
1Extremes of sale mixtures of multivariate time seriesHelena Ferreira Department of Mathematis, University of Beira Interior, Covilhã, Portugal(helena.ferreira�ubi.pt)Marta Ferreira Center of Mathematis of Minho University, Braga, Portugal(msferreira�math.uminho.pt)Abstrat: Fator models have large potenial in the modeling of several natural and human phenomena. In thispaper we onsider a multivariate time series Yn, n ≥ 1, resaled through random fators Tn, n ≥ 1, extendingsome sale mixture models in the literature. We analyze its extremal behavior by deriving the maximum domainof attration and the multivariate extremal index, whih leads to new ways to onstrut multivariate extremevalue distributions. The omputation of the multivariate extremal index and the haraterization of the taildependene show an interesting property of these models. More preisely, however muh it is the dependenewithin and between fators Tn, n ≥ 1, the extremal index of the model is unit whenever Yn, n ≥ 1, presentsross-setional and sequential tail independene. We illustrate with examples of thinned multivariate time seriesand multivariate autoregressive proesses with random oe�ients. An appliation of these latter to �nanialdata is presented at the end.Keywords: multivariate extreme value theory, fator models, tail dependene2000 Mathematis Subjet Classi�ation: 60G701 IntrodutionFator models have been used in the modeling of data within hydrology (Nadarajah [26, 27℄ 2006/2009,Nadarajah and Masoom [28℄ 2008), storm insurane (Lesourret and Robert, [22℄ 2006), soil erosion inrops (Todorovi and Gani [36℄ 1987, Alpuim and Athayde [2℄ 1990), reliability (Alpuim and Athayde [2℄1990, Kotz et al. [19℄ 2000), eonomy (Arnold, [3℄ 1983) and �nane (Ferreira and Canto e Castro, [13℄2010).Let Xn = (Xn1, . . . , Xnd), n ≥ 1, be a d-variate sequene, suh that Xnj = YnjTnj , j = 1, . . . , d,where(a) Y = {(Yn1, . . . , Ynd)}n≥1 is a stationary sequene suh that, Ynj has a Pareto-type distribution
FYj , j = 1, . . . , d, i.e., for eah j = 1, . . . , d, there exists a positive onstant βj for whih

FYj (x) = 1− x−βj lYj (x), (1)with lYj a slowly varying funtion, i.e., lYj (ax)/lYj (x) → 1, as x → ∞, for all a > 0,(b) T = {(Tn1, . . . , Tnd)}n≥1 is a stationary sequene, independent of Y, with support R
d
+ and suhthat E(T

ǫj
nj) < ∞, for some ǫj > βj, j = 1, . . . , d.This work is onerned with the extremal behavior of the multivariate time series Xn, extending mostof the fator models mentioned above. More preisely, we derive the max-domain of attration (Setion2), alulate the multivariate extremal index (Setion 3) and haraterize the tail dependene (Setion4). The produt YnjTnj an be seen as a random normalization of Ynj by Tnj , whih is often requiredwhen modeling extremal behavior. For instane, if Ynj is the rate of an extreme event and Tnj its averageost, then YnjTnj an be interpreted as the total ost of the extreme event. Produts of two independent
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2random variables where one of them is regularly varying have been addressed from both theoretial andapplied points of view (Maulik et al. [24℄ 2002, Lesourret and Robert [22℄ 2006, Nadarajah [26℄ 2006and referenes therein).Our motivation to the probabilisti study of extremes of multivariate sequenes of produts wasoriginated from some partiular models. Consider, for instane that Tnj are Bernoulli distributed. Then
Xn provides a model for multivariate data subjeted to missing values. Extremes of univariate sequeneswith random missing values have been onsidered in Weissman and Cohen ([37℄, 1995) as a partiularase of some mixture models. Additional results on extremes of inomplete samples an be found inMladenovi and Piterbarg ([25℄, 2006) and Tan and Wang ([34℄, 2012).Li ([23℄, 2009) analyzed the tail dependene of the sale mixture Xn when Yn = (Yn1, . . . , Ynd) hasmultivariate extreme value distribution with standard Fréhet margins and Tnj = Tn, j = 1, . . . , d. Herewe onsider sale mixtures of multivariate sequenes whih are very �exible models for data exhibiting taildependene and asymptoti tail independene suh as, respetively, ARMAX and pARMAX sequenes(Ferreira and Ferreira [15℄). We give partiular emphasis to a model in whih βj = α/γj , α, γj > 0,
j = 1, . . . , d, generalizing the results of Lesourret and Robert ([22℄, 2006) (Setion 5). An appliation to�nanial data will be provided at the end (Setion 6).2 Preliminary results and max-domain of attrationWe start with some properties of {Xn}n ≥ 1, that will be used along the paper. We use notation
rj = E(T

βj

nj ) along the paper.Proposition 2.1. For eah j = 1, . . . , d, {Xnj}n≥1 is a stationary sequene having Pareto-type distribu-tion.Proof First, observe that
lim
x→∞

P (YnjTnj > x)

P (Ynj > x)
= lim

x→∞

∫
x−βjzβj lYj(x/z)dPTnj (z)

x−βj lYj (x)
= rj ,where the last step is due to the dominated onvergene theorem and by using the Potter bounds ofregularly varying funtions (Bingham et al., [5℄ 1987; Theorem 1.5.6.). Therefore, for large x,

1− FXj (x) = P (Xnj > x) = x−βj lYj (x)rj(1 + o(1)) := x−βj lXj (x), (2)where it is immediately seen that lXj is a slowly varying funtion.In the sequel we denote UXj (x) and UYj (x) the quantile funtions, F−1
Xj

(1 − 1/x) and F−1
Yj

(1 − 1/x),respetively.Given (1) and applying the the Bruyn onjugate onept (Beirlant et al. [4℄ 2004, Proposition 2.5),we have that, for large x,
UYj (x) = x1/βj lUYj

(x) = x1/βj l
1/βj

Yj
(x1/βj )(1 + o(1)), (3)where lUYj

is a slowly varying funtion. Using again the the Bruyn onjugate onept and by (2), we anstate, for large x,
UXj (x) = x1/βj lUXj

(x) = x1/βj l
1/βj

Xj
(x1/βj )(1 + o(1)) = x1/βj

(
lYj (x

1/βj )rj

)1/βj

(1 + o(1)),where lUXj
is a slowly varying funtion. Therefore, and onsidering (3), we have for large x,

UXj (x) = x1/βj lUYj
(x)r

1/βj

j (1 + o(1)) = UYj (rj x) (1 + o(1)). (4)



3Proposition 2.2. The upper tail opula funtion of X is given by
ΛX(x1, ..., xd) = E

(
ΛY

(
T β1

1 x1

r1
, . . . ,

T βd

d xd

rd

))
,with (x1, ..., xd) ∈ R

d

+ = [0,∞]d\{(∞, . . . ,∞)}, where T = (T1, . . . , Td) is a random vetor distributed as
Tn = (Tn1, . . . , Tnd) and provided that the upper tail opula funtion of Yn exists, i.e., the limit

ΛY(x1, ..., xd) = lim
t→∞

tP




d⋂

j=1

{
Y1j > UYj (t/xj)

}

 (5)is �nite.Proof The upper tail opula funtion of X is de�ned by

ΛX(x1, ..., xd) = lim
t→∞

tP




d⋂

j=1

{
X1j > UXj (t/xj)

}

The result follows immediately by applying (4) and the dominated onvergene theorem, sine

lim
t→∞

tP




d⋂

j=1

{
X1j > UXj (t/xj)

}



= lim
t→∞

t

∫
P




d⋂

j=1

{
Y1j > UYj

(
rj t

z
βj

j xj

)}
 dP(T11,...,T1d)(z1, . . . , zd)

=

∫
ΛY

(
zβ1

1 x1

r1
, . . . ,

zβd

d xd

rd

)
dP(T11,...,T1d)(z1, . . . , zd)

= E

(
ΛY

(
T β1

1 x1

r1
, . . . ,

T βd

d xd

rd

))
.

