
Formal Analysis of Ubiquitous Computing Environments
through the APEX Framework

José Luís Silva
1
, José Creissac Campos

1
, and Michael D. Harrison

2

1
Departamento de Informática/Universidade do Minho & HASLab/INESC TEC

{jlsilva, jose.campos}@di.uminho.pt
2School of Electrical Engineering and Computer Science, Queen Mary University of London

michael.harrison@eecs.qmul.ac.uk

ABSTRACT

Ubiquitous computing (ubicomp) systems involve complex

interactions between multiple devices and users. This com-

plexity makes it difficult to establish whether: (1) observa-

tions made about use are truly representative of all possible

interactions; (2) desirable characteristics of the system are

true in all possible scenarios. To address these issues, tech-

niques are needed that support an exhaustive analysis of a

system’s design. This paper demonstrates one such exhaus-

tive analysis technique that supports the early evaluation of

alternative designs for ubiquitous computing environments.

The technique combines models of behavior within the

environment with a virtual world that allows its simulation.

The models support checking of properties based on pat-

terns. These patterns help the analyst to generate and verify

relevant properties. Where these properties fail then scenar-

ios suggested by the failure provide an important aid to

redesign. The proposed technique uses APEX, a framework

for rapid prototyping of ubiquitous environments based on

Petri nets. The approach is illustrated through a smart li-

brary example. Its benefits and limitations are discussed.

Author Keywords

Ubiquitous and Context-Aware Computing; Analysis;

Modeling; Prototyping; 3D virtual environments.

ACM Classification Keywords

F.3.1 [Logics and meanings of programs]: Specifying and

Verifying and Reasoning about Programs -Mechanical

verification; H.5.2 [Information Interfaces and Presenta-

tion]: User Interfaces - Prototyping; D.2.m [Software Engi-

neering]: Miscellaneous – Rapid prototyping.

INTRODUCTION

The design and engineering of ubiquitous computing envi-

ronments (i.e., electronically enriched environments that

are able to sense and respond to the presence of people)

present new challenges. Designing a ubiquitous computing

environment entails integrating a number of embedded

devices and sensors into a meaningful whole, capable of

adequately responding to multiple users and their own

devices. Given the potential complexity of the interaction

between all these elements, it is difficult to analyze a de-

sign thoroughly early in its development. This is further

complicated by the critical role that the physical environ-

ment plays in these systems. It is not always feasible to

deploy early versions of the system within a target envi-

ronment because of restrictions of cost or availability.

Given this situation prototypes have a particular relevance.

Indeed, using prototypes to understand an envisaged design

has become a principal research approach in Ubiquitous

computing [5]. We are particularly interested in the role of

prototypes in evaluating the user experience of a target

environment, and have been developing the APEX frame-

work as a solution to this problem.

Previous papers have discussed use of the APEX tool as a

model driven approach to the development of prototypes

based on virtual environments [16, 17]. One important step

in the development of a rapid prototype in APEX is to

create a virtual environment that is close enough to the

physical target system to provide an adequate and realistic

experience for users. This environment is created for the

user or users by means of a viewer in Opensimulator
1
. The

simulation of the ubiquitous system can be achieved within

virtual environment by using a colored Petri net (CPN)

model to describe its behavior. By this means it is possible

not only to interact with objects within the virtual environ-

ment but also with real users (via the viewers), simulated

autonomous users that are also modeled in CPN, virtual

interaction devices such as PDAs and sensors, and real

interaction devices. These environments become prototypes

of the envisaged systems, which can be used for evaluation.

As a result of the complex interactions arising from the

combination of multiple sensors, devices and users in a

physical space, observation of episodic use of the prototype

alone is not sufficient to guarantee that some particular

feature of the system is a property of the design. It becomes

difficult to establish whether observations made about use

1 http://opensimulator.org (last accessed January 20, 2012)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

EICS’12, June 25–28, 2012, Copenhagen, Denmark.

Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

131

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55636776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are truly representative of all possible interactions or

whether certain characteristics of the system are true in all

possible scenarios.

The fact that the behavior is driven by a CPN model makes

it possible to analyze the behavior of the prototype system-

atically and exhaustively using CPN Tools [7]. It is this

analysis of interactive systems that forms the discussion of

the paper. The application of special purpose heuristics to

the design of the ubiquitous system is the basis of the dis-

cussion. The next section discusses previous research. The

paper then moves from a description of the approach to an

example of its application.

The paper makes two of contributions.

 It introduces a method of evaluating ubicomp environ-

ments through exhaustive analysis, applying and adapt-

ing heuristics chosen from other areas of software engi-

neering and HCI. This evaluation is complemented with

an analysis of a simulation in 3D.

 It identifies property patterns in the identification and

verification of properties.

The stages of analysis using these property patterns are

demonstrated through an example.

