
Handling Default Data under a Case-based Reasoning Approach

Bruno Fernandes1, Mauro Freitas1, Cesar Analide1, Henrique Vicente2 and José Neves1

1Department of Informatics, University of Minho, Braga, Portugal
2Department of Chemistry, University of Évora, Évora, Portugal

Keywords: Case-based Reasoning, Intelligent Systems, Similarity Analysis.

Abstract: The knowledge acquired through past experiences is of the most importance when humans or machines try
to find solutions for new problems based on past ones, which makes the core of any Case-based Reasoning
approach to problem solving. On the other hand, existent CBR systems are neither complete nor adaptable
to specific domains. Indeed, the effort to adapt either the reasoning process or the knowledge representation
mechanism to a new problem is too high, i.e., it is extremely difficult to adapt the input to the computational
framework in order to get a solution to a particular problem. This is the drawback that is addressed in this
work.

1 INTRODUCTION

Case-Based Reasoning (CBR) provides the ability of
solving new problems by reusing knowledge
acquired from past experiences. In fact, it can be
described as the process of solving new problems
based on solutions of similar past ones. One well-
known example is the mechanic that listening to the
strange sound that the engine is making and the
symptoms of the problem, uses his/her past
experiences to make a first analysis of the problem,
and uses a solution that has already been castoff on
similar situations. This technique can be used in
domains where there is a large amount of
information that has been acquired through
experience (Aamodt and Plaza, 1994). CBR is used,
especially when similar cases have similar terms and
solutions, even when they have different
backgrounds, i.e., the knowledge acquired when
solving some situation can be used as a first
approach to solve new ones (Balke T. et al, 2009).

Nowadays, CBR is used in several areas and has
a tremendous potential. There are examples of its
use in The Law with respect to dispute resolution
(Carneiro D. et al, 2009; Carneiro D. et al, 2010), in
medicine (Kolodner J., 1992; Khan A. and Hoffman
A., 2002), among others. A typical, and maybe the
greatest, problem in the use of CBR is related to the
availability of the data and the cost of obtaining it
(Stahl A. and Gabel T., 2006).

The typical CBR cycle (Figure 1) clearly defines

the vocabulary of the domain and the steps that
should be followed to have a consistent model. The
initial description of the problem becomes a new
case that is used to Retrieve one or more cases from
the repository. At this stage it is important to
identify the characteristics of the new problem and
retrieve cases with a higher degree of similarity to it.
Then, a solution for the problem emerges when
combining the new case with the retrieved case, on
the Reuse phase. Here, the solution of the retrieved
case is reused, tested and adapted, if possible, to the
new case, thus creating the solved case that is
suggested as a solution (Aamodt and Plaza, 1994).
However, when adapting the solution it is essential
to have feedback from the user since automatic
adaptation in existing systems is almost impossible.
Currently, the main adaptation techniques are the
null adaptation (no adaptation is needed); replace the
attributes of the solution and not the structure of the
solution; use rules; and by analogy transfer the
knowledge of the past problems to the new ones and
with that generate the solution (Kolodner J., 1992).
It is on the Revise stage that the suggested solution is
tested and it is here where exists an interaction with
the user letting him/her correct/adapt/change the
suggested solution by creating the Test Repaired
Case that sets the solution of the new problem. The
test repaired case must be correctly tested to ensure
that the solution is indeed correct. This is iterative
since the solution must be tested and adapted while
the result of applying that solution is unsatisfying.

294 Fernandes B., Freitas M., Analide C., Vicente H. and Neves J..
Handling Default Data under a Case-based Reasoning Approach.
DOI: 10.5220/0005184602940304
In Proceedings of the International Conference on Agents and Artificial Intelligence (ICAART-2015), pages 294-304
ISBN: 978-989-758-074-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55636820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

During the Retain (or learning) stage the case is
learned and the knowledge base is updated with the
new case. In this approach, the domain knowledge
stands for itself, while the cases refer to past
problems and their solutions (Kolodner J., 1992).

Figure 1: Typical CBR Cycle (Aamodt and Plaza, 1994).

This work brings the evidence that existent CBR
systems are neither complete nor adaptable enough
for all domains. In some cases, the user is required
to follow the similarity method defined by the
system, even if it does not fit user’s needs. On
present CBR system there is an obstacle related to
the capability of dealing with unknown and
incomplete information. This new approach will be
completely generic and it will have a focus on that.

