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Towards the Improvement of Robot Motion Learning Techniques

This manuscript presents solutions and methods to address some of the many problems

that arise when dealing with the complex task of motor skill learning in robots.

In the last years, several research lines have focused on learning motion primitives ei-

ther through imitation learning or reinforcement learning. However, for many applications,

learning a motion primitive of a single form is not enough and it is required that after being

assimilated, the primitive is generalizable such that it can be executed in different contexts

and for distinct instances of the same task. Therefore, the motion primitive must adapt a set

of parameters according to the environment variables instead of always executing the exact

same motor commands when it is put into action. Another aspect to have into consideration is

how the learning process of motion primitives is guided. Some primitives are too complex to

be learned all at once, i.e, learning all their intricacies without a properly structured approach

may be intractable.

In this thesis, these aspects are mindfully taken into account, allowing to develop rein-

forcement learning techniques that are then used to teach a controller of a biped robot that

is only able to generate stable locomotion on a flat surface, making it tolerant to a range of

slope angles, perpendicular and/or parallel to the direction of walking. Legged locomotion is

a relevant example of a complex and dynamic motor skill that has been the focus of intensive

research for many years in robotics and it is expected for the techniques that are successful in

the learning of such a hard task to be useful in other contexts.

In order to achieve this goal, three main steps, divided into chapters of this thesis, are

taken. First, an existing algorithm - Cost-regularized Kernel Regression (CrKR) - originally

introduced to allow learning to generalize parameterized policies is modified and extended

into a new algorithm named CrKR++. Some of the performed changes allow to use the

algorithm for training sessions with a high number of samples, which is needed when it is

intended to learn complex policies. This feat would be impracticable with the original version

of the algorithm due to its high computational complexity. The remaining changes are issued

with the purpose of improving the general effectiveness of the algorithm.

Second, a framework that enables storing, combining and mutual learning of parameter-

ized policies is presented. This framework, where the CrKR++ algorithm plays a core role,

provides the means, for instance, to create a movement primitives library or to perform grad-

ual learning of a motor skill, being named Flexible Framework for Learning (F3L).

Finally, the developed framework is used to teach the controller of the biped robot to

adapt its locomotion parameters according to the slope angles of the underlying surface. The

achieved solution and intermediate steps are tested in simulation software with Dynamic An-

thropomorphic Robot with Intelligence–Open Platform (DARwIn-OP) in carefully delineated

experiments.
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Rumo à Melhoria das Técnicas de Aprendizagem de Movimento em Robôs

Esta tese apresenta soluções e métodos que abordam alguns dos muitos problemas que

surgem quando lidando com o complexo problema da aprendizagem de tarefas motoras em

robôs.

Nos últimos anos, várias linhas de investigação focaram-se na aprendizagem de primiti-

vas de movimento, quer pela aprendizagem via imitação quer pela aprendizagem via reforço.

Contudo, em muitas aplicações, não basta assimilar uma primitiva numa única forma e pode

ser necessário que depois de assimilada, uma primitiva seja generalizável de maneira a ser

possível executá-la em diferentes contextos e para diferentes instâncias de uma mesma tarefa.

Uma primitiva de movimento deve portanto nestes casos adaptar um conjunto de parâme-

tros de acordo com as condições do meio envolvente em vez de executar sempre os mesmos

comandos motores quando colocada em ação. Outro aspeto a ter em consideração é ainda a

forma como o processo de aprendizagem das primitivas de movimento é guiado. Algumas

primitivas são demasiado complexas para serem apreendidas de uma vez só, isto é, aprender

todas as suas nuances sem uma abordagem estruturada pode revelar-se extremamente difícil.

Nesta tese, estes dois aspetos são tidos em conta, o que permite desenvolver novas técnicas

de aprendizagem via reforço que são depois usadas para ensinar um programa controlador

de um robô bípede que é apenas capaz de lidar com superfícies planas, tornando-o tolerante a

uma gama de inclinações em direções perpendiculares ou paralelas à direção do movimento. A

locomoção com pernas é o exemplo definitivo de uma tarefa motora complexa e dinâmica que

tem sido alvo de investigação intensiva durante anos na robótica. É de esperar que as técnicas

que sejam bem sucedidas na aprendizagem de uma tarefa com este grau de dificuldade sejam

também úteis em outros contextos.

Para atingir este objetivo, três passos principais, que se dividem em capítulos desta tese

são dados. Em primeiro lugar, um algoritmo já existente - CrKR - ,originalmente criado para

permitir a aprendizagem de políticas parametrizadas, é modificado e transformado num novo

algoritmo denominado CrKR++. Algumas das modificações feitas permitem usar o algoritmo

em sessões de treino com um maior número de amostras, o que é necessário quando se pre-

tende aprender políticas com um elevado grau de complexidade. Tal seria impossível com a

versão original do algoritmo devido à sua elevada complexidade computacional. As restantes

modificações são introduzidas com o propósito de melhorar a eficácia geral do algoritmo.

Em segundo lugar, uma framework que permite o armazenamento, a combinação e a apren-

dizagem mútua de políticas parametrizadas é apresentada. Esta framework, onde o algoritmo

CrKR++ desempenha uma função nuclear, providencia os meios para, por exemplo, criar uma

biblioteca de primitivas de movimento ou realizar aprendizagem gradual de uma tarefa mo-

tora sendo denominada de F3L.

Por fim, a framework desenvolvida é utilizada para ensinar o controlador do robô bípede a

adaptar determinados parâmetros da locomoção em função da inclinação da superfície sub-

jacente. A solução alcançada bem como os passos intermédios são testados em software de

simulação com o robô DARwIn-OP em experiências cuidadosamente delineadas.

vii





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Methodology and execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Publications related with this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Context and related work 7

2.1 Problems and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The challenges in locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 The challenges in learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Notation and problem formulation . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Progress and evolution of reinforcement learning algorithms . . . . . . . 14

2.2.3 State of the art reinforcement learning algorithms . . . . . . . . . . . . . . 17

2.3 Movement generation and representation . . . . . . . . . . . . . . . . . . . . . . . 19

3 Improving on Cost-regularized Kernel Regression 27

3.1 Cost-regularized Kernel Regression as a suitable algorithm for learning general-

ized policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Performance and effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Circumventing computational complexity limitations . . . . . . . . . . . . 32

3.2.2 Costs standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Variance multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.5 Final algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Parameters guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Flexible Framework for Learning 57

4.1 Multiple CrKR++ units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Flexible Framework for Learning (F3L) operations . . . . . . . . . . . . . . . . . . 58

4.2.1 Learning from zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Learning from baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.4 Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.5 Mutual learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.6 Partial learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.7 Learn with hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Parameters and methods guide . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Generalizing walking to slopes in any direction on DARwIn-OP 65

5.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 DARwIn-OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Feedback mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Ankle pitch correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Ankle roll correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Direction correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Achieving locomotion on sloped surfaces . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.4 Controller parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.5 Learning structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.6 Learning structure parameters . . . . . . . . . . . . . . . . . . . . . . . . . 78

x



5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Final remarks 89

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendices 97

A Parameter values for the controller 97

B Parameter values for the learning process 99

xi





List of Figures

2.1 Agent–Environment interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Marionette analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Typical policy learning algorithm steps . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Trend in policy improvement algorithms . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Different perturbation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Bionic CPG control process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Applied CPG scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Discrete movement Dynamic Motion Primitive (DMP) . . . . . . . . . . . . . . . 23

2.9 Rythmic movement DMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Splines with different number of knots . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Evolution of a policy with CrKR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Standardize Pool illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Class diagram of CrKR++ implementation . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Beale’s, Goldstein–Price and Booth’s functions . . . . . . . . . . . . . . . . . . . . 47

3.5 Triangular wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Bivariate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Function through artificial landscape - results . . . . . . . . . . . . . . . . . . . . 50

3.8 Triangular wave approximation - results . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Bivariate function approximation - results . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Time per iteration with and without execution splitting . . . . . . . . . . . . . . . 53

3.11 Function through artificial landscape: outcome policy . . . . . . . . . . . . . . . . 53

3.12 Triangular wave approximation: outcome policy . . . . . . . . . . . . . . . . . . . 54

3.13 Bivariate function approximation: outcome policy . . . . . . . . . . . . . . . . . . 54

4.1 Primitive combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Learn from zero operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Learn from baseline operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Branch operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiii



4.5 Merge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Mutual learning operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Partial learning operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Learn with hints operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Class diagram of F3L implementation . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 DARwIn-OP - Degrees of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 DARwIn-OP walking motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Oscillators coupling and influence . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Effect of the ankle pitch correction feedback . . . . . . . . . . . . . . . . . . . . . 70

5.5 Effect of the ankle roll correction feedback . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Effect of the direction correction feedback . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Direction correction mechanism when θgoal is changed . . . . . . . . . . . . . . . 73

5.8 Final transformation applied to the cost function . . . . . . . . . . . . . . . . . . . 75

5.9 Initial primitive branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.10 Learning γfrontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.11 Learning γlateral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.12 Learning γomni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.13 Costs before and after adding ankle pitch and ankle roll correction feedbacks . . 80

5.14 Trajectory of the robot with and without direction correction feedback . . . . . . 81

5.15 Trajectory of the robot on a flat surface when using direction feedback to turn . 81

5.17 Costs before and after performing the learning process . . . . . . . . . . . . . . . 83

5.19 DARwIn-OP walking up a slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.20 DARwIn-OP walking down a slope . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiv



List of Tables

A.1 Initial parameter values for the controller . . . . . . . . . . . . . . . . . . . . . . . 97

B.1 Parameter values for the several stages of the learning process . . . . . . . . . . 99

xv





List of acronyms

ASBG Adaptive Systems Behavior Group. 4

CPG Central Pattern Generator. 3, 20–22, 66

CrKR Cost-regularized Kernel Regression. v, vii, ix, xiii, 3–5, 18, 19, 27–29, 31, 32, 36, 37, 40,

46, 47, 55, 89

CrKR++ Cost-regularized Kernel Regression ++. v, vii, x, xiii, 4, 5, 41–44, 46, 47, 49, 55, 57–59,

61–64, 87, 89–91

DARwIn-OP Dynamic Anthropomorphic Robot with Intelligence–Open Platform. v, vii, x,

xiv, 5, 9, 21, 65–67, 85–87, 91, 97, 99

DMP Dynamic Motion Primitive. xiii, 19, 22–25, 28, 71

eNAC Episodic Natural Actor Critic. 15, 16

F3L Flexible Framework for Learning. v, vii, x, xiv, 4, 5, 57, 58, 61–65, 86, 87, 89–91

FSR Force-Sensing Resistor. 66, 69, 91

GUI Graphical User Interface. 91

MDP Markov Decision Process. 12

MoMPs Mixture of Motor Primitives. 19

PI2 Policy Improvement with Path Integrals. 16–18, 27

PI2-CMA Path Integral Policy Improvement with Covariance Matrix Adaptation. 17, 18

PIBB Policy Improvement through Black-box Optimization. 18

PoWER Policy learning by Weighting Exploration with the Returns. 16–19, 24, 27

xvii



REINFORCE reward increment = nonnegative factor × offset reinforcement × characteristic

eligibility. 15, 16

RLPF Reinforcement Learning based on Particle Filters. 19

UML Unified Modeling Language. 42, 62

ZMP Zero Moment Point. 20

xviii



Chapter 1

Introduction

1.1 Motivation

The human desire for progress and the continuous search for better conditions for living have

always existed. The 20th century has been marked by great technological advances which

have turned into reality many dreams once thought to be unachievable. Electronics became

generally adopted both at an industrial and consumer-grade levels, which had a great impact

in areas like health, education and general well being. Computers brought the ability to

store, process and access information in a way never seen before, and together with Internet,

connected the whole world in a single global village. There is certainly an observable tendency

for technology to keep evolving and improving people’s lives.

In the early 21st century, research in areas like biotechnology, advanced materials and ar-

tificial intelligence started booming. Research in robotics is now starting to grow at a faster

pace, being considered by many one of the promises for the near future technological de-

velopments. Last developments in robotics include, for instance, powered exoskeletons, with

potential applications in heavy lifting related tasks and improvement of living conditions of

people suffering muscle related diseases and unmanned vehicles, with the most known cases

being Google® driverless car and Amazon’s® Prime Air delivery drones projected to start

operating in 2015.

Even though robotics are heavily applied in industrial environments, with large assembly

lines constituted almost solely by automatic work performed by robots, intense research and

development will be required in order to bring them to more domestic environments and to

perform several mundane, but non trivial to implement tasks. The idea of robots as versatile

household helpers and companions or as sentient beings completely capable of interacting

with humans and the world around them has been portrayed several times by science fiction.

However, this has not yet become a reality despite the continuous efforts by researchers to-
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wards this goal. This reveals one of the greatest challenges in robotics: creating machines

capable to learn and to adapt themselves to new situations.

One set of tasks where the aforementioned capacities are essential in order to achieve

success is the control of movements, in particular, locomotion. Wheeled robots are typically

efficient and easy to control; however, there are many tasks which require a great degree of

agility for which wheeled robots are not fitted. Legged robots emerge as an alternative that has

the potential to fill this gap. They can vary in a number of ways, including form and number

of legs, ranging from centipede like robots, with an arbitrary number of pair of legs, to biped,

humanoid, robots.The control of these kind of robots is not a trivial task, however. While

designing functional walking gaits and performing the corresponding motor commands can

generally be accomplished for specific environments and under general requirements, creating

mechanisms that enable legged robots to adapt their movements according to the terrain and

surrounding conditions is a much harder task. Not only it may be hard to achieve effective and

efficient movement, it is sometimes difficult to ensure the robot’s physical integrity, particularly

in biped robots, where the risk of falling is greater due to the low number of footholds. Writing

a general controller that without further modifications from the start is by itself able to perform

the required adaptations in order to avoid these drawbacks, and of achieving human or animal

level locomotion versatility seams to be very difficult. In order to reach this goal, a more

dynamical approach is necessary. The robot must be able to collect data from its experience

and use it to learn which actions improve its performance. This is usually measured by a

reward function. In other words, the problem at hand is to maximize the cumulative value of

this reward - a problem tackled by reinforcement learning, a branch of machine learning.

By using the array of techniques provided by reinforcement learning, it is possible to have

a robot progressively learning a task such as walking, for a fixed scenario. However, learn-

ing to perform a motor skill for a single environmental setting is normally not very useful.

Even though in humans and animals most of the features of a motor skill are the same for

different scenarios, it is usually necessary to attain some adaptations when the environmental

specifications change. For instance, throwing balls of different weights into a basket requires

changing certain movement parameters. In order to accomplish this kind of dynamic behav-

ior, specific reinforcement learning algorithms capable of evolving generalized parameterized

policies must be used in combination with proper movement representations.

Nevertheless, learning a complex motor skill involving issuing commands to a great num-

ber of actuators which depend on many different environmental variables is a task that may

be intractable unless the learning process is properly guided and structured. Because of this,

the aforementioned algorithms should be very flexible. It should be possible, for instance, to

learn simpler movement primitives first, separately, and then resume the learning process with

these primitives combined. Doing so decreases the search space initially, and then enables each

primitive to adapt to the others so their combination works better in accomplishing the task in
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hands. In addition to this, other operations and features such as storing primitives, initialize

the learning process with known initial information and control the learning algorithm param-

eters at different stages are desired. These capabilities are certainly a required step in order

for the emergence of motor skill learning software that can become mainstream and usable to

anyone who works with robots.

Humans and animals are capable of executing key motor skills even when facing new

conditions, like injuries or new terrains with different characteristics, so it is understandable

for one to expect robots to follow the same trail. But in order for this scenario to become a

reality, novel approaches and improved algorithms designed for real world use, able to make

the best use of previously collected data, deal with partial and noisy information, and to

employ the appropriate exploration/exploitation strategy are required. Only then will robots

be able to achieve a whole new level of impact on society and a more deep involvement with

humans daily life.

We hope this work contributes to the advancements on this field, however modest this

contribution might be.

1.2 Goals

This thesis follows the PTDC/EEA-CRO/100655/2008 project aims. The carried out research

has the general goal of exploring and extending state of the art motion learning techniques

and to employ them in order to achieve improved and adaptive locomotion in a biped robot.

More specifically, the work on this thesis has two objectives:

• Extending and improving existing solutions for motion learning in robotics. This is done

by complementing a state of the art algorithm for optimizing generalized motor policies

and devising a framework that allows one to perform several operations that facilitate

the process of learning complex motor skills.

• Show how a Central Pattern Generator (CPG) based controller of a biped robot can be

improved so that it learns to adapt its movement parameters according to the slope

angles of the underlying surface, using the developed framework in the process.

. The results of this research are also expected to bring usable empirical knowledge for those

who aim to implement adaptive locomotion controllers.