BACKGROUND

A number of techniques within HCI support the analysis of

the usability of an interactive system from early in its de-

sign. These techniques range from paper prototyping and

Wizard of Oz, to the development of versions of the sys-

tems that can be used during user testing. Other techniques

that do not require explicit user testing include the use of

expert evaluation techniques such as Heuristic Evaluation

and Cognitive Walkthrough.

Ubicomp environments present challenging usability eval-

uation problems. Because they are embedded within physi-

cal environments interactions with them differ from the

styles of more traditional systems [8]. Interaction within

the environment may be explicit and the devices used for

interaction with the system subject to standard usability

heuristics for small devices, or it may be implicit and arise

simply as a result of the user changing their context (for

example moving in or out of a room). In both cases each

user’s context plays an important role.

A number of evaluation techniques have been developed

for dealing with implicit interactions within ubicomp envi-

ronments. Kim et al. [8], for example, have presented sev-

eral ubicomp case studies where evaluation has involved

making use of physical space. Other evaluation approaches

have aimed to provide early evaluation of a partially func-

tional system by using Wizard-of-Oz techniques. Even

these more limited approaches involve large resource in-

vestments: in the one case building real space for the

ubicomp system, and in the other developing the system to

a partially working level. These costs could be reduced by

the application of heuristics to a ubicomp application as

explored by Mankoff et al. [10] in the context of ambient

displays.

Scholtz et al. [18,13] have developed a framework for

evaluating ubiquitous computing applications. They devel-

oped a set of sample metrics measures based on ubiquitous

computing evaluation to assess whether adequate design

principles are satisfied and if the design produces the de-

sired user experience. This framework does not provide an

exhaustive means of analyzing a developed prototype.

Instead the focus is to identify key areas of evaluation and

to identify metrics and design guidelines to improve user

experience in ubiquitous systems.

Ubiquitous systems prototyping research is mostly con-

cerned with the development of prototypes of isolated de-

vices (e.g. Topiary [9]). Some approaches like 3DSim [15]

and VARU [6] develop simulations of actual environments

like APEX. The benefit of APEX is that modeling and

associated analytical approaches can be combined with

simulations. Additionally APEX supports a multilayered

development approach: simulation layer (Opensimulator); a

modeling layer (using CPN Tools) and a physical layer

(using external devices and real users).

Scholtz et al. [14] argue the need to develop interdiscipli-

nary evaluation techniques to address ubicomp properties at

early stages in design. Assessment techniques are required

to evaluate alternative solutions before deploying the sys-

tem. The complexity of a physical environment where a

number of devices are situated, and the added complexity

of real world activities, means that it is hard to assess which

observations are representative of the use of the system.

Likewise it is difficult to assess informally whether charac-

teristics of the system, assessed against specific heuristics,

hold across all possible usage scenarios.

The experience of exploring ubicomp environments de-

pends on individual preferences. However some character-

istics of user experience can be expressed as properties of

the environment. These properties can complement an

understanding of experience based on empirical evaluation

of the use of a prototype and should be seen as part of a

toolset for evaluating a design. We argue that systematic

and exhaustive techniques need to be part of an interdisci-

plinary approach. We follow Mankoff et al. [10] by devel-

oping property patterns from existing heuristics. Property

patterns have two roles: i) helping identify interesting prop-

erties and ii) helping verify existing properties. For exam-

ple a property of the system requires that there should be

feedback for any user of the environment who carries out a

particular kind of transaction. This can be expressed as a

typical property that takes a standard form. This property

pattern would provide the form and would complement

evaluation techniques by offering exhaustive analysis of

whether a property is true. This would not be feasible by

exploring all possible user behaviors through observation.

132

APPROACH

Usability heuristics [11] are a starting point for analysis

using the APEX system. In this approach the analyst is

encouraged to explore how well a particular design sup-

ports general properties that encourage ease of use. The

analyst or team of analysts bring their expertise in human

factors or their understanding of the domain to decide

where there are issues (for example in relation to ease of

recovery or the visibility of the effect of explicit or implicit

actions) in the design and propose design improvements.

Tool Support

To achieve a systematic and exhaustive analysis of the

CPN model of the behavior of the system, the verification

capabilities of CPN Tools are used. These tools provide a

modeling and verification environment for Colored Petri

Nets. Particularly relevant here is the State Space (SS) tool.

The tool generates a reachability graph that defines the

states that can be reached from some starting state. Each

node of the graph represents an execution state. Arcs repre-

sent the binding of particular values (e.g. actions) from one

state to a new one. Figure 1 illustrates part of one of these

graphs. The whole graph represents all possible executions

of a ubicomp system showing which actions can be execut-

ed in each system state. Each node is numbered and labeled

with its number of input/output arcs. Arc and node labels

are hidden by default in the tool, but can be checked inter-

actively (e.g. arc caption in Figure 1).

