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Abstract: The knowledge acquired through past experiences is of the most importance when humans or machines try 
to find solutions for new problems based on past ones, which makes the core of any Case-based Reasoning 
approach to problem solving. On the other hand, existent CBR systems are neither complete nor adaptable 
to specific domains. Indeed, the effort to adapt either the reasoning process or the knowledge representation 
mechanism to a new problem is too high, i.e., it is extremely difficult to adapt the input to the computational 
framework in order to get a solution to a particular problem. This is the drawback that is addressed in this 
work. 

1 INTRODUCTION 

Case-Based Reasoning (CBR) provides the ability of 
solving new problems by reusing knowledge 
acquired from past experiences. In fact, it can be 
described as the process of solving new problems 
based on solutions of similar past ones. One well-
known example is the mechanic that listening to the 
strange sound that the engine is making and the 
symptoms of the problem, uses his/her past 
experiences to make a first analysis of the problem, 
and uses a solution that has already been castoff on 
similar situations. This technique can be used in 
domains where there is a large amount of 
information that has been acquired through 
experience (Aamodt and Plaza, 1994). CBR is used, 
especially when similar cases have similar terms and 
solutions, even when they have different 
backgrounds, i.e., the knowledge acquired when 
solving some situation can be used as a first 
approach to solve new ones (Balke T. et al, 2009).  

Nowadays, CBR is used in several areas and has 
a tremendous potential. There are examples of its 
use in The Law with respect to dispute resolution 
(Carneiro D. et al, 2009; Carneiro D. et al, 2010), in 
medicine (Kolodner J., 1992; Khan A. and Hoffman 
A., 2002), among others. A typical, and maybe the 
greatest, problem in the use of CBR is related to the 
availability of the data and the cost of obtaining it 
(Stahl A. and Gabel T., 2006).  

The typical CBR cycle (Figure 1) clearly defines 

the vocabulary of the domain and the steps that 
should be followed to have a consistent model. The 
initial description of the problem becomes a new 
case that is used to Retrieve one or more cases from 
the repository. At this stage it is important to 
identify the characteristics of the new problem and 
retrieve cases with a higher degree of similarity to it. 
Then, a solution for the problem emerges when 
combining the new case with the retrieved case, on 
the Reuse phase. Here, the solution of the retrieved 
case is reused, tested and adapted, if possible, to the 
new case, thus creating the solved case that is 
suggested as a solution (Aamodt and Plaza, 1994). 
However, when adapting the solution it is essential 
to have feedback from the user since automatic 
adaptation in existing systems is almost impossible. 
Currently, the main adaptation techniques are the 
null adaptation (no adaptation is needed); replace the 
attributes of the solution and not the structure of the 
solution; use rules; and by analogy transfer the 
knowledge of the past problems to the new ones and 
with that generate the solution (Kolodner J., 1992). 
It is on the Revise stage that the suggested solution is 
tested and it is here where exists an interaction with 
the user letting him/her correct/adapt/change the 
suggested solution by creating the Test Repaired 
Case that sets the solution of the new problem. The 
test repaired case must be correctly tested to ensure 
that the solution is indeed correct. This is iterative 
since the solution must be tested and adapted while 
the result of applying that solution is unsatisfying. 
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During the Retain (or learning) stage the case is 
learned and the knowledge base is updated with the 
new case. In this approach, the domain knowledge 
stands for itself, while the cases refer to past 
problems and their solutions (Kolodner J., 1992). 

 

Figure 1: Typical CBR Cycle (Aamodt and Plaza, 1994). 

This work brings the evidence that existent CBR 
systems are neither complete nor adaptable enough 
for all domains. In some cases, the user is required 
to follow the similarity method defined by the 
system, even if it does not fit user’s needs. On 
present CBR system there is an obstacle related to 
the capability of dealing with unknown and 
incomplete information. This new approach will be 
completely generic and it will have a focus on that.  