1.3 Contribution

The innovation aspects of this thesis are twofold. First, a state of the art algorithm - CrKR

- that allows to generalize parameterized policies is modified and extended into a new algo-
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rithm named CrKR++. The main modification enables to circumvent some previous limita-

tions regarding the computational complexity of the original training operation, while other

modifications are issued with the purpose of improving the overall effectiveness of the algo-

rithm. This means that with CrKR++, training sessions with high number of samples can be

performed, a necessary feature when a policy is hard to generalize, i.e, a large quantity of

data is necessary to find a good mapping between the state and parameter values to be used.

CrKR++ effectively expands the range of problems where CrKR could be employed usefully.

Second, a framework that enables storing, combining and mutual generalization of param-

eterized policies is presented. This framework relies on the CrKR++ algorithm as its learning

engine and provides several options that facilitate the process of learning complex motor skills.

The offered features allow different learning scenarios to occur and conveniently provide the

means to make the learning process flexible. Some of these scenarios include:

• Generalizing two policies at the same time - which can translate, for instance, into dif-

ferent body parts of a robot learning to react to different environment variables during

the execution of a task. The generalized policies continuously adapt to each other as the

learning process happens.

• Improve upon a stored policy, with new environment conditions, a different reward

function or different algorithmic parameters.

• Load two policies, but evolve only one of them, while keeping the other constant. This

can be used if one of the policies has already reached a satisfactory level while the other

has not.

Because of such possibilities, the framework has been named Flexible Framework for Learning

(F3L).

1.4 Methodology and execution

The work here presented is part of a wider context, giving continuity to the numerous projects

related with robot locomotion carried out by the people in the Adaptive Systems Behavior

Group (ASBG) lab.

The locomotion learning algorithms are tested in simulation software, namely Webots™,

which provides extra flexibility and convenience. Under a virtual environment, it is possible

to reproduce the same initial conditions for every test, avoid the need of human intervention

in the several experiments performed and substantially increase the learning speed since it

is faster to execute each test. It is also possible to perform manipulations in parameters and

variables that could not be changed in an authentic physical environment. Webots™ is a
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physics based simulation software comprehending the aspects of rigid body dynamics. The

simulations performed in it are therefore expected to provide realistic results.

Additionally, when introducing modifications to existing algorithms, theoretical or empiri-

cal evidence is provided in order to justify such changes.

1.5 Outline

The chapters in this thesis are structured as follows:

• Chapter 2 discusses the main obstacles that exist for the implementation of motor skills

in robotics and the challenges inherent to applying reinforcement learning techniques to

them. It then proceeds to introduce the base theoretical aspects of reinforcement learning

and presenting relevant state of art techniques for reinforcement learning and movement

representation.

• Chapter 3 presents a set of techniques for improving the efficiency and effectiveness

of the CrKR algorithm, with emphasis on reducing its computational complexity. The

resulting algorithm after the introduced modifications is named CrKR++.

• Chapter 4 presents the F3L framework which provides a set of operations that facilitate

the structuring of the learning process of complex policies.

• Chapter 5 attests the capabilities of F3L by using the techniques provided by the frame-

work to train a controller for DARwIn-OP, making it capable of generating stable loco-

motion in moderately sloped surfaces.

• Chapter 6 concludes the thesis putting its contributions into perspective and giving an

overview on future research lines and possible improvements that may follow.

1.6 Publications related with this thesis

• J. Macedo and C. Santos and L. Costa. "Using Cost-regularizied Kernal Regression with a

High Number of Samples", pp.261 - 266, IEEE International Conference on Autonomous

Robot Systems and Competitions (ICARSC) May 14-15, 2014, Espinho, Portugal
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Chapter 2

Context and related work

2.1 Problems and challenges

In this section, some of the most prominent difficulties that are faced when trying to implement

motion learning in robotics, and in particular locomotion learning, are described.

2.1.1 The challenges in locomotion

Animals and humans perform locomotion in a very natural and spontaneous way. One could

naively question how the implementation in robots of such an apparently easy task can be said

to be so difficult, particularly for legged robots. However, after analyzing the problem, it is

not hard to come to the conclusion that there is a high complexity inherent to the locomotion

process. A brief overview of the numerous challenges that the implementation of locomotion

in robots poses is provided next.

Environment Successfully achieving locomotion in diverse environments, specially outdoors

where the terrain properties are more variable, requires accounting for several aspects. Firstly,

the terrain’s surface can have a non zero slope angle. This slope can also be parallel or per-

pendicular to the robot’s trajectory. It may be necessary to modify the walking gait according

to the slope angle, specially for robots with a low number of footholds where there is a higher

chance of falling. This may also require treating potentially noisy information coming from

the robot sensors in order to calculate the slope angle. Terrain and feet interaction in terms

of friction can also vary: walking on a slippery terrain like ice is likely to require a differ-

ent behavior compared to walking on top of concrete. Terrain can also be highly irregular

or exhibit different deformation properties: sand and snow are two of the many examples of

such diversity. Finally, a robot put in an uncontrolled environment has to deal with static and
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dynamic obstacles which are likely to appear. The BigDog robot [Raibert and Blankespoor,

2008] is already capable of dealing with many of the aforementioned difficulties: it can walk

on different types of terrain like mud and snow and on inclined surfaces. Also, [Kalakrishnan

et al., 2009] shows LittleDog robot learning locomotion on rough terrain.

Robot’s integrity It is important to minimize the risk of the robot being damaged or put into

an irreversible state. Not only this will likely result in the robot’s task not being accomplished,

it may imply severe costs, since robots are frequently made of expensive materials and hard-

ware. In order to ensure the robot’s physical integrity, there are several considerations to have.

Keeping balance is perhaps the number one issue related with locomotion in this matter. When

a robot looses its balance due to a defective gait and falls, damage may be caused upon impact.

Besides, if a stand up procedure is not available, human intervention is required in order for

the robot to resume its task, which is inconvenient and may not always be possible. Trying to

predict a fall and minimize its damage is also a relevant matter. Balance is not the only issue

to consider, however. While performing locomotion, the robot needs to avoid collisions with

obstacles. An unpredicted collision at a high speed can also cause severe damage. In [Rubrecht

et al., 2012], a methodology to ensure safe behaviors of multibody robots in reactive control

frameworks is shown.

Safety Ensuring the safety of the people who interact with a robot is an essential requirement.

For small robots, this is not a real concern. However, as robots get bigger, stronger and faster,

it is important that their movements do not harm people around. A big or fast enough robot

can hurt someone if it falls or goes against him.

Hardware The mechanical properties of a robot play an important role in several aspects of

locomotion. While most commercially available robots use stiff actuators, these have some

drawbacks in the context of locomotion. Stiff actuators offer great precision. However, in

walking and running activities, certain characteristics that stiff actuators may fail to deliver like

good shock tolerance, less damage during inadvertent contact, more stable force control and

potential for energy storage are of extreme importance. Recently, compliant actuators systems

which resemble muscle-tendon systems in animals started to be used in legged locomotion

research. These have shown to be capable of achieving promising results [Spröwitz et al.,

2013].

Fulfilling the tasks Locomotion per se is not usually the goal of a task. Normally, it is a

secondary activity needed to be performed in order to accomplish a more complex mission.

The requirements of such a mission may impose difficulties in the locomotion exercise. Car-

rying a load, putting out a fire or helping a blind person navigate in a city are all possible

8



scenarios where additional considerations may be required in order to maintain balance and

effectively achieve success. Having these considerations into account further increases the

difficulty inherent to the locomotion process.

Nature has found ways to overcome these challenges. As a result, many of the methods

used in robotics are bio-inspired.

2.1.2 The challenges in learning

Applying reinforcement learning in the context of motion learning is not a trivial task. There

are a number of theoretical and practical obstacles which need to be addressed in order to

implement learning in a physical world. Some of these obstacles are presented in the following

paragraphs inspired on [Kober, 2012].

Dimensionality A typical robot has usually a high number of degrees of liberty. For in-

stance, the DARwIn-OP robot has 20 actuators, which would translate in a 20-dimensional

action space. Considering only the robot itself, the state space would have 20+20 (positions

and velocities) dimensions, but depending on the problem, this number can be greater. For

other robots like hexapods or octapods, for instance, the dimensionality of the problem can

be even more explosive. Moreover, all these variables are continuous, which prevents the use

of algorithms conceived for discrete contexts, at least directly. The problem of dealing with

such a high number of dimensions is known as the curse of dimensionality. To use reinforce-

ment learning to learn motion in robotics, smart representations of movement must be used

alongside with proper algorithms conceived to deal with high dimensions. Naive techniques

are unlikely to succeed, either because they would take an unacceptable amount of time to

execute or simply because they would fail to converge in finding good solutions.

Testing a solution Unlike a software context where generally testing a solution is extremely

fast and requires few effort, when learning motion primitives in real robots, it may take sec-

onds, or even minutes to properly test a policy. The experiment needs to be prepared, the

robot needs to execute the policy for a certain period of time in order for valid conclusions to

be taken and in the end, if the process is not automated in some way, human intervention is

required in order to put everything in place for a new test to start. It is difficult to replicate

the same conditions in every test, auxiliary material can be required in the experiments, and

the robot can be damaged if not supervised. All these drawbacks make it unpractical to run

a reinforcement learning algorithm in a real, physical environment. For these reasons, often

simulators are used to do this. However, the physics engine and the virtual world used in

simulation frequently contains inaccuracies that cause the achieved solutions not to perform
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so well in the real world. There is no definite way to deal with this, although there are ways

to minimize the problem. For instance, a solution can be obtained in simulation and then

improved in a real environment. Another technique is to introduce noise in actuators and sen-

sory information in order to find solutions that can compensate for the inaccuracies inherent

to the simulation software. Even though such possibilities exist, real world testing still remains

a hard to avoid challenge in robot motion learning.

Specifying the reward function The reward function is what allows a reinforcement learning

algorithm to work. It is based on it that the algorithm is able to effectively learn what is a good

or bad solution. For this reason, designing the reward function is an extremely important

part of solving a reinforcement learning problem. Such a task involves several considerations:

while giving a reward only when the robot does what it is intended (e.g scoring a goal in

robot football) may look like the obvious approach, such may happen so rarely that a reward

is almost never given. This will result in the agent not being able to understand when a

solution is better then other (even if both are bad) which is necessary for improvement to exist.

A reward function that encompasses the notion of closeness to the desired goals is usually

a better approach because it is able to gradually guide the learning process to a reasonable

solution. However, constructing such a function is also a process that demands attention

to certain details. It is necessary to define how each secondary objective has influence in the

reward as well as how undesired actions penalize its value. Before a poorly constructed reward

function, the learning process may achieve solutions that explore its faults instead of reaching

the real intended goals. Another possible issue is related to the tendency that the reward

function has to lead to a premature local maximum. This may trap the learning process in an

early stage, and hinder the improvement of solutions.

Previous knowledge Being capable of using previous knowledge in order to acquire new

movement skills or generalize existing ones is a greatly desired feature in robotics. Humans

are capable of improving a previously acquired skill for a different set of conditions different

than the ones verified during the period in which such skill was learned and are also capable of

mixing learned movement primitives by sequencing and superposition. Having the capability

of building on top of previous knowledge in robotics would allow for constant improvement

of the performance in several tasks, importing knowledge between different robot models and

make a better use of computational resources by reusing past acquired data.
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2.2 Reinforcement learning

2.2.1 Notation and problem formulation

The problem of automatic learning of motion primitives in robotics is usually approached

using reinforcement learning techniques. Before explaining the particularities of this field of

machine learning and in order to contextualize the topics explained in this section, a quotation

from [Sutton and Barto, 1998] is presented:

The idea that we learn by interacting with our environment is probably the

first to occur to us when we think about the nature of learning. When an infant

plays, waves its arms, or looks about, it has no explicit teacher, but it does have

a direct sensorimotor connection to its environment. Exercising this connection

produces a wealth of information about cause and effect, about the consequences of

actions, and about what to do in order to achieve goals. Throughout our lives, such

interactions are undoubtedly a major source of knowledge about our environment

and ourselves. Whether we are learning to drive a car or to hold a conversation,

we are acutely aware of how our environment responds to what we do, and we

seek to influence what happens through our behavior. Learning from interaction is

a foundational idea underlying nearly all theories of learning and intelligence.

Reinforcement learning studies methods to improve solutions for problems based on a

reward function which evaluates how good is a given solution in quantitative terms. The

reward function can be based on a number of factors depending on the problem. It can be the

number of goals scored for a football playing robot, the quantity of energy saved during the

execution of a mission, or the success rate of a checkers strategy.

Unlike other machine learning techniques, the learner agent is not given examples of which

decisions to take under a set of situations or training examples; instead, it must be able to find

out by itself good solutions using the reward function as a “guide”. For this to happen, the

agent must also take the initiative to explore, this is, to make decisions different from what

its previous knowledge indicates to be the best option. This is needed in order to find out if

such actions may lead to an even greater reward. Deciding whether to explore or “play safe”

according to known data is known as the exploration/exploitation dilemma.

An interesting fact that adds an even greater depth to the problems that reinforcement

learning studies, is that the action that results in the greatest immediate reward may lead to

worst future rewards when compared with other apparently not so good actions. In other

words, the option with greatest instant benefits may not be the best in the long-term. The

notion of value function helps to understand what the best decision really is. The optimal

value of a state is the maximum reward possible to accumulate starting from that state. So the
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best decision is reduced to performing the action that leads to the state with greatest optimal

value. This concept will be further explained later on.

In reinforcement learning, for an agent–environment interaction context, the agent makes

decisions by selecting which actions to perform at each time step, and the environment re-

sponds to these decisions, leading the agent to a new state. There is a continuous interaction

between both sides. At each time step t, the agent receives a representation of the environ-

ment’s state St ∈ S , where S is the set of all possible states. Based on the state, the agent

decides to take an action At ∈ A(St), where A(St) is the set of actions available in state St. In

t+ 1, as a consequence of its decision, the agent receives a reward, Rt+1 ∈ R, and the transition

to a new state St+1 happens (Fig. 2.1).

Agent

Environment

ActionState Reward
AtSt Rt

Rt+1

St+1

Figure 2.1: Agent–environment interaction from a reinforcement learning perspective. Image
based on [Sutton and Barto, 1998].

In order to decide which action to take in a certain state St, the agent employs a policy πt.

This consists in a function that expresses the probability of taking an action a if the state is s

and is represented by πt(a|s).
For many cases in reinforcement learning, one can define the state in such a way the prob-

lem can be modeled as a Markov Decision Process (MDP). For this to be possible, the following

property must be verified:

P(Rt+1 = r, St+1 = s′|St, At) = P(Rt+1 = r, St+1 = s′|S0, A0, R0, S1, A1, R1, ..., St, At) (2.1)

This means that the probability of arriving to a certain state and receiving a certain reward

only depends on the last state and action. Even for cases where this property does not oc-

cur immediately, it is often possible to perform transformations on the problem formulation,

namely in the definition of what is the state, so that it verifies.
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In order to define the value of a state in a finite or infinite horizon, a discount rate λ can

be introduced to determine the present value of future rewards such that 0 ≤ λ ≤ 1. If λ = 0,

only immediate rewards are valued, and all future rewards are accounted as 0. If λ is given the

value 1, future rewards are considered in the same way as the immediate reward. The value

function may then be defined formally as:

vπ(s) = Eπ

[
T

∑
k=0

λkRt+k+1|St = s

]
(2.2)

where Eπ denotes the expected value if the agent follows policy π, t denotes the current

time step and T is the number of time steps to be considered in the evaluation horizon. In

order for this summation to converge in an infinite horizon (when T = ∞), λ cannot be equal

to 1.

Solving a reinforcement learning problem comes down to finding the optimal policy. The

optimal value of a state v∗(s) is the value of that state when using the optimal policy:

v∗(s) = max
π

vπ(s) (2.3)

The Bellman equation states that v∗(s) can also be expressed as:

v∗(s) = max
a∈A ∑

s′
P(s′|s, a)[r(s, a, s′) + λv∗(s′)] (2.4)

Under this result, determining the optimal policy when the value function is known is

relatively easy: “For each state s, there will be one or more actions at which the maximum is

obtained in the Bellman optimality equation. Any policy that assigns nonzero probability only

to these actions is an optimal policy” [Sutton and Barto, 1998]. Equation (2.4) can be stated

as follows: the optimal policy is the one where the chosen actions reflect the best compromise

between the state-transition probabilities and the sum between the optimal values of those

states (pondered with λ) with the rewards which would result from those transitions.