(6)
The results of Proposition 2.1 and 2.2 are related to the Breiman's theorem (see, e.g., Proposition 7.5in Resnik 2007).Remark 2.3. If βj = β and Tnj = T , j = 1, . . . , d, then ΛX = ΛY, orresponding to the ase onsideredin Li ([23℄, 2009). If ΛY(x1, ..., xd) =

∑d
i=1 xj , we also obtain ΛX = ΛY, for any hoie of T. In thelast setion we give partiular attention to the ase ΛY(x1, ..., xd) =

∧d
i=1 xj .Normalized levels u

(τj)
nj of Xj are suh that n(1 − FXj (u

(τj)
nj )) → τj > 0, as n → ∞, i.e., u(τj)

nj =
UXj (n/τj) (1 + o(1)), as n → ∞. Thus, by (4) and for large n, Xj has normalized levels

u
(τj)
nj = UYj (nrj/τj) (1 + o(1)).Consider un(x) = (u

(τ1(x1))
n1 , . . . , u

(τd(xd))
nd ) = (nx1, . . . , nxd) a vetor of normalized levels of X and, foreah j = 1, . . . , d, let {X̂nj}n≥1 be an i.i.d. sequene with the same marginal distribution as {Xnj}n≥1.Denote M̂n = (M̂n1, . . . , M̂nd) the vetor of the omponentwise maxima M̂nj =

∨n
i=1 X̂ij , j = 1, . . . , d.Proposition 2.4. We have FX1 in the domain of attration of GX, that is,

lim
n→∞

P
(
M̂n ≤ un(x)

)
= GX(x1, ..., xd),



4with
GX(x1, ..., xd) = exp

{
−E

(
− logGY

(
x1r1

T β1

1

, . . . ,
xdrd

T βd

d

))}
,provided that FY1 is in the domain of attration of GY(x1, ..., xd), where both GX and GY have unitFréhet marginals.Proof Just observe that

lim
n→∞

P




d⋂

j=1

{
M̂nj ≤ UXj (nxj)

}

 = lim

n→∞
exp



−nP




d⋃

j=1

{
X1j > UXj (nxj)

}




 .Now the proof runs along the same lines as in (6).The results of Proposition 2.1 and 2.4 are related to the Breiman's theorem (see, e.g., Proposition 7.5in Resnik [31℄ 2007).In the following, for any vetor z and A ⊂ {1, . . . , d}, zA denotes the sub-vetor of z with indies in

A.Example 1. If (T1, . . . , Td) has support in {0, 1}d and P
(⋂

i∈J Ti = 1,
⋂

i∈D\J Ti = 0
)
= p(J), ∅ 6= J ⊂

D = {1, . . . , d}, then GX orresponds to a geometri mean of the marginal distributions of GY. In thisase, we have
GX(x1, . . . , xd) =

∏

∅6=J⊂D

G
p(J)
YJ

(r1x1, . . . , rdxd)J =
∏

∅6=J⊂D

GYJ

(
r1x1

p(J)
, . . . ,

rdxd

p(J)

)

J

=
∏

∅6=J⊂D

GYJ

(
p({1})x1

p(J)
, . . . ,

p({d})xd

p(J)

)

J

.We illustrate the result with some hoies for GY.If the stationary sequene Y has ommon opula logisti, i.e.,
CYn(u1, . . . , ud) = exp



−




d∑

j=1

(− log uj)
−1/α




α
then we obtain for GY the logisti distribution and

GX(x1, . . . , xd) = exp



−

∑

∅6=J⊂D

(∑

i∈J

(βJixi)
−1/α

)α


 ,with βJi = p({i})/p(J), whih is an asymmetri logisti distribution already found in Tawn ([35℄, 1990),by following a di�erent probabilisti approah. More preisely, this parametri multivariate extremevalue distribution was presented as the joint survivor funtion of a partiular random vetor with unitexponential marginals. The parameters βJi inrease the variability within the tail dependene oe�ientsregarding the departure distribution GY. For X = (X1, . . . , Xd) with distribution GX, we have, forinstane,

Λ(Xi,Xj)(1, 1) = lim
t→∞

P (FXi(Xi) > 1− 1/t|FXj (Xj) > 1− 1/t) = 2−
∑

J∈F{i,j}

(
β
−1/α
Ji + β

−1/α
Jj

)α
,



5where F{i,j} is the family of subsets of D ontaining {i, j}, expression that presents a larger numberof possibilities than the value Λ(Yi,Yj)(1, 1) = 2 − 2α of the symmetri logisti distribution. Note that∑
J∈F{i}

βJi = 1.Now, suppose that GY(x1, . . . , xd) =
∏∞

l=1

∏∞
k=−∞

∧d
j=1 exp

(
−alkjx

−1
j

), where {alkj , l ≥ 1,−∞ <

k < ∞, 1 ≤ j ≤ d} are real non negative onstants satisfying ∑∞
l=1

∑∞
k=−∞ alkj = 1, j = 1, . . . , d. Thisis the attrator MEV when Y is an M4 proess (Smith and Weissman [33℄, 1996) and we have

GX(x1, . . . , xd) =
∞∏

l=1

∞∏

k=−∞

∏

∅6=J⊂D

∧

j∈J

exp

(
−
alkj
βJj

x−1
j

)and the bivariate tail dependene summarized by
Λ(Xi,Xj)(1, 1) = 2−

∞∑

l=1

∞∑

k=−∞

∑

J∈F{i,j}

(
alki
βJi

∨
alkj
βJj

)
≤ 2−

∞∑

l=1

∞∑

k=−∞

(alki ∨ alkj) = Λ(Yi,Yj)(1, 1).H3 The multivariate extremal indexThe extremal index measures the tendeny of lusters ourrene, a phenomena ommonly observed inreal data. In this setion we will ompute the multivariate extremal index of Xn (Nandagopalan [29℄,1990). We start by analyzing some long range and loal dependene onditions that will make easier itsalulation.Proposition 3.1. If Y and T are strong-mixing, then X is strong-mixing.Proof Consider the events A and B, respetively, in σ-algebras generated by {X1, . . . ,Xp} and
{Xp+s,Xp+s+1, . . .}, i.e., A ∈ σ(X1, . . . ,Xp) and B ∈ σ(Xp+s, . . .). Given the independene between Yand T, we an state

P (A ∩B) = E(P (A′ ∩B′|Y)) = E (P (A′|Y1, . . . ,Yp)P (B′|Yp+s, . . .)) +O(αT(s)),where A′ ∈ σ(T1, . . . ,Tp), B′ ∈ σ(Tp+s, . . .) and αT(s) denotes the mixture oe�ients of the sequene
T. The result follows by Doukhan [10℄ (1995, Theorem 3 in Setion 1.2.2), sine

E (P (A′|Y1, . . . ,Yp)P (B′|Yp+s, . . .)) ≤ E (P (A′|Y1, . . . ,Yp))E (P (B′|Yp+s, . . .)) + 4αY(s),where αY(s) denotes the mixture oe�ients of the sequene Y.Consider un(τ ) = (u
(τ1)
n1 , . . . , u