As it will be explained later, existing CBR tools 
follow different approaches to problem solving, i.e., 
looking at the same patterns from different 
perspectives. However, they all look too complex 
and the effort to adapt them to a specific problem 
domain is comparable to develop a full new CBR. 
Also, an important feature that often is discarded is 
the ability to compare strings. In some problem 
domains, strings are important to describe a 
situation, the problem in itself or even an event. If 
the CBR is only prepared to work with numbers then 
this gap will prove to be fatal. Our CBR approach 
uses several of the most popular string similarity 
algorithms, namely the Dice Coefficient (Dice L., 
1945), Jaro-Winkler (Winkler W., 1990) and the 
Levenshtein Distance (Levenshtein V., 1966) 
Strategies. Also, it will be possible to set the weight 
of a particular attribute along the attributes that 
make a case’s argument. This new approach to CBR 
will potentiate a new perception of this methodology 

for problem solving, going in depth in aspects like 
the case´s Quality-of-Information (QoI) or the 
Degree-of-Confidence (DoC), a measure of one´s 
confidence that the value of a particular attribute is 
the expect one. Under this framework it will be 
possible to handle unknown, incomplete or even 
contradictory data. It will also induce a change on 
the typical CBR cycle set in Figure 1. This new 
cycle will have into consideration a normalization 
phase, with the attributes values of the case 
argument being set in the interval [0,1], therefore 
making easier their DoCs evaluation, as it will be 
seen later in the paper. It will also improve 
performance and reliability of the similarity strategy. 
The case base will be given in terms of triples that 
follow the pattern: 

Case = {<Raw-case, Normalized-case, 
Description-case> | where Raw-case and 
Normalized-case stand for themselves, and 
Description-case is made on a set of strings or even 
in free text, which may be analysed with specific 
string similarity algorithms} 

2 RELATED WORK 

On the one hand, Case-Based Reasoning is either 
extremely simple but also extraordinarily efficient. 
CBR’s applicability ranges across different areas 
like Medical Diagnosis, The Law, Assisted Student 
Learning, Diets, Income Tax Law, Drawing, 
Classification, Cooking Recipes, just to name a few.  

Indeed, interesting results using CBR in 
education have been reported. It has been found that 
CBR could greatly improve Assisted Student 
Learning (Riesbeck and Shank, 1991; Tsinakos A., 
2003). A domain independent education environment 
named SYIM_ver2 was developed using CBR 
techniques as the reasoning component, being able 
to monitor the student’s progress/performance, 
recording his/her learning needs, or even answering 
to student’s questions. The system uses a Process of 
Identification of Similar Question (PISQ) that is 
responsible to find similar cases. PISQ uses cases 
that are stored on an Educational Knowledge Base 
and provides answers to questions via a key word 
search feature. It is also employing two search 
methods: controlled vocabulary search and free text 
search among the cases of the knowledge base. This 
allowed the system to tackle some known 
pedagogical drawbacks that were present in 
SYIM_ver1 (Tsinakos A., 2003). 

In medicine, CBR is mainly used for diagnosis 
and in diet recommendations (Kolodner J., 1992; 
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Khan A. and Hoffman A., 2002). Physicians use 
knowledge acquired from past experiences to treat 
new patients. Let’s imagine a doctor that is treating a 
patient, which suffers from a specific disease, with 
specific symptoms. After treating the patient, the 
doctor assimilates this knowledge and creates a new 
“case”. When a new patient appears, presenting the 
same symptoms, the doctor can “retrieve” the past 
“case” and treat this new patient in a much more 
effective way, saving time and money. Here the 
cases are stored in a healthcare knowledge base and 
contain information about the healthiness of a 
particular individual, as triples in the form 
<Problem, Solution, Justification> (Kolodner J., 
1993). The system is only helping the Doctor in 
his/her analysis. The Doctor must validate if the case 
retrieved by the system reports to the disease that the 
patient is suffering. If this is the situation, then it is 
just a question of adapting the solution to the 
problem at hands. 

The diet system helps in defining the patient diet 
when he is admitted to the hospital. Many have 
special needs in regard their medical conditions, 
nutrient requirements, calories restrictions or even 
cultural backgrounds. The system, using CBR, is 
able to provide a menu that fits the patient needs 
(Khan A. and Hoffman A., 2002). The expert must 
then validate if the menu is appropriate and tell the 
system if the solution was accepted or adapted, with 
more cases being added to the knowledge base. 