This whole mathematical framework and equation (2.4) serves as a basis for many rein-

forcement learning algorithms used in motion learning. Some of them will be presented later

on.
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2.2.2 Progress and evolution of reinforcement learning algorithms

As presented in section 2.2.1, a policy π is the function that dictates the action that the agent

must take in response to the state of the environment. However, trying to work on the problem

of motion learning from such definition may not be very practical in a context where the

variables are continuous and the number of dimensions is so high. In alternative, one can

express a policy as a function of a set of parameters θ, which results in a parameterized

function π(θ, s) or πθ(s) where s is the state. The episodic reward function becomes then

R(τ(π(θ, s))) where τ is a trial performed by the policy [Caldwell, 2012]. Such expression can

also be simply shortened to R(θ) if the same initial conditions are considered for each trial.

This conveys the idea that the reward is directly dependent on the parameters θ which modify

the agent behavior, and that it is through the change of these values that the outcome of the

agent’s policy can be improved. By choosing an appropriate set of parameters, it is possible

to reduce the dimensionality of the problem and to represent only the policies that follow a

structure that is more suitable for learning a desired task (Fig. 2.2). On the other hand, there

may be policies that are impossible to represent with only those parameters. Nevertheless, in

most cases the benefits of using a parameter based representation for learning a motion task

outweigh the drawbacks.

Figure 2.2: Marionette analogy. A few strings (parameters) are enough for the manipulator to
produce the intended (high reward) movements (policy).

Even though an appropriate choice of parameters can greatly improve the learning time,

maximizing R(θ) still implies searching in a high dimensional and continuous space. It is

unfeasible to apply conventional numeric methods for this task, since evaluating R for a given

θ demands a great deal of time in an optimization context as mentioned in section 2.1.2. Mini-

mizing the number of required reward evaluations has become one of the main considerations

when conceiving new learning algorithms to be used in robotics.

Many policy improvement methods use an iterative process of exploration where policies

generated from perturbation of a basis policy (in this case θi) are executed K times. Each of

these trials is named a “rollout”. As an outcome the trajectories τ1,2,..,K are generated. These

contain all information about each trial that is used to update the parameter values to new
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ones. So in each iteration i, we have:

θi+1 = θi + ∆θ (2.5)

The process, which can be observed in Fig. 2.3, is repeated until the desired reward is

obtained from the most recent parameters set.

...

Perturbation

π(θi)

Rollout 1

Rollout 2

Rollout K

τ1

τ2

τK

Trajectories

Update

θi+1= θi+Δθθ

Figure 2.3: Typical policy learning algorithm steps.

Most policy improvement algorithms obey this mold, but of course, each one differs from

others in several aspects. In [Stulp and Sigaud, 2012b], several algorithms are analyzed and

a “fact sheet” is written for each of them, classifying it regarding the perturbation method,

the data recorded for each trajectory, the update method and the policy search method (actor

critic or direct policy). When looking at different fact sheets , it becomes apparent that there

is a trend in the evolution of the algorithms (Fig. 2.4). Recent algorithms use a parameter

perturbing methodology (as opposed to an action perturbing one) and perform the update

following reward averaging methods (as opposed to gradient based ones).

A brief overview over some of the algorithms can help justify this trend [Stulp and Sigaud,

2012b]. An example of a not so recent one that will serve as a starting point is reward

increment = nonnegative factor × offset reinforcement × characteristic eligibility (REIN-

FORCE) [Williams, 1992]. REINFORCE fosters exploration through the use of a stochastic

policy: the policy is executed K times with the same parameters; the state, action and reward

at each time step are saved in the trajectories τ; due to the stochastic character of the policy,

its nominal output - motor commands - is perturbed. The new parameters are then calcu-

lated based on an estimation of the gradient. A problem with this algorithm is that it requires

a large number of rollouts to perform a parameter update, and doesn’t make very efficient

use of samples since the trajectories information cannot be used for later updates. Episodic

Natural Actor Critic (eNAC) [Peters and Schaal, 2008] addresses this issue by estimating a

value function Vπθ
, as more compact representation of long term-reward then R(τ), using it
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Parameter
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Vanilla
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Figure 2.4: Trend in some policy improvement algorithms: reward increment = nonnegative
factor× offset reinforcement× characteristic eligibility (REINFORCE) , Episodic Natural Actor
Critic (eNAC) , Policy Improvement with Path Integrals (PI2) and Policy learning by Weighting
Exploration with the Returns (PoWER).

to perform the parameters update. The advantage of using a value function is that it allows

some level of generalization: it is capable of providing estimates for the reward that a certain

parameters set θ will produce based on information from previously obtained trajectories that

used other parameter values. Because it estimates a value function to perform its parameter

updates, eNAC is classified as an actor critic method.

REINFORCE and eNAC are both action perturbing methods, since the perturbation occurs

every time step at the nominal commands level, i.e, ut = unominal
t + εt. There are several

disadvantages when the perturbation is performed in this way: i) There is no dependency

between the nominal commands generated in consecutive time steps, which leads to noisy

trajectories in the action-space; ii) Consecutive perturbations may nullify each another; iii) The

hight frequency variations that can happen in the issued commands may lead to dangerous

behavior and cause damage to the robot.

Recent algorithms such as Policy learning by Weighting Exploration with the Returns

(PoWER) [Kober and Peters, 2010] and Policy Improvement with Path Integrals (PI2) [Theodorou

et al., 2010b] use a different perturbation method: parameter perturbation (Fig. 2.5).

In this scheme, it is the parameters of the policy that are perturbed instead of the nominal

commands. So we have πθ+ε(s) instead of πθ(s) + ε. When using an appropriate movement

representation, this method is able to avoid the issues present in action perturbing methods.

Another distinguishable feature of these algorithms relative to eNAC and REINFORCE is

the update step. ENAC and REINFORCE estimate gradients to calculate the update ∆θ, an

approach which may not be robust when dealing with noisy reward functions. Besides, it is not

trivial to tune the learning rate α, a parameter which has a great impact on the performance of

these algorithms. PoWER and PI2, on the other hand, calculate the update ∆θ using a weighted

average of the perturbation vectors ε1, ε2, ..., εK applied to θ and tested in the various rollouts.
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Figure 2.5: Different perturbation schemes

The weights given to each perturbation vector are based on the rewards achieved during the

resulting trajectories τ1, τ2, ..., τK. Such an approach results in a more stable update rule, less

dependent on the turbulence of the reward function.

PI2 and PoWER algorithms have shown to perform better than most older techniques,

sometimes by orders of magnitude [Theodorou et al., 2010b]. Several other algorithms that

were influenced by PI2 and PoWER that brought even further improvements, such as Path

Integral Policy Improvement with Covariance Matrix Adaptation (PI2-CMA), have since been

published.

Many complex tasks have already been achieved with the mentioned algorithms such as

pancake flipping and archery aiming [Kormushev et al., 2013], balancing [Vlassis et al., 2009],

ball in a cup [Kober and Peters, 2010], locomotion [Shen et al., 2012], jumping tasks [Theodorou

et al., 2010b], pouring liquid to a cup [Tamosiunaite et al., 2011], pushing a door and picking

objects [Kalakrishnan et al., 2012].

2.2.3 State of the art reinforcement learning algorithms

In this section a non-exhaustive list of reinforcement learning algorithms that can be used in

different contexts, and in particular in motor skill learning, is presented. All of these have in

common the attempt in reducing the number of reward evaluations necessary to be performed

in order to improve the initial policy of the agent.
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Policy learning by Weighting Exploration with the Returns (PoWER) Presented in [Kober

and Peters, 2010], PoWER borrowed the principle of expectation-maximization from other ma-

chine learning branches in which the update rule for the parameters tries to maximize the

lower bound on the expected return of the policy. According to the authors, this approach out-

performs many previous well known methods, like Vanilla Policy Gradients, Finite Difference

Gradients, Episodic Natural Actor Critic and Reward-Weighted Regression. This algorithm

has been used to learn tasks like “Under-actuated Swing Up” - moving a hanging heavy pen-

dulum to an upright position and stabilize it there in minimum time, and “Ball-in-a-Cup” -

swinging and catching a ball in a cup with fast movements.

Policy Improvement with Path Integrals (PI2) This is a method of probabilistic reinforce-

ment learning, introduced in [Theodorou et al., 2010b] and derived from the framework of

stochastic optimal control and path integrals. According to the authors, it makes an appealing

theoretical connection between value function approximation using the stochastic HJB equa-

tions and direct policy learning by approximating a path integral. The final form of the algo-

rithm is simple and has no open algorithmic tuning parameters besides the exploration noise

while exhibiting numerically robust performance in high dimensional learning problems. PI2

has been used, for instance, to optimize a jumping maneuver across a gap in a robot dog and

to optimize the movement of a 10 degrees-of-freedom arm trying to pass through a via-point

whilst minimizing joint accelerations. Later, PI2 variations like PI2-CMA [Stulp and Sigaud,

2012a] and Policy Improvement through Black-box Optimization (PIBB) [Stulp and Sigaud,

2012b] emerged, further improving different aspects of the algorithm.

Cost-regularized Kernel Regression (CrKR) This algorithm was introduced with the objec-

tive of providing a tool to generalize motor primitives for difference instances of the same

task [Kober et al., 2012]. It allows learning the mapping between the variables that charac-

terize the instance of the task in hands and the values of the parameters of the policy to be

executed in order to accomplish it.

In each iteration, the algorithm adjusts the agent’s policy and variance according to the cost

obtained from the trial performed using the last dictated parameter values. If the cost is high,

the policy will only shift slightly towards those values around the state where the system was

at the time of the trial. The variance will likely stay high around those state values, meaning

that the achieved policy is still not satisfactory there, and more exploration is required to

achieve low costs. If on the contrary, the cost suffered is low, the policy will heavily shift

towards the used parameter values around the state where the system was at the time of the

trial and the variance will be reduced, since the policy is becoming acceptable around the state

tested. Each additional sample serves to refine the policy and adjust the exploration of the

algorithm.
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CrKR stood out at optimizing the metaparameters of DMPs used in striking movements in

robot table tennis [Kober et al., 2012].

Mixture of Motor Primitives (MoMPs) This framework allows to combine several movement

primitives learned by imitation in order to solve a complex motor task [Mülling and Kober,

2013]. Each primitive stored is associated with a set of parameters, the augmented state, that

describe the situations occurred during demonstration. Using such information, and for a new

situation, the primitives are combined using a gating network that weights the contribution of

each primitive in the execution of the final movement. The weights of the gating network and

the primitives themselves are updated during the learning process.

Remarkable results have been achieved with Mixture of Motor Primitives (MoMPs) when

the technique was used to teach a robotic arm to play table tennis.

Reinforcement Learning based on Particle Filters (RLPF) This algorithm, presented in [Cald-

well, 2012], is based in particle filters , a technique used in statistics for estimation of an un-

observable underlying probability density function based on observed data. It constitutes an

exception when compared to most reinforcement learning algorithms, in the sense that it per-

forms global optimization instead of local optimization and does not obey the typical update

rule. The motivations behind this approach, according to the authors, are to introduce an al-

gorithm that is capable to go past local sub-optimal solutions and whose effectiveness is not

as largely dependent on the provided initial policy. Reinforcement Learning based on Particle

Filters (RLPF) has surpassed PoWER in the comparative tests conducted by its authors.

2.3 Movement generation and representation

Typically, one or more layers of abstraction are employed by a control program in order to

issue commands to robot actuators. These layers may be important for several reasons: they

can allow for a more intuitive way of representing movements for those who work with the

robot; they can incorporate logic to control stability and safety of the robot, and finally, they

can work as a mean of reducing the number of representable policies [Kober, 2012] which is

specially important when performing reinforcement learning on top of these layers/movement

representations. This is the case because the convergence speed of the algorithms can be greatly

accelerated when smaller state and action spaces are in game. However, in order to find a

good solution for a given problem, the policy parameterization cannot also be too limiting.

An overly simple parameterization will certainly facilitate the convergence of the algorithms

involved in the learning process, but at the risk of preventing solutions with acceptable quality

to be achieved. It is therefore important, for each problem, to find the right compromise

where the level of sophistication of the policy parameterization is enough to provide a rich
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and flexible representation that can encode good solutions, but at the same time does not fall

under the curse of dimensionality.

In the particular case of locomotion, these layers may also include the generation of indi-

vidual movements needed to carry out a high level command such as walking in a certain

direction.

Some of the techniques which work at the described level and that are used for movement

generation are mentioned next. Note that these techniques are not mutually exclusive, being

sometimes combined in order to achieve a desired goal.

Zero Moment Point (ZMP) A number of model-based locomotion controller implementa-

tions uses the zero moment point notion in gait planning and control. ZMP is the point where

the reaction force between the foot and the ground does not produce any moment in the

horizontal plane, keeping vertical inertia and gravity forces equal to zero. By ensuring the

appropriate dynamics of the mechanism above the foot, it is possible to maintain dynamical

balance [Vukobratović and Borovac, 2004] , assuming the ground provides enough friction.

Examples of locomotion implementations based on ZMP related principles are [Hirose and

Ogawa, 2007] and [Heo et al., 2012].

Central Pattern Generators (CPGs) While ZMP based approaches remain amongst the most

popular for biped walking, they frequently require models or previous knowledge about the

dynamics of the robot as well as the environment surrounding it in order to be employed.

Such knowledge may only be partially available, something which may hinder the general

application of these methods [Matos and Santos, 2012]; moreover, CPGs based approaches

typically have a lower computational cost [Nor and Ma, 2013]; these are some of the arguments

from those defending a bio-inspired approach based on CPGs.

Central pattern generators are neural networks present in both mammals and invertebrates

that produce rhythmic output patterns of neural activity which intervene in actions like swal-

lowing, respiration, walking, swimming and flying, between others. The first findings of

locomotor CPGs occurred in 1911 [Brown, 1911] in experiences with cats. Since then, defi-

nite evidence of CPGs on other animals such as dogs and rabbits has been found; in the case

of humans, only indirect evidence has been registered [Dimitrijevic et al., 1998]. Recent re-

search [Büschges and Borgmann, 2013] has also extended the concept of a modular neural

network organization for locomotion from invertebrates and lower vertebrates to mammals.

In the past, it was observed that a cat whose fore and mid-brain has been removed was

capable to stand supported on a thread-mill, and transition between walking and running

gaits while induced with electric stimulation of the mid-brain. The fact that the character-

istics observed in these movements were the same when compared with a normal cat was

quite significant and eventually the observed properties of CPGs captured the attentions of
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Figure 2.6: Simplified diagram of a bionic CPG control process. Image based on [Nor and Ma,
2013].

There are several examples of works regarding the implementation of locomotion using

CPG inspired controllers. These works include, for instance, a salamander robot which can

smoothly transition between walking and swimming [Ijspeert et al., 2007] and a quadruped

robot (AIBO) performing omnidirectional locomotion [Matos and Santos, 2010]as well as gen-

erated walking gaits for hexapods [Cappelletto and Estévez, 2007] and bipeds [Morimoto et al.,

2008].

CPG models have been designed at different levels of abstraction from detailed biophysical

models to abstract systems of coupled oscillators [Ijspeert, 2008]. This last approach is more

in line with typical implementations of CPGs in robotics: for instance, the common techniques

when implementing CPGs for biped walking use neural oscillators or phase oscillators whose

output is fed into pattern generation layers [Matos and Santos, 2012] . In the latter, the mathe-

matical implementation translates itself into a dynamical system of equations, where the phase

of the movements is governed by the oscillators. This system describes the relationships be-

tween different interveners, namely the movement parameters, the oscillator inputs, and the

outputs - which can be positions or velocities in joint or task space, or torques. Normally, there

is an oscillator for each body “division”, which depending on the case, can range from a single

joint to a whole member. These oscillators are coupled in order to establish synchronization

between the different body parts during the gait’s execution. Fig. 2.7 shows an example of

such implementation performed on a DARwIn-OP robot.

CPGs modeled this way offer an attractive framework for learning and optimization algo-

rithms: they exhibit limit cycle behavior, being capable to recover from small perturbations -

which are common to occur in a non controlled environment; they usually have a small num-

ber of control parameters, which reduces the dimensionality of the solutions to be optimized
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Figure 2.7: CPGs and corresponding phase oscillators, motion generators and corresponding
joints. Bilateral coupling is represented by the bilateral arrow. In the labels, h stands for hip, k
for knee, and a for ankle. Image adapted from [Matos and Santos, 2012].

and accelerates the convergence of the learning algorithms; when the value of the parameters

is altered, even if abruptly, the produced movements are modulated smoothly, and finally, they

are well suited to be integrated with sensory feedback mechanisms.

Dynamic Motion Primitives (DMPs) DMPs constitute a simple way of representing either

rhythmic or discrete movement trajectories through the use of non linear dynamical systems.

