound of the correspondent reaction; 

 Ub, a numeric vector with the same number of elements as the Rxns field and where each 

element represents the upper bound of the correspondent reaction; 

 C, a numeric vector with the same number of lines as the Rxns field and where each row 

represents the objective coefficient of the correspondent reaction. This field is used to 

define which reaction or reactions will be in the objective function of the model; 

 RxnsNames, a string vector with the same number of elements as the Rxns field and where 

each row represents the name of the correspondent reaction; 

 MetNames, a string vector with the same number of elements as the Mets field and where 

each element represents the name of the correspondent metabolite. 
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For loading GSMMs in COBRA, it is necessary to define a list of metabolites, a list of reactions 

and the stoichiometric matrix to perform its constraint-based operations. There are three standard 

ways of loading these models in COBRA: through a SBML file, text files and Excel files. 

Another approach, less conventional, of loading models in COBRA is through MAT files. These 

files contain the MATLAB formatted data of any variable or structure supported by this platform 

and, thus, the GSMMs can be saved and loaded in this format. COBRA does not have a method for 

loading these sorts of files and so it is not a COBRA functionality but a MATLAB one. 

Although there are different approaches when loading the model, all the approaches have the 

same final result and a unique structure that represents a GSMM. In COBRA, this structure is not 

static and can be changed, there are some functions in the toolbox that allow to add reactions, 

remove metabolites or reactions and change the value of each cell of the stoichiometric matrix. On 

the other hand, being this toolbox built in MATLAB it is also possible to change all the variables 

within the workspace and thus modify the model. Some of this manipulation functions will be 

presented in 3.2.2. 

This structure of the model is used by almost every operation of the COBRA toolbox. The 

constraint-based model is the center of all the tools that have constraint-based methods and COBRA 

is no exception. These methods can be categorized by simulation, optimization and analysis 

methods and both OptFlux and COBRA have methods that represent these three categories. 

 

3.2. Constraint-based analysis structure 

The constraint-based analysis has a great number of methods that are used in metabolic 

engineering. Within these methods there are some that can be categorized as phenotype simulation 

methods. A number of simulation methods are developed in the Metabolic project and also in the 

COBRA toolbox. This chapter seeks to explain how the simulation mechanisms in each of the tools 

work. 
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3.2.1. Metabolic 

As mentioned before, the Metabolic project besides the creation of GSMMs also makes use of them 

in some implemented constraint-based methods. The implementation of these constraint-based 

methods, more specifically the phenotype simulation methods, can be divided into two different but 

connected layers: the abstract and simulation layers. 

Figure 4 represents the class diagram of the abstract and simulation layers in the Metabolic 

project. In this project the simulation operations are defined by formulations, being these, for 

instance, the FBA, MOMA or ROOM. On the center of these formulations is the interface 

ISteadyStateSimulationMethod. 

This interface makes all the simulation formulations that exist in this project implement all the 

interface methods. Through this interface, any constraint-based method that can fully implement 

these interface methods can be added to the project and have its results shown along with the 

existing formulations. The most important methods of this interface are: 

 A method that returns an ISteadyStateModel structure; 

 The access and change methods for the structure EnvironmentalConditions; 

o The EnvironmentalConditions structure is composed by a list of reactions and their 

ReactionsContraints, being this last structure the bounds of the reaction. The 

EnvironmentalConditions are used to modify the reactions bounds of an organism 

and in an in vivo analogy are for instance the environmental conditions that are 

imposed on the organism. 

 The access and change methods for the structure GeneticConditions; 

o The GeneticConditions structure represents all genetic alterations made to the 

organism for a specific simulation. This structure is composed by a list of 

genes/reactions and their expression values, provided that when there are no 

expressions values the knockouts of the genes/reactions are considered; 
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Figure 4- Phenotype Simulation Abstract Layer Class Diagram
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 The access and change methods for the properties of the formulation; 

o These properties are parameters that are used in the formulations, for instance the 

solver that will be used or used to define a reference flux distribution; 

 The simulation method that must return a SteadyStateSimulationResult structure. 

Despite all formulations generating a result with the same structure and having the interface 

in common, each is used for different purposes and has different ways of building the result. 

The common aspects can be found in the abstract class AbstractSSBasicSimulation, a class 

that is also used as a link between the formulations and the ISteadyStateSimulationMethod. Here, 

the interface methods are implemented and this class can be extended by all the simulation 

formulations. This abstract layer is also responsible for the construction of the problem based on the 

variables and constraints of each formulation. However, before this process, the abstract makes all 

the formulations that extend it specify their objective functions and create an empty problem that 

can be a LP problem or an extension of that problem, for instance QP or MILP. 

Another important task of the abstract layer is the property registration, which can be 

mandatory or optional, and can vary with the formulation in question leading to different problems. 

The properties registered at this level are the ones common to every formulation, namely: 

 The solver that will be used; 

 A flag representing if the simulation is an over and under expression or a knockout one; 

 The flux distribution used as reference in the simulation; 

 The environmental conditions of the simulation; 

 The genetic conditions of the simulation. 

Despite this abstract class already registers some properties that are common to every 

formulation, there are others that must be registered by every formulation implementation based 

on its requirements. There is a property that is used in more than one formulation, but not shared 

by all. For this reason a second abstract class named AbstractSSReferenceSimulation was created. 

This extends the AbstractSSBasicSimulation and is responsible for the registration of this property of 

the formulations that use references in their problems: 

 The reference that will be used by the formulation, usually is a flux distribution obtained by 

wild-type simulations; 
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Along with the registration of the properties, the class also has a function that is used when 

there is no registration of the reference. This function performs a wild-type simulation and use the 

resulting flux distribution as reference in the construction of the problem. 

As stated, all the simulation formulations must implement the ISteadyStateSimulationMethod 

interface and have the responsibility to create the SteadyStateSimulationResult structure as final 

result. This structure is composed by the following elements: 

 An ISteadyStateModel structure; 

 The formulation used to create this structure, for instance FBA or MOMA; 

 The solution type, for instance if the solution was optimal or infeasible; 

 The objective function used; 

 The value of the objective function for this simulation; 

 The flux distribution of the simulation, a string-numeric map that consist in list of reactions 

and the correspondent numeric flux value; 

 The used environmental conditions; 

 The used genetic conditions; 

 A map that corresponds to the metabolites complementary information. This map is very 

generic and can be anything that is associated with the metabolites; 

 A map that corresponds to the reactions complementary information. This map is very 

generic and can be anything that is associated with the reactions. 

Figure 4 also represents the simulation layer of the Metabolic project. This layer corresponds 

to the implementation of each formulation that extends the previous abstracts layers. Each 

formulation is responsible for the registration of the properties that are essential to create it. The 

same happens when the formulations need to create a problem that is not LP. For instance, the FBA 

formulation, being a LP problem has no need to build a problem and it can use the problem created 

by the AbstractSSBasicSimulation. However, the FBA formulation needs to register two additional 

properties: 

 Which reaction or set of reactions will make the objective function of the problem. This 

property is not mandatory and by default it uses the biomass reaction as the objective 

function; 
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  If the objective function of the problem is maximization or minimization. It is a mandatory 

property and the problem cannot be created without this information. 