Figure 1- Reachability graph

The process of verification of a property involves applying

a predicate to relevant states in the reachability graph. The

returned result is either that the predicate is true of all rele-

vant states or that the predicate fails to be true, in which

case the path to the failing state is indicated. This path can

then be used to explore a situation that may be of interest

from the perspective of the design of the ubiquitous system.

Patterns

The approach uses verification patterns adapted from prop-

erties that are based on usability heuristics as well as a

broader range of properties used in other fields [4]. Of

particular interest is a set of property patterns provided by

the IVY tool [2]. This tool is a model-based environment

for the analysis of interactive systems that is used here as a

starting point. In IVY patterns define property templates,

expressed in temporal logic, which must be instantiated to

the particular details of the system and property under con-

sideration. This instantiation process creates a temporal

formula that can be verified. Analysis based on the formula

is then performed automatically by a model checker.

Applying the patterns in the context of APEX raises a

number of challenges. A first challenge is how the property

template defined within the pattern relates to the verifica-

tion process. As explained above verification is achieved

using the SS tool by writing predicates over the reachability

graph. Hence, the pattern, instead of defining a temporal

logic template, must define how the reachability graph is to

be explored (in particular defining which predicates are

needed) so that verification can be performed. Other chal-

lenges concern the interpretation of the patterns, and in

particular:

 Who are the users? IVY patterns assume interaction

between a user and the device. In APEX the interaction

context is richer, involving spaces where several users

might be present. Hence, when considering user actions

and system responses it is necessary to consider how

different users affect each other, e.g., an action by one

user might trigger a system response directed to a dif-

ferent user. It becomes relevant to consider therefore

who carried out an action or caused some change in the

system state.

 What are the actions? In a ubicomp setting implicit

interaction becomes relevant as well as explicit user ac-

tion. The system might be responding to conditions aris-

ing through implicit user action or changes to the envi-

ronment. These conditions are typically monitored indi-

rectly through sensors, e.g., a user entering or leaving a

room. Hence, rather than actions, situations of interest

may require characterization.

 What is being analyzed? A general problem not specific

to this context is whether the property is addressing the

design of the system or the model itself, i.e., whether

the property is being used to reason about features of

the system’s design, or is being used to validate the

model itself. This affects the interpretation of the reach-

ability graph. Indeed, while some nodes correspond to

states of the ubiquitous system, others correspond to in-

termediate execution states of the model.

Setting Up the Analysis

The approach is illustrated in the next sections using a

smart library context. The example illustrates the choice of

property patterns and how these patterns are instantiated in

the case of the example and then checked within the APEX

framework.

As a brief indication of the process consider the following

specific property that concerns the illumination of a book

light. The light turns off depending on the user action (user

taking the book or moving away) but also depends on the

actions of other users (taking the book) and also of the state

of the system (light already turned off). This property is an

instance of a particular pattern, namely the feedback pat-

tern. It requires that in all paths through the environment,

and for all states in the paths, it is true that if the light is on

for the book that the user wants and the user takes this book

then in every next state the book light is turned off. This

133

property relates to a specific user who takes the book, the

one who has reserved it. The system would leave the light

on in the book if the wrong person takes it, hence indicating

that they are taking the book without reserving it.

For the property to be verified, the model must be convert-

ed to a form that will allow CPN Tools to check the truth of

the property. CPN Tools require that the model be deter-

ministic and "small" so as to reduce the search space used

during analysis. The SS tool (part of CPN Tools) uses brute

force to bind each variable to each of its possible known

values, creating the reachability graph. Because in normal

conditions the model exchanges information with the virtu-

al world simulation and/or actual physical external devices,

the model can in principle be of unlimited size. This large

open model must therefore be translated into a closed one,

so that it is tractable within the SS tool.

Closing the model means isolating it from external compo-

nents. This is achieved by defining finite sets of possible

values for all the variables in the model that previously held

values acquired externally. CPN Tools defines a set of up

to one hundred elements as a small color set. APEXi, a

component of APEX, is used to initialize small color sets

semi-automatically. The tool provides an interface (see

Figure 5) to enable analysts to supply or select desired

values that can be used to populate as tokens the relevant

places of the CPN model as represented by a chosen sce-

nario.

Property patterns are explored in APEX in the next section.

They are represented formally and then instantiated for the

example ubicomp environment.

PROPERTY SPECIFICATION PATTERNS FOR UBICOMP
ENVIRONMENTS

Patterns provide a basis for analysis serving two roles: they

aid the process of elicitation of appropriate properties; they

help the analyst use CPN Tools to perform the analysis of

the instantiated property. A number of relevant property

patterns are now described. These patterns are adapted

from those supported by the IVY tool [2] to the ubicomp

context.

In [3] patterns are expressed as CTL templates to be instan-

tiated to concrete actions and predicates. We express the

patterns as predicates over the CPN model’s reachability

graph where actions are represented as transitions and ef-

fects as predicates over states. States are defined by the

values of the attributes in the model and capture relevant

configurations/conditions of the system.