The characteristics of these systems are such that the produced trajectories reveal an attractor

behavior, which is relevant when it is intended to produce movements which must evolve to-

wards either a point or a limit cycle attractor. This is the case of a generic walking gait where a

baseline rhythmic behavior is excepted. DMPs were proposed by Auke Ijspeert [Ijspeert, 2002]

as a solution to obtain stable and flexible movement representations that could be subjected

to improvement by reinforcement learning algorithms. They were first used in a context of

learning a set of movements for a humanoid robot from demonstrations of a human teacher.

DMPs contemplate a linear dynamical system’s component which shapes the attractor land-

scape (spring-damper system), and a non linear one, which influences the first with a pertur-

bation [Haschke, 2012]. It is through variations in this perturbation that varied trajectories can

be created: the non linear component consists on a summation of Gaussian functions, each

with an associated weight. By varying the number of Gaussian functions, their centers, and

the associated weights, one can generate the different trajectories.

DMPs have been used by a number of researchers. In [Theodorou et al., 2010b] , learning

algorithms are used upon a DMPs movement representation in order to train a quadruped

robot to jump over a gap. In [Theodorou et al., 2010a], the authors use DMPs to represent
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Figure 2.8: A discrete trajectory produced by a DMP.

Figure 2.9: Different rythmic movement trajectories produced by DMPs.

throwing movements of a dart launcher, using learning algorithms to learn to set the DMPs

parameters according to the position of the target. In [Mülling and Kober, 2013], a method

based on mixing different DMPs learned from imitation is used to teach a robotic arm to play

table tennis. In [Pongas et al., 2005], DMPs are used to represent rhythmic movements to
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perform a drumming task.

DMPs offer many advantages: they can encode complex trajectories; they exhibit attractor

dynamics (which results in tolerance to small perturbations in the executed trajectory); the

encoded trajectories execution progress can be manipulated through the phase variable, and

finally, their limit cycle anchor point or position can be changed online leading to smooth

transitions in the produced trajectories to the new state. For these reasons, DMPs can be used

in a wide range of situations and serve as a suitable movement representation to be used in

learning tasks.

Splines Splines are a relatively popular concept in many subjects, like computer graphics and

statistics. They can be seen as a method of constructing arbitrarily complex functions using

piecewise-defined polynomial functions that connect smoothly. Different types of splines exist,

although the most commonly used variations are the cubic spline and cubic Bézier splines.

In [Shen et al., 2012], splines are used to encode the trajectory of each servo on a quadruped

robot while PoWER optimizes their parameters. First, splines with a reduced number of knots

are used, and as more rollouts are executed and the policy is improved, more knots are added,

gradually improving their representational power.
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Figure 2.10: Splines with different number of knots. As the number of knots increases, so does
the representational power of the spline. Image adapted from [Shen et al., 2012].

While the possibility of dynamically adding more complexity to the policy representation

during learning is certainly advantageous, common spline-based approaches also exhibit some
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drawbacks like explicit time indexation, thus becoming highly sensitive toward unforeseen

perturbations in the environment that would disrupt the normal time flow [Ijspeert, 2002].

Reflexes There are also some authors who have implemented reflex based locomotion con-

trollers. In this context a reflex is a motor response that is triggered by a certain event like a

collision with an obstacle or loss of ground contact. The chain of movements resultant from

reflexes originates the walking gait. Example of works that employ reflexes are those of [Klein

and Lewis, 2012] and [Kimura et al., 2007]. Reflexes have the advantage of being fully feed-

back oriented, i.e, the behavior that is generated is fully dependent on the situation the agent

is facing at each instant.

Mixture of motion primitives In [Mülling and Kober, 2013], a representation scheme based

on the weighted combination of DMPs is used. Each DMP is learned via imitation learning

for a specific situation. The combination of several DMPs allows to cover a wide set of states

and generalize the knowledge acquired via imitation learning: depending on the conditions

that the agent is facing at each moment, different weights are given to the several DMPs.

This representation scheme is deeply bounded with the learning algorithms used with it, in

which the relation between the state of the system and the weights to attribute to each DMP is

learned.
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Chapter 3

Improving on Cost-regularized

Kernel Regression

Particularly in the last years, we have assisted to the development of improved reinforcement

learning techniques capable to cope with the high dimensional and continuous character of

the action and state space variables present in the context of motor skill learning. The PI2

[Theodorou et al., 2010b] and PoWER [Kober and Peters, 2010] algorithms are good examples

of this. When combined with a suitable movement representation, a number of tasks can

be learned with these algorithms such as pancake flipping and archery aiming [Kormushev

et al., 2013], ball in a cup [Kober and Peters, 2010], locomotion [Shen et al., 2012], jumping

tasks [Theodorou et al., 2010b], and pushing a door and picking objects [Kalakrishnan et al.,

2012].

Algorithms that made it possible for a robot to be capable of learning a movement that

successfully accomplished the intended goals for a certain instance of a task were an important

milestone in robotics and reinforcement learning. However, such capability alone is not enough

in order to answer to most challenges when learning motor skills if the learned movements

are not expandable to other instances of the tasks they are supposed to fulfill.

Humans appear to be able to learn movement templates, also called movement primitives

[Schmidt and Wrisberg, 2000]. That is, they are capable of learning to execute movement tasks

for an entire set of instances at once. For example, it is predictable that after a human learns

how to throw a ball in order to hit a target in a certain position, it will take him less time

to learn how to execute the same task for targets in other positions. This reveals a capability

of generalizing the learned knowledge by adapting general parameters of the movement for

related situations, while keeping its overall shape.

Mathematically, learning the optimal parameters to be used for a specific instance of a task,
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is an optimization problem that can be formulated simply as:

max
θ

R(πθ) (3.1)

where θ are the parameters to optimize, π is the agent’s policy and R is the reward function.

Because only a specific instance is being considered, the reward is ultimately only dependent

on the chosen parameters. On the other hand, the problem of learning to adjust the parameters

in response to a set of state variables is formulated as:

max
γ

∫
S

p(s)R(πγ(s)) (3.2)

where p(s) is the probability of the agent being in state s, πγ(s) is the agent’s policy, R is the

reward function, S is the state space and γ is the state to parameters mapping function S λ→ P

where P is the parameters space. Here the problem is much more complex, since a whole

function needs to be learned instead of a single set of constant parameters.

Manually defining the rules of this kind of adaptive behavior is tedious, and frequently

near impossible when dealing with highly complex robotic systems and tasks, since these

require several groups of actuators to work synergistically and in different ways according to

the faced situation. It is therefore important to research algorithms capable of learning the

mapping between the variables that characterize the instance of a given task and the values of

the parameters to be set in order to accomplish it.

3.1 Cost-regularized Kernel Regression as a suitable algorithm

for learning generalized policies

CrKR [Kober, 2012] is an algorithm that can learn a state to parameters mapping. It has been

successfully used in the learning process of several tasks such as dart throwing, ball throwing

and table tennis with different robots. It has also outperformed other techniques, such as fi-

nite difference gradient and reward weighted regression, achieving equal or lower costs with

a smaller number of samples, sometimes by orders of magnitude [Kober, 2012]. CrKR has

been used frequently to optimize the meta-parameters of DMPs, but it can be used with any

movement representation that can be manipulated with a set of parameters. Nevertheless, the

high computational complexity of the algorithm limits its application for tasks where a high

number of samples is required to reach satisfactory results: each iteration takes increasingly

longer and eventually the processing power and memory required to keep the algorithm run-

ning become prohibitive due to the required multiplications and inversions of matrices with

sizes that grow with every iteration. In this chapter, a technique to deal with this issue is pro-

posed: it is based on the idea that we can split the execution of the algorithm in several runs
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with a smaller number of rollouts, while transferring the learned function between successive

runs. Such modification allows circumventing the original algorithm limitations, introducing

the possibility to use it with a high number of training samples without having to deal with

an indefinitely increasing execution time per iteration. This is an important contribution, since

in many cases it is the only way for the algorithm to develop solutions in a satisfactory level.

Besides the suggested approach to circumvent the high computational complexity of the

CrKR, other modifications are presented. These improve on the efficacy of the algorithm,

further increasing its usefulness.

3.1.1 Outline

An adapted transcription of CrKR follows:

Algorithm 1 CrKR algorithm

1: Preparation steps:
2: Determine initial state s0, meta-parameters γ0, and cost c0
3: Initialize the corresponding matrices S, Γ, C
4: Choose a kernel k, K
5: Set a scaling parameter λ
6: for all iterations j do
7: Determine the state sj specifying the situation
8: Calculate the meta-parameters γj by:
9: γ̄(sj) = k(sj)

T(K + λC)−1Γ
10: Determine the variance σ2(sj) = k(sj, sj)− k(sj)

T(K + λC)−1k(sj)

11: Draw the meta-parameters from a Gaussian distribution γj ∼ N (γ|γ̄(sj), σ2(sj)I)
12: Execute the policy using the new meta-parameters
13: Calculate the cost cj at the end of the episode
14: Update S, Γ, C accordingly
15: end for

CrKR performs many rollouts throughout its execution, where many sets of parameter

values are tested for different states. Based on the output of the cost function resulting from

these rollouts, it starts to understand which parameters result best for each state and shapes

the learned state to parameters mapping to reflect this knowledge. More specifically, at each

iteration j (lines 6-15 in algorithm 1), CrKR performs a trial with a new parameters vector γj

(lines 11,12) for the given state of the system which results in a certain cost cj (line 13). This cost

is used to adjust the policy γ̄(s) and variance σ2(s) functions (line 14) 1: after a trial with a set

of parameters θi when facing a state si, the policy will shift toward θi around si and the variance

will decrease around si. The strength of these displacements is inversely proportional to the

achieved cost and λ. The reasoning for the algorithm to use such an update rule is simple:

1γ̄(s) and σ2(s) can also be interpreted together as a stochastic policy, i.e, a policy with an inherent exploration
component.
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when some parameters achieve a low cost in a given state, it is likely that in the neighboring

states a policy would perform similarly when using the same parameters. Besides, since a low

cost result is being achieved for the state in cause, the exploration around it can be reduced,

as this is a sign that the algorithm is finding better values for the policy in si. The λ parameter

(lines 9,10) regulates the γ̄(s) and σ2(s) “elasticity”; when using a higher λ, more samples are

required to provoke significant changes in the policy and variance, but usually the algorithm

converges to a better solution then with a lower λ, even though it takes longer. This is because

if a larger quantity of data is required to affect the policy, more information is available to do

so in a more precise and optimal way.

In short, the following observations can be made about the operation of the algorithm:

• The final policy, i.e, γ̄ will be influenced by all trials performed.

• The influence in γ̄(sj) of the parameter values used in a trial is proportional to the

similarity between sj and the state at which the trial was performed.

• The influence, in the final policy, of the parameter values used in a trial is inversely

proportional to the cost that resulted from the trial.

• The lower the costs of the trials performed around a state si, the lower will be the variance

around that state.

• The greater the number of the trials performed around a state si, the lower will be the

variance around that state.

• σ2(s) ∈]0, k(s, s)]

• λ is a constant parameter that regulates how easily the γ̄(s) and σ2(s) functions are

influenced by samples

The chosen kernel function quantifies the similarity between two states .Normally the out-

put of a kernel between two states ranges from 0 to 1, where 1 corresponds to maximum

similarity. When dealing with vectors of real numbers, a simple kernel function k(si, sj) can

be, for instance e−||si−sj ||2 . The kernel function is important because it is what defines how

much a result obtained from a trial in a certain state is generalizable to other states. Also, the

kernel function influences the learning convergence of the policy in hands and the complex-

ity it can achieve. For instance, a Gaussian kernel with a high standard deviation will cause

distant states to be considered more similar than a Gaussian kernel with a lower standard de-

viation. As a consequence, using a Gaussian kernel with a high standard deviation will cause

the knowledge of every state to be considered more generalizable to other states. This would

lead to a faster convergence because less data around each state would be required to predict

the parameters to use for it, but at the cost of lower precision and policy quality.
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(b) After 2 samples
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(d) After 12 samples

Figure 3.1: Evolution of a policy with CrKR after 0 (a), 2 (b), 9 (c) and 12 (d) samples. The
dashed lines show the variance of the policy. The vertical bars represent trials: the location
of each bar marks the attempted parameters and the state of the system at the time the corre-
sponding trial was performed. The size of each bar is proportional to the cost resulting from
the corresponding trial. In (b), it is clearly visible that the policy shift towards each set of
parameters is inversely proportional to the cost that results from it. In the last graphic d, it can
be observed that the variance is higher for those states that have not been faced or where the
costs of the performed trials were higher. Image adapted from [Kober et al., 2012].

.

At each iteration, the constructed policy results in a summation of basis functions created

from the samples. Each one contributes to incrementally refine the policy.

CrKR can be used as a passive learning method, where the state variables’ values that the

agent faces are the ones naturally occurring in the environment during its regular activity or

as an active learning method, where specific tasks with artificially manipulated state variable

values are used to train the agent.
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3.1.2 Computational Complexity

The main bottleneck of algorithm 1 is in the matrix inversion performed in each iteration which

is required to compute the parameters and variance:

(K + λC)−1 (3.3)

As K + λC is a square matrix of order n, where n is the number of training samples (or past

iterations), the computational complexity of evaluating the expression (3.3) is:

O(tinv(n))

where tinv(m) is the computational complexity of inverting a m×m matrix. The most part of

algorithms used in practical applications to compute the inverse of a matrix operate in cubic

time [Williams, 2011, Robinson, 2005]. Thus, it is reasonable to assume that evaluating the

expression above takes O(n3) time. In addition, the memory used to store the matrices is

O(n2).

3.2 Performance and effectiveness

3.2.1 Circumventing computational complexity limitations

In reinforcement learning, it is usually the testing of the solutions that takes more time. How-

ever, the performance of CrKR degrades considerably with each iteration, becoming a real

concern if one intends to learn complex policies that demand a high number of trials to reach

acceptable levels.

CrKR finds a policy of the form:

π(γ|s) = N (γ|γ̄(s), σ2(s)I)

As mentioned in 3.1.2, the main problem is that each iteration of the algorithm uses incre-

mentally more computational power, therefore creating a practical limitation on the number

of samples it is possible to learn from before the algorithm starts to take unbearable amounts

of time to run.

In order to go around this limitation, the execution splits are herein introduced; if we stop

the execution of the algorithm at some iteration m, we are left with a γ̄(s) function that possibly

needs more refinement. This refinement can be obtained by optimizing a new ∆γ̄(s) function
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that is to be added to the previous function, constituting the final state to parameters mapping:

π(γ|s) = N (γ|γ̄(s) + ∆γ̄(s), σ2(s)I)

Splitting the execution of the algorithm in p rounds following the same pattern would yield a

policy:

π(γ|s) = N (γ|γ̄(s) + ∆γ̄1(s) + ... + ∆γ̄p(s), σ2(s)I)

Changing the denomination of the first policy developed before any split from γ(s) to ∆γ0(s)

allows one to rewrite the same expression using a more uniform notation:

π(γ|s) = N (γ|∆γ̄0(s) + ∆γ̄1(s) + ... + ∆γ̄p(s), σ2(s)I)

In each round, the learned deterministic policy and all its corrections become the baseline

policy in the next round, on which further improvement is attempted. This process that can

be repeated as many times as required.

Calculating the deterministic component In algorithm 1, the deterministic component of

the policy is calculated as:

γ̄(s) = k(s)T(K + λC)−1Γ

From now on, for expressiveness reasons, the vector resulting from the kernel between a state

s and a matrix of states S (S being a matrix where each row is a different state) will be written

as k(s, S), i.e:

S =


s1

s2
...

sm



k(s, S) =


k(s, s1)

k(s, s2)
...

k(s, sm)


where k(si, sj) is the kernel between states si and sj. Also, the matrix containing the kernel

between every pairwise state combination of states in a matrix S where each row is a different
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state is written as:

K(S) =


k(s1, s1) k(s1, s2) · · · k(s1, sm)

k(s2, s1) k(s2, s2) · · · k(s2, sm)
...

...
. . .

...

k(sm, s1) k(sm, s2) · · · k(sm, sm)


Therefore, we now express the same line of algorithm 1 as:

γ̄(s) = k(s, S)T(K(S) + λC)−1Γ

So if we divide the algorithm in p rounds, where each round optimizes a policy that is to be

added to the policies before, we have:

γ̄(s) = ∆γ0(s) + ∆γ1(s) + ... + ∆γp(s)

γ̄(s) = k(s, S0)
T(K(S0) + λC0)

−1Γ0

+ k(s, S1)
T(K(S1) + λC1)

−1Γ1

+ · · ·

+ k(s, Sp)
T(K(Sp) + λCp)

−1Γp

γ̄(s) = k(s, S0)
T A0 + k(s, S1)

T A1 + · · ·+ k(s, Sp)
T Ap

where:

Ai = (K(Si) + λCi)
−1Γi

As it can be seen, instead of having to calculate the inverse of a large matrix, we now need

only to calculate several inversions of smaller matrices. The benefit of this is even greater when

we consider that after an pth split, only k(s, S) and Ap need to be calculated as the matrices
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from A0 to Ap−1 do not change. By using the following replacements:

A =


A0

A1
...