On the other hand, other formulations such as MOMA or ROOM beyond the need of 

registering their own properties also need to construct the problem. Despite the fact that these 

formulations need to create different problems, MOMA, a Quadratic Programming (QP) problem 

and ROOM, a Mixed Integer Linear Programming (MILP) problem, share two properties. For this 

reason they extend the second abstract, the AbstractSSReferenceSimulation. 

As before, these formulations are responsible for the registration of the necessary properties. 

The same happens for the construction of the problem, since the AbstractSSBasicSimulation only 

creates a LP problem and both MOMA and ROOM are QP and MILP problems, respectively. As for 

the result, each of these formulations has different objective functions and also need to define it in 

the problem and later in the SteadyStateSimulationResult structure. 

 

Simulation Control Center 

Along with the implementation of each formulation, the Metabolic project has a control center 

where all formulations are registered and executed without having to instantiate or know any of the 

classes structures. 

Figure 5 represents the class diagram of this control center. This is specific for simulation 

formulations and is a generic structure that performs simulations according to the selected 

formulation. 

This control center also manages the properties for each formulation in a simple approach, 

properties such as the maximization flag or the genetic and environmental conditions have their 

own access and change methods. Besides that, this control center also allows the removal or 

addition of new properties used in other formulations. Each formulation is registered in a factory 

and it is through this factory that new formulations are registered. Also, this factory knows the type 

of problem from the formulation and is responsible for knowing all the methods that the control 

center is able to perform. 
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Figure 5- Simulation Control Center Class Diagram 

Both this control center and factory are important for this work since the integrated 

formulations in the platform are going to be registered and used through these structures. 

 

3.2.2. COBRA 

The COBRA toolbox has a large number of constraint-based methods and for that reason it is one of 

the most used tools in the ME. Being a toolbox that runs in a MATLAB environment its 

functionalities are based in scripts allowing the implementation of new methods and also an easy 

adjustment of already existing methods to fit the user needs. 

Also the capabilities of MATLAB allow users to manipulate and analyze the information sets 

that are created by most of the constraint-based methods present in COBRA. Additionally, this 

toolbox can easily be interfaced with other software tools and so be used as a complementary tools, 
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not only for tools running in the MATLAB environment but also in tools built in other languages such 

as Java, C, or Python. 

 

Figure 6 - COBRA Toolbox – Major methods 

Figure 6 presents an overview of the COBRA toolbox and the tools that were more studied for 

this work. The toolbox can be divided in layers:  

 The model manipulation layer, where it is possible to change the objective function, 

the reactions bounds, reduce the model by removing unused reactions or remove a 

single reaction; 

 The FBA layer that contains a commendable number of methods, from growth rate 

optimization (FBA problem) to the MOMA method. This layer will be explained in 

detail further in this document; 

 The optimization or design layer that contains some optimization methods such as 

OptKnock and GDLS, which will be also explained in detail in this document. 
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As mentioned, the FBA layer contains a vast number of methods, although these methods are 

all in the same group their result and input parameters are slightly different. Each method has its 

own result structure and is responsible for the creation of the problem, the choice of the solver to 

use and the creation of the result depending on the solver solution. Nonetheless, the constraint-

based model is the center of these methods and of a vast number of the other groups of methods in 

this layer. This makes the model the only element in common between all them. 

Each method is a MATLAB function responsible for creating the structure of the problem and 

the final result. Also, there are no classes or interfaces that are common to all of the methods and, 

thus, there is no obligation to comply with any structure. Each function is independent and free to 

implement the formulation and also free to output any solution structure. This can also be a 

disadvantage because sometimes there are functions that perform the same tasks with minor 

modifications and the scripts have duplicated parts: an example can be seen in the LinearMOMA 

and MOMA, where both functions need the same input and create the same result and thus have a 

very similar script. 

The optimization layer is very similar to the previous one. Here, each of the methods is 

responsible for creating its result and the input parameters are slightly different in each one. 

The modifications in the model, such as changing the reaction constraints or the objective 

function, will be made before performing the method by other COBRA functions. This could also be 

different if the model structure was a class and these functions were associated with the model 

since its purpose it to modify the data of the model. 

The methods within this layer use a solver that must be defined before the use of the 

function. COBRA supports solver such as Gurobi, CPLEX or GLPK, and this definition of each solver 

will be used is also performed by COBRA functions. 

 

COBRA Functions 

COBRA is a MATLAB-based toolbox and thus the functions of this tool are all performed from within 

this environment. Since this tool does not support GUIs the methods have to be performed through 
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scripts or single functions. This section presents some of the most used COBRA functions, the 

following are for performing constraint-based methods: 

 Simulating optimal growth using FBA: growth is simulated by optimizing the model for 

flux through the model’s biomass function or the other objective function: 

[solution] = optimizeCbModel(model, [osenseStr], [minNorm], [allowLoops]) 

o model is the constraint-based model;  

o osenseStr can be either ‘max’ or ‘min’ to maximize or minimize the value of 

the objective;  

o minNorm has 0 as default, if nonzero, attempt to find a solution that 

minimizes the presence of loops;  

o allowLoops is true as default, if false; 

o solution is the solution structure and will be explained in 4.4.3. 

 

 Geometric FBA attempts to return the minimal flux distribution central to the bounds 

of the solution space, while still maintaining optimal growth rate: 

flux = geometricFBA(model) 

o model is the constraint-based model; 

o flux contains the centered optimal flux distribution. 

 

 OptKnock determine reaction sets to knock-out for the overproduction of a specific 

product when the model is optimized for internal cellular objectives:  

[OptKnockSol, biLevelMILPproblem] = OptKnock(model, selectedRxnList, 

[options], [constrOpt], [prevSolutions]) 

o selectedRxnList  a list of possible knockouts; 

o options is a complex structure that essentially consists in the desired product 

and the maximum number of deletions; 

o constrOpt is a complex structure that essentially consists in applying 

constraints on reactions, such as a minimal flux through the biomass function 

or ATP maintenance; 

o prevSolutions list of previous results. 
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o OptKnockSol a structure that will be explained in 4.4.4; 

o biLevelMILPproblem is the bi-level MILP problem for the solution. 

 

For doing changes in the model before performing the previous methods: 

 Change reactions bounds: 

model = changeRxnBounds(model, rxnNameList, value, boundType); 

o rxnNameList a vector that corresponds to the reactions IDs; 

o value the numeric value of the bound; 

o boundType indicates which bound is changed, can be ‘l’ for lower, ‘u’ for 

upper and ‘b’ for both. 

