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Abstract
This paper presents an aspect-oriented library, coded in AspectJ,
that aims to mimic the OpenMP standard for multicore program-
ming in Java. Building the library on top of AspectJ intrinsically
supports the sequential semantics of OpenMP. The library enables
the use of parallelism related constructors in object-oriented sys-
tems due to better compatibility with inheritance, making it more
suitable to introduce parallelism into object-oriented frameworks.
However, it requires more program refactoring than OpenMP di-
rectives.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming - Parallel programming; D.3.3
[Programming Languages]: Language Constructs and Features -
Concurrent programming structures

General Terms Algorithms, Performance, Design, Languages

Keywords Parallel programming, Aspect-oriented programming,
OpenMP

1. Introduction
Multicore systems are widely available in desktop machines and it
is expected that the number of cores on those systems will continue
to increase over the next decades. Contrary to previous evolutions
in computer architectures, multicore systems require new software
programming techniques to support parallel task’s specificities.
This adds extra complexity to the programmer’s task since he must
be concerned with core (e.g, domain) functionality implementation
and with techniques to effectively exploit parallelism.

OpenMP [1] is becoming the effective standard for multicore
systems. In OpenMP parallelism is expressed as a set of directives.
The standard is currently supported by the main compilers for For-
tran and C/C++ (e.g., GNU gcc). One important feature of the stan-
dard is the support for the sequential semantics: it is possible to de-
velop parallel programs whose sequential execution is correct, by
ignoring the OpenMP directives. This provides two main benefits:
i) the base functionality can be developed by ignoring the OpenMP
directives making it easier to develop domain specific code; and
ii) incremental development is possible by starting with a sequen-
tial program and progressively making refactoring and introducing
OpenMP directives.
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The Java language is one of the most popular programming
languages due to its object-oriented features, such as inheritance
and polymorphism. Unfortunately, the OpenMP standard does not
support Java. There were some attempts to extend the standard,
such as JOMP [2], but those do not integrate well with the object-
oriented philosophy. One of the most problematic aspects is the
intrinsic conflict between inheritance and concurrency constrains:
parallelism directives may not be retained across the inheritance
chains. This conflict was identified a long time ago and reported
as the inheritance anomaly [3]. Support for parallelism in object-
oriented frameworks built on top of Java becomes more complex
since the methods implementing parallelism concerns can be acci-
dentally overridden in concrete framework instance.

AspectJ is a promising language to support parallelism in Java
due to its power to encapsulate concurrency concerns [4]: sequen-
tial semantics is intrinsically supported since aspects can be un-
plugged. Moreover, aspects can act on joinpoints defined by Java
interfaces, becoming a promising approach to introduce parallelism
into object-oriented frameworks as those rely heavily on the usage
of interfaces as extension points [5]. This paper describes an ongo-
ing effort to develop an AspectJ library to support an OpenMP-like
standard in Java. The research challenges are:

• How to implement OpenMP directives in AspectJ?

• How to improve the integration of parallelism constructs into
object-oriented languages?

• What kind of refactoring is required in order to introduce paral-
lelism?

The rest of the paper provides a short overview of the OpenMP
standard, describes the library already developed and discusses the
approach taken.

2. OpenMP Overview
OpenMP is based upon parallel regions, work-sharing constructs,
synchronisation and data environment directives.

The key construct in OpenMP is the parallel region. In the
OpenMP model execution starts with a single thread. When that
thread encounters a parallel region it becomes the master thread of
a newly created team of threads. All threads in the team will execute
the parallel region and synchronise at the end of the parallel region.
The number of threads in the team is implementation dependent
(in most cases it is equal to the number of the cores in the system).
Each thread in the team has a unique thread identification (available
through a library call) that can be used to assign different tasks to
each thread in the team.

Work-sharing constructs are used in a parallel region to divide
the work among the threads in the team. The for directive divides
the range of loop iterations among threads. This directive supports
several alternatives to schedule loop iterations among threads in the
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team. A static scheduling assigns loop iterations using each thread
identification, while a dynamic scheduling assigns loop iterations
during execution on a first serve basis. The sections directive spec-
ifies multiple code blocks that are executed by different threads in
the team. The task directive specifies a block of code that executes
in parallel with the thread that encountered the block. It is mostly
used for applications with recursive tasks.