The Consistency Pattern

Justification: Consistency is a heuristic that has widespread

relevance, including in the Ubicomp area [10].

Intuition: The consistency pattern defined in [3] captures

the requirement that a given event Q always causes a de-

fined effect R (expressed as a predicate over the states

before and after Q). There is optionally an additional predi-

cate (a guard) that constrains when the system behaves

consistently.

In the ubicomp context: the event (Q) is either an explicit or

an implicit action by the user which might change the envi-

ronment or the state of the system. Implicit actions and

environment changes are expressed in terms of the values

read by the sensors in the system. The effect of the action

(R) is a change in the state of the system as a whole.

Whether users perceive the change in environment is an

important element of the effect. Context plays an important

role. If an action by some user is being analyzed then the

presence of other users might also influence the response.

Hence, the gate in the library may not close when a user

leaves its neighborhood because of the presence of another

user. These various dimensions add to the texture in which

the pattern can be used beyond providing values for Q and

R. The context of the analyzed environment is described by

the tokens defined by small color sets initialized by the

APEXi tool.

The algorithm: The algorithm to be followed is presented in

Figure 2. For simplicity sake this algorithm assumes that

the given effect happens in response to the particular

event(s)/state(s) being considered only (this can be checked

with the Precedence pattern below). The functions in the

figure are used to identify, in the reachability graph, coun-

ter examples for the property being verified. The

counterExampleNodes function identifies the nodes of the

counter example by firstly identifying relevant nodes (cor-

responding to the effect R – identifyRelevantNodes func-

tion). Nodes correspond to states of the reachability graph.

From the identified relevant nodes (returned by the

identifyRelevantNodes function) the algorithm attempts to

identify alternative paths were the desired effect is not

verified. The counterExampleNodes function is applied to

the set of relevant values of the selected scenario (using

map) and the resulting list of nodes is held in the

CONSISTENCY variable. If the list is empty, the property

holds. The underlined pieces in Figure 2 are the parts that

need to be instantiated. They identify the places in the Petri

net that are relevant for the property being verified. A con-

crete instantiation of this algorithm is presented in Figure 6.

The Feedback Pattern

Feedback is a particular use of the consistency pattern

where a user action Q always causes a perceivable effect R.

In the ubicomp context the action (R) represents a change

that is observable in the environment though it should be

noted that the person causing the system’s response might

not necessarily be the same as the person who observes the

response. Even if it is the same person, the fact that the

response might be triggered by an implicit interaction or an

environment change begs the question of whether the re-

sponse will be salient enough. At this stage issues such as

salience are not being considered, rather the concern is to

guarantee that feedback is always provided. It is likely that

evaluating the salience of a particular feedback will require

input from the simulation (an example of synergy between

134

the formal and empirical analysis - but see [12] for a formal

treatment of salience).

Figure 2 - The consistency/feedback pattern algorithm

The Reachability Pattern

Justification: reachability is a basic property over which

other properties are derived (e.g. precedence, complete-

ness). It can be used to demonstrate that the system can

reach a specific state or situation.

Intuition: The reachability pattern captures the requirement

that the system can always evolve from one specific state S

to another state Q.

In the ubicomp context: environmental situations are repre-

sented as states based on particular distinguishing features,

for example, a book being illuminated, or a user being at a

given location. Some features of the state are likely to be

directly controlled by the system (the light on the book),

while others are observed (the user’s position), although the

observed features might be indirectly influenced by the

system (e.g., the gate, when it opens, enables the user to

move inside the library). Depending on the complexity of

the system, establishing how these influences work will not

be easy and can be aided by formal verification.

The algorithm: uses the reachability graph and identifies

desired states with identifying attributes. For each identi-

fied state S the algorithm checks whether it is possible to

reach a new state Q with the desired environment attributes.

An instance of the algorithm can be found in Figure 7.

The Precedence Pattern

Justification: The precedence pattern describes relation-

ships between a pair of events/states where the occurrence

of the first is a necessary pre-condition for the occurrence

of the second.

Intuition: This pattern captures the requirement that a state

or event S precedes another state or event P. The occur-

rence of the second is enabled by the occurrence of the

first.

In the ubicomp context: This property can be used to verify

that some event or state does not occur without the satisfac-

tion of a pre-condition. Consider for example the property

concerned with illuminating the book. The first state (S),

triggered by a user action (for example, as the user ap-

proaches the book), is a pre-condition for the occurrence of

the second state (P – book light turned on). The property

requires that the light will never turn on without a relevant

user approaching the book. Note that this does not guaran-

tee that the light will always turn on when a relevant user as

would be required by a consistency property.

The algorithm: identifies the second states (P) of the reach-

ability graph based on attributes of the environment and

then identifies each predecessor. The presence of state S

characterized by specified attributes is verified.