 

 Change objective function of the model: 

model = changeObjective(model, rxnNameList, [objectiveCoeff]); 

o rxnNameList is a vector that corresponds to the reactions IDs; 

o objectiveCoeff specifies the weight given to the respective reaction in 

rxnNameList. when empty the coefficient is 1. 

 

These are some of the most used COBRA functions in this work. The study of these two tools 

was vital for the development of the platform that integrates them and used both model and 

constraint-based methods. 
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Chapter 4 

4. Results and Development 

The main goal of this work was the design and development of an integrated platform for in silico 

phenotype simulation of microbial strains. This platform integrates the most relevant existing 

simulation methods, but also enables its easy extension with other methods that may be developed 

in the future. 

This platform was built in Java and has as main feature the ability to connect with the 

MATLAB environment. This means that this platform can be a link between Java and different 

MATLAB tools and with that the access of multiple constraint-based methods in a single platform. 

Although there are several MATLAB tools, this work was mainly focused in the COBRA toolbox and in 

creating a bridge between this toolbox and OptFlux. The goal was to allow OptFlux to use the 

COBRA’s functionalities and with that enlarge the set of available methods. 

This chapter seeks to explain how the implementation of the connection between tools was 

performed and what the final result as an OptFlux’s plugin. 

 

4.1. A language-independent platform 

Before the implementation of the platform, a layer of connection or conversion was idealized. This 

layer should be implemented so that any language and toolbox could be integrated in this Java 

platform. This implementation should aim for the information exchange between tools 

independently of the language in which it was built. 
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Figure 7 - Connection Layer Class Diagram 

Figure 7 represents the idealized connection layer. On the center of this layer is the 

IConverter interface. This interface has a significant role in this layer and in the entire platform. Its 

methods are designed with the aim of being a link between this platform and the language in which 

a specific toolbox was developed. From the programming language side this interface requires the 

implementation of three categories of methods. 
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One category is for the methods that are used to initialize the computational environment 

and the toolbox, for instance, the definition of the toolbox solvers or other global parameters. The 

second category is a set of methods used for sending commands or functions to any language. It can 

be a single command or a function with input and output parameters. The last, but not least, 

category is for the methods used for variables’ management. These methods are used to send and 

obtain generic and typed variables from the computational language. These typed variables are 

Strings, Integers, Doubles and arrays for each of these three types. 

These types’ choices was based on the fact that most of the tools that have constraint-based 

methods use these variables in their operations, also these variables exist in most of the 

computational languages. 

With all these methods the platform can interact with any language, although for the 

constraint-based analysis toolboxes interaction another set of methods are required. These 

methods are related with the constraint-based model, this interface obliges the implementation of 

three methods related with the model: the method responsible for the creation of the model in the 

toolbox using the converter, this model is based on an ISteadyStateModel; the method that defines 

the objective functions; the one that creates an OverrideSteadyStateModel, this model is identical to 

a ISteadyStateModel but some reactions constraints will have different values.  

With all this, the class that successfully implements this interface allows the platform to 

exchange commands between Java and a target language and also creates the constraint-based 

model in any toolbox. As for the performance of the toolbox operations another class must by 

implemented. 

The ConnectionFormulation is an abstract class that is responsible for associating a converter 

according with the language and the toolbox with the formulations that extend this abstract. In this 

case the ConnectionFormulation is used for simulation methods and it implements the 

ISteadyStateSimulationMethod to be considered a simulation formulation by the Metabolic. 

If another category of formulations was desired, for instance optimization formulation, then 

this abstract should be implemented based on that formulation and by using the converter it could 

access to all the language and toolbox operations. Since this class is used as example of how this 

platform can connect with any language and toolbox, in the following chapters it will be given a 

greater relevance and explanation of this class purpose. 
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4.2. Java-MATLAB integration 

After the idealization of the converter structure that allows the connection with any language, as 

long as Java can connect, the next step of this platform implementation was the study of how a 

connection Java-MATLAB could be performed. This connection should allow a Java application to 

create a MATLAB session and also call MATLAB commands from a Java’s application. 

MATLAB already distributes a jar file called Java MATLAB Interface (JMI) that allows the access 

to the MATLAB environment. This interface has two major types of functions, send commands from 

Java into MATLAB and allow Java to access the data in the MATLAB workspace. Along with JMI is the 

MATLABControl [91], a Java API that simplifies all the JMI functionalities and allows using MATLAB 

through Java. 

By implementing the MATLABControl in a Java application, it is possible to create a MATLAB 

session that is the bridge between both languages. This session allows accessing the MATLAB 

workspace, and sending and receiving variables within it. Also, this session can call any command or 

function supported by MATLAB. This connection is unidirectional, although both JMI and the 

MATLABControl allow a bidirectional communication, for this work the operations will all be sent by 

Java. This means that Java sends operations to MATLAB and waits for the end of these operations, 

on the other side MATLAB only executes those and will not send any variables or commands to the 

Java application, the application will be responsible for knowing what will be created in MATLAB and 

get all the needed information. 

With this implementation in the platform created for this work the next objective became the 

development of a structure that allowed Metabolic to access some of the constraint-based methods 

present in the COBRA toolbox. As mentioned before, almost all of COBRA’s operations need the 

model to be performed. This, the first objective was to convert the Metabolic model and send it to 

COBRA using the MATLABControl and then be able to perform the COBRA methods. 
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4.3. Convert Metabolic Model to Cobra Model 

The conversion of the Metabolic model to the COBRA model was an essential step to the developed 

platform becoming capable of performing the COBRA methods. For this, it was crucial to analyze 

both models, the ISteadyStateModel structure of the Metabolic project and the model structure in 

COBRA. 

Although both structures are slightly different, the information is exactly the same. The major 

difference between these structures is the way the data is obtained and manipulated. 

As aforementioned, both tools can load the models recurring to different approaches. The 

construction of the model in our work is performed gathering the model information present in the 

Metabolic’s ISteadyStateModel. With this approach there is no restriction to any of the existing 

loading approaches. However, the model can only be built if the ISteadyStateModel has all the 

needed information using one of the loading approaches present in the Metabolic project. 

 

Figure 8 - Comparison between Metabolic and COBRA Models 

Figure 8 represents the information that each of the tools structures has in common. 

Recurring to the MATLABControl class and sending MATLAB basic functionalities used for creating 

variables it is possible to create any structure in MATLAB. Also, by gathering all the information 

presented in the Metabolic’s ISteadyStateModel it became possible to create a constraint-based 

model in MATLAB that corresponds to the COBRA’s model. This model must contain the reactions 
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information, such as the name and the associated constraints, the metabolites information and the 

stoichiometric matrix. With this, the platform can create a COBRA model which has the same 

information as the model in the Metabolic’s project and be used along with the constraint-based 

methods present in COBRA. 

 

4.4. COBRA methods from Java 

After the development of a Java application that could build a COBRA model, a requirement’s 

analysis of all the available COBRA methods was necessary. Then, a selection was made of which 

methods could be implemented in the platform. This evaluation was accomplished by categorizing 

the methods by simulation, optimization and analysis group. This categorization allowed defining 

tangible objectives by giving priority to the implementation of simulation methods. 