As it will be explained later, existing CBR tools
follow different approaches to problem solving, i.e.,
looking at the same patterns from different
perspectives. However, they all look too complex
and the effort to adapt them to a specific problem
domain is comparable to develop a full new CBR.
Also, an important feature that often is discarded is
the ability to compare strings. In some problem
domains, strings are important to describe a
situation, the problem in itself or even an event. If
the CBR is only prepared to work with numbers then
this gap will prove to be fatal. Our CBR approach
uses several of the most popular string similarity
algorithms, namely the Dice Coefficient (Dice L.,
1945), Jaro-Winkler (Winkler W., 1990) and the
Levenshtein Distance (Levenshtein V., 1966)
Strategies. Also, it will be possible to set the weight
of a particular attribute along the attributes that
make a case’s argument. This new approach to CBR
will potentiate a new perception of this methodology

for problem solving, going in depth in aspects like
the case´s Quality-of-Information (QoI) or the
Degree-of-Confidence (DoC), a measure of one´s
confidence that the value of a particular attribute is
the expect one. Under this framework it will be
possible to handle unknown, incomplete or even
contradictory data. It will also induce a change on
the typical CBR cycle set in Figure 1. This new
cycle will have into consideration a normalization
phase, with the attributes values of the case
argument being set in the interval [0,1], therefore
making easier their DoCs evaluation, as it will be
seen later in the paper. It will also improve
performance and reliability of the similarity strategy.
The case base will be given in terms of triples that
follow the pattern:

Case = {<Raw-case, Normalized-case,
Description-case> | where Raw-case and
Normalized-case stand for themselves, and
Description-case is made on a set of strings or even
in free text, which may be analysed with specific
string similarity algorithms}

2 RELATED WORK

On the one hand, Case-Based Reasoning is either
extremely simple but also extraordinarily efficient.
CBR’s applicability ranges across different areas
like Medical Diagnosis, The Law, Assisted Student
Learning, Diets, Income Tax Law, Drawing,
Classification, Cooking Recipes, just to name a few.

Indeed, interesting results using CBR in
education have been reported. It has been found that
CBR could greatly improve Assisted Student
Learning (Riesbeck and Shank, 1991; Tsinakos A.,
2003). A domain independent education environment
named SYIM_ver2 was developed using CBR
techniques as the reasoning component, being able
to monitor the student’s progress/performance,
recording his/her learning needs, or even answering
to student’s questions. The system uses a Process of
Identification of Similar Question (PISQ) that is
responsible to find similar cases. PISQ uses cases
that are stored on an Educational Knowledge Base
and provides answers to questions via a key word
search feature. It is also employing two search
methods: controlled vocabulary search and free text
search among the cases of the knowledge base. This
allowed the system to tackle some known
pedagogical drawbacks that were present in
SYIM_ver1 (Tsinakos A., 2003).

In medicine, CBR is mainly used for diagnosis
and in diet recommendations (Kolodner J., 1992;

Handling�Default�Data�under�a�Case-based�Reasoning�Approach

295

Khan A. and Hoffman A., 2002). Physicians use
knowledge acquired from past experiences to treat
new patients. Let’s imagine a doctor that is treating a
patient, which suffers from a specific disease, with
specific symptoms. After treating the patient, the
doctor assimilates this knowledge and creates a new
“case”. When a new patient appears, presenting the
same symptoms, the doctor can “retrieve” the past
“case” and treat this new patient in a much more
effective way, saving time and money. Here the
cases are stored in a healthcare knowledge base and
contain information about the healthiness of a
particular individual, as triples in the form
<Problem, Solution, Justification> (Kolodner J.,
1993). The system is only helping the Doctor in
his/her analysis. The Doctor must validate if the case
retrieved by the system reports to the disease that the
patient is suffering. If this is the situation, then it is
just a question of adapting the solution to the
problem at hands.

The diet system helps in defining the patient diet
when he is admitted to the hospital. Many have
special needs in regard their medical conditions,
nutrient requirements, calories restrictions or even
cultural backgrounds. The system, using CBR, is
able to provide a menu that fits the patient needs
(Khan A. and Hoffman A., 2002). The expert must
then validate if the menu is appropriate and tell the
system if the solution was accepted or adapted, with
more cases being added to the knowledge base.

Lawyers and judges are always using their past
experiences to evaluate new cases. In other words,
they are using CBR. Related to the legal subject
there are many examples. One of them is related to
online dispute resolution, since we now face an era
of huge technology usage and so, traditional courts
cannot deal with the amount of problems put to
them. A solution is to use a CBR system that using
past experiences is able to achieve a quicker solution
to the real problem (Carneiro D. et al, 2009)
(Carneiro D. et al, 2010). Another example was the
development of HYPO, a model that improves legal
reasoning. The name is a reference for both actual
and hypothetical cases (Rissland E. and Ashley K.,
1989). Each case includes information like the
description of the problem, the arguments, the
explanation, and the justification, among others. The
input to HYPO is named as Current Fact Situation
(cfs) and is provided by the user. The output is
provided as a case-analysis-record with HYPO’s
analysis; a claim-lattice showing graphic relations
between the new case and the cases retrieved by the
system; 3-ply arguments used and the responses of
both plaintiff and defendant to them; and a case

citation summary (Rissland E. and Ashley K., 1989).
The domain knowledge is kept in three different

places, namely the Case Knowledge Base (CKB);
the library of dimensions; and the normative
standards (which are used to select the best cases).
The CKB is the place where the cases are stored.
Dimensions encodes legal knowledge for arguing
about a claim from a certain point of view. A key
aspect is that dimensions encapsulates the legal
sense of what makes the situation better or worse
from a case perception by the actors (Rissland E.
and Ashley K., 1989).