Other Patterns

Several other patterns were also adapted, for example:

Reversibility (the effect of a given action can eventually be

undone); Possibility (some event or state is always possible

throughout the execution of the system); Universality

(some condition always holds); or Eventuality (some event

or condition must eventually hold at some point).

DEVELOPING A MODEL FOR ANALYSIS OF A SMART
LIBRARY

The patterns are now applied to an example. The analysis

process requires an initial setup before property patterns

can be instantiated.

Introduction to the Example

A “smart library” identifies books stored on bookshelves

using Radio Frequency Identification (RFID) tags. Screens

provide context sensitive information to library users. A

registered library user is allowed entry or exit via gates.

When a registered user arrives at the entry gate, a screen

displays which books have already been requested by them

(using a web interface at their desktop for example) and

opens the entry gate.

The system recognizes the users’ position in real-time by

means of presence sensors. The users are guided to required

books by further screens. As the user approaches the book's

location a light with a distinctive color is turned on allow-

ing several users looking for books in nearby locations to

distinguish their own request. When the book is removed,

the light on the book is turned off. As the user returns to the

exit gate a personalized list of requested and returned books

is displayed on a screen by the gate. The gate is then

opened so that the user can leave.

While the example is not based on any specific existing

system, similar systems could be used to support dispatch

in relation to e-shopping or for guiding people inside a

building (e.g. hospital or airport). Indeed, a method and

system for localizing objects among a set of stacked objects

equipped with improved RFID tags has been patented [1]

suggesting the feasibility of the physical implementation of

the system.

135

The Model

An APEX prototype of the library example is described

more fully in [16]. Here the process of using it for verifica-

tion is now illustrated.

Creating the prototype involves creating the virtual envi-

ronment and extending the APEX CPN base model. The

base model underpins the behavioral model of the ubiqui-

tous system. Specific behavior relating to the library system

is added to the base model and this animates the environ-

ment so that it is appropriate for evaluation based on user

exploration of the virtual space as well as being a basis for

verification.

A number of modules are added that simulate the behavior

of gates, books, PDAs and displays. The Gate module is

described using CPN in Figure 3 and holds information

about the users, the devices and the sensors present in the

environment. The purpose of the gates module is to open a

gate when a user with appropriate “entering” permission is

in the proximity of a presence sensor associated with the

gate. The Gate module consists of a transition to open a

gate and another one to close it. Whether the module will

open or close the gate is based on information held by a

number of places: Dynamic Objects (e.g. gates, screens),

Users and P_sensors (presence sensors).

The opened or closed state of the gates is recognized

through two places: the Dynamic Object place (holds to-

kens for closed gates) and the gates opened place (holds

tokens for opened gates).

A function is used to identify the type of the objects that are

being dealt with in the Dynamic Objects place. A particular

concern is to identify the gates because the Dynamic Object

place holds objects other than gates. The is function is

designed to receive a dynamic object and a string as argu-

ments and to compare the type of the object against the

string to check whether there is a correspondence. In the

case of the gate further information is required to decide

whether to open or close the gate. This information in-

cludes whether: (i) a user is near a presence sensor; (ii) the

presence sensor affects the gate; (iii)nobody is near the

presence sensor.

Three functions are used to capture these conditions:

userNearPresenceSensor, objAfectedByPresenceSensor

and nobodyNearPresenceSensor.

A further module, responsible for providing directions to

users, is presented in Figure 4. The module uses the posi-

tions of the requested book and the user to send information

to the relevant PDA about which direction should be fol-

lowed. The means of getting the direction and sending it to

the appropriate PDA is associated with the show direction

transition. In particular the sendUserInfo function is used to

send information to a specified user. The identifier of the

sensor used to obtain the direction is forwarded by the

module to the PDAs with the new direction info place to be

used to decide when to display default information (show

default transition).

This combination of modules (along with others which pick

up books and notify relevant users) can now be analyzed.

Figure 3 - Gates module

((#id u) , obj)

open gate

[is(obj,"gate") andalso objAfectedByPresenceSensor(ps, obj) andalso userNearPresenceSensor(ps,u)]

input (u,obj);
action
(sendOpenGate(#id obj));

input (uId,obj);
action
(sendCloseGate(#id obj));

OBJ

gates opened

USERIDxOBJ

P_sensors

presenceSensorsUSER presenceSensors

close gate

(uId, obj)

users

usersusers

Dynamic Objects

objectsobjects

uobj ps

ps
obj

[objAfectedByPresenceSensor(ps, obj) andalso nobodyNearPresenceSensor(ps)]

presence_SENSOR

136

Figure 4 - User's PDA book direction module (open version)

Setting Up the Model for Analysis

The model must be transformed into a closed model con-

taining small color sets in order to reduce the state space

for analysis using the SS tool. This is achieved by remov-

ing the non-deterministic elements of the model, isolating it

from external components using scenarios that limit the

behavior of the open elements.