After the decision on the implementation of simulation methods, this was accomplished by 

taking into consideration an essential parameter: the method’s result having, as minimum 

requirements, a flux distribution and thus enabling the construction of a Metabolic’s 

SteadyStateSimulationResult from the results of the COBRA method. 

The importance of this parameter was due to the fact that all the simulation methods 

implemented in Metabolic have the SteadyStateSimulationResult structure as a result. For that 

reason, the new platform was developed by using the same structure as the Metabolic for the 

simulation formulations. 

From the analysis of the COBRA methods four were selected to be implemented in the 

platform: FBA, GeometricFBA, LinearMOMA and MOMA. This choice was made based on the fact 

that these methods are widely used and have as a result the information capable of creating a 

SteadyStateSimulationResult structure making the implementation in the platform possible. 

Although this structure has a significant importance in the platform and the Metabolic project 

integration, another requirement is necessary from Metabolic and had some impact in these 

methods selection. In order for the Metabolic’s simulation methods to be integrated in OptFlux all 

must be an ISteadyStateSimulationMethod and implement all methods from this interface. For this 
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reason, all COBRA’s methods implemented in this platform must also be able to answer to this 

interface’s methods with the aim of being integrated in OptFlux. 

With all these considerations the platform was created with two layers: the layer explained in 

the previous chapter, the converter layer, the one responsible for converting Java information in 

another language and vice-versa and the layer that ensures that all the formulations have the 

needed information for the Metabolic integration. 

 

4.4.1. Converter Layer 

The essential part of this layer was already explained in a previous chapter, but this explanation is 

now based on a practical example, the use of the IConverter as a connection structure Java-

MATLAB. 

As mentioned before, this layer was developed with the aim of connecting Java with another 

language and converting the information between both. For this work, this layer and platform only 

have a Java-MATLAB connection (Figure 9) but as explained a solid structure is already built for the 

integration with other languages, for instance Python. 

Also as stated, all this integration is possible through the IConverter interface, in this work the 

Java-MATLAB interaction is implemented in the class CobraMATLABConnection. This class has the 

obligation of implementing all the interface methods used in the Java-MATLAB connection. To 

perform this, it uses the MATLABControl mentioned before and with it creates an instance of a 

MATLABProxy that corresponds to a MATLAB session and uses it in the implementation of all the 

methods that send commands to MATLAB and manage the variables in the workspace. 
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Figure 9 Java-MATLAB Connection Class Diagram 

Along with the Java-MATLAB connection this class is also responsible for the management of 

the COBRA’s model. This class creates the Cobra’s model by gathering the needed information 

present in the ISteadyStateModel and it also defines the objective function recurring to the 

correspondent Cobra’s method. The modification of the reactions’ constraints of the model is also 

performed by this class and also recurring to Cobra’s methods. As for the implementation of the 

formulations, in this case the COBRA’s formulations, this task is responsibility of the other layer of 

this platform. 
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4.4.2. Formulations Layer 

In this layer all the formulations will be integrated in the platform and will be dependent of the 

language and toolbox. It is in this layer that the previous presented ConnectionFormulation is 

implemented. 

 

Figure 10 Formulation Layer Class Diagram 

After the development of a class that connects Java with MATLAB, more precisely Metabolic 

with Cobra, the next step was the integration of the Cobra formulations in the platform (Figure 10). 

As stated before, all the formulations that integrate the Metabolic need to implement the 

ISteadyStateSimulationMethod interface. The Cobra’s formulations are no exception and this 

mandatory implementation is present in an abstract class named ConnectionFormulation. . This 

class is responsible for associating a converter according with the language and toolbox with the 

formulations that extend this abstract. This abstract class does not know the language in which the 

formulations are built, this class only uses the converter to perform operations in a toolbox. On the 
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other hand, this abstract and the classes that extend it must know the structures of the 

formulations. 

In this case, the used converter is the CobraMATLABConnection converter implemented in 

the previous layer. Also, this class is responsible for the registry of properties that will be used and 

are common for all the formulations. The properties in this class are the global parameters that the 

toolbox needs to use the formulations. Also, each formulation must register their own properties 

based on each method parameters. For instance, the COBRA’s FBA needs to register if the objective 

function will maximize or minimize. The global properties can be the genetic conditions and/or the 

environmental conditions, with these the abstract will change the model according with the 

registered conditions.  

As for the simulation, the ConnectionFormulation defines three abstract methods that each 

extension class must implement in to perform the formulations and create the 

SteadyStateSimulationResult: 

 prepareMATLABEnvironment, a method that prepares the toolbox environment, is used to 

create all the variables that the implemented formulation will need to be performed; 

 executeSimulationCommand, a method that will perform the toolbox formulation; 

 parseMATLABOutput, a method that based on the formulation solution and the formulation 

itself creates the SteadyStateSimulationResult structure. 

With this, all the formulations that extend this abstract class will be considered an 

ISteadyStateSimulationMethod recognized by the Metabolic project and consequently by OptFlux. 

The next step was the implementation of the selected COBRA’s formulations. 

 

4.4.3. COBRA’s formulations implementations 

To demonstrate this platform some of the COBRA’s formulations were integrated in it. To 

accomplish this it was needed to analyze the methods based on the results and also in the input 

information that each method demands to be performed. Next, the implemented methods will be 

presented and their input parameters will be shown and how the result was engaged with the 

SteadyStateSimulationResult structure. 
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FBA 

The first formulation to be integrated in the platform was the COBRA’s FBA and this implementation 

originated the CobraFBASimulation class. This class uses the COBRA’s method optimizeCbModel 

and only needs the constraint-based model to be performed. As optional parameter, the method 

takes a flag representing if the objective function is to be maximized or minimized (if this value is not 

defined then the objective is maximized). This parameter is registered in the properties of the 

simulation. 

This COBRA’s method constructs a LP problem and returns a solution structure that will be 

engaged in a SteadyStateSimulationResult structure. The following elements represent the solution 

structure of this formulation: 

 f, the objective value; 

 x, an unique column that has the same number of rows as the model’s reactions and 

represents the flux distribution of the simulation; 

 stat, the solution status, being, for instance, 1 for optimal and 0 for infeasible; 

 w, a unique column that has the same number of rows as the model’s reaction and 

represents the reduced costs (values that indicate how much each reaction affects the 

objective [92]). 

 y, a unique column that has the same number of rows as the model’s metabolites and 

represents the shadow prices (values for each metabolite that indicate how much the 

addition of the corresponding metabolite will increase or decrease the objective value [92]). 

 solver, the name of the solver used; 

 time, the time taken for the task. 