Lawyers and judges are always using their past 
experiences to evaluate new cases. In other words, 
they are using CBR. Related to the legal subject 
there are many examples. One of them is related to 
online dispute resolution, since we now face an era 
of huge technology usage and so, traditional courts 
cannot deal with the amount of problems put to 
them. A solution is to use a CBR system that using 
past experiences is able to achieve a quicker solution 
to the real problem (Carneiro D. et al, 2009) 
(Carneiro D. et al, 2010). Another example was the 
development of HYPO, a model that improves legal 
reasoning. The name is a reference for both actual 
and hypothetical cases (Rissland E. and Ashley K., 
1989). Each case includes information like the 
description of the problem, the arguments, the 
explanation, and the justification, among others. The 
input to HYPO is named as Current Fact Situation 
(cfs) and is provided by the user. The output is 
provided as a case-analysis-record with HYPO’s 
analysis; a claim-lattice showing graphic relations 
between the new case and the cases retrieved by the 
system; 3-ply arguments used and the responses of 
both plaintiff and defendant to them; and a case 

citation summary (Rissland E. and Ashley K., 1989). 
The domain knowledge is kept in three different 

places, namely the Case Knowledge Base (CKB); 
the library of dimensions; and the normative 
standards (which are used to select the best cases). 
The CKB is the place where the cases are stored. 
Dimensions encodes legal knowledge for arguing 
about a claim from a certain point of view. A key 
aspect is that dimensions encapsulates the legal 
sense of what makes the situation better or worse 
from a case perception by the actors (Rissland E. 
and Ashley K., 1989). 

HYPO has experienced very good results 
allowing new legal reasoning systems to be 
developed using HYPO as a base. It may be referred 
the TAX-HYPO that acts on the domain of tax law 
(Rissland E. and Skalak D., 1989), or the 
CABARET, also for income tax law domain (Skalak 
D. and Rissland E., 1992) and the IBP that makes 
predictions based on argumentation concepts 
(Brüninghaus and Ashley, 2003). 

On the other hand, there are several CBR 
software tools developed and tested that are being 
applied in real situations, namely Art*Enterprise, 
developed by ART Inference Corporation (Watson 
I., 1996). It offers a variety of computational 
paradigms such as a procedural programming 
language, rules, cases, and so on. Present in almost 
every operating system, this tool contains a GUI 
builder that is able to connect to data in most of 
proprietary DBMS formats. It also allows the 
developer to access directly the CBR giving him/her 
more control of the system, which in most situations 
may turn into a drawback. The CBR in itself is also 
quite limited, once the cases are represented as flat 
values (attribute pairs). The similarity strategy is 
also unknown, which may represent another 
constraint since there is no information about the 
possibility of adapting it. These features are 
presented on Table 1. 

CasePower which is a tool developed using 
CBR. It was developed by Inductive Solutions Inc. 
(Watson I., 1996) and uses the spreadsheet 
environment of Excel. The confines of the Excel 
functionalities are echoed on the CBR framework, 
making it more suitable for numerical applications. 
The retrieval strategy of CasePower is the nearest 
neighbour, which uses a weighted sum of given 
features. In addition to this strategy the system 
attaches an index to each case in advance, improving 
the system performance in the retrieval process. The 
adaptation phase in this system may be made 
through formulas and macros from Excel but the 
CBR system in itself cannot be adapted as explained 
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in Table 1. 
CBR2 denotes a family of products from 

Inference Corporation, and may be the most 
successful CBR. This family is composed by CBR 
Express which stands for a development 
environment, featuring a customer call tracking 
module; the CasePoint which is a search engine for 
cases developed by CBR Express; the Generator that 
allows the creation of cases-bases through MS Word 
or ASCII files; and finally the Tester which is a tool 
capable of providing metrics for developers. In this 
tool the cases structure comprises a title, a case 
description, a set of weighted questions (attribute 
pairs), and a set of actions. Such as CasePower, 
CBR2 uses the nearest neighbour strategy to retrieve 
the cases initially. Cases can also be stored in almost 
every proprietary database format. However, the 
main and most valuable feature of CBR2 is the 
ability to deal with free-form text. It also ignores 
words like and, or, I, there, just to name a few. It 
also uses synonyms and the representation of words 
as trigrams, which makes the system tolerant to 
spelling mistakes and typing errors. 