Frequently a parallel region consists of a single work-sharing
region (e.g., a single for). For those cases OpenMP provides com-
bined directives to support parallel regions of a single for or section.

Synchronisation directives control (e.g., synchronise) the exe-
cution of a team of threads. The master directive indicates a code
section that is only executed by the master thread. The single direc-
tive indicates that a single thread should execute the given block.
Other directives include a critical section and a barrier. The for-
mer enforces mutual exclusion generally to avoid data races, the
latter enforces a barrier point where all threads in the team should
arrive before proceeding. It is possible to enforce a specific section
of a loop to execute in the logical order (iteration space order) using
the ordered construct.

Data environment directives control the data scope inside a
parallel region. Data is either shared by all threads in the team or
private to each thread. Shared data supports clauses firstprivate and
lastprivate to control, respectively, the initial and final data values
(e.g., when entering in the region and after region execution). A
reduction clause specifies how to combine thread private values
into a single value at the end of a given region.

3. The Aspect Library
Encapsulating OpenMP directives into a library of aspects provides
two benefits: i) no changes to the base code are required in order
to apply a mechanism; ii) a mechanisms can act upon all classes
implementing a given Java interface. The former supports the se-
quential semantics of the OpenMP standard and also provides sup-
port for incremental development. The latter, provides support for
extensible object-oriented frameworks since an aspect can be at-
tached to interfaces that can have impact on classes that are later
added to the framework.

The OpenMP standard requires that every directive should be
applied to a single statement. In C/C++ this often requires enclosing
the desired code block into brackets in order to group multiple
statements into a logical block.

In the developed OpenMP aspect library (OmpLib) each mech-
anism acts upon a set of method calls in the base program (e.g.,
joinpoints). Thus multiple statements must be grouped by mov-
ing those statements into a method, making it possible to assign
a unique name to a code block in order to ”plug” the required as-
pects. Grouping statements into methods is also more consistent
with the object-oriented philosophy: concurrency constructs are ap-
plied at object boundary and thus, can be retained when the method
is overridden in subclasses. Moreover, many modern IDEs, such as
the Eclipse, provide support for this kind of refactoring. In modern
systems this refactoring does not impose any performance penalty
since method calls can often be automatically inlined by the com-
piler, avoiding the overhead of an additional method call.

A consequence of the previous rule is the refactoring of for
loops into methods. In the current library those loops must be im-
plemented by a method whose first three arguments are, respec-
tively, the loop variable start value, end value and incremental step.
Note that OpenMP also enforces several constrains in the supported
for loops.

The developed aspect library is based on abstract aspects. Thus,
in order to apply a given aspect to a concrete code base develop-
ers must extend the abstract aspect to provide application-specific

pointcuts. The next subsections discuss the implementation of sev-
eral mechanisms.

3.1 Parallel Region
The parallel region is the key abstraction in OpenMP to introduce
parallelism since it creates a team of threads to execute a given
code section in parallel. In the developed OmpLib a parallel region
is given by the context of a method execution: the method call
is executed in parallel by a new team of threads. The parallel
region aspect creates the required additional threads in the team
and each newly created thread will execute the original method call
(by calling proceed).

01: protected pointcut parallelRegion () :
02: (
03: call (// Method)
04: && within (// Class name)
05: );
06:
07:
08: void around () : parallelRegion (){
09: // Create a local barrier
10: Thread threads [] = new Thread [numThreads ];
11: for(int i = 1; i < numThreads; i++){
12: Runnable t = new Runnable (){
13: public void run (){
14: try{
15: proceed ();
16: // call barrier
17: } catch (..){..}
18: } }
19: threads[i] = new Thread(t);
20: threads[i].start ();
21: }
22: proceed ();
23: // call barrier
24: // Terminate threads

Figure 1. Parallel region.

If the programmer wants to have a given method f() running in
parallel, he would fill the parallel region pointcut (line 01 of fig. 1)
with the signature of the method f(). When the aspect parallelRe-
gion() intersects the method f() call, it creates a new team of threads
(line 10) and a runnable with a task (line 15), in this case the method
f(). The thread master will assign the created runnable to the each
thread (line 19) and start its execution. After all threads have started
their tasks, the master thread will also start its task (line 22). After
finishing its task each thread calls a barrier which will wait for the
remaining threads. When all threads’ tasks finish the master thread
ends threads execution (line 24).