(τd)
nd ) a vetor of normalized levels ofX andM1,n ≡Mn = (Mn1, . . . ,Mnd)the vetor of the omponentwise maxima Mnj =

∨n
i=1 Xij , j = 1, . . . , d. As a onsequene of the strong-mixing ondition, we have

lim
n→∞

P
(
Mn ≤ u

(τ )
n

)
= lim

n→∞
P
(
Mn1 ≤ u

(τ1)
n1 , . . . ,Mnd ≤ u

(τd)
nd

)

= exp



− lim

n→∞
nP


X1 6≤ u

(τ )
n ,

[n/kn]⋂

i=2

Xi ≤ u
(τ)
n





where kn → ∞ and n/kn → ∞, as n → ∞. Therefore, X has multivariate extremal index

θX(τ1, . . . , τd) =
− log limn→∞ P

(
Mn ≤ u

(τ)
n

)

− log limn→∞ P
(
M̂n ≤ u

(τ)
n

) ,



6if and only if limn→∞ nP
(
X1 6≤ u

(τ)
n ,M2,[n/kn] ≤ u

(τ)
n

) exists and, if so, we have
θX(τ1, . . . , τd) = lim

n→∞

P
(
X1 6≤ u

(τ)
n ,M2,[n/kn] ≤ u

(τ)
n

)

P
(
X1 6≤ u

(τ)
n

) . (7)This funtion relates the two multivariate extreme value distributions arising from the maxima in {Xn}n≥1and {X̂n}n≥1. We analyze its values under additional assumptions on the sale sequene Y.Let
rn

τ T
β
i

=

(
r1 n

τ1 T
β1

i1

, . . . ,
rd n

τd T
βd

id

)and UYi (x) = (UYi1(x1), . . . , UYid
(xd)). About the numerator in (7) we an write

nP
(
X1 6≤ u

(τ )
n ,M2,[n/kn] ≤ u

(τ)
n

)

= nP


Y1 6≤ UY1

(
rn

τ T
β
1

)
,

[n/kn]⋂

i=2

Yi ≤ UYi

(
rn

τ T
β
i

)
 .

(8)In some ases, the sequene Y is suh that
lim
n→∞

nP


Y1 6≤ UYi

(n
τ

)
,

[n/kn]⋂

i=2

Yi ≤ UYi

(n
τ

)



= lim
n→∞

nP

(
Y1 6≤ UYi

(n
τ

)
,

k⋂

i=2

Yi ≤ UYi

(n
τ

))
,for some levels u(τ )

n = UY

(
n
τ

) and for some �nite k, whih makes easier the alulation of the multivariateextremal index. Situations leading to this easier proedure are highlighted in the next results.Proposition 3.2. Consider a = (a1, . . . , ad), b = (b1, . . . , bd), Tnj with support in [aj , bj ], j = 1, . . . , d,and v
(τ∗(z))
n =

(
UY1

(
r1n

z
β1
1 τ1

)
, . . . , UYd

(
rdn

z
βd
d τd

)), for all zj ∈ [aj , bj ], j = 1, . . . , d. If Y satis�es ondi-tion D
(k)
(
v
(τ∗(a))
n ,v

(τ∗(b))
n

), de�ned by
lim
n→∞

n

[n/kn]∑

i=k

P
(
Y1 6≤ v

(τ∗(b))
n ,Yi ≤ v

(τ∗(a))
n ,Yi+1 6≤ v

(τ∗(b))
n

)
= 0, (9)then D

(k)
(
u
(τ )
n

), de�ned by
lim
n→∞

n

[n/kn]∑

i=k

P
(
X1 6≤ u

(τ)
n ,Xi ≤ u

(τ)
n ,Xi+1 6≤ u

(τ)
n

)
= 0,holds for X, τ = (τ1, . . . , τd).Proof Observe that, if we take u

(τ)
n = (UX1 (n/τ1) , . . . , UXd

(n/τd)), we have
lim
n→∞

n

[n/kn]∑

i=k

P
(
X1 6≤ u

(τ)
n ,Xi ≤ u

(τ)
n ,Xi+1 6≤ u

(τ)
n

)

= lim
n→∞

∫
n

[n/kn]∑

i=k

P
(
Y1 6≤ v

(τ∗(z1))
n ,Yi ≤ v

(τ∗(zi))
n ,Yi+1 6≤ v

(τ∗(zi+1))
n

)
dP(T1,Ti,Ti+1)(z1, zi, zi+1)



7Now, just observe that
P
(
Y1 6≤ v

(τ∗(z1))
n ,Yi ≤ v

(τ∗(zi))
n ,Yi+1 6≤ v

(τ∗(zi+1))
n

)

≤ P
(
Y1 6≤ v

(τ∗(b))
n ,Yi ≤ v

(τ∗(a))
n ,Yi+1 6≤ v

(τ∗(b))
n

)
.Under the ondition (9), smooth osillations around v

(τ∗(b))
n by Y (in the sense that its values whihare at least lag-k apart no longer exeed v

(τ∗(a))
n > v

(τ∗(b))
n ) are not followed by subsequent exeedanes of

v
(τ∗(b))
n . In the Example 4, we provide an illustration of suh loal behavior whih leads to the ondition

D
(k)
(
u
(τ)
n

) for the sale model X.In order to avoid restritions on the support of Tnj, j = 1, . . . , d, we propose now a greater restritionto the osillations of Y around normalized levels. First observe that
P
(
Y1 6≤ v

(τ∗(z1))
n ,Yi ≤ v

(τ∗(zi))
n ,Yi+1 6≤ v

(τ∗(zi+1))
n

)
≤ P

(
Y1 6≤ v

(τ∗(z))
n ,Yi+1 6≤ v

(τ∗(z))
n

)with
v
(τ∗(z))
n = UY1

(
r1n

(z11 ∨ zi+1,1)β1τ1
, . . . ,

rdn

(z1d ∨ zi+1,d)βdτd

)
.Therefore, we an take for Y a sequene satisfying the following restrition on the loal ourrene ofexeedanes of v(τ )

n whih are lag-k apart:
lim
n→∞

n

[n/k]∑

i=k

P
(
Y1 6≤ v

(τ )
n ,Yi+1 6≤ v

(τ )
n

)
= 0. (10)This ondition limits the size of the lusters of high levels and is satis�ed by k-dependent sequenes Y,i.e., Yn and Ym are independent whenever |n−m| > k.Proposition 3.3. If Y satis�es (10) for all v(τ )

n = UY1

(
n
τ

), then X satis�es D
(k)
(
u
(τ)
n

), for anysequene of normalized levels u
(τ)
n = UX1

(
n
τ

).Corollary 3.4. If Y is k-dependent, then X satis�es D(k) (u(τ)
n

), for any sequene of normalized levels
u
(τ)
n .If X is strong-mixing and satis�es D

(k)
(
u
(τ )
n

) ondition, for all τ ∈ R
d
+, then it has multivariateextremal index given by

θX(τ1, . . . , τd) = lim
n→∞

P
(
X1 ≤ u

(τ)
n , . . . ,Xk−1 ≤ u

(τ )
n ,Xk 6≤ u

(τ )
n

)

P
(
X1 6≤ u

(τ)
n

) , (11)whenever this limit exists (Chernik et al. [7℄ 1991, Ferreira [11℄ 1994) . In this ase,
lim
n→∞

P
(
Mn ≤ u

(τ)
n

)
= exp

{
− lim

n→∞
nP
(
X1 ≤ u

(τ)
n , . . . ,Xk−1 ≤ u

(τ )
n ,Xk 6≤ u

(τ )
n

)}
. (12)The probability in the seond term an be omputed throughout the tail behavior of (Y1, . . . ,Yk).In order to improve suh approah, de�ne

Λ(Y1,...,Yk)(x1, . . . ,xk) = lim
t→∞

t P

(
Y1 6≤ UY1

(
t

x1

)
, . . . ,Yk 6≤ UYk

(
t

xk

))
, (13)with xj ∈ R

d

+, j = 1, . . . , k. This de�nition extends the upper tail dependene onept of De�nition 2.3in Ferreira and Ferreira ([14℄, 2012).