HYPO has experienced very good results
allowing new legal reasoning systems to be
developed using HYPO as a base. It may be referred
the TAX-HYPO that acts on the domain of tax law
(Rissland E. and Skalak D., 1989), or the
CABARET, also for income tax law domain (Skalak
D. and Rissland E., 1992) and the IBP that makes
predictions based on argumentation concepts
(Brüninghaus and Ashley, 2003).

On the other hand, there are several CBR
software tools developed and tested that are being
applied in real situations, namely Art*Enterprise,
developed by ART Inference Corporation (Watson
I., 1996). It offers a variety of computational
paradigms such as a procedural programming
language, rules, cases, and so on. Present in almost
every operating system, this tool contains a GUI
builder that is able to connect to data in most of
proprietary DBMS formats. It also allows the
developer to access directly the CBR giving him/her
more control of the system, which in most situations
may turn into a drawback. The CBR in itself is also
quite limited, once the cases are represented as flat
values (attribute pairs). The similarity strategy is
also unknown, which may represent another
constraint since there is no information about the
possibility of adapting it. These features are
presented on Table 1.

CasePower which is a tool developed using
CBR. It was developed by Inductive Solutions Inc.
(Watson I., 1996) and uses the spreadsheet
environment of Excel. The confines of the Excel
functionalities are echoed on the CBR framework,
making it more suitable for numerical applications.
The retrieval strategy of CasePower is the nearest
neighbour, which uses a weighted sum of given
features. In addition to this strategy the system
attaches an index to each case in advance, improving
the system performance in the retrieval process. The
adaptation phase in this system may be made
through formulas and macros from Excel but the
CBR system in itself cannot be adapted as explained

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

296

in Table 1.
CBR2 denotes a family of products from

Inference Corporation, and may be the most
successful CBR. This family is composed by CBR
Express which stands for a development
environment, featuring a customer call tracking
module; the CasePoint which is a search engine for
cases developed by CBR Express; the Generator that
allows the creation of cases-bases through MS Word
or ASCII files; and finally the Tester which is a tool
capable of providing metrics for developers. In this
tool the cases structure comprises a title, a case
description, a set of weighted questions (attribute
pairs), and a set of actions. Such as CasePower,
CBR2 uses the nearest neighbour strategy to retrieve
the cases initially. Cases can also be stored in almost
every proprietary database format. However, the
main and most valuable feature of CBR2 is the
ability to deal with free-form text. It also ignores
words like and, or, I, there, just to name a few. It
also uses synonyms and the representation of words
as trigrams, which makes the system tolerant to
spelling mistakes and typing errors.

The EasyReasoner that is a module within Eclipse,
being extensively regulated since it is available as a
C library, so there is no development interface and is
only suitable for experienced C programmers. This
software developed by Hayley Enterprises (Watson
I., 1996) is very similar to ART and also ignores
noise words and use trigrams to deal with spelling
mistakes. Once more, these tools are not likely to be
adapted because it is an API, and the similarity
strategy is not even known.

The ESTEEM software tool, which was
developed by Esteem Software Inc., has its own
inference engine, a feature that allows the developer
to create rules, providing a control over the
induction process. Moreover, cases may have a
hierarchy that can narrow the searches, which is very
useful when accessing multiple bases and nested
cases. The matching strategy is also the nearest
neighbour. The advantages of this tool are the
adaptability of the system and the usage of two
different similarity strategies (nearest neighbour and
induction). A disadvantage is the fact that it only
runs on Windows (Watson I. D., 1996).

jCaBaRe is an API that allows the usage of Case-
Based Reasoning features. It was developed using
Java as a programming language, which gives this
tool the ability to run in almost every operating
system. As an API, jCaBaRe has the possibility to be
adapted and extended providing a solution for a
huge variety of problems. The developer can
establish the cases attributes, the weight of each

attribute, the retrieval of cases, and so on. One of its
main limitations is the fact that it still requires a lot
of work, by the developer, to achieve an working
system. Several features must be developed from
scratch.