Figure 11 represents the result of this formulation and what fields were used to build the 

SteadyStateSimulationResult. 
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Figure 11 - Construction of COBRA’s FBA result 

There are some fields in the SteadyStateSimulationResult structure that cannot be obtained 

from the formulation result. Nevertheless, some of these fields are already known by the class. For 

this specific formulation these fields are: the ISteadyStateModel, the GeneticConditions and 

EnvironmentalConditions structures, obtained from the formulation properties and the method 

used, in this formulation is the Cobra FBA. 

 

Geometric FBA 

Another formulation that was integrated in the platform was the GeometricFBA and it originated 

the CobraGeometricFBA class. This formulation is an alternative to standard FBA and has the 

constraint-based model as essential field. As for its solution result structure is only a unique column 

with the same number of rows as the model’s reactions and represents the centered optimal flux 

distribution. Although this solution has only one field, it is enough to construct the 

SteadyStateSimulationResult structure. The following Figure 12 represents this construction. 
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Figure 12 - Construction of COBRA’s GeometricFBA result 

This centered optimal flux distribution field will be the flux distribution of this structure, as for 

the other fields, they will be specified by the default properties of the formulation. These fields are: 

 The ISteadyStateModel, already known by the class; 

 The objective function value, will be the value of the objective reaction present in the flux 

distribution; 

 The GeneticConditions structure, obtained from the formulation properties; 

 The EnvironmentalConditions structure, obtained from the formulation properties; 

 The method used, will be Cobra GeometricFBA; 

 The result structure will not have the solver definition, status of the solution nor 

reaction/metabolites complementary information. 

 

MOMA and Linear MOMA 

The final simulation formulations to be integrated in this platform were the MOMA formulation and 

its linear version, the LinearMOMA. These formulations have exactly the same input parameters and 

the same solution result and for this reason they will be presented together. These formulations 

have as mandatory input parameters two constraint-based models and as optional parameter the 

maximization/minimization flag as used in FBA. 
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The two mandatory models requested in these formulations are, normally, a wild-type and a 

mutant model. While the mutant model is previously created in MATLAB, by the 

ConnectionFormulation, based on the genetic and environmental conditions registered in the 

properties the wild-type model is created in the class that implements this formulation, the 

CobraMOMAFormulation class. Here the model is sent to MATLAB without the 

environmental/genetic changes and thus is considered a wild-type model. 

The solution resulting from these formulations has the same structure and consists in four 

elements: 

 solutionWT, a structure that is the result of the FBA simulation using the wild-type model, 

this structure is identical to the FBA result; 

 solutionDel, a structure that is the result of the FBA simulation using the mutant model, this 

structure is identical to the FBA result but without the y and w fields; 

 solStatus, a numeric field that represents the status of the solution; 

 totalFluxDiff, a numeric field that represents the MOMA objective, the minimum distance 

between the flux distributions. 

In these formulations, the construction of the SteadyStateSimulationResult structure did not 

need all the information present in these elements. Figure 13 shows the information used to 

populate this structure. 

As in the previously presented formulations, there is information that the MATLAB solution 

does not return and is needed by the SteadyStateSimulationResult. As both LinearMOMA and 

MOMA formulations have the same solution the addition of this extra information is the same. Each 

formulation populates this final structure with: the ISteadyStateModel, the GeneticConditions and 

EnvironmentalConditions structures, obtained from the formulation properties and finally the 

method used, LinearMOMA or MOMA depending on the formulation. 

With these formulations implemented in the platform, the Metabolic project earned four new 

simulation methods and more importantly it also gained a connection with MATLAB and with this 

opened a door to future method implementations and toolbox connections. 
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Figure 13- Construction of COBRA’s LinerMOMA/MOMA result 

Just like the other simulation formulations, these COBRA’s methods are registered in the 

simulation control center presented previously. This registration enables the Metabolic to use these 

formulations the same way it uses the ones already implemented. 

 

4.4.4. Other COBRA’s formulation implementations 

As mentioned, the main objective of this work was the implementation of simulation methods in an 

integrated platform. However, by the time the COBRA’s methods were studied, other methods that 

by definition are not considered simulation methods were also implemented. These methods are 

the OptKnock and GDLS methods, both considered optimization methods. 

The Metabolic project also supports optimization methods, for this reason the 

implementation of these two methods became an objective. Nevertheless, the optimization in 

Metabolic is not at the same development level neither is so easy to integrate new methods as for 

the simulation. While for the simulation, there is a solid structure and new simulation methods can 
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be easily implemented as long as the final result can be created, on the other hand the optimization 

structure is more restrictive to the implementation of new methods given the specific nature of the 

strain optimization methods currently implemented. 

The first problem is focused in the creation of the problem. There is not a generic structure 

for all the optimization methods, such as the ISteadyStateSimulationMethod interface for 

simulations. Without a similar interface for the optimization that oblige the centralization of the 

problem creation, the implementation of new methods has to be from scratch and each 

implementation can be very distinct although all being optimization formulations. The other 

problem is focused in the result of the optimization. In the simulation case all the formulations were 

able to return solutions that could be used to create the SteadyStateSimulationResult, in the 

optimization case the result of each formulation can be very different and for that reason the 

Metabolic project does not have a singular structure that can be used for all formulation results. 

For this work the implementation of this centralized structure was not performed mostly due 

to the fact that the Metabolic already has a different structure for every optimization formulation 

and solution and the implementation of a structure similar to the simulation was practically 

impossible in the time available for this project. 

Given the nature of the OptKnock and GDLS method, on the other hand, their implementation 

was possible by performing an adaptation of the result in order to be fitted for the 

SteadyStateSimulationResult structure. 

 

OptKnock 

The OptKnock implementation in the platform was possible by adapting the formulation and the 

result into simulation formulations. This adaptation had two phases, one for the creation of the 

problem and the other for the creation of the SteadyStateSimulationResult structure using the 

solution of the optimization. 

Similar to the simulation formulation implemented in the platform, this formulation class is an 

extension of the ConnectionFormulation and an implementation of ISteadyStateSimulationMethod. 

With this, the implemented class, the CobraOptKnockFormulation, despite being an optimization is 
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considered by the Metabolic project as a simulation. For this, the formulation parameters and result 

were converted in a simulation structure, this was performed by the abstract methods that every 

formulation must implement. The first step was the conversion of the parameters, comparing with 

the previous formulations, OptKnock has very distinct input parameters. The mandatory parameters 

to perform this formulation are: 

 model, the constraint-based model, used by all formulations; 

 selectedRxnList, a list of the reactions that can be knocked-out; 

 targetRxn, the target reaction that will be maximized; 

 numDel, the number of maximum deletions allowed in the optimization; 

 rxnList, values, sense, a list of reactions with constraint values and sense. This list 

represents the constraint reactions, for instance, for the optimization result to be valid the 

biomass or other reaction must have a specific minimum value. 

All these parameters must be previously registered in the parameters properties that all 

formulations have and then sent to the MATLAB environment to be used with the MATLAB’s 

OptKnock method. As for the result, this formulation returns a structure that has as essential 

simulation fields: the objective value, the flux distribution and the reactions that must be knocked-

out in the model to result in this flux distribution. 