8 Note that, for xi with null omponents xij with j ∈ {1, . . . , d}\Ji, Ji 6= ∅, i = 1, . . . , k, we have
Λ(Y1,...,Yk)(x1, . . . ,xk) = Λ((Y1)J1 ,...,(Yk)Jk

)((x1)J1 , . . . , (xk)Jk
),where (xi)Ji denotes the sub-vetor of xi having omponents indexed in Ji. On the other hand, if x hassome null omponent, we have ΛY1(x) = 0.We are going to apply the result in (12) to our model and derive an expression for the multivariateextremal index, whih will depend on the upper tail dependene funtion of (Y1, . . . ,Yk) given in (13)and also on the dependene between random vetors T1, . . . ,Tk.Proposition 3.5. If (13) holds for all x1, . . . ,xk ∈ R

d

+ then
lim
n→∞

nP
(
X1 ≤ u

(τ )
n , . . . ,Xk−1 ≤ u

(τ)
n ,Xk 6≤ u

(τ)
n

)

= E


 ∑

∅⊆I⊂{1,...,k−1}

(−1)|I|Λ(Y1,...,Yk)I∪{k}

(
τ T

β
1

r
, . . . ,

τ T
β
k

r

)

I∪{k}


 .Proof Observe that

nP
(
X1 ≤ u

(τ)
n , . . . ,Xk−1 ≤ u

(τ)
n ,Xk 6≤ u

(τ)
n

)

= n



P

(
Xk 6≤ u

(τ )
n

)
−

∑

∅6=I⊂{1,...,k−1}

(−1)|I|+1P

(⋂

i∈I

Xi 6≤ u
(τ)
n ,Xk 6≤ u

(τ)
n

)


=
∑

∅⊆I⊂{1,...,k−1}

(−1)|I|nP


 ⋂

i∈I∪{k}

Yi 6≤ UYi

(
rn

τ T
β
i

)
 ,whih leads to the result.Corollary 3.6. If X satis�es strong-mixing and D

(k)
(
u
(τ)
n

) onditions, for all τ ∈ R
d
+, and if (13) holdsfor all x1, . . . ,xk ∈ R

d

+ then
θX(τ1, . . . , τd) = 1−

E


 ∑

∅6=I⊂{1,...,k−1}

(−1)|I|+1Λ(Y1,...,Yk)I∪{k}

(
τ T

β
1

r
, . . . ,

τ T
β
k

r

)

I∪{k}




E


 ∑

∅6=I⊂{1,...,d}

(−1)|I|−1Λ(Y1)I

(
τ T

β
1

r

)

I




, (14)
θXj = 1−

1

rj
E


 ∑

∅6=I⊂{1,...,k−1}

(−1)|I|+1Λ(Y1j ,...,Ykj)I∪{k}

(
T

βj

1j , . . . , T
βj

kj

)
I∪{k}


 , (15)Moreover, for all x ∈ R

d
+, we have

lim
n→∞

P (Mn ≤ UX(nx)) = exp



−E


 ∑

∅⊆I⊂{1,...,k−1}

(−1)|I|Λ(Y1,...,Yk)I∪{k}

(
T

β
1

rx
, . . . ,

T
β
k

rx

)

I∪{k}





 .



9The result points out that, however muh is the sequential dependene in the stationary sequene T,the extremal index will be unit if Y1, . . . ,Yk are tail independent. This harateristi is illustrated inExample 4 with multivariate pRARMAX models, whih are adjusted to a bivariate �nanial series in thelast setion.Example 2. Let {Wn = (Wn1, . . . ,Wnd)}n≥1 be an i.i.d. sequene of random vetors with independentmarginals Wnj , j = 1 . . . , d, having distribution funtion (d.f.) FWnj (x) = (1 − x−βj )1/2, and Ynj =
Wn+1,j ∨Wnj , j = 1, . . . , d. Y is 2-dependent and thus we an apply the results on the alulation of themultivariate extremal index under the ondition D

(2)
(
u
(τ )
n

). We have Λ(Y1)I (xI) = 0 if |I| > 1 and
Λ(Y1,Y2)(x1,x2) = lim

t→∞
tP

(
Y1 6≤ UY1

(
t

x1

)
,Y2 6≤ UY2

(
t

x2

))
=

d∑

j=1

1

2
(x1j ∧ x2j) . (16)Then, by (14),

θX(τ1, . . . , τd) = 1−

E

(
Λ(Y1,Y2)

(
τ T

β
1

r
,
τ T

β
2

r

))

d∑

j=1

E

(
τj T

βj

1j

rj

) = 1−

1

2

d∑

j=1

E

(
τj T

βj

1j

rj
∧

τj T
βj

2j

rj

)

d∑

j=1

τjand
θj = 1−

1

2rj
E
(
T

βj

1j ∧ T
βj

2j

)
.Observe that the extremal indexes of the sequenes {Ynj}n≥1, j = 1, . . . , d, are all equal to 1/2 whilethe presene of the random fators may inrease this value for di�erent θj , j = 1, . . . , d. Therefore, eahmarginal sequene may have a di�erent tendeny for lustering of high values. We also �nd that, sinethe marginals of Yn are independent, the dependene struture of Tn does not a�et the lustering ofhigh values of Xn. As expeted from (14) and illustrated in the examples of Setion 5, only some taildependene of Yn allows to aount the dependene of Tnj , j = 1, . . . , d, on the value of θX(τ1, . . . , τd). HExample 3. Suppose that Y is 2-dependent and {Tn}n≥1 is a sequene of independent vetors withindependent marginals having Bernoulli distribution with mean p. By (14), we have

θX(τ1, . . . , τd) = 1−

∑

∅6=I,J⊂{1,...,d}

p|I|+|J|(1 − p)2d−|I|−|J|Λ((Y1)I ,(Y2)J )

((
τ

r

)
I
,
(
τ

r

)
J

)

∑

∅6=J⊂{1,...,d}

p|J|(1− p)d−|J|
(
− logGYJ

((
τ

r

)
J

)) .In the partiular ase of the previous example in (16), the funtion above beomes
θX(τ1, . . . , τd) = 1−

p2

2

d∑

j=1

τj
rj

d∑

j=1

τjand θj = 1− p2

2rj
, j = 1, . . . , d.In the Example 5 ahead, we illustrate this hoie of Tn to model lost values of Yn, onsidering thatthe marginals Ynj , j = 1, . . . , d, have total dependene. H



104 Tail dependeneThe bivariate upper tail dependene of two random variables Xi and Xj an be measured through thetail dependene oe�ient Λ(Xi,Xj)(1, 1) (Sibuya [32℄ 1960, Joe [18℄ 1997). Extending this onept toross-setional lag-m, s upper tail dependene, m ≥ 1 and 0 ≤ s < d, for a sequene X = {Xn}n≥1, wehave
λ
(m,s)
X = limt→∞ tP

(
X1,1 > UX1(t), X1+m,1+s > UX1+s(t)

)
. (17)If λ(m,s)

