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Abstract. The tail index is a determinant parameter within extreme value theory. Under a semi-
parametric approach, one has often to choose the number of the largest order statistics to include in
estimates. This is a hard task since it is not possible to know for sure where the tail of data really
begins. This crucial topic has been largely addressed in literature and several methods were developed.
In this paper we analyze, through simulation, a heuristic method and compare it with two very popular
methodologies. It will be seen that the new method can be a good alternative.

1. Introduction

Extreme value theory (EVT) is focused on the occurrence of extreme events. This issue is on the agenda
of areas like climatology and engineering due to climate changes, finances given the instability in the markets
due to globalization, among others.

A crucial parameter in the estimation of the probability of rare events is the tail index, which defines
the type of tail of a model. Consider a sequence of independent and identically distributed (i.i.d.) random
variables (r.v.’s), {Xy}n>1, with marginal distribution function (d.f.) F'. If for some real constants a, > 0
and b,, the limit of the linearly normalized maxima exists and satisfies

P(max(Xy,...,Xpn) < apz+by) — Ge(x)

for some non-degenerate function G¢, then we say that F' belongs to the max-domain of attraction of G,
in short, F' € D(G¢). This function is called generalized extreme value (GEV) and is given by

Ge(z) =exp(—(1+&x) %), 1+&>0,£€R,

(Go(z) = exp(—e™®)). The shape parameter ¢ is the tail index and, whenever positive means that F' has a
heavy tail (Fréchet max-domain of attraction) with infinite right-end-point, if null means an exponential tail
(Gumbel max-domain of attraction) and whenever negative corresponds to a light tail (Weibull max-domain
of attraction) with finite right-end-point. Several estimators of £ require that F' € D(G¢) (see, e.g., Hill
(1975), Beirlant et al. (1996), among others) and depend on the k larger order statistics. We shall denote

—~

them & . Let Xy > X1 > -+ > X3, be the order statistics of {X,,}n>1. The Hill estimator (Hill,
1975), only valid for £ > 0, is given by

k

Xn—iv1:
j :IOg n—i+1l:n )
i=1

&, -
n ank:n

B
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The generalized Hill estimator (Beirlant et al., 1996) holds for all real values of £ and is defined by

k cH

~ 1 Xn—in &,

Ef = g 10g< : ) .
i=1

cH
Xn—(k—i—l):n §k+1,n

Both estimators are consistent and asymptotically normal under quite general conditions, in particular,
k=k,—0, k,/n— 0, n— oo, with asymptotical variances given by, respectively,

o &
Avar(§i,) = " (1)
and
142 £€>0
AUW(EJ?E) = { 1135 1+&642¢2 o (2)
SR <o

The choice of the k upper values (defining the tail of F') is the crucial issue and is not easy. On one hand,
small values of k lead to larger variances of the estimators and, on the other hand, large values increase the
bias. By plotting (k,&k.n), 1 <k < n, we can find a range of k where & ,, is approximately constant around
the true value (see Figure 1). Many estimation procedures are based on this graphical tool (see e.g., Drees
and Kaufmann (1998), Neves and Fraga Alves (2004) and references therein).
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Figure 1: Hill plots of 1000 realizations of a GEV with £ = 1 (full line) and a Cauchy (dashed line). The horizontal line
corresponds to the true value of &.

A heuristic procedure to infer a stable region from a similar graphical tool within the context of bivariate
tail dependence was introduced in Frahm et al. (2005) and further applied in Ferreira and Silva (2014). In
Ferreira (2014) the method was analyzed for the Hill estimator in order to evaluate if the smooth bandwidth
affected the results. Here we use this procedure and present a pontual and intervalar estimation of the
tail index, based on the Hill and Generalized Hill estimators. The variance estimation is conducted as
in Ferreira and Silva (2014). Our simulation results are also compared with two other graphical-based
estimation procedures well-known and applied in literature.