Figure 14 presents the fields from the OptKnock solution and how they were converted in the 

simulation structure SteadyStateSimulationResult. Similar to the simulation formulations, there are 

fields in the final structure that are filled by the information obtained from the MATLAB result and 

others that are filled by the class itself. Also, there are fields that can be empty, in this formulation 

these fields are the reaction complementary information and the metabolite complementary 

information. The fields that are filled by the formulation class are the model used, the 

environmental conditions, and the method used, in this case the Cobra’s OptKnock. As for the fields 

filled by the MATLAB result they are the objective function value, the flux distribution, the solution 

type, the solver used and the list of reactions to be knocked-out are placed in the genetic conditions 

field. By doing this it was possible to integrate an optimization method in the simulation structure 

without mislaying information and biological sense. 
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Figure 14- Construction of COBRA’s OptKnock result 

GDLS 

The implementation of the GDLS formulation was based in the same principles as the OptKnock 

formulation. The implemented CobraGDLSFormulation class is also an extension of the 

ConnectionFormultation and thus an implementation of the ISteadyStateSimulationMethod. Similar 

to the OptKnock this formulation has mandatory parameters that are registered in the formulation 

properties and will be sent to the MATLAB environmental. These parameters are: 

 model, the constraint-based model; 

 nbhdsz, a value that corresponds to the neighborhood size; 

 M, a value corresponds to the number of search paths; 

 maxKO, the number of maximum deletions allowed in the optimization; 

 selectedRxn, a list of the reactions that can be knocked-out; 

 targetRxn, the reaction/product that will be maximized; 

 minGrowth, a value that corresponds to the minimum value that the biomass must have in 

the optimization result. 
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As for the result, the GDLS formulation returns a slightly different solution compared with the 

OptKnock. The result consists in two important structures that will be used to fill the 

SteadyStateSimulationResult structure. One of the structures consists in the biomass value, the 

maximum and minimum value of the target product/reaction and the reactions that must be 

knocked-out in the model as to result this values. The other structure is a set of smaller structures 

that consists in three simulation results: one with the maximization of the biomass as objective 

function and the other two with the maximization and minimization of the target reaction as 

objective function. 

 

Figure 15 - Construction of COBRA’s GDLS result 

Figure 15 represents the fields from the GDLS solution and how they were converted in the 

simulation structure SteadyStateSimulationResult. This conversion was similar to the one 

accomplished for the OptKnock formulation, however the GDLS solution has some important 

information missing, the flux distribution. Despite the existence of a structure with three simulation 

results, none has the flux distributions needed for the SteadyStateSimulationResult. Although, this 

fact does not preclude achieving a flux distribution by performing a FBA simulation with the 

conditions present in the GDLS solution for the maximum value of the target product/reaction. By 

doing so the flux distribution was obtained from that simulation along with the reduced costs and 

shadow prices (complementary information). The objective value is the maximum value of the 



 
 

4.4 COBRA methods from Java 
________________________________________________________________ 

60 
 
 

target product, the genetic conditions are handled similarly to the OptKnock case, by using the 

reactions to be knocked-out, the solver and solution type are obtained by one of the three 

simulation results existent in the GDLS solution. As for the model, method and environmental 

conditions fields the class has the responsibility to fill them. 

 

Optimization Control Center implementation 

With these implementations, the platform gained two new COBRA’s methods that although are 

considered optimization methods could be, with some special arrangements, implemented in the 

simulation group. Maybe in the future, with the enhancement of this platform, these methods will 

be relocated in an optimization group along with other similar formulations. 

Despite these formulations were, in some way, converted into simulations a new control 

center was created to use these formulations in the Metabolic project. An optimization control 

center was created so as not to blend the simulation formulations in the Metabolic and these two 

formulations that, as mentioned, despite being converted in simulation are in a different category.  

This new control center is responsible for performing the optimizations and managing their 

properties. Along with the control center also a factory for the optimization formulation was created 

and this factory is responsible for registering and removing formulations. This control center will be 

essential by the time the new plugin will use these two formulations. 

Although these two components were developed for these two new formulations, in the 

future the optimization formulations that exist in Metabolic will also be managed by this 

optimization control center. 

 

4.4.5. Platform enrichment 

This platform is well documented and any developer that has some knowledge in Java can integrate 

new formulations. At this point, the platform only has a Java-MATLAB connection and as for 

formulations and toolboxes only COBRA’s formulations are integrated, although through this API 

documentation it is easy to integrate new formulations and also new toolboxes in the platform. As 
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for toolboxes in MATLAB similar to COBRA, the integration will use most of the present structure 

and the implementation will be more focused in the development of new classes that deal directly 

with the formulations. On the other hand, if a new language connection is the objective it will be 

necessary to implement more structures, but using this platform and documentation as base the 

integration will be easier than if it was made from scratch. 

 

4.5. Integration with OptFlux 

Since this platform was developed using the Metabolic project as a basis, an integration with the 

OptFlux tool is an expected goal. In this section, the integration of this platform with OptFlux will be 

explained and also a new plugin will be presented. 

 

4.5.1. The OptFlux tool 

As previously stated OptFlux is a free and open source ME software, allowing any user to use it and 

be able to contribute with new features and improvements. Being modular, allows OptFlux to 

increment features through plugin integration. This means that OptFlux is nothing more than a GUI 

that gives to the user a way to use these plugins functionalities. The BioComponents and the 

Metabolic projects previously presented are a fine example of this integration. With them, OptFlux 

offers operations to visualize, import and export GSMMs, including reactions, metabolites, 

equations and gene-reaction associations if available. It also allows the use of GSMMs for phenotype 

simulation of both wild-type and mutant organisms. Operations related with analysis and 

optimization or even metabolic network visualization framework are present in OptFlux also as 

plugins. 

OptFlux allows the increment of plugins through the use of AIBench framework. AIBench is a 

lightweight, non-intrusive, Model-View-Controller–based (MVC) Java application framework that 

eases the connection, execution and integration of operations with well-defined input/output. By 

being MVC-based this framework as three main concepts: 
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 Datatypes: represent the data of the application. These datatypes can be simple or 

combinations of multiple datatypes. Users can manage objects, instances of the different 

datatypes, through the use of a hierarchical clipboard. 

 Views: represent the visualization of the datatypes. Each datatype can have one or more 

views, represented in different tabs. 

 Operations: available actions that allow the creation of instances of the datatypes. 

Operations are transformations that have a set of arguments as input, and a set of output 

objects. Operation's user interface can be automatically generated by AIBench or defined by 

the developer. 

This plugin based facilitates reusing and integrating new functionalities in the tool. For this 

reason the platform explained in this work was integrated in OptFlux and with this it allows the 

tool to perform some of the COBRA’s formulations previously explained in this chapter. With 

this integration a new plugin was created, the Cobra4Optflux3 plugin. 

 

4.5.2. A COBRA-MATLAB plugin for OptFlux 

This plugin consists in a platform that connects Java with MATLAB, more precisely with COBRA. 