X = 0 we say that X1,1 and X1+m,1+s are upper tail independent. In this ase, it is possible thata residual tail dependene aptured at penultimate high levels may our. This is measured through theasymptoti tail independent oe�ient η ∈ (0, 1] (Ledford and Tawn [20, 21℄, 1996/97). Analogously, wean extend this onept to ross-setional lag-m, s:
lim
t→∞

P
(
X1,1 > UX1(t/x), X1+m,1+s > UX1+s(t/y)

)

P
(
X1,1 > UX1(t), X1+m,1+s > UX1+s(t)

) = h
(m,s)
X (x, y), (18)for all x, y ≥ 0, where h

(m,s)
X is some non-degenerate funtion, homogeneous of order −1/η

(m,s)
X , η(m,s)

X ∈

(0, 1] and suh that h(m,s)
X (1, 1) = 1. In partiular, we have

P
(
X1,1 > UX1(t), X1+m,1+s > UX1+s(t)

)
= t−1/η

(m,s)
X l

(m,s)
X (t), (19)where l(m,s)

X is a slowly varying funtion, standing for the relative strength of dependene given a parti-ular value of η(m,s)
X . Whenever η(m,s)

X = 1 and l
(m,s)
X onverge to some onstant 0 < a ≤ 1 then X1,1 and

X1+m,1+s are tail dependent (λ(m,s)
X = a), otherwise we have asymptoti tail independene with positiveassoiation if η(m,s)

X > 1/2, negative assoiation if η(m,s)
X < 1/2 and (almost) independene if η(m,s)

X = 1/2(perfet if l(m,s)
X = 1).By using the same arguments as in (6), we obtain the following relation for λ(m,s)

X .Proposition 4.1. The lag-m, s upper tail dependene oe�ient of X is given by
λ
(m,s)
X = E

(
Λ(Y1,1,Y1+m,1+s)

(
T β1

1,1

r1
,
T

β1+s

1+m,1+s

r1+s

))
, (20)where Λ(Y1,1,Y1+m,1+s)(x, y) = limt→∞ tP (Y1,1 > UY1 (t/x) , Y1+m,1+s > UY1+s (t/y)) is the lag-m, s uppertail opula of Y.Proposition 4.2. If (Y1,1, Y1+m,1+s) satis�es (18) for some funtion h

(m,s)
Y and oe�ient η(m,s)

Y , then
P
(
X1,1 > UX1(t), X1+m,1+s > UX1+s(t)

)
= E

(
h
(m,s)
Y

(
T β1

1,1

r1
,
T

β1+s

1+m,1+s

r1+s

))
t−1/η

(m,s)
Y l

(m,s)
Y (t)(1 + o(1)),for large t, provided that

E



(

r1

T β1

1

∨
r1+s

T
β1+s

1+s

)−1/η
(m,s)
Y +δ

∨

(
r1

T β1

1

∨
r1+s

T
β1+s

1+s

)−1/η
(m,s)
Y −δ


 < ∞. (21)Proof Just observe that, using (18), we have for large t

P (X1,1 > UX1 (t) , X1+m,1+s > UX1+s (t))

=

∫
P

(
Y1,1 > UY1

(
r1 t

zβ1

1

)
, Y1+m,1+s > UY1+s

(
r1+s t

z
β1+s

2

))
dP(T1,1,T1+m,1+s)(z1, z2)

= P
(
Y1,1 > UY1(t), Y1+m,1+s > UY1+s(t)

) ∫
h
(m,s)
Y

(
zβ1

1

r1
,
z
β1+s

2

r1+s

)
dP(T1,1,T1+m,1+s)(z1, z2)(1 + o(1)),



11where the last step is due to (21) and by applying the Potter bounds (Bingham et al., [5℄ 1987; Theorem1.5.6.) and the dominated onvergene theorem. Now the result result is straightforward from (19).Observe that the lag-m, s upper tail dependene or independene of X is ruled by Y. This is alsoeasily seen by taking logarithm transformation of X when T > 0. In the asymptoti tail independenease, this is even more evident sine, by Proposition 4.2, they have the same lag-m, s asymptoti tailindependent oe�ient, i.e., η(m,s)
X = η

(m,s)
Y , only di�ering in the relative strength of dependene omingfrom the slowly varying funtions.If we onsider the models in Examples 2 and 3, we derive λ

(m,s)
X = 0, for all m ≥ 1 and 1 ≤ s < d.Observe that this orresponds to perfet independene of Y and thus it satis�es (18) and (19), with

η
(m,s)
Y = 1/2, h(m,s)

Y (x, y) = xy and l
(m,s)
Y (t) = 1. Therefore,

P
(
X1,1 > UX1(t), X1+m,1+s > UX1+s(t)

)
= t−2, (22)i.e., perfet independene of X too.5 Some partiular ases that extend existing modelsIn this setion we onsider our model restrited to a ommon resaled fator Y , i.e., by taking Ynj = Y

γj
n ,

γj > 0, j = 1, . . . , d, with Y
(1) = {Yn}n≥1 a stationary sequene having ommon Pareto-type d.f. withshape parameter α > 0, and Tnj = Z

γj

nj, j = 1, . . . , d, where Z = {(Zn1, . . . , Znd)}n≥1 is a stationarysequene, independent of Y(1), with support Rd
+ and suh that, rj = E(Zα

nj) < ∞, j = 1, . . . , d. We willtherefore apply the previous results with βj = α/γj , j = 1, . . . , d and ΛY(x1, . . . , xd) =
∧d

j=1 xj .This ase extends the heavy-tailed fator model in Lesourret and Robert ([22℄, 2006), whih was usedto measure the extreme dependene in loss severities of storm insurane data and where Y was onsidereda ommon latent fator orresponding to the intensity of the natural disaster. In addition, if we onsider
γ = γj = 1, j = 1, . . . , d, we obtain an extended version of the sale mixture model of Li ([23℄, 2009) withseveral appliations to real data (see, e.g., Arnold [3℄ 1983, Kotz et al. [19℄ 2000 and referenes therein).As a onsequene of Proposition 2.2, we obtain the following result for the upper tail opula of X:

ΛX(x1, . . . , xd) = E




d∧

j=1

xjT
βj

j

rj


 = E




d∧

j=1

xjZ
α
j

rj


 ,for all (x1, ..., xd) ∈ R

d

+, where (Z1, . . . , Zd)
d
=(Zn1, . . . , Znd). From Proposition 2.4, we onlude that

FX1 is in the domain of attration of
G(x1, . . . , xd) = exp



−E




d∨

j=1

x−1
j Zα

nj

rj





 . (23)Remark 5.1. If we assume that Z is an i.i.d. sequene of random vetors with i.i.d. marginals Znj ,

j = 1 . . . , d, having ommon d.f. H and rj = r, j = 1, . . . , d, we easily derive
E
(∧d

j=1

xj Zα
1j

rj

)
= 1

r

∑d
j=1 xj E

(
Zα

1−H(Z)

∏d
i=1

[
1−H

(
(xj/xi)

1/α Z
)])and

E

(∨d
j=1

x−1
j Zα

1j

rj

)
= 1

r

∑d
j=1 x

−1
j E

(
Zα

H(Z)

∏d
i=1 H

(
(xi/xj)

1/α Z
))

,extending the bivariate results in Lesourret and Robert ([22℄, 2006).