The Kate software tool that was produced by
Acknosoft (Althof, K-D., 1995) and is composed by
a set of tools such as Kate-Induction, Kate-CBR,
Kate-Editor, and Kate-Runtime. The Kate-Induction
tool is based on induction and allows the developer
to create an object representation of cases, which can
be imported from databases and spreadsheets. The
induction algorithm can deal with missing
information. In these cases, Kate is able to use the
background knowledge. The Kate-CBR is the tool
responsible for case comparison and it uses the
nearest neighbour strategy. This tool also enables the
customization of the similarity assessments. Kate-
Editor is a set of libraries integrated with ToolBook,
allowing the developer to customize the interface.
Finally, Kate-Runtime is a set of interface utilities
connected to ToolBook that allows the creation of an
user application.

Another CBR system is the ReMind, a software
tool created by Cognitive Systems Inc. (Watson I.,
1996). The retrieval strategies are based on
templates, nearest neighbour, induction and
knowledge-guided induction. The templates retrieval
is based on simple SQL-like queries, the nearest
neighbour focus on weights placed on cases features
and the inductive process can be made either
automatically by ReMind, or the user can specify a
model to guide de induction algorithm. These models
will help the system to relate features providing more
quality to the retrieval process. The ReMind is
available as a C library. It is also one of the most
flexible CBR tools, however it is not an appropriate
tool for free text handling attributes. The major
limitations of this system are the fact that cases are
hidden and cannot be exported, and the excessive
time spent on the case retrieval process. The nearest
neighbour algorithm is too slow, and besides the fact
that inductive process is fast, the construction of
clusters trees is also slow (Watson I., 1996).

The characteristics of all these tools are compiled
on Table 1, where the implemented features are
represented by “+” and the features not implemented
by “-”. This table provides an overview of the main
features existing in each tool.

Handling�Default�Data�under�a�Case-based�Reasoning�Approach

297

Table 1: Characteristics of existent CBR Software Tools.

CBR Software Tools Characteristics

CBRs/Features Type Similarity Strategy
Database
Platforms

Cross
Platform

Free Text
Handling

Adaptability

ART*Enterprise User Application Unknown Several + - -

CasePower User Application Nearest Neighbour Unknown + - -

CBR Express
User Application /

API
Nearest Neighbour Several + + -

Easy Reasoner API Unknown Unknown + + -

ESTEEM
User Application /

API
Nearest Neighbour /

Induction
Several - - +

jCaBaRe API
To be

developed
To be

developed
+

To be
developed

+

KATE User Application
Nearest Neighbour /

Induction
Several - - -

ReMind
User Application /

API
Nearest Neighbour /

Induction
Unknown + - +

3 KNOWLEDGE

REPRESENTATION AND
REASONING

Many approaches for knowledge representations and
reasoning have been proposed using the Logic
Programming (LP) paradigm, namely in the area of
Model Theory (Kakas A. et al, 1998; Gelfond M.
and Lifschitz V., 1988; Pereira L. and Anh H.,
2009), and Proof Theory (Neves J., 1984; Neves J. et
al, 2007). We follow the proof theoretical approach
and an extension to the LP language, to knowledge
representations and reasoning. An Extended Logic
Program (ELP) is a finite set of clauses in the form:

← ,⋯ , , ,⋯ , 	 (1)

? ,⋯ , , 	 ,⋯ , 	 		 , 0 (2)

where ? is a domain atom denoting falsity, the pi, qj,
and p are classical ground literals, i.e., either
positive atoms or atoms preceded by the classical
negation sign (Neves J., 1984). Under this
representation formalism, every program is
associated with a set of abducibles (Kakas A. et al,
1998; Pereira L. and Anh H., 2009) given here in the
form of exceptions to the extensions of the predicates
that make the program. Once again, LP emerged as

an attractive formalism for knowledge
representations and reasoning tasks, introducing an
efficient search mechanism for problem solving.

Due to the growing need to offer user support in
decision making processes some studies have been
presented (Halpern J., 2005; Kovalerchuck B. and
Resconi G., 2010) related to the qualitative models
and qualitative reasoning in Database Theory and in
Artificial Intelligence research. With respect to the
problem of knowledge representation and reasoning
in Logic Programming (LP), a measure of the
Quality-of-Information (QoI) of such programs has
been object of some work with promising results
(Lucas P., 2003; Machado J. et al, 2010). The QoI
with respect to the extension of a predicate i will be
given by a truth-value in the interval [0,1], i.e., if the
information is known (positive) or false (negative)
the QoI for the extension of predicatei is 1. For
situations where the information is unknown, the
QoI is given by:

→

1
0 				 ≫ 0 (3)

where N denotes the cardinality of the set of terms or
clauses of the extension of predicatei that stand for
the incompleteness under consideration. For
situations where the extension of predicatei is
unknown but can be taken from a set of values, the
QoI is given by:

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

298

1 (4)

where Card denotes the cardinality of the abducibles
set for i, if the abducibles set is disjoint. If the
abducibles set is not disjoint, the QoI is given by:

1

⋯
 (5)

where is a card-combination subset, with Card
elements. The next element of the model to be
considered is the relative importance that a predicate
assigns to each of its attributes under observation,
i.e., , which stands for the relevance of attribute k
in the extension of	 . It is also assumed that
the weights of all the attribute predicates are
normalized, i.e.:

1, ∀ (6)

where denotes the universal quantifier. It is now
possible to define a predicate’s scoring function

 so that, for a value , ⋯ , , defined in
terms of the attributes of , one may have:

⁄ (7)

It is now possible to engender the universe of
discourse, according to the information given in the
logic programs that endorse the information about
the problem under consideration, according to
productions of the type:

, ⋯ , ∷ (8)

and evaluate the Degree of Confidence given by
, ⋯ , ,⁄ which denotes one’s

confidence in a particular term of the extension
o 	 .. To be more general, let us suppose
that the Universe of Discourse is described by the
extension of the predicates:

⋯ , ⋯ ,⋯ , ⋯ 		 			 0 (9)

The solution we present does not only affect the
case structure but also how similarity is calculated.
So, assuming we have a clause that is mapped into a
case, that clause has as argument all the attributes
that make the case. The argument values may be of
the type unknown or members of a set, may be in the
scope of a given interval or may qualify a particular
observation. Let us consider the following clause
where the first argument value may fit into the
interval [35,65] with a domain of [0,100], the value
of the second argument is unknown, which is
represented by the symbol , with a domain that

ranges in the interval [0,20], and the third argument
stands for itself, with a domain that ranges in the
interval [0,4]. Let us consider that the case data is
given by the extension of predicate , given in the
form:

: , , → , (10)

One may have:

, , ⟵ 	 , ,

35, 65 , ,							1 ∷ 0.85
` 	 	 	 , , 	

	

0, 100 0, 20 0, 4 	
` 	 , , 	

 (11)

Once the clauses or terms of the extension of the
predicate are set, the next step is to transform all the
arguments, of each clause, into continuous intervals.
In this step, it is important to consider the domain of
the arguments. As the second argument is unknown,
its interval will cover all the possibilities of the
domain. The third argument speaks for itself. The
0.85 value taken from the interval [0,1] denotes the
QoI of the term 35, 65 , , 1 . Therefore, one may
have:

, , ⟵ 	 , ,

35, 65 , 0, 20 , 1,1 ∷ 0.85
` 	 	 	 , , 	

		

0, 100 0, 20 0, 4 	
` , , 	

											

 (12)

Now, one is in position to calculate the Degree of
Confidence for each attribute that makes the term
arguments (e.g. for attribute one it denotes one’s
confidence that the attribute under consideration fits
into the interval [35,65]). Next, we set the
boundaries of the arguments intervals to be fitted in
the interval [0,1] according to the normalization
procedure given in the form /

	 , where the stand for themselves.

, , ⟵ , , 																

35 0
100 0

,
65 0
100 0

,																																				
	

0 0
20 0

,
20 0
20 0

,			
1 0
4 0

,
1 0
4 0

	 0.35, 0.65 , 0, 1 , 0.25,0.25
` 	 	 	 	 , , 	

∷ 0.85	

0, 1 0, 1 0, 1 	
` 	 , , 	

									

 (13)

Handling�Default�Data�under�a�Case-based�Reasoning�Approach

299

The Degree of Confidence is evaluated using the
equation √1 ∆ , as it is illustrated in
Figure 2. Here ∆ stands for the length of the
arguments intervals, once normalized.

Figure 2: Evaluation of the Degree of Confidence.

, , ⟵ 	 , , 																

0.95,											0,											1 	 ∷ 0.85
` 	 	 	 	 , , 	

	

0.35, 0.65 0, 1 	 0.25,0.25
` 	 	 	 	 , , 	

	 0, 1 							 0, 1 								 0, 1 	
` 	 	 	 , , 	

(14)

It is now possible to represent the case base in a
graphic form, showing each case in the Cartesian
plane in terms of its QoI and DoC (Figure 3).

Figure 3: Case base represented in the cartesian plane.

To select possible solutions to the case problem
under consideration, we look at Figure 3 where the
best cluster is selected according to a similarity
measure given in terms of the modulus of the
arithmetic difference between the arguments of the
cluster case with respect to their counterparts on the
case problem. The new case is represented as the
square inside the circle (Figure 4).

Figure 4: Clustering the case base.