The EasyReasoner that is a module within Eclipse, 
being extensively regulated since it is available as a 
C library, so there is no development interface and is 
only suitable for experienced C programmers. This 
software developed by Hayley Enterprises (Watson 
I., 1996) is very similar to ART and also ignores 
noise words and use trigrams to deal with spelling 
mistakes. Once more, these tools are not likely to be 
adapted because it is an API, and the similarity 
strategy is not even known. 

The ESTEEM software tool, which was 
developed by Esteem Software Inc., has its own 
inference engine, a feature that allows the developer 
to create rules, providing a control over the 
induction process. Moreover, cases may have a 
hierarchy that can narrow the searches, which is very 
useful when accessing multiple bases and nested 
cases. The matching strategy is also the nearest 
neighbour. The advantages of this tool are the 
adaptability of the system and the usage of two 
different similarity strategies (nearest neighbour and 
induction). A disadvantage is the fact that it only 
runs on Windows (Watson I. D., 1996). 

jCaBaRe is an API that allows the usage of Case-
Based Reasoning features. It was developed using 
Java as a programming language, which gives this 
tool the ability to run in almost every operating 
system. As an API, jCaBaRe has the possibility to be 
adapted and extended providing a solution for a 
huge variety of problems. The developer can 
establish the cases attributes, the weight of each 

attribute, the retrieval of cases, and so on. One of its 
main limitations is the fact that it still requires a lot 
of work, by the developer, to achieve an working 
system. Several features must be developed from 
scratch. 

The Kate software tool that was produced by 
Acknosoft (Althof, K-D., 1995) and is composed by 
a set of tools such as Kate-Induction, Kate-CBR, 
Kate-Editor, and Kate-Runtime. The Kate-Induction 
tool is based on induction and allows the developer 
to create an object representation of cases, which can 
be imported from databases and spreadsheets. The 
induction algorithm can deal with missing 
information. In these cases, Kate is able to use the 
background knowledge. The Kate-CBR is the tool 
responsible for case comparison and it uses the 
nearest neighbour strategy. This tool also enables the 
customization of the similarity assessments. Kate-
Editor is a set of libraries integrated with ToolBook, 
allowing the developer to customize the interface. 
Finally, Kate-Runtime is a set of interface utilities 
connected to ToolBook that allows the creation of an 
user application. 

Another CBR system is the ReMind, a software 
tool created by Cognitive Systems Inc. (Watson I., 
1996). The retrieval strategies are based on 
templates, nearest neighbour, induction and 
knowledge-guided induction. The templates retrieval 
is based on simple SQL-like queries, the nearest 
neighbour focus on weights placed on cases features 
and the inductive process can be made either 
automatically by ReMind, or the user can specify a 
model to guide de induction algorithm. These models 
will help the system to relate features providing more 
quality to the retrieval process. The ReMind is 
available as a C library. It is also one of the most 
flexible CBR tools, however it is not an appropriate 
tool for free text handling attributes. The major 
limitations of this system are the fact that cases are 
hidden and cannot be exported, and the excessive 
time spent on the case retrieval process. The nearest 
neighbour algorithm is too slow, and besides the fact 
that inductive process is fast, the construction of 
clusters trees is also slow (Watson I., 1996). 

The characteristics of all these tools are compiled 
on Table 1, where the implemented features are 
represented by “+” and the features not implemented 
by “-”. This table provides an overview of the main 
features existing in each tool. 
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Table 1: Characteristics of existent CBR Software Tools. 