Ap−1



T =


S0

S1
...

Sp−1


We can simply write:

γ̄(s) = k(s, T)T A

Since k(s, T)T ∈ R1×n and A ∈ Rn×g, the computational complexity of calculating γ(s) is

reduced to O(r3 + ng) where r is the number of samples per round, n is the total number

of past samples and g is the number of parameters. This is considerably better than O(n3),

because r and g are fixed throughout the execution of the algorithm.

After a split p, A is updated as:

A :=

(
A

Ap−1

)

Calculating the stochastic component The stochastic component of the policy is calculated

as:

σ2(s) = k(s, s)− k(s, S)T(K + λC)−1k(s, S)
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If we use the same technique we have:

σ2(s) = ∆σ2
0 (s) + ∆σ2

1 (s) + ... + ∆σ2
p(s)

σ2(s) = pk(s, s)

− k(s, S0)
T(K(S0) + λC0)

−1k(s, S0)

− k(s, S1)
T(K(S1) + λC1)

−1k(s, S1)

− · · ·

− k(s, Sp)
T(K(Sp) + λCp)

−1k(s, Sp)

σ2(s) = pk(s, s)− k(s, S0)
T B0k(s, S0)− k(s, S1)

T B1k(s, S1)− · · · − k(s, Sp)
T Bpk(s, Sp)

where:

Bi = (K(Si) + λCi)
−1

However each Bi matrix would have p lines and columns. Bi matrices of past rounds would

not need to be recalculated, but since k(s, Si) needs to be calculated every iteration and for

any i, the same would happen for the multiplication of Bi with k(s, Si) or k(s, Si) with Bi. The

computational complexity of calculating σ2(s) this way would be O(r3 + nr) and the memory

needed to keep all Bi matrices would be O(nr) which would still be very prohibitive when

attempting to run the algorithm with a high number of samples.

The variance function guides the algorithm, defining the exploration level for each state. It

is constructed from the costs of the many executed trials and ideally its shape would match

the one of a cost function C(γi, s) that would evaluate a policy γi for each state s. As has been

previously said:

• The lower the costs of the trials performed around a state s, the lower will be the variance

around that state.

• The greater the number of the trials performed around a state s, the lower will be the

variance around that state.

In the evolution of the variance function throughout the execution of CrKR it is generally

possible to observe that:

• The costs and states of past trials define the shape of the variance function

• The higher the number of past trials, the more pronounced are the valleys in the shape

of the variance function

The variance function does not need to be as precise as the parameters function since, seman-

tically, γ̄(s) has an absolute identity, while the effects of the σ2(s), have a relative one: the

36



variance function only defines, in each state s, the amplitude of the interval centered in γ̄(s)

where it is more likely to pick parameter values to be tested.

By keeping only the last completed Bi and Si matrix, respective to the iterations between the

last two performed splits2, and with an high enough r, we can have a variance shape function

whose locations of peaks and valleys would approximately match those of a cost function of

the achieved policy:

σ2
∗(s) = k(s, s)− k(s, Si)

T Bik(s, Si)

Furthermore, the general effect of the numbers of samples - making the valleys of the variance

function more pronounced - can be artificially simulated by applying a transformation:

σ2(s) = σ2
∗(s) exp(−a · nsamples · (k(s, s)− σ2

∗(s)))

where nsamples is the number of past samples and a is the aging factor that controls the strength

of the transformation.

Using this heuristic, the calculation of the variance has O(r3) computational complexity

and the memory needed to keep all the matrices needed is O(r2).

Using these methods for the calculation of the γ(s) and σ2(s), the computational complexity

of each iteration of CrKR changes from O(n3) to O(r3 + ng) and the memory needed to store

the required matrices for these operations changes from O(n2) to O(r2). Since r is constant,

this is an important improvement that brings the possibility of learning from a much greater

number of trials, therefore allowing a better policy to be achieved.

3.2.2 Costs standardization

One of the issues that might stop CrKR from improving a policy past a certain point is the

scaling of the costs that are supplied to the algorithm or choosing an inadequate value for λ .

The cost of a trial rates the vector of parameters that was used in it for the state the agent was

facing. However, one might ask if this rating should be dependent on the costs of past trials

performed in neighbor states.

Let us consider two different policy optimization problems A and B where we are using

CrKR. Suppose that at some iteration in each of the instances of the algorithm, the agents in

both problems are facing the states sA and sB and the values of the costs for the parameters

used in the 5 situations where the respective instances states were more similar to sA and sB

2Before performing the first split, B is calculated normally. After performing the first split, B is calculated using
the data respective to the iterations between the last two performed splits.
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are CA and CB where:

CA =
(

4.3 3.9 4.4 4.22 4.12
)

CB =
(

6.1 6.01 5.3 5.74 4.72
)

Suppose now that the last trial in each of the problems’ instances has the same cost cA = cB =

4.6. Looking at the values, this seams like a bad result considering the first set of costs CA, but

a good one considering the second set CB; cA is higher than every element of CA but lower

than every element of CB. This raises the question on whether using the cost of a trial directly

is the best way to rate the parameters used under its circumstances, or if this rating should

be relative to the average of previously registered costs around those circumstances. Consider

now that cA = cB = 9.99 and that:

CA =
(

9.3 10.3 9.7 10.9 9.8
)

CB =
(

10.001 9.9997 10.0035 10.004 9.998
)

Even though CA ≈ CB ≈ 10, cB is a much more impressive result in its context than cA. The

values of CA deviate much more from the mean than those of CB, therefore the parameters

corresponding to cB should probably be given more weight (lower effective cost) as they appear

to be an exceptionally good result.

Considering both types of situations presented, the following cost standardization scheme

is proposed:

1. Keep a pool with state-cost pairs of the o latest trials

2. When a trial performed in a state s produces a cost c, pick the m most similar states from

the pool 3, and obtain its corresponding costs C . (Fig 3.2)

3. Standardize c to č where:

č = exp
(

c− C

σ(C )

)

Apart from the application of the exponential, this is a commonly used standardization method.

First, the average cost of C is subtracted to c, which yields a negative or positive value. A neg-

ative value represents a cost better than the average, and vice versa. Then, the obtained value

is divided by the standard deviation of C , scaling it appropriately according to how much it

deviates from the average. Finally, an exponential function is applied to the result, so that

3By the default the algorithm uses euclidean distance for calculating the most similar states, but this behavior can
be overridden if needed.
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States Costs

s C

Closest states

Figure 3.2: Illustration of the second step of the standardization process. The colors of the
states represent how similar they are to the state of the trial whose cost is to be standardized.
The costs belonging to the m trials whose circumstances are more similar to the actual trial are
the ones used for calculating the standardized value of the cost.

the final standardized cost value is positive. Using this scheme, for the given examples and

choosing m = 5, we have that čA = 0.98391 and čB = 0.01181. čB = is much lower than čA

which goes according to the points presented previously.

There are some points that must be clarified when using this method:

• Before accumulating enough samples in the pool, the non standardized costs must be

used.

• It is advised to define two different cost scaling parameters to use before and after

filling the samples pool, for using with non-standardized (λ) and standardized costs

(λstandardized), respectively.

• It would not be appropriate to use standardized costs for the variance because, for any

state, the average standardized cost will tend to 1. This would turn the variance function

constant which would defeat its purpose of differentiating the exploration between states.

While this technique does not always bring better results, it makes the success of the al-

gorithm less dependent on the ability to choose proper cost scaling parameters for each prob-

lem. After the samples pool is filled, the costs are standardized and λstandardized is used. A

λstandardized that works well for a certain problem will likely perform well for other problems.
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On the other hand, without costs standardization, the λ parameter needs to be completely

tuned for every new problem.

3.2.3 Hints

CrKR can be fed with hints in order to give a head start to the policy improvement process.

For instance, if some parameters are known to be optimal for a certain state s, they can be

directly fed to CrKR with a very low cost. This will heavily shift the policy towards these

parameter values around s. Lower degrees of certainty about the quality or optimality of some

parameters can be compensated by using a higher cost, which allows the user to provide a

clue to the algorithm without influencing its behavior in an exaggerated way.

3.2.4 Variance multiplier

Not always the variance function is going to be properly scaled to the problem in hands. To

add the possibility of controlling the order of magnitude of the variance function, a multiplier

parameter V can be introduced in the algorithm so that:

σ2(s) = Vσ2
∗(s) exp(−a · nsamples · (k(s, s)− σ2

∗(s)))

3.2.5 Final algorithm

Herein follows the algorithm with all the proposed modifications:
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Algorithm 2 CrKR++ - Final algorithm

Preparation steps:
Determine initial state s0, parameters γ0, and cost c0
Initialize the corresponding matrices S, Γ, C, T, A, Blast, Cabsolute, Slast
Choose a kernel k, K
Set a scaling parameter λ, λstandardize
Set the number of samples per round r
Set a variance multiplier V
Set a variance aging factor a
Initialize sample pool P
Choose a pool size p and a number of m neighbors to consider when standardizing costs

for all iterations j do
Determine the state sj specifying the situation
γ̄Accumulated(sj) = k(sj)

T A
∆γ̄(sj) = k(sj, S)T(K(S) + λC)−1Γ
if first round then

σ2
∗(sj) = k(sj, sj)− k(sj, S)T(K(S) + λCabsolute)

−1k(sj, S)
else

σ2
∗(sj) = k(sj, sj)− k(sj, Slast)

T · Blast · k(sj, Slast)
end if
σ2(sj) = Vσ2

∗(sj) exp(−a · nsamples · (k(sj, sj)− σ2
∗(s)))

γj ∼ N (γ|γ̄Accumulated(sj) + ∆γ̄(sj), σ2(sj)I)
Execute the policy using the new parameters
Calculate the cost cj at the end of the episode
if P is filled then

Get the costs C from the m trials with most similar states to sj from P

čj = exp

(
cj − C

σ(C )

)
cjfinal

=
λstandardized čj

λ
end if
Update S, Γ, C, Cabsolute accordingly // Update Γ with ∆γ̄(sj)
Cache K(S) to speed up next iteration
if round ends then

Update T, A, Blast, Slast accordingly
Reset S, Γ, C, Cabsolute, cached K(S)

end if
Update P adding the pair (sj, cj)

end for

3.3 Implementation

The CrKR++ algorithm was implemented in Matlab® following object-oriented programming

principles in order to enhance extensibility, flexibility and modularity. The developed code

is independent from the context of the problem in which it is used. It can be used not only
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for movement learning, but any other reinforcement learning problem where there is a policy

that must be optimized for a range of continuous states. Moreover, it was written with the

possibility of being modified in the future in mind.

3.3.1 Architecture

<<Interface>>
CrKRTrainingSessionSettings

<<Interface>>
PolicyPerformer

CrKRDataManager CrKRPolicyTrainer

CrKRPolicyTrainingLoop

AB

<<instantiate>> <<instantiate>>

Figure 3.3: Unified Modeling Language (UML) class diagram of CrKR++ implementation.

The typical work-flow when using CrKR++ translates into the creation by the user of a CrKR-

PolicyTrainingLoop class that instantiates a CrKRPolicyTrainer. Typically in this class, the user

chooses how to implement the loop where the methods of CrKRPolicyTrainer are called. Nor-

mally, each iteration of this loop must call in succession the getStochasticMetaParameters and get-

DeterministicAccumulatedMetaParameters methods from the instantiated CrKRPolicyTrainer and

then the calculateCost method from the class that implements the PolicyPerformer interface. Fi-

nally, the method train from CrKRPolicyTrainer must be called with the state, parameters and

cost as arguments. All in all, these steps should be similar to the following extract of code:

metaParametersCurrentPolicy = policyTrainer.getStochasticMetaParameters(actualState);

metaParametersAccumulatedPolicy = ...

policyTrainer.getDeterministicAccumulatedMetaParameters(actualState);

incurredCost = policyPerformer.calculateCost(metaParametersCurrentPolicy + ...

metaParametersAccumulatedPolicy, actualState);
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policyTrainer.train(actualState, metaParametersCurrentPolicy, incurredCost);

Frequently, one wants to periodically test the achieved policy or include specific changes in

the training loop adapted to the problem in hands. Even though an example of a CrKRPolicy-

TrainingLoop class is provided to the user, it is advised to change it according to the needs.

The following list provides a description on each element of the diagram presented in Fig.

3.3:

• CrKRPolicyTrainingLoop - The class that uses CrKRPolicyTrainer to train the policy. As

the name says it is where the training loop is located.

• CrKRPolicyTrainer - This is the core class. It is where the algorithm matrices are, to-

gether with all the training and parameter calculation methods. In order to create an

instance of this class, an instance of a class that implements CrKRTrainingSessionSettings

must be supplied (A in Fig.3.3).

• CrKRTrainingSessionSettings - An interface that specifies all methods and properties

necessary to define the settings class and its instance to supply to a CrKRPolicyTrainer (A

in Fig.3.3).

• PolicyPerformer - An interface that specifies the methods that a policy performer class (B

in Fig.3.3) must implement, namely: init, calculateCost and finnish. Of these, calculateCost

is the most important, since it is the method that returns the cost in function of the state

and parameters.

• CrKRDataManager - A class that contains utility code such as the methods to save the al-

gorithm progress (matrices) and to express graphically the achieved policy after running

it.

When one wants to use CrKR++ with a different problem, only the class that implements

CrKRTrainingSessionSettings needs to be changed (A in Fig.3.3) with new parameters and an

instance of a policy performer adjusted to the new context (B in Fig.3.3).

3.3.2 Parameters guide

Using CrKR++ for optimizing a policy requires choosing the values for a set of parameters

specified in the class (A in Fig.3.3) that implements the CrKRTrainingSessionSettings interface.

Some of these parameters are related with the learning process while others are related with

testing and effectiveness measurement. It is important to know what each parameter does in

order to make the appropriate changes if the results of a training session are not satisfactory.

The following list provides information about the parameters that have a role in the learning

process.
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• numberMetaParameters - The number of parameters of the state to parameters function.

• numberStateVariables - The number of state variables of the state to parameters function.

• maximumCost - Maximum cost admitted for a trial to be considered in the learning

process.

• maximumCostStandardized - Maximum cost admitted for a trial to be considered in the

learning process when dealing with a standardized cost.

• lambda - The λ parameter explained in section 3.1.1. This is a very important parameter

that ranges from 0 to ∞ and it can dictate the success of a training session. Setting this

parameter too high will prevent the policy from changing. Setting it too low makes the

policy very volatile. The right compromise must be found. It is important to have into

account that the order of magnitude of this parameter must be chosen with attention to

the order of magnitude of the costs returned by the calculateCost method of the provided

policy performer.

• lambdaForStandardizedCosts - The λstandardized parameter explained in section 3.2.2. Its

function is the same as the lambda parameter. The difference is that while lambda is used

before the costs standardization pool is filled, this parameter is used after. It is easier to

set as it is not dependent on the scale of the calculateCost method of the provided policy

performer.

• varianceMultiplier - The V parameter explained in section 3.2.4.

• minimumVariance - A minimum variance value that prevents variance from ever reach-

ing 0, which would stop the algorithm from continuing to improve the policy.

• kernelStdDev - A Gaussian kernel defined as k(si, sj) = M · exp

(
−||si − sj||2

2σ2

)
is used

by default in the implementation of CrKR++. This sets the value of σ parameter.

• kernelMultiplier - This sets the value of the M parameter.

• agingFactor - The a parameter explained in section 3.2.1. Care must be taken when

choosing this value. Thinking in terms of the intended half-life of the variance as the

number of samples grows might help to set its value.

• numberSamplesBefore - This parameter must only be set with a value different from 0 if

the progress of a previous training session is being loaded and resumed. It corresponds

to the total number of trials the algorithm has performed in all past training sessions.

• A - Initial A matrix. This parameter must only be set a non-empty matrix if a training

session is being resumed.

44



• T - Initial T matrix. This parameter must only be set a non-empty matrix if a training

session is being resumed.

• InvKpClast - Initial Blast matrix. This parameter must only be set a non-empty matrix if

a training session is being resumed.

• Slast - Initial Slast matrix. This parameter must only beset a non-empty matrix if a

training session is being resumed.

• givenExamples - This is where the hints, explained in section 3.2.3 are specified. It

is a cell array containing three matrices with same number of rows. Each row in all

matrices corresponds to a hint. The first matrix contains the state, the second matrix the

parameters and the third matrix the artificial cost of the hint which controls its strength.

• standardizePool - Initial standardization pool. This parameter must only be a non-empty

matrix if a training session is being resumed.