With this plugin, OptFlux expanded the present formulations with some present in COBRA. This 

was possible because the formulation layer of the developed platform was built based on a 

generic formulation as explained in 4.4.2 and thus it is capable of performing simulations and 

optimizations using a constraint-based model. This also allowed an easy integration of this 

plugin in OptFlux. Same as the platform, this plugin has the simulation and optimization has the 

two major operations. 

 

COBRA simulations in OptFlux 

OptFlux already performs simulations using a model, for instance, FBA, MOMA, ROOM. These 

formulations are performed by the integration of Metabolic in OptFlux and by using a simulation 

control center that registers all formulations and makes them available for the tool to perform 

them. 
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With this new plugin the simulations that are implemented from COBRA will be registered 

in the same simulation control center by the time OptFlux loads the plugin. This is possible since 

the COBRA’s formulations have the same structure as the Metabolic simulations formulations 

and for that reason the integration with the control center is the same for both. In other words, 

the structure of both Metabolic and COBRA’s simulations formulations are identical and for that 

the control center handles them as equals. 

This registry in the control center it is the only task the plugin have to fulfil to allow 

OptFlux to perform the COBRA’s simulations. This registry will increase the simulations methods 

that OptFlux can perform and the COBRA’s simulation methods will always be present along 

with the Metabolic’s simulation methods. 

The simulation operations in OptFlux are always performed through the simulation 

control center and the GUIs that perform simulation recur to the control center to present to 

the user the simulations that OptFlux is capable to perform. 

Figure 16 represents three distinct GUIs in OptFlux that use the simulation control center. 

These GUI are used to perform reaction knockout simulations, strain optimization with 

evolutionary algorithms and under/over expression gene simulation. These GUIs are examples 

of the many operations that use the simulations formulations in OptFlux. In these operations, a 

simulation formulation is selected and performed given certain parameters. This list of 

formulations is filled from the simulations registered in the simulation control center and the 

GUI parameters are registered in the control center properties. 
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Figure 16 - OptFlux GUIs with simulations 

Being the COBRA formulations registered in the same control center by this plugin, these 

formulations will also be available in Optflux for all these operations. As Figure 16 shows, every 

GUI where these simulation methods can be selected, the COBRA formulations will also be 

present and can be performed. 

The reaction knockout simulations’ result is represented in the Figure 17. Since all the 

COBRA’s simulations formulations create the same structure as the Metabolic original methods 

there was no need for the new plugin to create a new datatype neither a new view to present 

the results of these formulations. 
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Figure 17 - Simulation datatype and result view 

This view is the same for all simulations results and it contains all the information from 

that formulation. This information is the simulation method that was used, the type of solution, 

if it was used any environmental conditions, the value of the objective function and biomass 

value, the genetic conditions used, the extra metabolite and reaction information and also the 

flux distribution resulting from the simulation. 

 

COBRA optimization in OptFlux 

The integration of COBRA optimization formulation in OptFlux was different from the 

simulations. This occurred due the fact that the optimization definition and purpose is different 

from the simulation, the same occurs for the input parameters and results. Another difference is 

the control center used, it was created an optimization control center where these formulations 

and properties are registered and also performed. 

Being the input parameters slightly different from the simulations and both categories 

cannot be considered as equals it was needed to implement a new operation and GUI in OptFlux 

that allowed performing these formulations. In this GUI, the input parameters are registered in 

the optimization control center and passed to the formulation through properties. In this 
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operation, the control center will return a simulation structure and convert it in a structure that 

is the equivalent to the result structure of the OptFlux’s optimization formulations. 

Through this conversion the result of this COBRA’s optimizations will be considered an 

OptFlux’s optimization and with that the datatypes and views that present this category of 

formulations will also present this COBRA’s result. 

 

Figure 18 – Optimization datatype and view 

Figure 18 represents the datatype and the view of a COBRA optimization formulation in 

OptFlux. The datatype is present along with the other optimizations results. The view is also the 

same used for this type of results and consists in the list of reactions to be knocked-out, the 

value of the desired product, the environmental conditions used, a structure that represents a 

simulation and can be added to the clipboard along with the other simulations datatypes. This 

integration shows how easy it was to convert a COBRA’s optimization result in a result 

supported by OptFlux thanks to the structure developed. 

 

Other plugin functionalities 

Since this plugin needs a MATLAB connection to perform the COBRA operations it is also needed 

to create properties that control this connection. For that reason, a new node was added to the 
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preferences of OptFlux. Here the path of the MATLAB application and the path to the JMI jar 

[4.2] will be added to guarantee that this plugin can connect with MATLAB and perform the 

implemented COBRA’s formulations. 

This preference node can also be used in the future to register some properties that can 

be common in the formulations, for instance the solver to be defined in COBRA. 

With this plugin the OptFlux is able to integrate MATLAB-COBRA in its operations. This 

plugin, as all OptFlux plugins is open-source and new COBRA’s formulations can be implemented 

in the future. This plugin can be installed from the RepositoryManager. To obtain the software 

and further information, visit the website www.optflux.org. A tutorial of this plugin operations' 

is also available on-line at the OptFlux Wiki (http://darwin.di.uminho.pt/optfluxwiki/). 

 

4.6. Case studies 

To prove the value of the developed plugin, three different strain optimization methods were used: 

the OptFlux’s OptGene, the Cobra’s GDLS and the Cobra’s OptKnock. These methods were all 

performed in two case studies with two different desired products. These case studies objective is to 

demonstrate that the developed plugin can perform these methods through the OptFlux tool. 

These three methods all provide the same output: a set of changes in an organism, in the 

form of proposed gene knockouts, so that it will be able to produce a product of interest. However, 

the methods have different input parameters. 

The OptFlux’s OptGene parameters were the glucose, as subtract flux, the FBA as simulation 

method and the Strength Pareto Evolutionary Algorithm 2 [93] (SPEA2) as optimization algorithm 

and 10000 as maximum number of solutions evaluations. The Biomass-Product Coupled Yield was 

defined as objective, which means that the method searches for mutants that are likely to exhibit 

higher productivities, since biomass production is also included in the objective. As for the maximum 

number of knockouts there were performed optimizations for both three and five knockouts. The 

solver used for this formulation was CPLEX. 

http://darwin.di.uminho.pt/optfluxwiki/
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The COBRA’s GDLS parameters were the number of maximum knockouts, also three and five, 

and a minimum growth rate of 0,05 mmol gDW-1 h-1. This parameter assures that the knockouts 

returned from the method do not result in an organism without growth. The solver used for this 

formulation was Gurobi. 

The COBRA’s OptKnock parameters were the maximum number of knockouts, also three and 

five, and a restriction of 0.05 on the biomass value to assure the growth of the organism. The solver 

used for this formulation was also Gurobi. 

