
Towards a Framework for Adaptive Web

Applications

Ana Isabel Sampaio and José Creissac Campos

Departamento de Informática/Universidade do Minho & HASLab/INESC TEC
Campus de Gualtar, Braga, Portugal

pg20190@alunos.uminho.pt, jose.campos@di.uminho.pt

Abstract. We have developed a framework to support adaptive ele-
ments in Web pages. In particular we focus on adaptive menus. Develop-
ers are able to define rules for menu adaptation according to the features
of the device and browser in use. This paper briefly describes the selected
adaptation patterns and their implementation.

Keywords: Web applications, User interfaces, Runtime adaptation

1 Introduction

The diversity of devices available in the market has changed the way we access
and share information. At the same time, it has created a number of challenges
for application developers. It has become more and more important to o↵er
solid user experiences to an increasing number of contexts. Context is an all-
encompassing concept that must be understood in relation to a specific purpose
[2]. In this particular case, we are mainly interested in how to develop applica-
tions that adapt to the diversity of devices mentioned at the start. That is to say
that the particular aspects of context we are dealing with are the input-output
characteristics of the devices where the applications should run. Of particular
relevance, of course, is screen size, but other aspects such as supported interac-
tion modalities must also be considered.

The main motivation for this work stems from an ongoing project on proto-
typing ubiquitous environments [6]. A framework (APEX) has been developed
that is based on building virtual world simulations of the environments. Users
are able to interact with the environments both implicitly, through simulated
sensors, and explicitly, through interactive devices (e.g., smartphones or pub-
lic displays). Such devices can be simulated, or actual devices connected to the
simulation framework. This, then, begs the question of how to deploy applica-
tions that are capable of adapting to di↵erent execution contexts. We base our
solution on the use of Web applications, and in this paper we explore how to
support the adaptation of such applications to di↵erent devices.

Preprint of the paper published in HCI International 2014 - Posters' Extended 
Abstracts, Part I, volume 434 of Communications in Computer and Information 
Science, 2014. The final publication is available at Springer via: 
http://dx.doi.org/10.1007/978-3-319-07857-1_43.



Fig. 1. Cameleon reference framework (from [1])

2 Deploying applications to multiple devices

Two basic approaches can be considered when thinking of deploying an appli-
cation to a multitude of devices. One is to develop native applications for each
category of device. Another is to develop Web applications, using the browser as
a multi-target runtime platform. In the case of Web applications, we can further
opt for performing adaptation on the server side, delivering di↵erent versions
of the applications based on the platform/browser used, or performing adap-
tations on the client side (i.e. in the browser). While the former has been the
most common approach, technological development is making the latter a viable
alternative.

From a methodological perspective, the Cameleon reference framework [1]
(see Figure 1) provides the conceptual foundations to reason about this adap-
tation. The framework proposes a number of abstraction levels from Tasks and
Concepts (the Domain), down to the Final User Interface (the code of the run-
ning user interface), and posits that these should be adapted to concrete contexts
of use, according to an adaptation model. The framework rest on the assumption
that a runtime platform is available that supports the dynamic adaptation of
the applications according to context.

At the technological side, Responsive Web Design [4] and Progressive En-
hancement [3] already o↵er approaches to support the development of Web ap-
plications that adapt to the characteristics of the browser/device they are run-
ning on. One characteristic of these applications is the existence of a single code
base that is able to provide users with increasingly rich user interfaces (evolu-
tion), based on the characteristics of the platform, but also change the structure
of the user interface to adapt to di↵erent form factors (transition), in response
to di↵erent platforms. Although a number of patterns and libraries exist that



Fig. 2. Multiple concrete models, one final user interface

support the implementation of this adaptation, it is still up to developers to
implement the adaptation capabilities. The browser, rather than constitute the
needed platform for dynamic adaptation, acts as a mostly passive infrastruc-
ture that is queried by the application in order to determine information about
context.

3 A framework for adaptive Web applications

Mapping the development of a typical responsive Web application to Cameleon,
the impact of context is seen mostly at the level of the concrete interface that
should be presented. Designers typically draw di↵erent mockups depending on
the devices/screen size. Using a unified code base means that the di↵erent con-
crete interfaces are merged in a single final user interface (see Figure 2). The
logic that governs adaptation, i.e. the adaptation model, is encoded in Cascading
Style Sheets (CSS) and JavaScript.

An approach to better support the development of these interfaces is to push
as much adaptation as possible into the final interface, and do this in an as
automated as possible manner. This can be achieved by introducing adaptation
capabilities into the widgets used to create the final interface. Hence, an abstract
control will be mapped into a concrete widget, and this widget mapped into an
adaptive control that will react to context according to some adaptation rules,
to create the User Interface (UI) experienced by the User.



Fig. 3. Menus (Menu bar: top and left; Select menu: middle right; O↵-canvas: right)

In order to test these ideas we have developed a framework to support adap-
tive menus. Developers are able to define rules for menu adaptation according to
the context of execution (see Figure 3). This can be seen a introducing a further
level in the reference framework, detailing how a final user interface adapts to
the platform to generate the UI actually provided to the users (what we call
Experienced UI in Figure 2).

3.1 Determining device features

Detecting the context of execution, in this case, amounts to detecting features
of the device and browser the application is running in. This can be done, either
on the server, or directly in the browser. Server side detection explores the user
agent string sent by the browser in the HTTP requests. This supports obtaining
detailed information about the browser and the device being used. However, it
depends on the browser sending the correct user agent string, and (typically) on
third party services to obtain the characteristics of the di↵erent devices.