4 A CASE STUDY

As a case study, consider the scenario where a
company provides software product support to
customers. When customers have problems in a
given product, they open a new ticket with the
description and the symptoms of the problem.
Different products may share the same components
so, the solution for a problem in a specific product
can be found in a ticket regarding another product.
In this case study, the severity of a problem was
defined as being scaled as Very Low, Low, Medium,
High and Very High. In a numeric scale this
corresponds to the intervals [1,2], [3,4], [5,6], [7,8]
and [9,10], respectively. There are five possible
operating systems: HP-UX 11.31, Solaris 9, Solaris 10,
Windows XP and Windows 7. As for the database
provider, it may be one of the following: Oracle10g
Release 1, Oracle10g Release 2, Oracle11g Release
1 and Oracle11g Release 2. The company has a total
of twenty three products.

Figure 5 shows the main attributes of a new
ticket that was opened by a customer. The severity
of the problem was defined as being Very High. The
database provider was not specified and this
problem, described by comment “Description3”, is
affecting product with id 12. One’s goal is to find
the solution, to this new ticket, in the knowledge
base. Having that in mind, let us consider a
relational database that is given in terms of the three
relations presented in Figure 6. That information is
related with past problems that affected several
products of the company. Some incomplete data,
which is represented by the symbol, is presented
on the extensions of some relations or predicates that
are being considered. For instance, for problem 2
(Problem Report table) the operating system is
unknown. For problem 1, the Severity is
Low/Medium and so its value ranges in the interval

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

300

[3,6] (union of intervals [3,4] and [5,6]), in a set
defined between one and ten. Each problem has its
own description.

Severity System_id DbProvider_idProduct_id Description
Very
High

3 Unknown 12 Description3

Figure 5: New ticket's characteristics and description.

The case repository is given in terms of the set
{<Raw-case, Normalized-Case, Description-case>},
as it was stated above.

Let us consider the relations given in Figure 6, in
terms of the ticket predicate, given in the form:

: , , , → 	 0,1

where 0 (zero) and 1 (one) denote, respectively, the
truth-values false and true. Then, it would be
possible to give the extensions of the predicates as:

{

	 , , , 	← 	 , , ,

3,6 ,			3,						 ,				11
` 	 	

∷ 1

				 1,10 1,5 1,4 1,23
` 	 	

																																								

7,8 ,					 ,					2,						12	
` 	 	

∷ 1

									 1,10 	 1,5 		 1,4 1,23
` 	 	

																																								

3,6 , 3,3 , 1,4 , 11,11
` 	 	

∷ 1

																 1,10 	 1,5 		 1,4 			 1,23
` 	 	

																										

7,8 , 1,5 , 2,2 , 12,12
											 ` 	 	

∷ 1

																 1,10 1,5 	 1,4 				 1,23
` 	 	

																															

0.222,0.556 , 0.5,0.5 , 0,1 , 0.45,0.45 	

0.667,0.778 , 0,1 , 0.33,0.33 , 0.5,0.5

0.943,				1,						0,								1
																					 ` 	 	 	

∷ 1

																			 3,6 	 3,3 	 1,4 	 11,11
` 	 	

																			 1,10 1,5 	 1,4 			 1,23
												 ` 	 	

							

0.994, 0,							1,										1
																			 ` 	 	 	

∷ 1

																			 7,8 	 1,5 2,2 	 12,12
` 	 	

																			 1,10 1,5 1,4 	 1,23
																												 ` 	 	

																

}

The description of the case will be necessary
when analysing the similarities between the
description of the tickets present in the knowledge
base and new problems that arrive to the system.

Now, by adapting the new case (Figure 5) to this
approach we would have:

{

	 , , , 	← 	 , , ,

9,10 ,			3,						 ,				12
																									 ` 	 	

∷ 1

																				 1,10 1,5 1,4 1,23
` 	 	

																																								

Severity Comments Platforms

Problem_id Severity Problem_id Product_id Description Problem_id System_id DbProvider_id
1 Low/Medium 1 11 Description1 1 3
2 High 2 12 Description2 2 2

Problem Report
Problem_id Severity System_id DbProvider_id Product_id Description

1 [3,6] 3 11 Description1
2 [7,8] 2 12 Description2

Figure 6: Extension of the Relational Database model.

Handling�Default�Data�under�a�Case-based�Reasoning�Approach

301

9,10 , 3,3 , 1,4 , 12,12
																						 ` 	 	

∷ 1

																				 1,10 		 1,5 		 1,4 		 1,23
	 ` 	 	

																											

0.889,1 , 0.5,0.5 , 0,1 , 0.5, 0.5 	

0.994,			1,						0,									1
																													 ` 	 	 	

∷ 1

	 9,10 	 3,3 	 1,4 	 12,12
` 	 	

																									 1,10 	 1,5 	 1,4 		 1,23
` 	 	

														

}

Having all clauses normalized, the system is able
to retrieve cases with higher similarity value. First,
the input case is compared with every retrieved case
from the cluster. The result is achieved by getting
the average between the attributes, except the
Description. It will be assumed that every attribute
has equal weight. In clauses where each attribute has
a weight, the average must be weighted.