The APEXi tool has been designed to ease scenario crea-

tion. Values associated with instances of behavior and

dynamic objects are automatically inserted into small color

sets. Figure 5 shows values provided to APEXi as follows:

 one user (Test User - UsersIDs field) desiring the book

with identifier 1 (values field);

 two presence sensors, one at the entrance and the other

close to the bookshelf (Sfeatures field);

 two books with identifiers 1 and 2 (ObjIDs and

OBJfeatures fields);

 one gate with identifier 3 (ObjIDs and OBJfeatures

fields).

These values set up a scenario where the feedback property

is going to be analyzed. Once external library services have

been related to gates, book lights and behaviors as deter-

mined by user position and user requests for selected val-

ues. The model becomes adequate for analysis. A number

of similar scenarios should be selected with the help of

human factors or domain specialists to complete the analy-

sis. For instance it does not make sense to analyze gate

behaviors without users.

INSTANTIATING PROPERTY TEMPLATES

Having developed an appropriate model for analysis and

selected a scenario, it is now possible to proceed. Analysts

may know which property they want to prove (e.g., by

observing real users as they interact with the simulation),

but they can also have difficulties in their identification.

The templates help them in this task. By capturing (and

thus guiding the analysis towards) potentially relevant

features of a design, they help the analyst discover appro-

priate properties.

Additionally, using property templates makes it easier to

verify properties because algorithms to verify each of the

property patterns can be reused.

Three property templates are considered in relation to this

example: feedback, reachability and precedence. The other

templates mentioned in the paper have similar application.

Feedback

Parameters for property templates are instantiated with user

interactions, environment changes and features or states of

the environment. An instance of the feedback pattern is

whether the books always respond to relevant approaching

users. The feedback pattern parameters are instantiated with

the following values: action Q is defined as the implicit

action occurring when the user approaches the bookshelf

(the proximity of the user to the bookshelf is detected by

presence sensors in the environment); effect R is defined as

changing the environment so that the relevant light is

switched on; guard S is defined as stating that the light

must initially be off for this property to hold.

This pattern identifies a relevant feedback property: “when

a user approaches the appropriate bookshelf the book

lights up (unless it is already on)”.

obj

pda

pda
(pda,#id ps)

(pda,id)u ps

psu

show direction

[userNearPresenceSensor(ps,u) andalso isPDAofUser(pda,u) andalso isLookingForBook(obj,u)]

input (u,ps,obj);
action
(let

 val info = getDirection(u,ps,obj)
 in
 sendUserInfo(u,info)
 end
);

show default

[isPDAofUser(pda,u) andalso (id= #id ps) andalso presenceSensorTimeElapsed4user(ps,u)]

Dynamic Objects

objects
OBJ

PDA's default info

PDAs
PDA

PDA's
with new direction info

PDAxSENSORID

P_sensors

presenceSensors presence_SENSOR

users

users
USER

users presenceSensorsPDAs objects

137

Figure 5 - APEXi tool with selected value used to analyze the feedback property pattern

Reachability

The reachability template can be instantiated similarly:

state Q is the situation where a book that a user is looking

for is picked up by another person (stops being available);

state S is the situation when the user is notified.

This example instantiation identifies the property: "If a

book that a user is looking for is picked up by another

person (stops being available), the user is notified".

Precedence

The precedence template can be instantiated: state S corre-

sponds to the relevant user being near the bookshelf; state P

to the light being turned on.

This identifies “the light does not turn on while the relevant

user is not near the bookshelf”.

For analysis it is also necessary to know how many users

this property will be applied to as well as which actions are

considered (implicit or explicit), what is going to be ana-

lyzed, the environment or the mode itself. The selection of

adequate scenarios for analysis is critical to the results

obtained.

CHECKING THE MODEL USING THE SS TOOL

Checking the properties of the model is considered in this

section. This process uses the APEX tools, specifying and

instantiating the algorithms in CPN Tools as specified by

the appropriate pattern.

Feedback

To verify the first property "when a user approaches their

requested book the book's light turns on" we use and in-

stantiate the algorithm of the feedback pattern (see Figure

6). The identifyRelevantNodes function of the algorithm is

instantiated with the place where the search (i.e.

Books'LightedBooks) starts to identify the relevant nodes.

This function identifies those nodes of the reachability

graph where there are books with lights switched on. The

other generic part of the algorithm is also instantiated, with

place AnimationSetup'Dynamic_Objects used to identify

the nodes used in the analysis.

Figure 6 - Book's light behavior property (feedback)

After being instantiated, this concrete algorithm identifies,

in this case, those nodes where the user is near the desired

book and the book's light has not turned on (FEEDBACK

variable in Figure 6). The algorithm identifies firstly the

nodes in the reachability graph where the user is already

detected near the bookshelf, but the system is still to react.