The parallel region aspect must also maintain global informa-
tion about the parallel region. Specifically, it must assign a unique
id to each thread in the team starting in zero (the master thread).
Moreover, the OpenMP standard allows the implementation of
nested parallel regions. Nesting complicates the aspect implemen-
tation since the a thread can become the master of different par-
allel regions during the execution. Moreover, there is data specific
to each parallel region (e.g., the number of threads in that team
and a barrier shared by all threads in the team). Thus, in order to
support nested parallel regions the aspect must keep track of the
entrance/exit in each parallel region. A new context, shared by all
threads, is created when entering into a nested parallel region (lines
09-10) and removed when exiting the parallel region.

The OpenMP standard supports an if clause in the parallel
region directive. This clause provides a mechanism to restrict the
creation of a team of threads to certain conditions. This clause can
be trivially implemented by the if pointcut designator.



3.2 Work-sharing Constructs
The library provides three implementations of the for construct:
static (in round-robin or block manner), dynamic and guided
scheduling. Each implementation is tuned for one specific type of
loop scheduling. However, dynamic and guided are implemented
using a similar strategy.

Static scheduling divides the range of loop iterations statically
among the threads in the team. In the OmpLib the iteration range
is exposed in the three first method parameters. The aspect im-
plementation calls proceed changing those method parameters to
thread specific values, in order to assign different iterations of the
loop space to each thread. This implementation provides the low-
est overhead since the scheduling is statically performed (e.g., loop
ranges are statically assigned in the code).

01: pointcut parallelfor(int a, int b, int c):
02: (
03: call(private forMethod (int , int , int , ...))
04: && args(a,b,c,..)
05: );
06:
07:
08: void around (int begin , int end , int inc) :
09: parallelfor(begin ,end ,inc){
10: int new_begin = //
11: int new_end = //
12: int new_incr = //
13:
14: proceed(new_begin , new_end , new_incr );
15:
16:}

Figure 2. Static for.

The code illustrated in figure 2 is a simplified view of the for
work-sharing with static scheduling. When a programmer wants a
given loop iteration space to be split across different threads, he will
create a method to represent the for, as already described. Then,
he will fill the parallelfor pointcut with the name of the method
resulting from the design rule application. When the for method is
called by each thread, the library will intercept this call, and assign
a range to each thread (line 14 of figure 2). The set of iterations
assigned to each thread in the team is computed based on the thread
id and on the type of static scheduling selected (round-robin or
block).

The dynamic for works as follows: intercepts the for method,
calculates the number of iterations within the for (line 02 of figure
3) and assigns a initial task to each thread (line 03). While there are
tasks to perform (line 05), threads will execute them (line 07) and
request for more (line 08). Each thread, after finishing its work, will
call a barrier. The method getTask() stores in a local variable the
current for iteration, incrementing the iteration number at each call,
and returning a value that corresponds to the task that the thread
will execute. To ensure that the same task will not be assigned to
different threads, a synchronized Java routine is used. This routine
guarantees that the synchronized block of code is only executed
by one thread at the time. Guided scheduling differs from dynamic
scheduling in the way that tasks are initially created and executed:
initially larger tasks are generated and smaller tasks are used to
balance the work assigned to each thread near the end of the loop
execution.

The section construct is implemented in a similar way to a static
scheduling: each thread in the team executes a different method
call.

The task work-sharing construct is not yet implemented.

01: void around(int a,int b,int c) : dynamicfor(a,b,c){
02: int number_of_tasks = (b-a)/c;
03: int iteration = getTask ();
04:
05: while(iteration < number_of_tasks)
06: {
07: proceed(iteration ,iteration+chunk ,incr);
08: iteration = getTask ();
09: }
10:
11: // call barrier
12:

Figure 3. Dynamic for.