 
CBR Software Tools Characteristics 

CBRs/Features Type Similarity Strategy 
Database 
Platforms 

Cross 
Platform 

Free Text 
Handling 

Adaptability

ART*Enterprise User Application Unknown Several + - - 

CasePower User Application Nearest Neighbour Unknown + - - 

CBR Express 
User Application / 

API 
Nearest Neighbour Several + + - 

Easy Reasoner API Unknown Unknown + + - 

ESTEEM 
User Application / 

API 
Nearest Neighbour / 

Induction 
Several - - + 

jCaBaRe API 
To be  

developed 
To be 

developed 
+ 

To be 
developed 

+ 

KATE User Application 
Nearest Neighbour / 

Induction 
Several - - - 

ReMind 
User Application / 

API 
Nearest Neighbour / 

Induction 
Unknown + - + 

 
3 KNOWLEDGE 

REPRESENTATION AND 
REASONING 

Many approaches for knowledge representations and 
reasoning have been proposed using the Logic 
Programming (LP) paradigm, namely in the area of 
Model Theory (Kakas A. et al, 1998; Gelfond M. 
and Lifschitz V., 1988; Pereira L. and Anh H., 
2009), and Proof Theory (Neves J., 1984; Neves J. et 
al, 2007). We follow the proof theoretical approach 
and an extension to the LP language, to knowledge 
representations and reasoning. An Extended Logic 
Program (ELP) is a finite set of clauses in the form: 

← ,⋯ , , ,⋯ , 	  (1)

? ,⋯ , , 	 ,⋯ , 	 		 , 0  (2)

where ? is a domain atom denoting falsity, the pi, qj, 
and p are classical ground literals, i.e., either 
positive atoms or atoms preceded by the classical 
negation sign  (Neves J., 1984). Under this 
representation formalism, every program is 
associated with a set of abducibles (Kakas A. et al, 
1998; Pereira L. and Anh H., 2009) given here in the 
form of exceptions to the extensions of the predicates 
that make the program. Once again, LP emerged as 

an attractive formalism for knowledge 
representations and reasoning tasks, introducing an 
efficient search mechanism for problem solving.  

Due to the growing need to offer user support in 
decision making processes some studies have been 
presented (Halpern J., 2005; Kovalerchuck B. and 
Resconi G., 2010) related to the qualitative models 
and qualitative reasoning in Database Theory and in 
Artificial Intelligence research. With respect to the 
problem of knowledge representation and reasoning 
in Logic Programming (LP), a measure of the 
Quality-of-Information (QoI) of such programs has 
been object of some work with promising results 
(Lucas P., 2003; Machado J. et al, 2010). The QoI 
with respect to the extension of a predicate i will be 
given by a truth-value in the interval [0,1], i.e., if the 
information is known (positive) or false (negative) 
the QoI for the extension of predicatei is 1. For 
situations where the information is unknown, the 
QoI is given by: 

→

1
0 				 ≫ 0  (3)

where N denotes the cardinality of the set of terms or 
clauses of the extension of predicatei that stand for 
the incompleteness under consideration. For 
situations where the extension of predicatei is 
unknown but can be taken from a set of values, the 
QoI is given by: 

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

298



1  (4)

where Card denotes the cardinality of the abducibles 
set for i, if the abducibles set is disjoint. If the 
abducibles set is not disjoint, the QoI is given by: 

1

⋯
 (5)

where  is a card-combination subset, with Card 
elements. The next element of the model to be 
considered is the relative importance that a predicate 
assigns to each of its attributes under observation, 
i.e., , which stands for the relevance of attribute k 
in the extension of	 . It is also assumed that 
the weights of all the attribute predicates are 
normalized, i.e.: 

1, ∀  (6)

where  denotes the universal quantifier. It is now 
possible to define a predicate’s scoring function 

 so that, for a value , ⋯ , , defined in 
terms of the attributes of , one may have: 

⁄  (7)

It is now possible to engender the universe of 
discourse, according to the information given in the 
logic programs that endorse the information about 
the problem under consideration, according to 
productions of the type: 

, ⋯ , ∷  (8)

and evaluate the Degree of Confidence given by 
, ⋯ , ,⁄  which denotes one’s 

confidence in a particular term of the extension 
o 	 .. To be more general, let us suppose 
that the Universe of Discourse is described by the 
extension of the predicates: 

⋯ , ⋯ ,⋯ , ⋯ 		 			 0  (9)