2. The Methods

We start by presenting our method which is based in the one introduced in Frahm et al. (2005) within
the context of bivariate tail dependence. More precisely, the following algorithm looks for the stable region



Ferreira / ProbStat Forum, Volume 08, April 2015, Pages 45-53 47

of the estimator’s path:

Algorithm 1: R N
Smooth the plot (k,&k,,) by considering the means of 2b + 1 successive points of &, 1 < k < n, with
bandwidth b = |wn] € N (here w is a parameter for the degree of smoothing to be used, e.g., if w = 0.005

then each moving average is about 1% of the data). Define the plane regions py, = (E,W e ,ngrmen), k=

1,...,n—2b—m+ 1, with length m = [v/n — 2b] in the smoothed moving average values, Elm, . ,En_%,n.
The algorithm stops at the first plane region such that

k+m—1 _ _
Z gi,n - gk,n < 2Sa
i=k+1
where s is the empirical standard deviation of El,n, . ,En_Qbm. Estimate £ by the mean of the values of the

plane region chosen in the previous step (consider the estimate zero if no stable region fulfills the stopping
condition).

In Ferreira (2014) it was shown that, in general, the Hill estimates do not change much for a wide
range of values of w. Our simulation results also support this to the generalized Hill (we have considered
w = 0.005, 0.01, 0.015, 0.02, 0.025 and 0.03). Thus we only present the results of w = 0.005 (this value was
also suggested in Frahm et al. (2005)). Besides point estimation, we analyze interval estimation. In order to
estimate the variance, we are going to apply Algorithm 1 to the asymptotical variance’s path (k, Avar(gfn)),
but we choose the plane region in step 3 at the same position of the one found for the £ estimation. This
strategy was also followed in Ferreira and Silva (2014).

Now we describe the other two graphical procedures that look for a possibly k£ optimal value, which are
based on the following model derived by Beirlant et al. (2002), under quite mild assumptions, for £ # 0:

ani:n &{:In

cH
Xn—(i+1):n §i+17n

N\ P
Y.:=(i+1)log =&+ b(n/k) (%) +e,i=1,...,k, (3)
where ¢; are considered zero-centered error terms and b is a positive function such that b(z) — 0, as x — oo.
Parameter p is also a tail parameter that can be estimated (see Beirlant et al. (2002)). However, in practice,
it can be replaced by the value p = —1 (more details can be seen in Beirlant et al. (2004) and references
therein). Therefore, under fixed p, estimates of £ and b(n/k) can be obtained from (3) by applying least
squares, leading to

En =Y —b5/(1—p)
7Ls _ (1-p)*(1-2p) 1 \~k i\ P 1 @)
b = =1 i ((%) —Tp) Yi.

The asymptotic mean squared error (AMSE) of Hill and generalized Hill are, respectively, given by

—~ 2 2
AMSE(El, ) = £ + (1222) ®
and
2
14¢? b(n/k)

- e il s , 6§20
AMSE(&)) = (1k g)(1+g+;gzp) ) b(n/k) | 6 ©)

=260k + ( ) ) , € <.

The optimal values of k for which the respective AMSE is minimal have the expressions

-2

201 y2\ 1/(1—2p)
kI, ~ b(n/k)=2/(1=20) =20/ (1=2p) (e (1-p) ) -
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and
b(n/k)~2/(1=20) =20/ (1=20) <(1+§2)§17P)2)1/(1—2p) £>0
— p )
KGH ~ {0 LTb(n/k)=5/2k50/2 o ,E=0 (8)
(U=0=praase) O k) =20=20) =20/ 1=20) ¢ <

More details can be found in Beirlant et al. (2004).
For comparison, the following two algorithms (see Beirlant et al. (2002) and Matthys and Beirlant (2000))
were also applied:

Algorithm 2:
Consider p = —1 and obtain estimates for £ and b(n/k) by least squares using (4), for k = 3,...,n. Compute

Eopt 1, according to the expression (7) or (8), whether you use Hill or generalized Hill, by replacing  and
b(n/k) with the values calculated in the previous step, for k = 3,...,n. Take k:gpt = median{kopt i, k =

3,..., 5]}, where [x] denotes the largest integer not exceeding x. Estimate & by géi .
opt?