For these case studies the Saccharomyces cerevisiae iMM904 model [94] was used in an 

aerobic condition. The model is available for download directly from OptFlux's internal repository. It 

has 1577 reactions (164 external and 1413 internal), 1228 metabolites (164 external, 1064 internal). 

These two case studies present the results of the optimization methods when trying to maximize 

two different products, the succinate and malate. 

 

4.6.1. Case study I: succinate 

For the first case study the target product of the optimizations was succinate, a precursor to a wide 

variety of products, from pharmaceuticals to the food industry. The performed optimizations 

resulted in the data presented in Table 4. This table is divided in the input parameters and in the 

results of the optimization. 

The input parameters are the method used, the target, in this case the succinate and the 

maximum number of knockout reactions. The result consists in the value of the biomass, the 

maximum product value and a list of possible knockout reactions, from the best solution obtained 

from these three methods in these conditions. 

The results of the Table 4 show that, although these three methods have the same objective, 

they present different possible knockouts and different biomass and product values. The results 

show that both OptGene and OptKnock formulations resulted, in this case, knockouts that 

guarantee a good value of desired product and also assure the growth of the organism. On the other 

hand the results of the GDLS show that the value of the desired value has a bigger weight in the 

objective of the method. 
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The major goal of this case study is not the comparison of results from these methods but to 

demonstrate that with this plugin it is possible to perform different methods from different tools 

through OptFlux. This also shows that centralizing several methods from different tools in a single 

tool is an advantage for the researcher analysis. 

 

Table 4: Optimization values for Succinate 

Input Parameters Results 

Method Max KOs 
Biomass  

mmol gDW-1 h-1 

Product Value 

mmol gDW-1 h-1 
Result KOs IDs 

OptFlux OptGene 

3 0.20043 8.00868 

R_Plt2m 

R_PAtm_SC 

R_CO2t 

5 0.19373 7.73036 

R_AKGt2r 

R_EX_co2_e_ 

R_EX_btd_RR_e_ 

R_D_LACt2 

R_ETOHt 

COBRA’s GDLS 

3 0.05818 12.09006 

R_CYOR_u6m 

R_ME2m 

R_PYRDC 

5 0.05818 12.09006 

R_CYOR_u6m 

R_ME2m 

R_PYRDC 

COBRA’s OptKnock 

3 0.14998 10.45342 

R_G3PT 

R_CO2t 

R_MDH 

5 0.20623 7.71296 

R_ALAt2r 

R_BTDD_RR 

R_ETOHt 

R_PFK_3 

R_VALt2m 

 



 
 

4.6 Case studies 
________________________________________________________________ 

70 
 
 

 

4.6.2. Case study II: malate 

In this case study multiple approaches to optimize malate production were performed. The problem 

settings were similar to the first except for the target product defined in the optimizations, the 

malate reaction. Malic acid is an organic compound that is produced by all living organisms. This 

compound is used as food additive and contributes to the sour taste of fruits, for instance green 

apples. 

Table 5 structure is similar to Table 4. The results consist in the value of the biomass, the 

maximum product value and a list of possible knockout reactions and are presented next. 

 

Table 5: Optimization values for Malate 

Input Parameters Results 

Method Max KOs 
Biomass  

mmol gDW-1 h-1 

Product Value 

mmol gDW-1 h-1 
Result KOs IDs 

OptFlux OptGene 
3 0.28787 0.0 - 

5 0.28787 0.0 - 

COBRA’s GDLS 
3 0.28786 0.0 - 

5 0.28786 0.0 - 

COBRA’s OptKnock 

3 0.12630 9.37051 

R_CO2t 

R_FUM 

R_H2Otm 

5 0.05265 10.36379 

R_ATPtm_H 

R_FRDcm 

R_MALtm 

R_PDHm 

R_PYRDC 
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The results of this table show that the production of malate from this organism is not easy to 

accomplish if a minimum growth is a restriction. The results show that both OptGene and GDLS 

approaches were unable to find a list of knockouts that could guarantee a minimum growth and the 

production of malate. On the other hand the results of the OptKnock show it is possible for the 

organism to produce malate and also have a minimum growth. 

Similar to the first case study the major goal was not comparing results or performance of 

these methods but to demonstrate that using this plugin the researcher can analyze in parallel 

results obtained from methods that exist in different tools and with that achieve better conclusions. 
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Chapter 5 

5. Conclusions and Future Work 

5.1. Discussion 

In the last decade, the number of metabolic tools and methods used for phenotype simulation of 

microorganisms has grown exponentially. Almost all of these tools and methods have a constraint-

based model as center of their operation. Also, with this growth these constraint-based tools were 

developed for slightly different purposes, with different methods implemented and also built in 

different computational languages. All these differences sometimes become a problem when it is 

time to choose which tool to use. 

For this work, a platform was developed in Java and its major feature is the ability to integrate 

and use these constraint-based analysis tools despite the distinct computational languages. With 

this, all the formulations from any tool will be centralized in a single platform which allows the user 

to access any available formulation and perform it without the need of a vast knowledge of any of 

the integrated tools and formulations. 

The structure of this platform enables the continuous expansion with methods and language 

connections by integrating other tools. At the moment this platform has a Java-MATLAB connection 

and in terms of tools has an OptFlux-COBRA assembly. 

This platform was integrated with OptFlux by the development of a plugin. This allows ME 

researchers to use some of the main COBRA’s formulations through OptFlux. These formulations are 

the FBA, LinearMOMA, MOMA and GeometricFBA for the simulation category, as for the 

optimization category OptFlux can use the OptKnock and GDLS formulations that are presented in 

COBRA. 

By being integrated with OptFlux, this plugin allows the user to perform the mentioned 

COBRA’s formulation through a user friendly interface, visualize and also compare the results from 

different methods with the same objective. This proves to be an advantage because COBRA is a 

script-based tool and thus obligates the users to have certain knowledge in informatics and 
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MATLAB, while through this plugin any user can perform the stated formulations without the need 

of knowing them in detail. 

The developed platform is well documented and, thus, it is possible for any developer to 

integrate new languages and toolboxes in the platform and with this a constant expansion is 

possible. As for the OptFlux plugin, being this an open-source tool the integration of new COBRA 

methods can be easily performed by any developer with some Java knowledge. 

 

5.2. Future work 

The goals proposed in this work were mostly accomplished, but still there are some points that can 

be improved in future work. These points can be divided between the platform and the OptFlux’s 

plugin and are the following: 

 Integrate the connection to other computational languages within this platform, for 

instance creating a connection with Python or R. 

 Integrate new toolboxes and extend the available constraint-based methods. 

 In the plugin, new constraint-based methods present in COBRA could be integrated, also 

new structures that allow other categories of methods could be also implemented and with 

that integrating for instance analysis methods; 

 Integrate other tools and frameworks built in MATLAB, for instance RAVEN and TIGER 

toolboxes and their most relevant methods.  

 Enable the plugin to import and export models to and from MATLAB, this functionality 

would allow OptFlux to use models built in COBRA. 
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