Client side detection is performed directly in the browser, and a number of
Javascript libraries are available to support it. Modernizr1 is one such library.
Using it, it is possible to query more than 40 features, such as support for
HTML5 or CSS3 in the browser, touch or geo-referencing capabilities in the
device. Although more limited than server side detection, client side detection
it easier to implement (as it does not rely on external services), and does not
rely on the browser sending the correct information. Considering this, it was
decided to use client side detection, and Modernizr in particular, to support the
implementation of the di↵erent adaptation patterns described below.

1 http://modernizr.com (last accessed, March 7 2014).



3.2 Adaptation patterns

A total of five patterns for adaptive menus were identified and implemented. The
assumption is that the menu will initially be represented by an unordered list
of links. Using CSS (more specifically CSS3) it is then possible to render that
menu di↵erently according to the features of the browser. In this case, we are
interested in CSS3 support, touch support, and the size of the browser window.

The simplest solution is to create a Menu bar at the top of the page, and
reflow the options as the page size changes. This is achieved with CSS only,
without need for Javascript, but works well for small menus only. For small
screen or larger menus, it tends to take to much vertical space, going against the
content-first, nav-second principle [7].

A pattern that better supports that principle is the Footer anchor menu
pattern, In this case, a link (the anchor) is placed at the top of the page. This
link points to the menu, which is placed in the footer of the page. Javascript is
used in the implementation of this pattern to perform a number of changes in
the page: move the menu to the footer; add the anchor at the top; and add a
Back to top option in the menu to help users navigate the page.

Another option to avoid using too much space with the menu at the top of
the page is to render the menu in a Select (drop down) component. Navigation
is kept at the top of the page and each browser will render the component
appropriately. This is particularly useful with complex menus. The pattern is
implemented by replacing the list of links with a select element containing the
links originally in the list.

A pattern that also supports hiding the menu, but without the need of adding
a new component to the page, is the Toggle menu pattern. In this case, an
icon is used to allow the user to show/hide (i.e. toggle on/o↵) the menu. The
toggling of the menu is achieved through Javascript and CSS, by dynamically
adding appropriate classes to the list and its elements. Depending on the class
the elements are assigned they will be shown or hidden, as defined in the CSS.

The last implemented pattern is theO↵-canvas menu pattern. This pattern
uses a floating lateral column (typically placed on the left) where the menu is
presented. As with the Toggle menu, the O↵-canvas menu is accessed through an
icon. However, in this case the menu appears from the left (or right) and takes all
the hight of the page. How much of the horizontal space is used depends on the
window’s width. This pattern is commonly used in native mobile applications,
so it has the advantage of providing a similar look and feel.

The O↵-canvas menu pattern features the more complex implementation of
the five patterns, as it requires changing properties, not only of the menu, but
also of other elements in the page. This happens because the elements in the page
must be moved left (right) when the menu appears. To achieve this, a wrapper is
introduced that contains all elements in the page. It is this wrapper that is then
slid when the menu appears/disappears. The sliding e↵ect was achieved using
CSS3 transitions.

As described, all but the first pattern resort to Javascript in order to carry
out runtime changes to the Web page. This is unlike [5] which statically creates



all alternative menus in the page, using CSS to select the appropriate menu from
the available alternatives by hiding or showing them depending on the viewport.
The advantage of runtime adaptation is that the original Web page becomes
simpler, featuring the basic version of the menu only (avoiding duplicated menu
codification). The drawback is that Javascript is required for the adaptation to
work, which adds a delay when the page loads (even if barely perceptible).

4 Conclusions

To support the diversity of devices currently available, two main solutions are
possible. Develop di↵erent version of the same application for the di↵erent de-
ployment contexts, or include adaptations capabilities in a single solution that
enables it to react to its deployment context in order to provide the best user
experience possible.

In this work we have taken the latter approach and explored how, in a model
based user interface design context, we can create adaptable components to sup-
port runtime adaptation of the user interface (as opposed to development time
translation between contexts). To this end, we have developed a framework con-
sisting of a number of adaptation patterns for menus. Namely: Menu bar, Footer
anchor menu, Select menu, Toggle menu, and O↵-canvas menu. The framework
implements these menus in a mix of JavaScript (using Modernizr to determine
browser and device capabilities) and CSS3. The implementation of the patterns
was briefly discussed.

Acknowledgments This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (operational programme
for competitiveness) and by National Funds through the FCT - Fundao para
a Cincia e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-015095.

References

1. G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vanderdonckt.
A unifying reference framework for multi-target user interfaces. Interacting with
Computers, 15(3):289–308, 2003.

2. James L. Crowley, Joëlle Coutaz, Gaëtan Rey, and Patrick Reignier. Perceptual
components for context aware computing. In Ubicomp, volume 2498 of Lecture
Notes in Computer Science, pages 117–134. Springer, 2002.

3. A Gustafson. Adaptive Web Design: Crafting Rich Experiences with Progressive
Enhancement. Easy Readers, 2011.

4. Ethan Markotte. Responsive Web Design. A List Apart, 2010.
5. Tim Pietrusky. Responsive menu concepts. Appliness, 9, December 2012.
6. J. L. Silva, O. R. Ribeiro, J. M. Fernandes, J. C. Campos, and M. D. Harrison. The

apex framework: prototyping of ubiquitous environments based on petri nets. In
Human-Centred Software Engineering, volume 6409 of Lecture Notes in Computer
Science, pages 6–21. Springer, 2010.

7. Luke Wroblewski. Mobile First. A List Apart, 2011.