Algorithm 3:

Consider p = —1 and obtain an estimate of & and b(n/k) by least squares using (4). Compute the AMSE
according to the expression (5) or (6), whether you use Hill or generalized Hill, by replacing ¢ and b(n/k)
with the values calculated in the previous step. Take %pt as the value of k that minimizes the estimates of

the AMSE in the previous step. Estimate & by %

opt T

The asymptotical variances of Hill and generalized Hill can be obtained within these two algorithms by,
respectively, Avar (£ ) ,,) and zﬁlvar(«?{k2 . ,,) using (1), and Avar(fghz ,,) and Avar(«fgfi ,,) using (2).
opt? opt) opt? opt?

In the next section, we analyze the performance of the heuristic method presented in Algorithm 1,
based on the Hill and generalized Hill estimators, through simulation and compare the results with the ones
obtained from the methods described in Algorithm 2 and Algorithm 3, both widely known and applied in
literature. The asymptotical variances of Hill and generalized Hill are also computed in order to obtain
interval estimates.

3. Simulations and results

The models used in the simulation study are:

o GEV(¢) with d.f. Ge(x): GEV(1), GEV(0) and GEV(-1);

o Generalized Pareto with d.f. 1 +logGe(z) (GP(£)): GP(1), GP(0) and GP(—1);

e Cauchy (£ =1),

e Burr(3,7,)\), with d.f. F(z) =1— (8/(8+27))*): Burr(1,2,2) (¢ = 1/4) and Burr(1,1/2,2) (¢ = 1)
e Standard Normal (£ = 0);

o Weib(\,7), with d.f. F(z) =1 — exp(—Az~7): Weibull(1,1/2) (¢ = 0);

e Reversed Burr, RBurr(8,7,)) with d.f. F(x) = 1—(8/(B+ (v+ —2)~7))*): RBurr(1,4,1), with z, =1
(€ = -1/4)

We have considered 1000 independent samples of size n = 1000. We denote the methods based on Algorithms
1, 2 and 3, respectively, A1, A2 and A3. The bias and the rmse of the Hill estimator are in Tables 1 and 3,
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Table 1: Bias of E}?n

bias Al A2 A3

Cauchy -0.0298 | -0.0332 | -0.0700
GP(1) 0.0031 | 0.0115 | -0.0406
GEV(1) -0.0023 | 0.0132 | -0.0618
Burr(1,2,2) 0.0295 | 0.0253 | 0.1902
Burr(1,1/2,2) | 0.1306 | 0.1555 | -0.0295

Table 2: Bias of E,?ff

bias Al A2 A3

Cauchy -0.0737 | -0.0858 | -0.0399
GP(1) -0.0306 | -0.0253 | 0.0012
GEV(1) -0.0413 | -0.0335 | -0.0056
Burr(1,2,2) -0.0569 | -0.0708 | -0.0603
Burr(1,1/2,2) 0.0480 | 0.0788 | 0.0685
GP(0) -0.0042 | 0.0098 | 0.0170
GEV(0) -0.0095 | -0.0083 | 0.0077
Normal St. -0.1551 | -0.1653 | -0.1521
Weibull(1,1/2) | 0.2320 | 0.2615 | 0.2141
GP(-1) -0.0122 | -0.0077 | 0.2381
GEV(-1) -0.0390 | -0.0471 | 0.1597
R. Burr(1,4,1) | -0.0369 | -0.0537 | 0.1748

Table 3: Root mean squared error (rmse) of Efn

rmse Al A2 A3

Cauchy 0.1848 | 0.2048 | 0.2720
GP(1) 0.1444 | 0.1279 | 0.2675
GEV(1) 0.1440 | 0.1274 | 0.2780
Burr(1,2,2) 0.0551 | 0.0636 | 0.2159
Burr(1,1/2,2) | 0.2277 | 0.2385 | 0.3860

respectively, and plotted in Figure 2. The results concerning the bias and the rmse of the generalized Hill
estimator can be seen in Tables 2 and 4 and also in Figures 3 (case £ > 0) and 4 (case £ < 0).