From these nodes the system can either turn the book's light

on, or alternatively choose to process some other relevant

event. Selecting the second alternative (doing something

else), creates the executions from which a node with the

book's light on is not reached (counterExampleNodes func-

tion). The resulting list of nodes is empty. This means that

138

for the analyzed scenario (considering the values provided)

there is no system execution containing a node where the

light should be turned on but was not.

Summing up, the feedback property algorithm was used to

verify the property template. As stated the instantiation is

simply accomplished, in this case, by indicating the places

where the relevant nodes used by the algorithm should be

reached.

Reachability

The second property, "if a book a user is looking for is

picked up by another person (stops being available), the

user is notified" is now addressed. This property is a reach-

ability property, and its verification follows the pattern.

Reachability properties demonstrate whether it is possible,

from one state, to reach the other state (reachability be-

tween two nodes of the reachability graph). This is translat-

ed in the stated property as if, for every user looking for the

same book and every picked up book state, a user notifica-

tion state is reachable. The property pattern followed de-

scribes how the algorithm can be instantiated to check

reachability properties.

This property is again executed using a specific scenario.

Properties are parameterized using the selected values from

the small color sets specified in APEXi. For example, in

the property verification algorithm (Figure 7), the user

Silva and the book with id equal to 1 (userIDxOBJ and

book variables) are used because these are elements that

compose the new selected scenario for analysis (APEXi

selected values). Obviously this scenario should have at

least two users looking for the same book.

The idea behind the demonstration of this property is to

identify states from which a user picks up a book and the

system is not able to reach a notification state for users

looking for this book. In other words the aim is to find

counter examples where the system does not have the re-

quired properties. Figure 7 shows the instantiation of the

reachability pattern algorithm. This is achieved by instanti-

ating the targetNodes and originalNodes functions to iden-

tify the relevant nodes (see underlined pieces in Figure 7).

The places used to identify the nodes to be used in the

analysis (i.e. BookPickUp'User_Notified and

BookPickUp'OBJ_deleted) and concrete tokens to be iden-

tified in these places (i.e. userIDxOBJ and book) are pro-

vided. By this means the desired property can be verified.

The execution of this concrete algorithm identifies firstly

all notification nodes (returned by the targetNodes func-

tion). When these have been identified, all nodes at which

the book is picked up are identified (returned by the

originalNodes function). The final stage is to identify any

node in which the book is picked up and from which no

notification can be made, i.e. no notification node is reach-

able (hold in the REACHABILITY variable). Checking this

property using the algorithm (with each of the three users

of the selected scenario as parameter) returns no nodes

(REACHABILITY variable value) which means that for the

selected scenario (three users looking for the same book)

whenever a user picks up a book it is possible to notify all

users looking for the book.

Figure 7 - Notification property (reachability)

Precedence

The third property "the light does not turn on while the

relevant user is not near the bookshelf" follows the prece-

dence property pattern. To reach a state where the light is

on, a relevant user must be near the bookshelf. The prece-

dence algorithm consists in firstly identifying the nodes

where the light is on and secondly analyzing their prede-

cessors to check the presence of a user close to a bookshelf.

The return of zero nodes means that for the selected scenar-

io the property is always true.

Patterns help developers to verify identified properties and

then use relevant algorithms for checking the properties.

DISCUSSION

Evaluating a ubicomp environment by analyzing its behav-

ior exhaustively does not guarantee that the proposed de-

sign solution provides an adequate experience. As seen

with the feedback property pattern, a system satisfying this

property could mean that at some level the system provides

feedback but nevertheless the crucial elements in the envi-

ronment that are actually required for feedback are missing

from the analysis. Is the feedback provided salient? Can the

feedback be actually seen by the user? What will the feed-

back look like physically? These are issues raised through

analysis at the modeling layer. The value of the APEX

framework with its multilayered prototyping approach is

that these broader questions can be addressed. Each layer

supports a specific type of evaluation: observation of virtu-

al objects’ behavior, and user reaction to them, within a

virtual world (in the simulation layer); analysis of the mod-

el (in the modeling layer); observation of real objects (e.g.

actual smart phones) connected to the virtual world, and

users reaction to them (in the physical layer).

The framework supports a development process in which

virtual, physical or mixed elements are explored depending

on the availability of these components. The initial stages

of development can be achieved entirely in terms of a CPN

139

model. Further development can be moved into the virtual

world before moving wholly or partially into the physical

world. In summary it is possible to explore the design from

a variety of perspectives.

CONCLUSIONS

This paper introduces a method of evaluating ubicomp

environments through exhaustive analysis, applying and

adapting heuristics chosen from other areas of software

engineering and HCI. Ubicomp environments pose new

challenges when compared with traditional interactive

systems. The introduced approach enables the successful

exhaustive analysis of ubicomp environments through

property patterns. These patterns were instantiated in a

variety of ways in the context of ubicomp environments

leading to the identification of procedures to verify differ-

ent property templates. The proposed property templates

aim to help developers match properties and then to write

predicates over the reachability graph making easier the

demonstration of properties using APEX. More property

patterns (algorithms) emerged through the analysis with the

stated property templates. Due to space limitations only

some of them have been presented.