The solution we present does not only affect the 
case structure but also how similarity is calculated. 
So, assuming we have a clause that is mapped into a 
case, that clause has as argument all the attributes 
that make the case. The argument values may be of 
the type unknown or members of a set, may be in the 
scope of a given interval or may qualify a particular 
observation. Let us consider the following clause 
where the first argument value may fit into the 
interval [35,65] with a domain of [0,100], the value 
of the second argument is unknown, which is 
represented by the symbol , with a domain that 

ranges in the interval [0,20], and the third argument 
stands for itself, with a domain that ranges in the 
interval [0,4]. Let us consider that the case data is 
given by the extension of predicate , given in the 
form: 

: , , → ,  (10)

One may have: 

, , ⟵ 	 , ,

35, 65 , ,							1 ∷ 0.85
` 	 	 	 , , 	

	

0, 100 0, 20 0, 4 	
` 	 , , 	

 (11)

Once the clauses or terms of the extension of the 
predicate are set, the next step is to transform all the 
arguments, of each clause, into continuous intervals. 
In this step, it is important to consider the domain of 
the arguments. As the second argument is unknown, 
its interval will cover all the possibilities of the 
domain. The third argument speaks for itself. The 
0.85 value taken from the interval [0,1] denotes the 
QoI of the term 35, 65 , , 1 . Therefore, one may 
have: 

, , ⟵ 	 , ,

35, 65 , 0, 20 , 1,1 ∷ 0.85
` 	 	 	 , , 	

		

0, 100 0, 20 0, 4 	
` , , 	

											

 (12)

Now, one is in position to calculate the Degree of 
Confidence for each attribute that makes the term 
arguments (e.g. for attribute one it denotes one’s 
confidence that the attribute under consideration fits 
into the interval [35,65]). Next, we set the 
boundaries of the arguments intervals to be fitted in 
the interval [0,1] according to the normalization 
procedure given in the form /

	 , where the  stand for themselves. 

, , ⟵ , , 																

35 0
100 0

,
65 0
100 0

,																																				
	

0 0
20 0

,
20 0
20 0

,			
1 0
4 0

,
1 0
4 0

	 0.35, 0.65 , 0, 1 , 0.25,0.25
` 	 	 	 	 , , 	

∷ 0.85	

0, 1 0, 1 0, 1 	
` 	 , , 	

									

 (13)
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The Degree of Confidence is evaluated using the 
equation √1 ∆ , as it is illustrated in 
Figure 2. Here ∆  stands for the length of the 
arguments intervals, once normalized. 

 

Figure 2: Evaluation of the Degree of Confidence. 

, , ⟵ 	 , , 																

0.95,											0,											1 	 ∷ 0.85
` 	 	 	 	 , , 	

	

0.35, 0.65 0, 1 	 0.25,0.25
` 	 	 	 	 , , 	

	 0, 1 							 0, 1 								 0, 1 	
` 	 	 	 , , 	

(14)

It is now possible to represent the case base in a 
graphic form, showing each case in the Cartesian 
plane in terms of its QoI and DoC (Figure 3). 

 

Figure 3: Case base represented in the cartesian plane. 

To select possible solutions to the case problem 
under consideration, we look at Figure 3 where the 
best cluster is selected according to a similarity 
measure given in terms of the modulus of the 
arithmetic difference between the arguments of the 
cluster case with respect to their counterparts on the 
case problem. The new case is represented as the 
square inside the circle (Figure 4). 

 

Figure 4: Clustering the case base. 

4 A CASE STUDY 

As a case study, consider the scenario where a 
company provides software product support to 
customers. When customers have problems in a 
given product, they open a new ticket with the 
description and the symptoms of the problem. 
Different products may share the same components 
so, the solution for a problem in a specific product 
can be found in a ticket regarding another product. 
In this case study, the severity of a problem was 
defined as being scaled as Very Low, Low, Medium, 
High and Very High. In a numeric scale this 
corresponds to the intervals [1,2], [3,4], [5,6], [7,8] 
and [9,10], respectively. There are five possible 
operating systems: HP-UX 11.31, Solaris 9, Solaris 10, 
Windows XP and Windows 7. As for the database 
provider, it may be one of the following: Oracle10g 
Release 1, Oracle10g Release 2, Oracle11g Release 
1 and Oracle11g Release 2. The company has a total 
of twenty three products. 