For estimator fﬁkfn, the method A3 has the worst performance. Both methods Al and A2 behave similar
and reasonably. The results within these latter (except for Cauchy and GP(1) models) also compare favorably
with the ones based on Drees and Kaufmann (1998) sequential method derived in Neves and Fraga Alves
(2004). In the case of estimator 2,?5 for £ > 0, the three methods have a similar performance. The
method A3 behaves better than in the case of the Hill estimator, while methods A1l and A2 are slightly
worse. However, for & < 0, method A3 does not perform well. It is preferable in this case to use the
methods Al and A2, since both have a good performance, although not so good for Normal and Weibull
models. Regarding the interval estimation (Tables 5 and 6 and Figure 5), the best method is the Al for
both estimators, with a quite reasonable performance except again in the Normal and Weibull models. In
a future work, we will continue to exploit the heuristic method A1l presented here, in order to improve its
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performance in a larger range of models, and compare it with other procedures like, for instance, bootstrap
methods (see, e.g., Gomes and Oliveira (2001) and references therein).

Table 4: Root mean squared error (rmse) of g,?f

rmse Al A2 A3

Cauchy 0.2339 | 0.2415 | 0.2337
GP(1) 0.1775 | 0.1608 | 0.2036
GEV(1) 0.1746 | 0.1601 | 0.2032
Burr(1,2,2) 0.1163 | 0.1245 | 0.0848
Burr(1,1/2,2) 0.2299 | 0.2246 | 0.3760
GP(0) 0.1198 | 0.1079 | 0.1229
GEV(0) 0.1380 | 0.1232 | 0.1141
Normal St. 0.2189 | 0.2139 | 0.1879
Weibull(1,1/2) | 0.2732 | 0.3001 | 0.3394
GP(-1) 0.1282 | 0.1117 | 0.2381
GEV(-1) 0.1370 | 0.1467 | 0.5847
R. Burr(1,4,1) | 0.1422 | 0.1457 | 0.4282

Table 5: Empirical coverage probabilities of E }:1 n

coverage IC 95% | Al A2 A3

Cauchy 0.937 | 0.836 | 0.660
GP(1) 0.967 | 0.869 | 0.591
GEV(1) 0.969 | 0.883 | 0.584
Burr(1,2,2) 0.960 | 0.696 | 0.580

(
Burr(1,1/2,2) 0.963 | 0.803 | 0.406

Table 6: Empirical coverage probabilities of EEIZ .

coverage IC 95% | Al A2 A3

Cauchy 0.905 | 0.832 | 0.865
GP(1) 0.951 | 0.892 | 0.834
GEV(1) 0.958 | 0.883 | 0.827
Burr(1,2,2) 0.908 | 0.840 | 0.707
Burr(1,1/2,2) | 0.975 | 0.863 | 0.607
GP(0) 0.982 | 0.928 | 0.799
GEV(0) 0.982 | 0.935 | 0.841
Normal St. 0.865 | 0.755 | 0.564
Weibull(1,1/2) 0.837 | 0.463 | 0.406
GP(-1) 0.976 | 0.946 | 0.838
GEV(-1) 0.965 | 0.942 | 0.909
R. Burr(1,4,1) | 0.953 | 0.909 | 0.874
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Figure 2: Absolute bias (left) and rmse (right) of estimator ?’I, where the full line, the dashed line and the dotted line correspond
to the methods, respectively, A1, A2 and A3.
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Figure 3: Absolute bias (left) and
Al, A2 and A3.
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Figure 4: Absolute bias (left) and rmse (right) of estimator Mdm for £ < 0, where the full line, the dashed line and the dotted line correspond to the methods, respectively,
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Figure 5: Empirical coverage probabilities of gfn (top-left), 25{3 for £ > 0 (top-right) and 25{3 for £ < 0 (bottom), where the
full line, the dashed line and the dotted line correspond to the methods, respectively, A1, A2 and A3.