Descriptions will be compared using String
Similarity Algorithms, as stated before, in order to
get a similarity measure between them. According to
this, one first has to compare the four attributes that
make the normalized case, obtaining the following
similarity values between ticket 3 (three) and the
other two:

{

	 0.943, 1,						0,										1
																																	 ` 	 	 	

∷ 1

0.994,						0,							1,										1
																																		 ` 	 	 	

∷ 1

	 0.994, 1,						0,										1
																													 ` 	 	 	

∷ 1

→

|0.994 0.943| 	 |1 1| 	 |0 0| |1 1|
4

→

|0.994 0.994| 	 |1 0| 	 |0 1| |1 1|
4

→ 0.013

→ 0.5

}

where “|” and “|” is our notation for modulus, i.e. it
stands for the absolute value of a given number. It
was assumed that every attribute has equal weight.

It is then necessary to compare the description of
the new ticket with the descriptions of ticket one and
two (for this case study, the strategy used was the
Dice Coefficient):

{

→ 0.327	

→ 0.814	

}

With these values we are able to get the final
similarity measure:

{

→
0.013 0.327

2
0.17

→
0.5 0.814

2
0.657

}

According to these results, our approach
determines that ticket two is the most similar case, in
our knowledge base, when receiving ticket three as
input, and so it will be the case that will be retrieved
by the system.

5 CONCLUSIONS AND FUTURE
WORK

The comparison between free text parameters is an
expensive and not so reliable task. However, there
are many case studies that demand a huge reliability
on those comparisons. For example, if we want to
establish a relation between errors of an application
reported by users, there is no way to quantify each
one of the parameters. That was not however the
only proposed goal. We also developed a solution
that is able to handle default, unknown and
incomplete data using concepts like the DoC and the
QoI. This DoC denotes one’s confidence in a

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

302

Figure 7: Adapted CBR cycle taking into consideration the normalization phase.

particular term of the extension of a predicate. It
allows one to normalize all cases that live within the
knowledge base and it improves the performance of
the similarity analysis that is made when retrieving
cases. In fact, this concept of calculating the DoC
can be represented in an adapted CBR cycle, as
shown in
Figure 7. The main difference between this new
cycle and the well-known typical CBR cycle is the
Normalization phase and the fact that all cases
within the knowledge base are normalized. The
Normalization phase is where the new case is
normalized and where its DoC is calculated. In fact,
when learning the case, the system is learning also
the normalized case, allowing the cycle to retrieve
cases that fulfil this structure. The Retrieve phase
takes into account the DoC of each case when
analysing similarities between cases. This analysis
handles generic data without caring about the data
type of the attributes. It is also able to analyse free
text attributes using several String Similarities
Algorithms which fulfil a gap that is present in
almost all CBR Software Tools. This approach
proved to be useful in other real situations such as
schizophrenia diagnosis (Cardoso L. et al, 2013) or
asphalt pavement modeling (Neves J. et al, 2012).
These two cases revealed a demand that was not
forgotten in this work, which is the possibility of
setting the weights of each attribute on the fly. This

feature gives the user the possibility to narrow the
search for similar cases at runtime.

As future work it will be important to add more
string similarity strategies. Furthermore, it may be
also important to implement an independent CBR
system to automatically choose which strategy is the
most reliable to the current case study. Still related
to the similarity strategies, our approach allows the
user to define the weights of cases attributes on the
fly, letting the user to choose the strategy he prefers.

ACKNOWLEDGMENT

This work is funded by National Funds through the
FCT – Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology)
within projects PEst-OE/EEI/UI0752/2014 and
PEst-OE/QUI/UI0619/2012.

REFERENCES

Aamodt A. & Plaza E., 1994. “Case-Based Reasoning:
Foundational Issues, Methodological Variations, and
System Approaches”, AI Communications. IOS Press,
Vol. 7: 1, pp. 39-59.

Althoff K-D, Auriol E., Barletta R. & Manago M., 1995,
“A Review of Industrial Case-Based Reasoning
Tools”, AI Intelligence.

Handling�Default�Data�under�a�Case-based�Reasoning�Approach

303

Balke T., Novais P., Andrade F. & Eymann T., 2009.
“From Real-World Regulations to Concrete Norms for
Software Agents – A Case-Based Reasoning
Approach”, ICAIL.

Brüninghaus S. & Ashley K., 2003. “Combining Case-
Based and Model-Based Reasoning for Predicting the
Outcome of Legal Cases”, Proceedings of the Fifth
International Conference on Case-Based Reasoning
(ICCBR-03), pp. 65-79.

Cardoso L., Martins F., Magalhães R., Martins N.,
Oliveira T., Abelha A., Machado J. & Neves J., 2013.
“Schizophrenia Detection through an Artificial Neural
Network based System”.