• standardizePoolNumberCurrentTryout - The number of samples that have passed in

the standardization pool plus 1. This parameter must only different from 1 if a training

session is being resumed.

• numberTryoutsConsideredWhenStandardizing - The m parameter explained in section

3.2.2.

• numberTryoutsConsideredWhenStandardizing - The p parameter explained in section

3.2.2.

• maxAdmissibleDistanceToUseStandardizePool - In order for the standardization steps

to be applicable, every state in the set of closest states must not be farther than this value

in terms of euclidean distance.

• policyPerformer - An instance of a class that implements the PolicyPerformer interface.

• rolloutsPerRun - The number of samples per round .

• minStateValues - The lower vertex coordinate of the hyperrectangle that defines the

states space from which states are generated (only used in active learning). It is an array

with as many elements as the number of dimensions of the state space.

• maxStateValues - The upper vertex coordinate of the hyperrectangle that defines the

states space from which states are generated (only used in active learning).
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3.4 Tests

The most important modification that CrKR++ brings in relation to CrKR is the improvement

of computational complexity through the execution splits technique. However this approach is

not mathematically equivalent to having the algorithm being executed in the normal way. The

tests here presented will focus on measuring the algorithm effectiveness and efficiency before

and after the inclusion of this technique, in order to provide enough data for a discussion on

whether the execution splits are a proper solution for the computational complexity problem.

The costs standardization technique depends on the choice of values for parameters that

do not exist in CrKR. Therefore, no tests will be executed in order to compare both algorithms

in this aspect since the obtained performances would be dependent on the chosen values.

Function through artificial landscape For this test, CrKR and CrKR++ are used to find a

function γ(s) = (a, b) whose output is evaluated by a function C(s, (a, b)) that dictates the cost

of the parameters a, b for the state s. The goal of the algorithm for the given problem was to

improve γ(s) such that C(s, γ(s)) is as low as possible for any s ∈ [−50, 50]. C is a function

created from the interpolation of three artificial landscapes and is defined in the following

way:

w1(s) =

1− s+50
50 s ≥ −50∧ s ≤ 0

0 s > 0∧ s ≤ 50

w2(s) =

 s+50
50 s ≥ −50∧ s ≤ 0

50−s
50 s > 0∧ s ≤ 50

w3(s) =

 0 s ≥ −50∧ s ≤ 0

1− 50−s
50 s > 0∧ s ≤ 50

C(s, (a, b)) = w1(s) · 1000|l1(a, b)|

+ w2(s) · 10|l2(a, b)|

+ w3(s) · 1000|l3(a, b)|

where wi(s) are the weights given to the l1, l2, and l3 functions, according to the state s. l1, l2
and l3 are respectively Beale’s, Goldstein–Price and Booth’s functions (Fig. 3.4), commonly

used to test optimization algorithms. The option to use artificial landscape functions was
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(a) (b) (c)

Figure 3.4: Beale’s (a), Goldstein–Price (b) and Booth’s (c) functions, integrated in the cost
function used in the tests. These functions minima are located in (3,0.5) , (0,-1) and (1,3),
respectively.

taken because these are fast to evaluate, and are therefore convenient to be used for a large

number of tests. The chosen artificial landscapes for the tests exhibit some complexity, while

not being too rugged, which could prevent the algorithm from improving the policy.

Triangular wave approximation In this test, CrKR and CrKR++ are used to approximate a

triangular wave function (Fig. 3.5) f given by:

f (x) = arcsin(sin(x))

The cost C for each state s is given by the squared difference between f and the learned

function γ:

C(s, γ(s)) = ( f (s)− γ(s))2

Bivariate function approximation In this test, CrKR and CrKR++ are used to approximate

the bivariate function f given by:

f (x, y) = exp
(
−
√

x2 + y2
)

The cost C for each state s = (sx, sy) is given by the squared difference between f and the

learned function γ:

C(s, γ(s)) =
(

f (sx, xy)− γ(s)
)2
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Figure 3.5: Triangular wave function

Figure 3.6: Bivariate function f (x, y) = exp
(
−
√

x2 + y2
)

48



3.4.1 Results

Each test was repeated several times in order to verify if the effectiveness of the algorithm

suffered any impact when introducing splits. In all test problems, the algorithm was executed

for 900 rollouts for four different settings: with no execution splitting and with splits every

450, 300 and 150 rollouts (Fig. 3.7 ,Fig. 3.8 and Fig. 3.9). The γ(s) function, set initially

as γ(s) = 0 was evaluated every 60 rollouts by averaging the costs C(s, γ(s)) for various

uniformly distributed state values that were kept the same for the whole experiment.

Also, to show the impact of the suggested technique in terms of performance, measure-

ments of the execution times of the algorithm for the first test problem were taken for two

settings: with no execution splitting and with splits every 300 rollouts (Fig.3.10), with each

setting being tested 8 times.

Finally, in Fig. 3.11 , Fig. 3.12 and Fig. 3.13 the outcome of running CrKR++ algorithm for

12000 rollouts with splits every 300 rollouts is presented in order to better elucidate the reader

on what the algorithm can effectively achieve.
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Figure 3.7: Function through artificial landscape: Results with no execution splitting (a) and
with splits every 450 (b), 300 (c) and 150 (d) rollouts. The graphics show the average cost
across states of the achieved γ(s) function throughout the execution of the algorithm. Each
setting was tested 12 times. The central dot in each box marks the median, and the edges
the 25th (q1) and 75th (q3) percentiles. The whiskers extend to the data points in the interval
[q1 − 1.5(q3 − q1), q3 + 1.5(q3 − q1)], and the remaining points, considered outliers, are plotted
individually.
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Figure 3.8: Triangular wave approximation: Results with no execution splitting (a) and with
splits every 450 (b), 300 (c) and 150 (d) rollouts. The indications for reading the graphics are
the same as in Fig. 3.7.
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Figure 3.9: Bivariate function approximation: Results with no execution splitting (a) and with
splits every 450 (b), 300 (c) and 150 (d) rollouts. The indications for reading the graphics are
the same as in Fig. 3.7.
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Figure 3.10: Function through artificial landscape - Results with no execution splitting (a) and
with splits every 300 (b) rollouts. Each graphic shows the number of milliseconds per iteration
throughout the execution of the algorithm in the one of the test problems. Each setting was
tested 8 times. The values displayed are the resulting averages. The error bars illustrate the
standard deviation for each measurement.
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Figure 3.11: Function through artificial landscape: outcome policy, running the algorithm with
splits every 300 rollouts throughout a total of 12000 rollouts. The circular markers indicate the
optimal values for both parameters at states −50, 0 and 50.
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Figure 3.12: Triangular wave approximation: outcome policy, running the algorithm with splits
every 300 rollouts throughout a total of 12000 rollouts.
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Figure 3.13: Bivariate function approximation: outcome policy, running the algorithm with
splits every 300 rollouts throughout a total of 12000 rollouts.

3.4.2 Discussion

The results in Fig. 3.7, Fig. 3.8 and Fig. 3.9 reveal that the proposed execution splitting method

has a very low or nonexistent apparent impact on the effectiveness of CrKR. In every setting,

the final average cost of γ(s) was within 1.92× 104 and 2.12× 104, for the first test problem,
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2× 10−2 and 4× 10−2 for the second test problem or 2× 10−3 and 5.5× 10−3 for the third

problem, which are all small intervals in the scale of the respective contexts.

The difference between the execution time before and after introducing the execution splits,

expressed by the graphics in Fig. 3.10 is very noticeable: as expected, the original version of

the algorithm has an execution time per iteration that grows indefinitely, ascending to more

than 80 milliseconds, resulting from its O(n3) complexity (where n is the number of samples

or past iterations). The modified version is much faster, never exceeding the 10 milliseconds

per iteration, since the cubic growth O(r3) is limited by the number of rollouts r of each round.

Figures 3.11, 3.12 and 3.13 demonstrate the the capacity that CrKR++ has to achieve satis-

factory policies. This is particularly observable in Figs. 3.12 and 3.13 when compared to Figs.

3.5 and 3.6, respectively, as the approximated functions greatly resemble the original ones:

in Fig. 3.12, the average error between the outcome policy and the original function for the

trained interval of states is ∼ 0.039 and in Fig3.13 it is ∼ 0.056. These are satisfactory values

in the scale of the respective functions.

3.5 Summary

In this chapter, many changes were proposed to CrKR. From these, the most important was the

introduction of the splits technique that allows to circumvent the limitations of CrKR related

to its high computational complexity . This technique is based on the idea that the execution of

the algorithm can be split in several rounds with a smaller number of rollouts, while transfer-

ring the learned state to parameters function between successive rounds. This approach was

tested for different problems and settings in order to verify if the normal effectiveness of the

algorithm was not affected. The obtained results suggested this is indeed the case.

The unaltered CrKR algorithm is limited to a few thousands samples before starting to

take unbearable amounts of time and memory to be kept running for more iterations. The

demonstrated technique allows to run CrKR for a much higher number of iterations while

keeping processing and memory requirements low, therefore creating conditions to apply this

algorithm to new contexts with higher levels of complexity.
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Chapter 4

Flexible Framework for Learning

CrKR++ can be used in a learning agent or system to learn the mapping between some state

variables and parameters of the system. Its performance in terms of computational complexity

allows to learn complex mapping functions from long training sessions where a high num-

ber of samples is acquired. Besides the capabilities of the algorithm itself from a theoretical

standpoint, a set of features were integrated in the implementation of CrKR++ as presented

in chapter 3 such as the ability to resume and continue to work on previous progress from

past training sessions and being able to integrate suggestions from the algorithm user as hints

giving a head-start to the learning process. These have importance in practical contexts when

applying the algorithm to real situations.

Despite all these characteristics, learning functions that map between high number of states

and parameters is still hard to do timely with CrKR++. In order to expand the range of sit-

uations where CrKR++ is applicable, F3L is herein introduced. F3L is a set of classes and

methodologies that integrate CrKR++ and that through a set of operations allows the frame-

work user to guide the learning process of high dimensional continuous policies. These op-

erations rely mainly on gradual learning and task separation and can enhance the learning

capabilities of the system at hands as well as increase its ease of use.

4.1 Multiple CrKR++ units

The common CrKR++ implementation allows one to optimize a mapping γ from states to

parameters where:

γ : Rn → Rm
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In this context, each mapping γ learned from a CrKR++ instance or unit will be denominated

as a primitive. The main idea in which F3L is based is that one can learn different mappings

in distinct CrKR++ units separately that are to be combined into a full mapping.

γ1

γ2

γ3

St
at
es

Param
eteres

Figure 4.1: Primitive combination forming a full state to parameters mapping.

Learning each primitive in a different CrKR++ unit has several advantages:

• Each unit can be specified different algorithm settings, which brings extra flexibility.

• Each primitive can be learned in an exclusive task context with its own setup and reward

function. This can be seen as creating special conditions to train a single aspect of a

complex skill consisting in several aspects.

By specifying which state variables and parameters are considered for the mapping to be

learned in each unit, a primitive combination is created as shown in Fig. 4.1. A combining

function must also be defined by the framework user for primitives that output parameters in

common. This will be later seen in detail in section 4.2.4.

4.2 F3L operations

F3L offers a range of possibilities that allow to structure and guide the learning process of

a complex task. These possibilities translate themselves into a set of operations which are

presented next.
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4.2.1 Learning from zero

Simply learning a primitive with a single CrKR++ unit and without previous knowledge (Fig.

4.2).

f

Figure 4.2: Learn from zero operation. The arrow symbolizes the learning that occurs. f is the
learned mapping function.

4.2.2 Learning from baseline

Further improve a previously learned primitive with a new training session (Fig. 4.3). This

operation can be used in succession to allow adjusting the algorithm settings in the middle of

the learning process.

f f’

Figure 4.3: Learn from baseline operation. A previously learned primitive is updated through
a new training session.

4.2.3 Branch

To branch a primitive into two or more primitives (Fig. 4.4), so they can be learned in different

ways by using different tasks, reward functions or algorithmic settings. Branching can be

useful to divide a complex primitive into simpler primitives that can be learned one at a time.

f

f1

f2

Figure 4.4: Branch operation. The dashed lines indicated that this operation is manipulative,
and no learning happens in the process. f1 and f2 denote the primitives that result from the
branching.
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4.2.4 Merge

To combine two or more primitives into one (Fig. 4.5). This operation requires a combining

function C that defines how the outputs of each primitive are integrated in the resultant prim-

itive. When two primitives that share the same parameters in semantic terms are combined, it

is the role of the combining function to dictate how the conflict is resolved.

f

g

C

h h

Figure 4.5: Merge operation. The dashed lines indicated that this operation is manipulative,
i.e no learning takes part in it. f and g denote the primitives that are combined. h is the
resulting primitive. C is the combining function: it takes as arguments the outputs of f and g
and returns the output of h, i.e, h = C( f (�), g(�)).

4.2.5 Mutual learning

This consists in two or more primitives being learned simultaneously and under the same

task context (Fig. 4.6). Each primitive’s effect on the agent’s performance might change the

optimal mappings of the other primitives, so all primitives dynamically influence each other

in the learning process. Ideally, as the process evolves, a synergistic relationship between the

primitives is established.

f f’

g g’

C C

Figure 4.6: Mutual learning operation. The connection between the arrows illustrates the
mutual influence that each primitive exercises upon the other. The triangles in the connection
signal the primitives that suffer influence from others - in this case, both.
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4.2.6 Partial learning

Happens in a training session when a group of primitives is merged with other group which is

not fed with any samples and therefore does not change (Fig. 4.7). This obliges the first group

of primitives to adapt to the presence of the second and improve the result of the combination

of both in order to reduce the costs in the task that is being used in the learning process.

f f’

g g

C C

Figure 4.7: Partial learning operation. On opposition to Fig. 4.6, the connection between
the arrows has only a triangle in one of the ends, indicating the only primitive that is being
influenced by others. The dashed arrow illustrates that the associated primitive does not
change during the training session.

4.2.7 Learn with hints

Learning a primitive when providing the respective CrKR++ unit hints, as explained in section

3.2.3 (Fig. 4.8).

*
f f’

Figure 4.8: Learn with hints operation.

4.3 Implementation

F3L implementation consists in the set of Matlab® classes that implements CrKR++ plus a set

of helper classes that allows to perform branch, merge, mutual learning and partial learning

operations. They were implemented keeping the same ideals of extensibility, flexibility and

modularity in mind regarding the implementation of CrKR++.
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4.3.1 Architecture

PrimitiveMixTrainingLoop

<<Interface>>
PrimitiveMixTrainingSessionSettings

CrKRPolicyTrainerC

1..*1

D

<<instantiate>>

<<Interface>>
PolicyPerformer

1 1..*

PrimitiveMixDataManager<<instantiate>>

Figure 4.9: UML class diagram of F3L implementation.

The typical work-flow when using F3L translates into the creation by the user of a class (C

in Fig.4.9) implementing PrimitiveMixTrainingSessionSettings to be used in PrimitiveMixTrain-

ingLoop. In the constructor of this class the user instantiates the required CrKRPolicyTrainers

or CrKR++ units that will train each of the primitives to be combined placing them into a cell

array. The user also defines which CrKR++ units will be actively learning in the next training

session1 and initializes the class (D in Fig. 4.9) implementing the PolicyPerformer to be used.

For example:

This.storedPrimitiveSettings{1} = LateralSlopedTerrainOffsetsSettings();

This.storedPrimitiveSettings{2} = LateralSlopedTerrainAmpsBalanceSettings();

This.storedLearningActive{1} = false;

This.storedLearningActive{2} = true;

for p=1:size(This.storedPrimitiveSettings,2)

This.storedPrimitiveTrainers{p} = CrKRPolicyTrainer(This.primitiveSettings{p});

end

This.storedPolicyPerformer = SlopedTerrainLocomotionPerformer(); %Implements ...

PolicyPerformer

1In order to perform partial learning, it is also necessary to set the value of the varianceMultiplier and minimumVari-
ance properties to 0 in the settings class supplied to the inactive CrKR++ units.
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Each CrKR++ unit maps from a subset of the total set of state variables to a subset of

the total set of parameters (Fig. 4.1). In order to establish what states and parameters are

respective to each CrKR++ unit, it is necessary to define the parametersWrapperMapping and

statesWrapperMapping properties of the class. An example follows:

function value = get.stateWrapperMapping(This)

value{1} = [1]; %Unit 1 maps from the 1st state variable ...

value{2} = [1 2]; %Unit 2 maps from the 2nd state variable...

end

function value = get.parametersWrapperMapping(This)

value{1} = [1 2 3];%...to the 1st 2nd and 3rd parameters

value{2} = [2 4]; %...to the 2nd and 4th parameters

end

The framework user can modify the PrimitiveMixTrainingLoop class in order to add tests

or other features, but must keep the code sections that implement the core of the combining

process of the several CrKR++ units. The following list provides a description on each new

element of the diagram presented in Fig. 4.9:

• PrimitiveMixTrainingLoop - The class where the parameters returned by the CrKR++

units are combined and supplied to the policy performer and where the train method is

called for each CrKR++ unit. As the name says it is where the training loop is located.