12 In the sequel, we rewrite Proposition 3.2, ompute the extremal index and �nd the attrator MEVwithin this partiular model.In what onerns the loal dependene ondition of Proposition 3.2, observe that
{
Y

(1)
i 6≤ v

(τ∗(z))
n

}
=



Yi >

d∧

j=1

(
rjn

zαijτj

)1/α


 ,

{
Y

(1)
i ≤ v

(τ∗(z))
n

}
=



Yi ≤

d∧

j=1

(
rjn

zαijτj

)1/α


and

aα
d∨

j=1

τj
rj

<
d∨

j=1

zαijτj

rj
< bα

d∨

j=1

τj
rj
.Therefore, we obtain for this model the following partiular result.Proposition 5.2. If Znj has support in [a, b], j = 1, . . . , d, and Y

(1) satis�es ondition D
(k)
(
v
(τ(a))
n , v

(τ(b))
n

)de�ned by
lim
n→∞

n

[n/kn]∑

i=k

P
(
Y1 > v(τ(b))n , Yi ≤ v(τ(a))n , Yi+1 > v(τ(b))n

)
= 0,with τ(a) =

∨d
j=1

aατj
rj

> τ(b) =
∨d

j=1
bατj
rj

, τj > 0, j = 1, . . . , d, then D
(k)
(
u
(τ)
n

) holds for X, for eah
τ = (τ1, . . . , τd).Assuming that

Λ(Y1,...,Yk)(x1, . . . , xk) = lim
t→∞

t P

(
Yi >

k⋂

i=1

{UYi (t/xi)}

)
, (24)exists with (x1, . . . , xk) ∈ R

k

+, then
lim
n→∞

nP
(
X1 ≤ u

(τ)
n , . . . ,Xk−1 ≤ u

(τ )
n ,Xk 6≤ u

(τ )
n

)

= E




∑

∅⊆I⊂{1,...,k−1}

(−1)|I|Λ(Y1,...,Yk)I∪{k}




d∨

j=1

τj Z
α
1j

rj
, . . . ,

d∨

j=1

τj Z
α
kj

rj




I∪{k}


 ,with the onvention that ΛYk

(∨d
j=1

τj Zα
kj

rj

)
=
∨d

j=1

τj Zα
kj

rj
. Therefore, if X satis�es strong-mixing and

D
(k)
(
u
(τ)
n

) onditions, for all τ ∈ R
d
+, and if (24) holds for all (x1, . . . , xk) ∈ R

k

+, then
θX(τ1, . . . , τd) = 1−

E




∑

∅6=I⊂{1,...,k−1}

(−1)|I|+1Λ(Y1,...,Yk)I∪{k}




d∨

j=1

τj Z
α
1j

rj
, . . . ,

d∨

j=1

τj Z
α
kj

rj




I∪{k}




E




d∨

j=1

τj Z
α
1j

rj




, (25)



13the marginal extremal index is, for j = 1, . . . , d,
θXj = 1−

1

rj
E


 ∑

∅6=I⊂{1,...,k−1}

(−1)|I|+1Λ(Y1,...,Yk)I∪{k}

(
Zα
1j , . . . , Z

α
kj

)
I∪{k}


 (26)and, as n → ∞, P (Mn ≤ UX(nx)) onverges to the limiting MEV

exp




−E




∑

∅⊆I⊂{1,...,k−1}

(−1)|I|Λ(Y1,...,Yk)I∪{k}




d∨

j=1

Zα
1j

xj rj
, . . . ,

d∨

j=1

Zα
kj

xj rj




I∪{k}








,for all (x1, . . . , xd) ∈ R
d
+.The ross-setional lag-m, s upper tail dependent oe�ient, m ≥ 1 and 0 ≤ s < d, is given by

λ
(m,s)
X = E

(
Λ(Y1,Y1+m)

(
Zα
1,1

r1
,
Zα
1+m,1+s

r1+s

))
, (27)In ase X is ross-setional lag-m, s upper tail independent (i.e., λ(m,s)

X = 0) and if (Y1, Y1+m) satis�es(18) for some funtion h
(m)
Y and asymptoti tail independent oe�ient η(m)

Y , for large t, then
P
(
X1,1 > UX1(t), X1+m,1+s > UX1+s(t)

)
= E

(
h
(m)
Y

(
Zα
1,1

r1
,
Zα
1+m,1+s

r1+s

))
t−1/η

(m)
Y l

(m)
Y (t)(1 + o(1)). (28)Next, we onsider some partiular examples.Example 4. (Multivariate autoregressive proesses with random oe�ients)Suppose that Yn = c(Yn−1∨Wn), n ≥ 1, where 0 < c < 1 is a onstant and {Wn}n≥1 is an i.i.d. sequene,independent of Y0, with ommon d.f. FW . The max-autoregressive sequene Y

(1) = {Yn}n≥1, usuallydenoted ARMAX, has stationary distribution FY if and only if 0 <
∑∞

j=1(1− FW (x/cj)) < ∞, for some
x > 0 and, in this ase, FY (x) = FY (x/c)FW (x/c) (Alpuim, [1℄ 1989). The Pareto distribution withparameter α > 0 is a stationary d.f. of Y with FW (x) = (1− (cx)−α)/(1− x−α).If Znj has support in [a, b], j = 1, . . . , d, suh that c < a/b, thenY

(1) satis�es ondition D(2) (v(τ(a))n , v
(τ(b))
n

),with τ(a) and τ(b) as in Proposition 5.2. Indeed, we have
n

[n/kn]∑

i=2

P (Y1 > v(τ(b))n , Yi ≤ v(τ(a))n , Yi+1 > v(τ(b))n )

≤ n

[n/kn]∑

i=2

P (Y1 > v(τ(b))n , Yi ≤ v(τ(a))n , Yi > v(τ(b))n /c)

+n

[n/kn]∑

i=2

P (Y1 > v(τ(b))n , Yi ≤ v(τ(a))n ,Wi+1 > v(τ(b))n /c).The �rst term is null sine c < a/b ⇔ v
(τ(a))
n < u

(τ(b))
n /c and the seond term is upper-bounded,suessively, by

n
n

kn
P (Y1 > v(τ(b))n P (Wi+1 > v(τ(b))n ) = n

n

kn
(1− FY (v

(τ(b))
n ))

(
1−

FY1(v
(τ(b))
n )

FY1(v
(τ(b))
n /c)

)

≤
n2

kn
(1 − FY (v

(τ(b))
n ))2 → 0



14for any kn → ∞, as n → ∞. Therefore, if the ARMAX sequene Y is suh that c < a/b and Z hassupport in [a, b]d, then X satis�es D(2) (u(τ)
n

), for all τ ∈ R
d
+ (Proposition 5.2).From Ferreira and Canto e Castro ([12℄, 2008; Proposition 3.6), we obtain the following bivariateupper tail opula funtion, for (x, y) ∈ R

d

+:
Λ(Y1,Y1+m)(x, y) = x ∧ ycmαNow we assume that Z is an i.i.d. sequene of random vetors with i.i.d.marginals Znj , j = 1 . . . , d,having ommon d.f.H and rj = r, j = 1, . . . , d. After some simple alulations, we derive

E




d∨

j=1

xj Z
α
1j

rj
∧ cα

d∨

j=1

xj Z
α
2j

rj




=
1

r

d∑

j=1

xj E

(
Zα

H(Z)

d∏

i=1

H
(
(xj/xi)

1/α Z
)[

1−
d∏

i=1

H
(
(xj/xi)

1/α Z/c
)])

+
1

r

d∑

j=1

xj E

(
(cZ)α

H(Z)

d∏

i=1

H
(
(xj/xi)

1/α Z
)[

1−
d∏

i=1

H
(
(xj/xi)

1/α Zc
)])

,where r = rj , j = 1, . . . , d.Therefore, X has multivariate extremal index given by
θX(τ1, . . . , τd) = 1−