3.3 Combined Constructs
The OpenMP standard supports several combined constructs (e.g.
a single directive for a parallel region and for work-sharing). In
the OmpLib those combined constructs can be implemented by
creating a new abstract aspect enclosing several aspects as inner
aspects. For instance, a parallel for can be implemented by creating
an abstract aspect encompassing both the parallel region and for
aspects as inner aspects.

3.4 Synchronisation Constructs
Critical and barrier constructs are implemented by surrounding a
proceed with the corresponding primitive synchronisation. In the
OpenMP standard those constructs can optionally provide a name
in order to created multiple instances of a mechanism (e.g., a barrier
with a given name). In the OmpLib each instance of the abstract
aspect uses a different lock/barrier. Thus, a behavior similar to
OpenMP can be obtained by creating a concrete aspect for each
context (e.g., name). Thus, the set of joinpoints specified by the
concrete pointcut will share an instance of the synchronisation
mechanism.

The master and single mechanisms share the implementation
strategy. In the former, only the thread with id 0 will call proceed,
while in the latter the call proceed is executed by the first thread
performing the method call.

The ordered clause in the for work-sharing is implemented in a
way similar to single . Each thread in the team will wait until the
thread with the previous id has reached the region.

3.5 Data Environment
The OpenMP standard supports shared and private variables. When
entering into a logic block (e.g., parallel region or work-sharing
construct) each variable defined outside that region can become
private to each thread or can be shared among all threads in the
team.

In the OmpLib those regions are always method bodies and
thus, only object (data fields) may be shared among threads. The
default behaviour in OmpLib it to share those objects among all
threads in the system.

In order to provide thread private object data fields (i.e., thread
local values) accesses to those fields is required to be performed
through getter and setter methods. Thus a field with name XXX
is accessed through methods named getXXX and setXXX. This is
required in order to: i) provide the required joinpoint when reading
and writing the data field; ii) generate different joinpoints for each
data field. The latter is necessary in order to differentiate accesses
to different data fields.

The OmpLib provides an aspect that implements a thread lo-
cal variable by intercepting calls to these getter and setter methods.
One aspect extension is required for each private data field, speci-
fying one pointcut for the getter call and another for the setter call.
This is required in order to avoid the use of refection which would



impose a prohibitive overhead. To use a single aspect for all thread
local values would require the usage of thisJointPoint to differen-
tiate among getters/setters of different data fields and an additional
map to associate each getter with the corresponding setter method.

The initial value of a private field can be gathered from the
context surrounding the region (firstprivate clause in OpenMP). For
this purpose the concrete aspect must provide a way to retrieve that
value (e.g., a method call that gets/sets the non-private value).

The OpenMP standard supports a reduction operation that
merges all thread private values into a single value that will be
visible outside the region. The reduction operation is provided by
implementing an abstract method providing the reduction opera-
tion.

3.6 Composing Data Environment with Work-sharing
Private and reductions can be composed with both parallel region
and work-sharing constructs. The AspectJ implementation enables
the reutilisation of a single implementation of data environment
clauses in all mechanisms. Composition is simply attained by using
the same pointcuts in both implementations.

4. Case Study
The OmpLib was validated by implementing all benchmarks from
the JGF implementations [6]. This case study focus on the MD
benchmark. MOLDYN (MD) is a molecular dynamics simulation
algorithm where a set of particles interact under a Lennard-Jones
potential [7]. There is a force acting on each particle that will affect
its position and velocity. The force calculation (figure 4) is the big
part of the computation time, since it involves two loops: an outer
loop on all system particles (line 03 figure 4) and an inner loop
(line 04) which ranges from the current particle till the total number
of particles. Every inner loop iteration updates the force between
particle pairs within a given radius. At the end of the loop each
particle updates it own force [6] and the process is repeated for a
number of time steps.

01: void forceCalculation (...){
02:
03: for(int i = 0; i < NUM_PARTICLES;i++)
04: for(int j = i + 1; j < NUM_PARTICLES; j++){
05: d = distance_between(i,j);
06: if(d < radius ){
07: apply_3_newtons_law(j); // Force j -> i
08: acumulated_forces = // Force i -> j
09: }
10: updateForce(acumulated_forces ,i);
11:}

Figure 4. MOLDYN: Force calculation.