Carneiro D., Novais P., Andrade F., Zeleznikow J. &
Neves J., 2009. “The Legal Precedent in Online
Dispute Resolution”, Jurix.

Carneiro D., Novais P., Andrade F., Zeleznikow J. &
Neves J., 2010. “Using Case Based Reasoning to
Support Alternative Dispute Resolution”, Series
Advances in Intelligent and Soft Computing.

Dice L., 1945. “Measures of the Amount of Ecologic
Association Between Species”, Ecology 26, pp. 297-
302.

Gelfond M. & Lifschitz V., 1988. “The stable model
semantics for logic programming”, in Logic
Programming – Proceedings of the Fifth International
Conference and Symposium, pp. 1070-1080.

Halpern J., 2005. “Reasoning about uncertainty”,
Massachusetts: MIT Press, 2005.

Kakas A., Kowalski R. & Toni F., 1998. “The role of
abduction in logic programming”, in Handbook of
Logic in Artificial Intelligence and Logic
Programming, Vol. 5, pp. 235-324.

Khan A. & Hoffmann A., 2002. “Building a case-based
diet recommendation system”, Artificial Intelligence in
Medicine 27, pp. 155-179.

Kolodner J., 1992. “An Introduction to Case-Based
Reasoning”, Artificial Intelligence Review 6, pp. 3-34.

Kolodner J., 1993. “Case-Based Reasoning”, in Morgan
Kaufmann.

Kovalerchuck B. & Resconi G., 2010. “Agent-based
uncertainty logic network”, in Proceedings of the
IEEE International Conference on Fuzzy Systems –
FUZZ-IEEE, pp. 596-603.

Levenshtein V., 1966. “Binary codes capable of correcting
deletions, insertions, and reversals”, Soviet Physics
Doklady, pp. 707-710.

Lucas P., 2003. “Quality checking of medical guidelines
through logical abduction”, in Proceedings of AI-
2003, London: Springer, pp. 309-321.

Machado J., Abelha A., Novais P. & Neves J., 2010.
“Quality of service in healthcare units”, International
Journal of Computer Aided Engineering and
Technology, Vol. 2, pp. 436-449.

Neves J., 1984. “A logic interpreter to handle time and
negation in logic data bases”, in Proceedings of the
1984 annual conference of the ACM on the fifth
generation challenge, pp. 50-54.

Neves J., Machado J., Analide C., Abelha A. & Brito L.,
2007. “The halt condition in genetic programming”, in

Progress in Artificial Intelligence - Lecture Notes in
Computer Science, Vol. 4874, pp. 160-169.

Neves J., Ribeiro J., Pereira P., Alves V., Machado J.,
Abelha A., Novais P., Analide C., Santos M. &
Fernández-Delgado M., 2012. “Evolutionary
intelligence in asphalt pavement modeling and
quality-of-information”, Progress in Artificial
Intelligence, Vol. 1, pp. 119-135.

Pereira L. & Anh H., 2009. “Evolution prospection”, in
New Advances in Intelligent Decision Technologies –
Results of the First KES International Symposium
IDT, pp. 51-64.

Riesbeck C. & Schank R., 1991. “From Training to
Teaching: Techniques for Case-Based ITS”, Intelligent
Tutoring Systems: Evolution in Design, Lawrence
Erlbaum Associates, Hillsdale, pp. 55-78.

Rissland E. & Ashley K., 1989. “HYPO: A Precedent-
Based Legal Reasoner”, Recent Advances in
Computer Science and Law.

Rissland E. & Skalak D., 1989. “Case-Based Reasoning in
a Rule-Governed Domain”, In Proceedings of the Fifth
IEEE Conference on Artificial Intelligence
Applications.

Skalak D. & Rissland E., 1992. “Arguments and cases: An
inevitable intertwining”, Artificial Intelligence and
Law, pp. 3-44.

Stahl A. & Gabel T., 2006. “Optimizing Similarity
Assessment in Case-Based Reasoning”, 21st National
Conference on Artificial Intelligence.

Tsinakos A., 2003. “Asynchronous distance education:
Teaching using Case Based Reasoning”, Turkish
Online Journal of Distance Education – TOJDE.

Watson I. & Marir F., 1994. “Case-Based Reasoning: A
Review”, The Knowledge Engineering Review, Vol. 9.

Watson I., 1996. “Case-Based Reasoning Tools: An
Overview”.

Winkler W., 1990. "String Comparator Metrics and
Enhanced Decision Rules in the Fellegi-Sunter Model
of Record Linkage”, Proceedings of the Section on
Survey Research Methods, pp. 354-359.

ICAART�2015�-�International�Conference�on�Agents�and�Artificial�Intelligence

304