∑d
j=1 τj

{
E
(

Zα

H(Z)π(Z) [1− π(Z/c)]
)
+ E

(
(cZ)α

H(Z) π(Z) [1− π(Zc)]
)}

∑d
j=1 τj E

(
Zα

H(Z)π(Z)
)where π(y) =

∏d
i=1 H

(
(τj/τi)

1/α y
), and for eah j = 1, . . . , d,

θXj = 1−
E (Zα (1−H(Z/c)) + (cZ)α (1−H(Zc)))

r
.In what onerns the limiting MEV of X, for all (x1, . . . , xd) ∈ R

d
+, we have

lim
n→∞

P (Mn ≤ UX(nx)) = exp



−

1

r

d∑

j=1

x−1
j

[
E

(
Zα

H(Z)
π∗(Z)π∗(Z/c)

)
− E

(
(cZ)α

H(Z)
π∗(Z) [1− π∗(Zc)]

)]
 .where π∗(y) =

∏d
i=1 H

(
(xi/xj)

1/α y
).Analogously, we obtain the ross-setional lag-m, s upper tail dependent oe�ient given by

λ
(m,s)
X =

1

r
E (ZαH(cmZ) + (cmZ)α (1−H(cmZ))) .Partiular ases an be obtained by replaing H by any d.f. with support in [a, b], suh that c < a/b.Now if we onsider, Yn = Y c

n−1 ∨ Wn, n ≥ 1, with 0 < c < 1 and {Wn}n≥1 an i.i.d. sequenewith ommon d.f. FW , independent of Y0, we obtain a max-autoregressive sequene with an exponenttransformation, denoted pARMAX (Ferreira and Canto e Castro, [12℄, 2008). A stationary distribution
FY exists if and only if 0 <

∑∞
j=1(1 − FW (xcj )) < ∞, for some x > 0, and is suh that FY (x) =

FY (x
1/c)FW (x). This relation is satis�ed by a Pareto(α) distribution with FW (x) = (1−x−α)/(1−x−α/c)(see Ferreira and Canto e Castro [13℄ 2010 and referenes therein). The pARMAX sequeneY(1) has lag-mupper tail dependene funtion Λ(Y1,Y1+m)(x, y) = 0, for allm ≥ 1, and thus it is an upper tail independentproess. Therefore, in this ase, the lag-m, s upper tail dependene funtion Λ(X1,1,X1+m,1+s)(x, y) is also



15null, for all m ≥ 1 and s = 1, . . . , d, the extremal index is unit and the limiting MEV is as in the i.i.d. ase,i.e., it is given by (23). Moreover, sine Y
(1) satis�es (18) with asymptoti tail independent oe�ient

η
(m)
Y = 1/2∨ cm and h

(m)
Y (x, y) = xy1{cm≤1/2} + y1/c

m

1{cm>1/2}, x, y ≥ 0 (Ferreira and Canto e Castro,[12℄, 2008), by applying (28), we obtain
P
(
X1,1 > UX1(t), X1+m,1+s > UX1+s(t)

)

=


1{cm≤1/2} +

E
(
Z

α/cm

1+m,1+s

)

r
1/cm

1+s

1{cm>1/2}


 t−1/(1/2∨cm)l

(m)
Y (t)(1 + o(1)).Observe that sequeneX generated from an ARMAX reursionY

(1) orresponds to a multivariate formu-lation of the RARMAX proess introdued in Alpuim and Athayde ([2℄, 1990), with appliations withinreliability and various natural phenomena. If sequene X is generated from a pARMAX reursion Y,we have a multivariate formulation of the pRARMAX proess introdued in Ferreira and Canto e Castro([13℄, 2010), used in the modeling of �nanial series. HExample 5. (Multivariate moving maxima proesses with random oe�ients)Consider Yn = Wn+1 ∨ Wn, n ≥ 1, where W = {Wn}n≥1 is an i.i.d. sequene with ommon d.f.
FW (x) = (1− x−α)1/2, x ≥ 1. The sequene Y(1) is 2-dependent and thus X satis�es ondition D

(2)(uτ
n),for all τ ∈ R

d
+, as well as, Λ(Y1,Y1+m)(x, y) = 0, for m ≥ 2. It is easily seen that

Λ(Y1,Y2)(x, y) =
1

2
(x+ y − x ∨ y) =

1

2
(x ∧ y)Analogously to the ARMAX example above, we assume that Z is an i.i.d. sequene of random vetorswith i.i.d.marginals Znj , j = 1 . . . , d, having ommon d.f.H and rj = r, j = 1, . . . , d, and a similarproedure lead us to

E


1

2




d∨

j=1

xj Z
α
1j

rj
∧

d∨

j=1

xj Z
α
2j

rj






=
1

r

d∑

j=1

xj E

(
Zα

H(Z)

d∏

i=1

H
(
(xj/xi)

1/α Z
)[

1−
d∏

i=1

H
(
(xj/xi)

1/α Z
)])

,where r = rj , j = 1, . . . , d. Hene, we derive the multivariate extremal index
θX(τ1, . . . , τd) = 1−

∑d
j=1 τj E

(
Zα

H(Z)

∏d
i=1 H

(
(τj/τi)

1/α Z
) [

1−
∏d

i=1 H
(
(τj/τi)

1/α Z
)])

∑d
j=1 τj E

(
Zα

H(Z)

∏d
i=1 H

(
(τj/τi)1/α Z

)) ,the univariate extremal index, for j = 1, . . . , d,
θXj = 1−

E (Zα[1−H(Z)])

r
,and, for the limiting MEV, with (x1, . . . , xd) ∈ R

d
+,

lim
n→∞

P (Mn ≤ UX(nx)) = exp



−

1

r

d∑

j=1

x−1
j E


 Zα

H(Z)

[
d∏

i=1

H
(
(xi/xj)

1/α Z
)]2





 .The ross-setional lag-1, s upper tail dependent oe�ient is

λ
(1,s)
X =

1

2
= λ

(1)
Y .



16The ase m ≥ 2 orresponding to perfet independene of Y(1) has been analyzed in (22).Observe that eah marginal Xn,j is a moving maxima proess with a random oe�ient Zn,j, j =
1, . . . , d. Therefore X orresponds to a multivariate formulation of this latter. For appliations of multi-variate moving maxima proesses, see Zhang ([38℄, 2009) and referenes therein.We are going to onsider some partiular ases of H .

• (Multivariate Gumbel ase) Suppose that H is a Fréhet(δ, ξ) distribution, δ, ξ > 0, i.e., H(x) =
exp(−δ x−ξ), x > 0, with ξ > α. Therefore, P (Zα ≤ x) = exp(−δ x−ξ/α) and E(Zα) = eα/ξΓ(1 −
α/ξ) < ∞, sine ξ/α > 1. We have

E

(
Zα

H(Z)

d∏

i=1

H
(
(xi/xj)

1/α Z
))

=
1

d∑

i=1

(xj/xi)
ξ/α

[
δ

d∑

i=1

(xj/xi)
ξ/α

]α/ξ
Γ(1 − α/ξ),as well as

E


 Zα

H(Z)

[
d∏

i=1

H
(
(xi/xj)

1/α Z
)]2


 =

1

2

d∑

i=1

(xj/xi)
ξ/α

[
2δ

d∑

i=1

(xj/xi)
ξ/α

]α/ξ
Γ(1− α/ξ).Therefore,

G(x1, . . . , xd) = exp



−

(
d∑

i=1

x
−ξ/α
i

)α/ξ


 ,whih is a multivariate Gumbel distribution, and

lim
n→∞

P (Mn ≤ UX(nx)) = exp



−2α/ξ−1

(
d∑

i=1

x
−ξ/α
i

)α/ξ


 .Thus the extremal index is onstant and is given by

θX(τ1, . . . , τd) = 2α/ξ−1 = θj , j = 1 . . . , d.