• PrimitiveMixTrainingSessionSettings - An interface that specifies all methods and prop-

erties necessary to define the settings class and its instance needed to conduct the com-

bining process happening in PrimitiveMixTrainingLoop.

• PrimitiveMixDataManager - A class that contains utility code such as the methods to

save the training session progress (matrices) and to express graphically the achieved

policy afterwards.

4.3.2 Parameters and methods guide

Using F3L for optimizing a policy requires choosing the values for a set of parameters and

implementing a method, all of which is done in the class (C in Fig. 4.9) implementing the

PrimitiveMixTrainingSessionSettings interface. Some of these are related with the learning pro-

cess while others are related with testing and effectiveness measurement. The following list

provides information about the parameters and methods that have a role in the learning pro-

cess.

• stateWrapperMapping - Defines which state variables each CrKR++ unit maps from.
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• parametersWrapperMapping - Defines which parameters each CrKR++ unit maps to.

• policyPerformer - An instance of a class that implements the PolicyPerformer interface.

The PolicyPerformer instances initialized in each CrKR++ unit have no effect when using

F3L.

• primitiveTrainers - A cell array where each cell contains a CrKR++ unit, i.e, an instance

of a CrKRPolicyTrainer.

• primitiveSettings - A cell array containing instances that implement CrKRTrainingSes-

sionSettings which are supplied in the creation of each CrKRPolicyTrainer that goes in

primitiveTrainers.

• learningActive - A booleans cell array dictating which CrKR++ units will be actively

learning in the next training session.

• combinePrimitives - The combining method that defines how the output parameters of

all primitives are integrated together. It accepts as argument a matrix where each row

contains the output of a different primitive, and each column is a parameter.

4.4 Summary

In this chapter a framework that augments and extends the capabilities of CrKR++ was pre-

sented. This framework gives the possibility of defining a learning scheme based on different

operations that can be used to reduce the intractability inherent to the dimensionality of some

problems. By giving the framework user the ability of structuring the learning process, a

satisfactory policy can be achieved more easily.

The real life inspiration for F3L is that some tasks can more easily be accomplished when

separated into smaller sub-tasks that can be learned individually. Developing the skills that

allow to accomplish these tasks one at a time and then combining them is easier then attempt-

ing to learn the main task at once. In the next chapter, F3L is used to have a robot learning to

extend its walking capabilities to sloped terrains.
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Chapter 5

Generalizing walking to slopes in

any direction on DARwIn-OP

In the last two chapters it was presented a succession of techniques that can be used when

approaching reinforcement learning problems consisting in optimizing high dimensional con-

tinuous policies. In this chapter these techniques will be put into use in the task of generalizing

the capabilities of a DARwIn-OP’s simulation based controller capable of walking in flat ter-

rain. This generalization will, to certain extents, turn the controller capable to walk on surfaces

with a slope in any direction, i.e parallel and/or perpendicular to the walking direction. This

will be achieved through the use of the learning mechanisms provided by F3L plus the inte-

gration of quantitative feedback mechanisms to the existing controller.

The goal of this chapter is twofold; in first place, to attest the capabilities of F3L and ex-

emplify how it can provide a flexible way to approach a high dimensional continuous policy

optimization reinforcement learning problem. Second, to act as a source of useful practical

knowledge on future attempts to achieve complex, dynamic and environment-responsive lo-

comotion through reinforcement learning.
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5.1 Baseline

5.1.1 DARwIn-OP

Hip: 3 Degrees of 
Freedom

Knee: 1 Degree of Freedom

Ankle: 2 Degrees of 
Freedom

Elbow: 1 Degree of Freedom

Shoulder: 2 Degrees of Freedom

Head: 2 Degrees of Freedom

Figure 5.1: DARwIn-OP - Degrees of freedom.

DARwIn-OP is a humanoid biped robot platform. It has 20 degrees of freedom: 2 in the head,

3 in each arm and 6 in each leg (Fig. 5.1). Moreover, it has 4 Force-Sensing Resistor (FSR)

sensors in the sole of each foot. These characteristics make it an adequate subject of study for

testing locomotion learning algorithms.

5.1.2 Controller

The controller considered in the forthcoming sections is strongly based on the one described in

[Matos and Santos, 2012]. It is a CPGs based controller implemented by means of a dynamical

system that controls the robot’s leg joints. Locomotion is achieved by the combination of three

walking motions (Fig. 5.2) plus a turning motion:

• Balancing - Keep the robot’s center of mass in a position that does not threaten balance.
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• Flexion - Allows the moving foot to achieve vertical clearance during the swing phase of

the step.

• Compass - Responsible for the propulsion of the body during locomotion.

• Turning - Allows the robot to turn.

CBA

zhPitch

zkPitch

-zkPitch - zhPitch

zhPitch

-zhPitch

zhRoll

zaRoll

Figure 5.2: DARwIn-OP walking motions - balancing (A), flexion (B) and compass (C). Image
adapted from [Matos and Santos, 2012].
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Pitch
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Figure 5.3: Oscillators coupling and influence in the controller’s dynamical system. Image
adapted from [Matos and Santos, 2012].
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The set of rules governing this system is the following:

φ̇i = ω + k sin(φi − φo + π) , ∀(i, o) ∈ {(left, right), (right, left)}

f balancing
i,hRoll =

−AbalancingLeftω sin(φi) , |φleft| > π
2

−AbalancingRightω sin(φi) , |φleft| ≤ π
2

f balancing
i,aRoll = − f balancing

i,hRoll

f flex
i,hPitch =

AflexHipωφi

σ2 exp

(
−

φ2
i

2σ2

)

f flex
i,kPitch =

AflexKneeωφi
σ2 exp

(
−

φ2
i

2σ2

)
f flex
i,aPitch = −( f flex

i,hPitch + f flex
i,kPitch)

f turn
i,hYaw = −Aturnω sin

(
φi +

π

2

)
f compass
i,hPitch = −Acompassω sin

(
φi +

π

2

)
f compass
i,aPitch = − f compass

i,hPitch

żi,hRoll = −α(zi,hRoll −Oi,hRoll) + f balancing
i,hRoll , ∀i ∈ {left, right}

żi,aRoll = −α(zi,aRoll −Oi,aRoll) + f balancing
i,aRoll , ∀i ∈ {left, right}

żi,hYaw = −α(zi,hYaw −Oi,hYaw) + f turn
i,hYaw , ∀i ∈ {left, right}

żi,hPitch = −α(zi,hPitch − (Oi,hPitch + Ci,hPitch)) + f flex
i,hPitch + f compass

i,hPitch , ∀i ∈ {left, right}

żi,kPitch = −α(zi,kPitch − (Oi,kPitch + Ci,kPitch)) + f flex
i,kPitch , ∀i ∈ {left, right}

żi,aPitch = −α(zi,aPitch − (Oi,aPitch + Ci,hPitch + Ci,kPitch)) + f flex
i,aPitch + f compass

i,aPitch , ∀i ∈ {left, right}

with the additional restrictions:

Oleft,j = Oright,j , ∀j ∈ {hRoll,aRoll,hYaw,hPitch,kPitch,aPitch}

ωleft = ωright

where:

• φleft and φright are the two phase oscillators that keep the coordination between all the

motions in the system (Fig. 5.3).

• ω is the rate at which the phase of the oscillators increases.

• k is the coupling strength between the oscillators.

• f�� are the perturbations that generate the effect of each motion in the joins’ positions.
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• A�
� controls the emphasis with which the different motions are performed.

• z�,� are the robot’s joint positions.

• O�
� are the offsets of the final generated rhythmic motion in each join.

• α controls the relaxation for the offsets.

• C�
� allow to control a baseline flexion in each leg that persists through the whole step.

ω, k, A�
�, O�

�, α and C�
� are all parameters of the system that can be changed in different envi-

ronment conditions in order to provide more stable and/or faster locomotion. An important

property of the aforementioned dynamical system is that the abrupt change of the value of

any parameter does not cause an abrupt change in any of the joins’ position. Instead it results

in smooth modulations for the produced trajectories. This allows manipulating parameter val-

ues online without causing sudden movements which would very likely threaten the robot’s

balance.

5.2 Feedback mechanisms

The first step towards achieving locomotion on surfaces with a slope was adding feedback

mechanisms that apply simple corrective behaviors during locomotion. Each of these mecha-

nisms is explained next.

5.2.1 Ankle pitch correction

In general when robot’s feet touch the ground, they must be parallel to it in order for the

best support and balance to be achieved. It is also desirable for the weight of the robot to

be distributed equally along the back and the front of the foot plant. Using the force sensors

distributed in each corner of each foot plant, a mechanism to correct the ankle pitch angle can

be established by the following transformation in the controller:

Fpitch = ηpitch((FSRleft,left,front + FSRleft,right,front + FSRright,left,front + FSRright,right,front)

− (FSRleft,left,back + FSRleft,right,back + FSRright,left,back + FSRright,right,back))

żi,aPitch = −α(zi,aPitch − (Oi,aPitch + Ci,hPitch + Ci,kPitch))

+ f flex
i,aPitch + f compass

i,aPitch + Fpitch , ∀i ∈ {left, right}

where FSRi,j,k is the output of a FSR sensor in the i leg in the position (j, k) and ηpitch controls

the strength of the applied correction.

This transformation increases or decreases żi,aPitch according to the difference of measured

forces in the sensors located in front of both feet plants and the sensors located in the back.
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Feedback 
action

Figure 5.4: Effect of the ankle pitch correction feedback.

For instance, if the sum of the forces measured in the back sensors is greater than the sum of

the forces measured in the front sensors, Fpitch will be negative, having the effect illustrated in

Fig. 5.4.

5.2.2 Ankle roll correction

This correction mechanism is analogous to the one described in section 5.2.1 but it concerns

the balance between the forces measured in the left and right sensors in each foot plant instead

of the balance between the forces measured in the front and back sensors (Fig. 5.5). It can be

applied with the following transformation in the controller:

Froll = ηroll((FSRleft,left,front + FSRleft,left,back + FSRright,left,front + FSRright,left,back)

− (FSRleft,right,front + FSRleft,right,back + FSRright,right,front + FSRright,right,back))

żi,aRoll = −α(zi,aRoll −Oi,aRoll) + f balancing
i,aRoll + Froll , ∀i ∈ {left, right}

where ηroll controls the strength of the applied correction.

5.2.3 Direction correction

Without some sort of direction control based on sensory information, it is very hard for a

biped robot to keep walking in a straight line indefinitely. This phenomenon happens even in

humans [Souman et al., 2009] . However small it may be, there is always a deviation rate that

will slowly change the robot’s facing direction. This is aggravated when the surface on which

the robot is walking is inclined.

70



Feedback 
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Figure 5.5: Effect of the ankle roll correction feedback.

In order to suppress this deviation, we can use a feedback mechanism that changes the

Aturn value when needed, which perturbs the hip yaw join trajectory, causing the robot to

turn. This can achieved with the following dynamical system inspired on the same dynamics

that are used in DMPs [Ijspeert, 2002]:

θ̈ = ηα,direction(ηβ,direction(θgoal − θ)− θ̇)

,where θ is the facing direction of the robot, θgoal is the intended direction and ηα,Direction and

ηβ,Direction are parameters that regulate the damping properties of the dynamical system. While

θ̈ is not directly controllable, it is known that the Aturn controls the growing rate of z�,hYaw

which in its turn influences the robot’s turning rate. So we can add the following rule to the

controller:

Ȧturn = ηα,Direction(ηβ,Direction(θgoal − θ)− θ̇)

While Ȧturn is not the same as θ̈, it is related with it in a non linear fashion, which is enough

to allow the dynamical system to attain the desired effect (Fig. 5.6). This feedback mechanism

assumes that θgoal, θ and θ̈ are provided or calculated in someway beforehand. An advantage

of this particular dynamical system is that changing the θgoal value online does not cause any

sudden change of the hip yaw angle. This allows using this mechanism not only to correct the

direction of the robot but also to change it (Fig 5.7).
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Figure 5.6: Effect of the direction correction feedback.

5.3 Achieving locomotion on sloped surfaces

5.3.1 Task

The task to accomplish is to have the robot adapting a subset of its controller parameters

according to the inclination of the terrain. Without this, the default parameter values can only

tolerate very small slope angles before the robot looses balance.

The inclination of the terrain is characterized by the slope in the walking direction and the

slope in the direction perpendicular to the walking. From now on these will be referred to as

frontal (sfrontal) and lateral (slateral) slopes, which are defined as:

sfrontal = − arctan(∇d f )

slateral = − arctan(∇r f )

r = R(−90◦) · d

where d is the robot’s facing direction unit vector, ∇v denotes the directional derivative along

a vector v, and f is the function whose graph is the plane tangent to the terrain’s surface in the

robot’s position. When the robot is walking up, sfrontal is negative. Likewise, when the terrain

to the right is higher than the terrain to the left, slateral is negative.
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Figure 5.7: Plot of the development of θ when θgoal is changed. In this example, θgoal is set to
6 at t = 0 and set to 3 at t = 40.

With these definitions set, the task in hands is to learn and optimize a mapping:

γwalkSlope : (sfrontal, slateral)→ P

where P is the set of parameter values that are adapted according to the slope of the terrain’s

surface. This set is formed by: O�,hPitch, O�,kPitch, O�,aPitch, AflexHip, AflexKnee, Cleft,hPitch,

Cleft,kPitch, Cright,hPitch, Cright,kPitch, O�,aRoll, AbalancingLeft and AbalancingRight parameter values.

Thus γwalkSlope can be written as:

γwalkSlope : (sfrontal, slateral)→ (O�,hPitch, O�,kPitch, O�,aPitch, AflexHip, AflexKnee, Cleft,hPitch

, Cleft,kPitch, Cright,hPitch, Cright,kPitch, O�,aRoll, AbalancingLeft, AbalancingRight)

which conveys the high dimensional nature of the problem with 12 parameters to be deter-

mined according to 2 state variables.

5.3.2 Simulation setup

In order to use reinforcement learning algorithms to optimize the mapping γwalkSlope, one

needs to be able to evaluate the fitness or cost of a given set of parameter values when facing

a given sfrontal and slateral. It is not trivial to setup a simulation that allows to do this; setting

the slope angles and parameters immediately and at the same time the robot initiates its gait

almost certainly causes the robot to fall. So instead, the simulation is setup so that it starts with

the default parameters for the robot controller to walk on a flat terrain surface. Then, when the
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robot initiates its gait, the parameters of the controller and slope angles of the terrain surface

start to linearly fade into the final values. After 67 seconds, the final values are reached. The

simulation keeps running for 33 more seconds and after that time it is terminated.

This setup avoids abrupt transitions of parameters and state variables, making it possible in

each simulation to evaluate if the group of given parameter values allows to maintain stability

for the supplied slope angles: inadequate parameters cause the robot to fall prematurely, while

more adequate parameters can keep the robot in balance for longer, leading to lower costs.

5.3.3 Cost function

In order to evaluate the cost of a given set of parameters, the simulation is divided into a series

of reward evaluation cycles, each with 960ms and 120 time steps. In each cycle i the reward Ri

is a weighted geometric mean calculated as:

Ri = Rwe
e · R

wd
d

subject to:

we + wd = 1

where Re and Rd are different reward metrics respective to efficiency and distance and we,

wd are their corresponding weights.

Re quantifies how much of the traveled distance was in the intended direction and is cal-

culated as:

Re =
∆d

Dtrav

where d is the displacement of the robot in the intended direction and Dtravel is the total

traveled distance.

Rd accounts for the amount of traveled distance and is calculated as:

Rd =
Dtrav

Tcycle ·Vmax

where Tmax is the time of each reward evaluation cycle in seconds and Vmax is an estimated

upper bound for the robot’s velocity. In the end of the simulation the episodic cost is calculated

as:

C =
1

1 + ∑i Ri
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where Ri is the reward of the evaluation cycle i.

In order to further reward low costs and penalize high costs, an additional transformation

is applied to the cost (Fig. 5.8):

Cfinal = −0.061786 + 0.0618018 · (49.38118.56996737C)

If the robot falls during the simulation, all the reward values for future evaluation cycles

are considered as equal to zero.

0.02 0.04 0.06 0.08 0.10

10

20

30

40

Figure 5.8: Final transformation applied to the cost function. This transformation increases the
ratio between high and low costs.

5.3.4 Controller parameters

The controller parameters used in the simulations can be consulted in appendix A.