Figure 5 shows the main attributes of a new 
ticket that was opened by a customer. The severity 
of the problem was defined as being Very High. The 
database provider was not specified and this 
problem, described by comment “Description3”, is 
affecting product with id 12. One’s goal is to find 
the solution, to this new ticket, in the knowledge 
base. Having that in mind, let us consider a 
relational database that is given in terms of the three 
relations presented in Figure 6. That information is 
related with past problems that affected several 
products of the company. Some incomplete data, 
which is represented by the  symbol, is presented 
on the extensions of some relations or predicates that 
are being considered. For instance, for problem 2 
(Problem Report table) the operating system is 
unknown. For problem 1, the Severity is 
Low/Medium and so its value ranges in the interval 
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[3,6] (union of intervals [3,4] and [5,6]), in a set 
defined between one and ten. Each problem has its 
own description. 

Severity System_id DbProvider_idProduct_id Description
Very 
High 

3 Unknown 12 Description3

Figure 5: New ticket's characteristics and description. 

The case repository is given in terms of the set 
{<Raw-case, Normalized-Case, Description-case>}, 
as it was stated above. 

Let us consider the relations given in Figure 6, in 
terms of the ticket predicate, given in the form: 

: , , , → 	 0,1  

where 0 (zero) and 1 (one) denote, respectively, the 
truth-values false and true. Then, it would be 
possible to give the extensions of the predicates as: 

{ 

	 , , ,  	← 	 , , ,   

3,6 ,			3,						 ,				11
` 	 	

∷ 1  

				 1,10 1,5 1,4 1,23
` 	 	

																																								 

7,8 ,					 ,					2,						12	
` 	 	

∷ 1  

									 1,10 	 1,5 		 1,4 1,23
` 	 	

																																								 

 

3,6 , 3,3 , 1,4 , 11,11
` 	 	

∷ 1  

																 1,10 	 1,5 		 1,4 			 1,23
` 	 	

																										  

7,8 , 1,5 , 2,2 , 12,12
											 ` 	 	

∷ 1  

																 1,10 1,5 	 1,4 				 1,23
` 	 	

																															 

 

0.222,0.556 , 0.5,0.5 , 0,1 , 0.45,0.45 	 

0.667,0.778 , 0,1 , 0.33,0.33 , 0.5,0.5  

 

0.943,				1,						0,								1
																					 ` 	 	 	

∷ 1  

																			 3,6 	 3,3 	 1,4 	 11,11
` 	 	

  

																			 1,10 1,5 	 1,4 			 1,23
												 ` 	 	

							  

0.994, 0,							1,										1
																			 ` 	 	 	

∷ 1  

																			 7,8 	 1,5 2,2 	 12,12
` 	 	

  

																			 1,10 1,5 1,4 	 1,23
																												 ` 	 	

																  

} 

The description of the case will be necessary 
when analysing the similarities between the 
description of the tickets present in the knowledge 
base and new problems that arrive to the system. 

Now, by adapting the new case (Figure 5) to this 
approach we would have: 

{ 

	 , , ,  	← 	 , , ,    

9,10 ,			3,						 ,				12
																									 ` 	 	

∷ 1  

																				 1,10 1,5 1,4 1,23
` 	 	

																																								 

 

 
 

 
Severity Comments Platforms 

Problem_id Severity Problem_id Product_id Description Problem_id System_id DbProvider_id
1 Low/Medium 1 11 Description1 1 3  
2 High 2 12 Description2 2  2 

 
 

Problem Report 
Problem_id Severity System_id DbProvider_id Product_id Description 

1 [3,6] 3 11 Description1 
2 [7,8] 2 12 Description2 

Figure 6: Extension of the Relational Database model. 
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9,10 , 3,3 , 1,4 , 12,12
																						 ` 	 	

∷ 1  

																				 1,10 		 1,5 		 1,4 		 1,23
	 ` 	 	

																											 

 

0.889,1 , 0.5,0.5 , 0,1 , 0.5, 0.5 	 

 

0.994,			1,						0,									1
																													 ` 	 	 	

∷ 1  

	 9,10 	 3,3 	 1,4 	 12,12
` 	 	

 

																									 1,10 	 1,5 	 1,4 		 1,23
` 	 	

														 

} 

 

Having all clauses normalized, the system is able 
to retrieve cases with higher similarity value. First, 
the input case is compared with every retrieved case 
from the cluster. The result is achieved by getting 
the average between the attributes, except the 
Description. It will be assumed that every attribute 
has equal weight. In clauses where each attribute has 
a weight, the average must be weighted.  