In order to understand the granularity level of the tasks that will
be performed by threads we focus on force calculation function.
The application time profiling identified this function as the most
time consuming task. Thus, the calculation of the interaction be-
tween a particle and the remaining particles in the system became a
parallel task by transforming the outer loop into a parallel for. Fur-
thermore, there is a data dependency between parallel tasks, since a
race condition could happen during third Newtons Law application
(line 07 figure 4) and during the particle force update (line 10). In
both situations there is the possibility that one thread is updating
the force of a particle that was assigned to another parallel task.
Therefore mutual exclusion must be ensured, so that each thread
can complete its update and leave the data in a consistent state for
others.

The first step to parallelise the force calculation was to apply the
for design rule to the outer loop, the result is presented in figure 5.

01: void forceCalculationFor(int begin ,int end ,int step){
02: for(int i = begin; i < end; i+=step)
03: for(int j = i + 1; j < NUM_PARTICLES; j++){
04: ...
05: }
06: updateForce(acumulated_forces ,i);
07: }
08: ...
09: void moldyn_simulation (...){
10: ...
11: forceCalculationFor (0,NUM_PARTICLES , 1, ...);
12:
13:}

Figure 5. MOLDYN: For rule design application.

After applying the design rule, it is necessary to fill the pointcuts
responsible for the parallel region (line 02 of figure 6) and the
scheduling used in the parallel for (line 06 of figure 6) routines
of the OmpLib. Finally, it was also filled the pointcut to ensure the
mutual exclusion (line 11 of figure 6)

01: public aspect MOLDYN extends OmpLib
02: pointcut parallel_region () :
03: call(static void forceCalculationFor (..))
04: && within (// MOLDYN );
05:
06: pointcut for_block (int begin ,int end ,int inc) :
07: call(static void parallelfor(int ,int ,int ,..))
08: && args(begin ,end ,inc ,..)
09: && within (// MOLDYN );
10:
11: pointcut critical () :
12: call (// apply_3_newtons_law) ||
13: call (// updateForce(acumulated_forces ,i));
14:

Figure 6. MOLDYN: Filled pointcuts.

5. Results
This section compares the performance of Java threads version
(i.e., shared memory) MOLDYN benchmark. The evaluation was
performed by a series of tests using two machine configurations: i)
AMD Opteron Processor 6174, 2.2 GHz, 12 MB Cache L3, with
24 cores; ii) Intel Nehalem CPU Hex-Core, 2.67 GHz, 12 MB
Cache L3, corresponding to 12 cores and 24 threads. Each test
performed 25 different measurements, considering the median of
these measurements.

The reported results include two distinct parallel versions,
named intrusive and non-intrusive (OmpLib). In the non-intrusive
version, these routines were implemented using the proposed Om-
pLib (our approach), while on the intrusive version they were man-
ually inserted on the base code (this version is provided in the
JGF implementation). Finally, the time difference between both
approaches was registered, thus obtaining the AspectJ approach
overhead. The absolute values are illustrated in figures 7 and 8.

Note that the same static thread scheduling was used in both
approaches (intrusive and non-intrusive).

Analysing the results for the static scheduling in both AMD and
HEX machines the proposed approach, for the MD parallelisation
has approximately the same performance. The difference between
non-intrusive and intrusive approaches vary from -0,636 to 1,32
seconds representing respectively -2,58% and 2,50% of the intru-
sive execution time in the Hex machine benchmarks, and from -
1,214 to 1,8445 seconds (-2,01% and 2,81 %) in the AMD machine.



Figure 7. Hex : Static for overhead.

Figure 8. AMD : Static for overhead.

6. Conclusion
This paper presents an ongoing effort to develop an aspect library
that mimics the OpenMP standard. This library better fits into
object-oriented systems, since parallelism concerns are specified at
class interface level. Although, the library requires some degree of
refactoring in order to be applied to a given code base. The library
has been tested in several benchmarks from the Java Grande Fo-
rum [6] and provides a performance similar to implementations us-
ing traditional techniques (e.g., Java threads). Currently the library
provides most of the OpenMP functionality to Java programmers.
Future work includes the implementation of task-related constructs,
that have been added more recently to OpenMP and the implemen-
tation of strategies to reduce the programming overhead of refac-
toring loop constructs.
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