5.3.5 Learning structure

The applied learning structure divides γwalkSlope in different mappings that are learned pro-

gressively (Fig. 5.9)1:

• γfrontalA : sfrontal → (O�,hPitch, O�,kPitch, O�,aPitch)

• γfrontalB : sfrontal → (AflexHip, AflexKnee)

• γlateralA : slateral → (Cleft,hPitch, Cleft,kPitch, Cright,hPitch, Cright,kPitch, O�,aRoll)

• γlateralB : slateral → (AbalancingLeft, AbalancingRight)

1A,B,C and D are used to denote sub primitives in which the main primitives γfrontal, γlateral and γomni are branched
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• γomniA : (sfrontal, slateral)→ (O�,hPitch, O�,kPitch, O�,aPitch)

• γomniB : (sfrontal, slateral)→ (AflexHip, AflexKnee)

• γomniC : (sfrontal, slateral)→ (Cleft,hPitch, Cleft,kPitch, Cright,hPitch, Cright,kPitch, O�,aRoll)

• γomniD : (sfrontal, slateral)→ (AbalancingLeft, AbalancingRight)

First γfrontalA and γfrontalB are trained. They are trained only with frontal slopes, as they are

the primitives responsible for determining the parameter values that allow the robot to adapt

to them (Fig. 5.10). Analogously, γlateralA and γlateralB are trained for the same kind of purpose

for lateral slopes (Fig. 5.11). 2

γfrontalA,γfrontalB,γlateralA and γlateralB only admit a single state variable, but there may be

situations where both slope angles are needed to determine the best parameters. For in-

stance, knowing sfrontal may not be enough to determine the ideal (AflexHip, AflexKnee), as

slateral may have some influence on the best choice for these parameters as well. For this

reason γomniA,γomniB,γomniC and γomniD are learned posteriorly, serving as a correction layer

for those cases when knowing both sfrontal and slateral allows to output better parameter values

(Fig. 5.12). The whole learning structure is schematized in Figs. 5.9, 5.10, 5.11 and 5.12.

γwalkSlope

γfrontal

γlateral

γomni

Figure 5.9: Initial primitive branching.

2It is not relevant whether γfrontal orγlateral are trained first, since they do not depend on each other in any way
before the training of γomni
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Figure 5.10: Learning γfrontal gradually using partial learning, first for γfrontalA, then for
γfrontalB.

γlateral

γlateralA
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γlateralB
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Figure 5.11: Learning γlateral gradually using partial learning, first for γlateralA, then for γlateralB.
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γfrontal
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γwalkSlope

5.1
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Figure 5.12: Learning γomni, a correction layer for when knowing both sfrontal and slateral allows
to output better parameter values. Mutual learning of γomniA and γomniB is performed followed
by mutual learning of γomniC and γomniD. In the end, all primitives are combined, constituting
the γwalkSlope primitive.

Here ‖ is the vector concatenation operator:

(a1, a···, an) ‖ (b1, b···, bn) = (a1, a···, an, b1, b···, bn)

and ⊕ an operator that concatenates vectors that correspond to different parameters and sums

vectors that correspond to the same parameters, in this case defined as:

⊕(x, y, z, t, w, p) = (x + (z ‖ t)) ‖ (y + (w ‖ p))

5.3.6 Learning structure parameters

The used parameter values in the several steps of the learning structure can be consulted in

appendix B.
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5.4 Results

In order to test the effectiveness of the ankle pitch and ankle roll feedback mechanisms, the

achieved cost for several states was measured before and after including them in the controller.

The results can be consulted in Fig. 5.13. These feedback mechanisms caused the cost to

decrease, on average ∼ 0.058 in each tested state.

To illustrate the usefulness and test the effectiveness of the direction correction feedback,

the robot’s trajectory was recorded with this mechanism turned on and turned off. The graphic

in Fig. 5.14 shows the difference between the recorded trajectories when it was intended for the

robot to walk on a straight line. Also, to illustrate how well the direction correction feedback

can be used for changing direction, the robot’s trajectory was recorded during a simulation

where the intended direction is different from the initial robot’s facing direction. The recorded

trajectory in this experiment is plotted in Fig. 5.15.

In Fig. 5.16, the costs evolution throughout the learning of the three subprimitives -

γfrontal,γlateral and γomni - that together constitute the final γwalkSlope primitive is shown. The

costs were evaluated every 90 rollouts during the algorithm execution. Each cost evaluation

consisted in testing the achieved policy for a uniformly distributed set of states inside the range

of states valid for the primitive being optimized. Then the obtained costs would be averaged -

the final value is what is represented by the y-axis on Fig. 5.16.

The same tests and format used for Fig. 5.13 were used in Fig. 5.17 to show the difference

between the performance of the controller before and after the learning is carried out. Here,

the dark green cells show the states where the robot managed to complete a full simulation

session without falling. On average, the robot managed to reduce the cost by ∼ 0.566 in each

tested state.

The ability to use the learned knowledge to adapt the robot’s controller parameters while

also changing direction was tested by recording the trajectory of the robot when walking

around a pivot in a sloped surface. In each instant the robot would adapt its parameters

according to the faced sfrontal and slateral values, and use the direction correction mechanism

to set the intended direction to be perpendicular to the vector from the pivot to its position.

Because the direction correction feedback is not immediate, the recorded trajectories are spiral-

shaped instead of being completely circular. The robot fell when walking counter-clockwise

but managed to complete several laps when walking clockwise. A video of this experiment is

available at: https://www.youtube.com/watch?v=QWtLn0PlHSE .

Finally in Fig. 5.19 and Fig. 5.20, the robot is shown walking stably on surfaces with hard

configurations. Videos of the robot walking in these conditions are available in: https://www.

youtube.com/watch?v=djlNcx9RKOA and https://www.youtube.com/watch?v=b3R0PzV0Big.
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Figure 5.13: Costs before (Fig. 5.13a) and after (Fig. 5.13b) adding ankle pitch and ankle roll
correction feedbacks. Each cell contains the cost obtained when running the simulation with
the sfrontal and slateral values (radians) indicated in the left column and in the top row, respec-
tively. Green cells represent lower costs and red cells represent high costs. These feedback
mechanisms cause the cost to decrease, on average, by ∼ 0.058 in each tested state.
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Figure 5.14: Trajectory of the robot with (blue) and without (orange) direction correction feed-
back on a flat surface.
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Figure 5.15: Trajectory of the robot on a flat surface when using direction feedback as a turning
mechanism.
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Figure 5.16: The costs evolution throughout the learning of the three subprimitives γfrontal
(Fig. 5.16a), γlateral (Fig. 5.16b) and γomni (Fig. 5.16c). The numbered line segments indicate
the rollouts dedicated to each step delineated in the learning structure shown in Figs. 5.10,
5.11 and 5.12.
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Figure 5.17: Costs before (Fig. 5.17a) and after (Fig. 5.17b) performing the learning process.
Green cells indicate sfrontal and slateral values where the robot did not fall during the simulation,
and red cells indicate sfrontal and slateral values that led to high costs. The achieved improvement
is reflected in the cost decreasing ∼ 0.566, on average, in each tested state. The range of slope
angles which the robot can sustain is greatly increased by the learning.
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Figure 5.18: Trajectory of the robot when walking around a pivot, in a sloped surface with a
slope of 0.08rad or 4.58◦, using the knowledge acquired in the learning process. In each instant
the robot adapts its parameters according to the faced sfrontal and slateral values, and uses the
direction correction mechanism to set the intended direction to be perpendicular to the vector
from the pivot to its position. The robot falls when walking counter-clockwise (Fig. 5.18a), but
manages to complete a full lap when walking clockwise (Fig. 5.18b).
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Figure 5.19: DARwIn-OP with a stable walking when sfrontal is equal to −0.16rad or −9.16◦

and slateral is equal to 0.16rad or 9.16◦.
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Figure 5.20: DARwIn-OP with a stable walking when sfrontal is equal to 0.1rad or 5.73◦ and
slateral is equal to 0.08rad or 4.58◦.

5.5 Discussion

From Fig. 5.13, it is possible to conclude that the ankle pitch and ankle roll correction feedback

mechanisms can bring an overall slight improvement, on average, when considering the range

of all tested sfrontal and slateral . However, some slope value combinations led to higher costs

when these feedback mechanisms were used. This suggests that ηpitch and ηroll might have not

been perfectly tuned, or that better dynamics for implementing this behavior might exist. In

alternative, it could also be possible to learn a mapping to update these parameters according

to sfrontal and slateral using F3L techniques.

The effectiveness of the direction correction feedback is noticeable in Figs. 5.14 and 5.15. In

Fig. 5.14, it is possible to observe that this feedback mechanism can correct the robot’s direction
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in order to have it walking in a straight line. In Fig. 5.15, it can be observed that this feedback

mechanism may also be used to change the direction while walking. While great changes of

direction may lead to unstable behavior, this can be solved by imposing limits on Aturn and/or

ż�,hipYaw, or by adjusting ηα,Direction and ηα,Direction, trading a faster turning for a safer one.

The direction correction mechanism was also important during the learning, because it forced

the robot to go on a straight line and face the terrain slope in the intended direction. Without

it, the learning algorithm could possibly find primitives which would map to parameters that

wouldn’t cause to robot to fall but would make it avoid the slope by changing direction.

In Fig. 5.16c it is possible to observe that the costs kept decreasing throughout the rollouts

during the learning of each subprimitive, but started to stabilize in the end of the process for

γfrontal and γlateral. For γomni, it appears that there was still more potential for improvement as

the recorded costs don’t show significant signs of stabilization yet.

In Fig. 5.17, it can be observed how much the learned knowledge improved the ability for

DARwIn-OP to walk in sloped terrains. The range of sfrontal and slateral value combinations

on which DARwIn-OP can walk was dramatically extended. F3L and CrKR++ have success-

fully been capable of learning the complex mapping from 2 state variables to 12 parameters.

Certainly, this mapping is not optimal, but it allows for an unquestionable and relevant im-

provement when comparing the final and the initial results. Moreover, further improvements

could be achieved by continuing to develop the learned primitives. Some extreme examples of

the application of the learned knowledge can be observed in Figs. 5.19 and 5.20.

Fig. 5.18, shows the trajectories of the DARwIn-OP when walking around a pivot in a

sloped surface. Even though this is not a task for which it was specifically trained during the

learning process, it manages to complete several laps without falling when walking clockwise,

and half a lap counter-clockwise. It is likely that with an additional learning step, with a spe-

cific task designed to test this aspect, the robot would be capable of walking in both directions

in a sloped terrain with moderate inclinations without falling.

5.6 Summary

In this chapter, the F3L framework presented in chapter 4 was used in order to generalize

a DARwIn-OP’s controller walking capabilities to sloped terrains. The achieved results are

gratifying and promising and attest the fact that F3L can provide an effective and useful tool

to structure the learning process of complex tasks. The feedback mechanisms also proved to

be useful, especially the direction correction mechanism, as it can be used both to correct the

direction of the robot and to change it while walking.
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Chapter 6

Final remarks

6.1 Conclusions

Robotics is a field that is still in its early stages and it is expected to become more and more

relevant in medical, social and educational contexts in the future. This thesis introduced some

techniques that may have the potential to contribute to the development of robotics in those

and other areas. Robots need to interact with the world in order to perform the tasks that they

are designed for. These interactions will become increasingly more complex as they are used in

a greater range of situations. However, it is extremely difficult for the hardware and software

developers to prepare a robot for every situation that it might face. Therefore, achieving a stage

where robots can learn and adapt most of their behavior is a crucial step towards unveiling

the full potential that they have to offer.

While the techniques introduced in this thesis are specially conceived for tasks related with

movement learning in robots, they can be used in other problems where there is the need to

perform learning of continuous action and state space parameterized policies.

CrKR++ extends the capabilities of CrKR, bringing the possibility to learn complex prim-

itives, even if in order to do that many training samples might need to be acquired. Contin-

uously learning how to define controller parameters in the best way according to certain task

conditions is a relevant capability that could improve robots performance in assignments like

moving objects, performing locomotion, or opening and closing doors. It is in fact an extremely

versatile and valuable adaptation mechanism that demonstrates how important CrKR++ can

be.

F3L brings tools that allow to divide the learning process of a task in several steps and with

that perform each step in separate learning modes involving multiple or single primitives.

Each step can be configured individually with different learning parameters, cost functions or

even training tasks. This makes it easier to apply CrKR++ for high dimensional tasks. Besides,
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can F3L improve the tractability of some reinforcement problems if the the primitive to be

learned is divided into subprimitives that can be learned faster and the learning process is

conducted adequately.

In the last chapter, it was exemplified how F3L could be employed in a useful and concrete

context. Together with feedback mechanisms, a controller that was only able to generate stable

locomotion for almost flat surfaces was turned into one which could adapt to a range of frontal

and lateral slope angles while walking. Some capability of changing direction during such task

was also achieved. This ultimately attests the usefulness that the techniques presented in this

thesis can provide.

We hope these contributions to help pushing the robotics field forward.

6.2 Future work

In order for the tools presented in this thesis to become more mature and usable by other re-

searchers and roboticists, some development and research has still to be done. In the following

we present some improvements and research lines that can add value to these tools.

Transparent parameter selection

Using CrKR++ requires one to set the values of a considerable number of parameters. Some-

times this demands having knowledge on how the algorithm works internally. Without this

knowledge, the end result may be frustrating. It would be convenient to make this process

more transparent for anyone using the algorithm, by automatically setting parameter values

whenever possible and by creating precise and short documentation that anyone interested

could follow in order to use the algorithm.

Dynamic representational power

CrKR++ could benefit from a mechanism that would allow one to have the representational

power of the policy to be optimized growing with the number of samples. It is possible for

the algorithm not being able to find a better policy because the used kernel functions are too

wide to allow the encoding of small details . This speeds up the convergence of the algorithm

but limits the maximum quality that can be achieved for the policy to be optimized. Adapting

these kernels as the number of samples grows could improve the potential of the algorithm

when used in long training sessions, without rendering it useless for short training sessions.
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GUI to design and generate learning structures

Creating the classes that define the settings for each CrKR++ unit and that combine the several

units into a primitive mix can be a slow and error-prone process. A Graphical User Interface

(GUI) could automatize this process by allowing to generate all needed files after choosing the

values for the settings of the CrKR++ units. Additionally this would be possible for a whole

learning structure scheme.

F3L tests

The F3L framework should be tested for a larger number of problems. This would unveil its

true potentialities and limitations.

Research and cataloging of learning patterns

There may be patterns of learning structures, i.e, sequences of F3L operations that work spe-

cially well for certain classes of problems. It would be relevant to explore and catalog the

existence of such patterns.

Different dynamics for the ankle pitch and ankle roll feedback mechanisms

The ankle pitch and ankle roll correction mechanisms used in DARwIn-OP during the per-

formed simulations only brought slight improvements to the preexisting controller. There may

be other dynamics that would allow to use the FSR sensors in the feet of the robot in a more

adequate way. It would be relevant to explore the existence of such dynamics.

Perform tests in real environments

The achieved results for DARwIn-OP walking on sloped surfaces were obtained via simulation.

Despite the realistic physics engine used by the simulation software, it would be important to

test the capabilities of F3L in a non virtual environment, in order to verify if it could still be

able to achieve good results with the presence of noise in actuators and sensors.
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Appendix A

Parameter values for the controller

Table A.1: Initial parameter values for the DARwIn-OP controller used during the simulations.

Parameter Value

ω π
0.64

k 7
α 1
σ π

6
AbalancingLeft 14

AbalancingRight 14
AflexHip 15
AflexKnee 30

Aturn 0
Acompass 11
O�,hRoll 0
O�,aRoll 0
O�,hYaw 0
O�,hPitch -25
O�,kPitch 40
O�,aPitch 20
Cleft,hPitch 0
Cleft,kPitch 0

Cright,hPitch 0
Cright,kPitch 0

ηpitch 0.0025
ηroll 0.005

ηα,Direction 4
ηβ,Direction 0.1
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Appendix B

Parameter values for the learning

process

Table B.1: Parameter values for the several stages of the learning process of generalizing
DARwIn-OP ’s walking capabilities. The step numbers indicated in the table’s headers are
marked in Figs. 5.9, 5.10, 5.11 and 5.12.

Parameter 1 2 3 4 5.1 5.2 6.1 6.2

maximumCost 1.804

maximumCostStandardized 10

lambda 150

varianceMultiplier 25 15 25 12 15 9 15 7.5

minimumVariance 0.25

kernelStdDev 0.05 0.06

kernelMultiplier 1

agingFactor 0.000025

maxAdmissibleDis...1 0.4

lambdaForStandardizedCosts 25

standardizePoolSize 300 450

numberTryoutsCons...2 9

rolloutsPerRun 900

samplesToStop 7200 7200 9900 5400 9900 9900

1maxAdmissibleDistanceToUseStandardizePool
2numberTryoutsConsideredWhenStandardizing
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