Descriptions will be compared using String 
Similarity Algorithms, as stated before, in order to 
get a similarity measure between them. According to 
this, one first has to compare the four attributes that 
make the normalized case, obtaining the following 
similarity values between ticket 3 (three) and the 
other two:  

{ 

	 0.943, 1,						0,										1
																																	 ` 	 	 	

∷ 1 

0.994,						0,							1,										1
																																		 ` 	 	 	

∷ 1  

	 0.994, 1,						0,										1
																													 ` 	 	 	

∷ 1  

→

|0.994 0.943| 	 |1 1| 	 |0 0| |1 1|
4

 

→

|0.994 0.994| 	 |1 0| 	 |0 1| |1 1|
4

 

→ 0.013 

→ 0.5  

} 

where “|” and “|” is our notation for modulus, i.e. it 
stands for the absolute value of a given number. It 
was assumed that every attribute has equal weight.  

It is then necessary to compare the description of 
the new ticket with the descriptions of ticket one and 
two (for this case study, the strategy used was the 
Dice Coefficient): 

{ 

→ 0.327	

→ 0.814	

} 

With these values we are able to get the final 
similarity measure: 

{ 

→
0.013 0.327

2
0.17 

→
0.5 0.814

2
0.657 

} 

According to these results, our approach 
determines that ticket two is the most similar case, in 
our knowledge base, when receiving ticket three as 
input, and so it will be the case that will be retrieved 
by the system. 

5 CONCLUSIONS AND FUTURE 
WORK 

The comparison between free text parameters is an 
expensive and not so reliable task. However, there 
are many case studies that demand a huge reliability 
on those comparisons. For example, if we want to 
establish a relation between errors of an application 
reported by users, there is no way to quantify each 
one of the parameters. That was not however the 
only proposed goal. We also developed a solution 
that is able to handle default, unknown and 
incomplete data using concepts like the DoC and the 
QoI.  This   DoC   denotes   one’s   confidence   in  a 
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Figure 7: Adapted CBR cycle taking into consideration the normalization phase. 

particular term of the extension of a predicate. It 
allows one to normalize all cases that live within the 
knowledge base and it improves the performance of 
the similarity analysis that is made when retrieving 
cases. In fact, this concept of calculating the DoC 
can be represented in an adapted CBR cycle, as 
shown in  
Figure 7. The main difference between this new 
cycle and the well-known typical CBR cycle is the 
Normalization phase and the fact that all cases 
within the knowledge base are normalized. The 
Normalization phase is where the new case is 
normalized and where its DoC is calculated. In fact, 
when learning the case, the system is learning also 
the normalized case, allowing the cycle to retrieve 
cases that fulfil this structure. The Retrieve phase 
takes into account the DoC of each case when 
analysing similarities between cases. This analysis 
handles generic data without caring about the data 
type of the attributes. It is also able to analyse free 
text attributes using several String Similarities 
Algorithms which fulfil a gap that is present in 
almost all CBR Software Tools. This approach 
proved to be useful in other real situations such as 
schizophrenia diagnosis (Cardoso L. et al, 2013) or 
asphalt pavement modeling (Neves J. et al, 2012). 
These two cases revealed a demand that was not 
forgotten in this work, which is the possibility of 
setting the weights of each attribute on the fly. This 

feature gives the user the possibility to narrow the 
search for similar cases at runtime. 

As future work it will be important to add more 
string similarity strategies. Furthermore, it may be 
also important to implement an independent CBR 
system to automatically choose which strategy is the 
most reliable to the current case study. Still related 
to the similarity strategies, our approach allows the 
user to define the weights of cases attributes on the 
fly, letting the user to choose the strategy he prefers. 
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