APEX through CPN provides a way to analyze exhaustive-

ly and formally every portion of the system behavior for

selected scenarios and to demonstrate properties on it. The

APEX multilayer approach complements this analysis.

ACKNOWLEDGMENTS

This work is financed by the ERDF – European Regional

Development Fund through the COMPETE Programme

(Operational Programme for Competitiveness) and by the

Portuguese Government through FCT – Portuguese Foun-

dation for Science and Technology, within project ref.

PTDC/EIA-EIA/116069/2009 (APEX project). José L Silva

is further funded by the Portuguese Government, through

FCT, under grant SFRH/BD/41179/2007. Michael Harrison

is supported by the UK EPSRC (EP/G059063/1) funded

CHI+MED project.

REFERENCES

1. Bauchot, F., Clement, J.-Y., Marmigere, G., Picon, J.

Method and structure for localizing objects using daisy

chained RFID tags. 2007. United States Patent Applica-

tion Publication Pub. No. US 2007/0257799 A1.

2. Campos, J. and Harrison, M. Systematic analysis of

control panel interfaces using formal tools. Interactive

Systems. Design, Specification, and Verification,

(2008), Springer LNCS 5136, 72–85.

3. Campos, J. and Harrison, M.D. Interaction engineering

using the IVY tool. Proceedings of the 1st ACM

SIGCHI symposium on Engineering interactive compu-

ting systems, ACM (2009), 35–44.

4. Dwyer, M. and Avrunin, G. Patterns in property speci-

fications for finite-state verification. , ICSE Proceed-

ings, IEEE (1999), 411-420.

5. Gellersen, H., Kortuem, G., and Schmidt, A. Physical

prototyping with smart-its. Pervasive Computing, 3, 3

(2004), 74–82.

6. Irawati, S., Ahn, S., Kim, J., and Ko, H. Varu frame-

work: Enabling rapid prototyping of VR, AR and ubiq-

uitous applications. Virtual Reality Conference, 2008.

VR’08. IEEE, IEEE (2008), 201–208.

7. Jensen, K., Kristensen, L.M., and Wells, L. Coloured

Petri Nets and CPN Tools for modelling and validation

of concurrent systems. International Journal on Soft-

ware Tools for Technology Transfer 9, 3-4 (2007), 213-

254.

8. Kim, SH., Kim, SW., Park, HM. Usability Challenges in

Ubicomp Environment, In the Proceeding of Interna-

tional Ergonomics Association (IEA’03) (Seoul, Korea,

Aug 24-29, 2003)

9. Li, Y. and Hong, J.I. Topiary: a tool for prototyping

location-enhanced applications. Proc. 17th annual User

Interface Software and Technology ACM 6, 2 (2004),

217–226.

10. Mankoff, J., Dey, A., Hsieh, G., and Kientz, J. Heuristic

evaluation of ambient displays. Proceedings of the

SIGCHI conference on Human factors in computing

systems, ACM (2003), 169-176.

11. Nielsen, J. Enhancing the explanatory power of usabil-

ity heuristics. Proceedings of the SIGCHI conference on

Human factors in computing systems, ACM (1994),

152–158.

12. Rukšenas, R., Back, J., Curzon, P., and Blandford, A.

Formal modelling of salience and cognitive load. Proc.

2nd Int. Workshop on Formal Methods for Interactive

Systems: FMIS, (2007), 57–75.

13. Scholtz, J. and Consolvo, S. Toward a framework for

evaluating ubiquitous computing applications. Perva-

sive Computing, IEEE 3, 2 (2004), 82–88.

14. Scholtz, J., Arnstein, L., Kim, M., Kindberg, T., and

Consolvo, S. User-Centered Evaluations of Ubicomp

Applications User-centered Evaluations of Ubicomp

Applications. Intel Corporation 10, May (2002).

15. Shirehjini, A.N. 3DSim: rapid prototyping ambient

intelligence. Smart objects and ambient intelligence,

October (2005), 303–307.

16. Silva, J., Ribeiro, Ó., Fernandes, J., Campos, J., and

Harrison, M. The APEX framework: prototyping of

ubiquitous environments based on Petri nets. Proc. Hu-

man-Centred Software Engineering, Springer LNCS

6409 (2010), 6–21.

17. Silva, J.L., Campos, J.C., and Harrison, M.D. An infra-

structure for experience centered agile prototyping of

ambient intelligence. Proceedings of the 1st ACM

SIGCHI symposium on Engineering interactive compu-

ting systems, ACM (2009), 79–84.

18. Theofanos, M. and Scholtz, J. A Framework for Evalua-

tion of Ubicomp Applications. First International

Workshop on Social Implications of Ubiquitous Com-

puting, CHI, (2005), 1-5.

140