• (Thinning model) Suppose that H is a Bernoulli(p) distribution, 0 < p < 1. Sine
E

(
Zα

H(Z)

d∏

i=1

H
(
(xi/xj)

1/α Z
))

= p(1− p)
∑d

i=1 1{xi<xj}and
E


 Zα

H(Z)

[
d∏

i=1

H
(
(xi/xj)

1/α Z
)]2


 = p(1− p)2

∑d
i=1 1{xi<xj} ,we have

G(x1, . . . , xd) = exp



−

d∑

j=1

x−1
j (1 − p)

∑d
i=1 1{xi<xj}



 ,



17as well as
lim
n→∞

P (Mn ≤ UX(nx)) = exp



−

d∑

j=1

x−1
j (1 − p)2

∑d
i=1 1{xi<xj}



 .The extremal index is given by the funtion

θX(τ1, . . . , τd) = 1−

d∑

j=1

τj(1 − p)2
∑d

i=1 1{τi>τj}

d∑

j=1

τj(1− p)
∑d

i=1 1{τi>τj}and θj = 1, j = 1, . . . , d. H6 An appliation to �nanial dataThe presented results besides give us an insight of the e�et of the random fators on the extremalbehavior of the model, suggest estimation methods whenever data for Y and T are available, throughthe estimation of the dependene in Y. Do not having real data sets in these onditions, we have hosento illustrate in this setion the appliation of the multivariate pRARMAX model onsidered in Example4 to a bivariate stok market index data. The univariate pRARMAX was introdued in Ferreira andCanto e Castro ([13℄, 2010) and an adjustment algorithm to real data was implemented and applied tothe S&P500 index, for the period April of 1957 to Deember 1987. Here we also onsider the Dow Jonesindex for the same time period and our analysis is based on the volatility of the stok indexes measuredthrough the square of the log-returns de�ned by Ri = log(Pi+1)/ log(Pi), i = 1, . . . , 7731 (n = 7731),where Pi is the losing prie of the index at the ith day. The values of RSP
i and (RSP

i )
2, as well as, RDJ

iand (RDJ
i )

2, orresponding, respetively, to the log-returns and volatility of the S&P500 index and ofthe Dow Jones index, are plotted in Figure 1. Observe that they have similar plots. The large peakorresponds to �Blak Monday" stok market rash on the 19th Otober 1987. In Ferreira and Canto eCastro ([13℄, 2010) was onsidered a robust regression so that the marginals an be modeled through aPareto distribution, and thus onduted the analysis on the transformed data XSP = a
(
RSP

)2
+ b, with

a = 13618.3 and b = 1.1. Following the same proedure, we onsider XDJ = a∗
(
RDJ

)2
+ b∗, with a∗and b∗ estimated in 15154.2 and 1.1, respetively.An adjustment algorithm for a pRARMAX proess, Xn = YnZn, n ≥ 1, obtained by onsidering

Yn = Y c
n−1 ∨Wn with 0 < c < 1 and FY (x) = 1− x−β , where {Wn}n≥1 is an i.i.d. sequene independentof Y0 and having distribution FW (x) = (1 − x−β)/(1 − x−β/c), and {Zn}n≥1 is a sequene of standarduniform random variables, was proposed in Ferreira and Canto e Castro ([13℄ 2010, Setion 3). This wasused in this latter referene to model the XSP data produing the estimates ĉ = 0.8 (although the values

ĉ = 0.85, 0.75 were also onsidered) and β̂ = 2. Now we are going to apply this adjustment algorithm tothe XDJ data. In the following we summarize the running steps:1. Test if XDJ is in the Fréhet domain of attration (see, e.g., Dietrih et al. [9℄ 2002) and estimatethe tail index orresponding to β−1 using, e.g., the Hill estimator (Hill, [17℄ 1975) and momentsestimator (Dekkers et al., [8℄ 1989).2. Estimate the parameter , through the estimation of the tail index of S = {S
(n)
i }, i = 1, . . . , n− 1,where

S
(n)
i =

(
n+ 1

n+ 1−Kn(XDJ
i )

)
∧

(
n+ 1

n+ 1−Kn(XDJ
i+1)

)
,with Kn(x) = n−1

∑n
i=1 1{Xi≤x}.
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Figure 1: Left: log-returns (Ri) of the S&P500 (top) and Dow Jones indexes (bottom); Right: volatility(R2
i ) of the S&P500 (top) and Dow Jones indexes (bottom).3. Apply the riterion: �if XDJ

i >
(
XDJ

i−1

)ĉ, with the estimate ĉ obtained in step 2, then XDJ
i omesfrom the innovation omponent Wi", to separate the innovations W and test if this sample is alsoin the Fréhet domain of attration.4. Capture the observations orresponding to Z, through the riterion: �if XDJ

i <
(
XDJ

i−1

)ĉ and
XDJ

i ∈ Bυ =

{
t : π0t

−β̂/ĉfW (t)

π0t−β̂/ĉfW (t)+(1−π0)t−β̂/ĉ)−1FW (t)
≤ υ

}, with fW the density funtion of W ,
π1 = P (Zi

(
XDJ

i−1

)ĉ
> Wi)/P (

(
XDJ

i−1

)ĉ
> Wi), π0 = 1 − π1, and where β̂ and ĉ are the estimatesobtained in steps 1. and 2., respetively, then, Zi = XDJ

i /
(
XDJ

i−1

)ĉ �; υ annot be too large (largererrors) nor too small (not enough observations to arry out the test of the next step).5. Test whether the sample of random variables Z aptured in the step 4 has distribution Beta(β̂/ĉ+
1, 1) (e.g., Kolmogorov-Smirnov test).For details, see Ferreira and Canto e Castro ([13℄ 2010) and referenes therein.In Figure 2 it is plotted the sample paths (against the k upper order statistis) of the heavy tailedtest statisti (left), the Hill estimator (enter) and the moments estimator (right), referred in step 1.The heavy tailed domain of attration is not rejeted for 50 . k . 120 and 200 . k . 1180, whih areplausible values within this text (see again Dietrih et al. [9℄ 2002). In what onerns the sample pathsof Hill and moments, the value where the paths yield approximately a �at line is at about 0.57 and thuswe onsider β̂ = 1/0.55 ≈ 1.82.The Exponential and Pareto qq-plots and the empirial mean exess funtion plots (Figure 3) indiatea Pareto-type model (see, e.g., Beirlant et al. [4℄ 2004).In Figure 4 we have the sample paths of the Hill (left) and the moments (right) estimators onerningthe sample S (step 2). The plot is somewhat �stable" at about 0.8 and thus we take ĉ = 0.8.Applying the riterium of step 3, we separate the innovations omponent W . The sample path of theheavy tailed test statisti (Figure 5, left) do not rejet this assumption for k . 780, whih is again aplausible result to onlude a Fréhet domain of attration. From the Hill and moments plots (Figure 5,enter and right, respetively) we do not disard the same estimate of β̂ ≈ 1.82.
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Figure 2: Left: sample path of the heavy tailed test statisti, against k upper order statistis, appliedto the data XDJ (horizontal line: ritial value above whih rejet the null hypothesis of a heavy taileddomain of attration); Center and right, respetively: sample paths of Hill and moments estimators,against k upper order statistis, of the data XDJ onerning the estimation of the tail index β−1.
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Figure 3: Left to right, respetively: exponential and Pareto qq-plots of XDJ, empirial mean exessfuntion against XDJ and against k upper order statistis.
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Figure 4: Left and right, respetively: sample paths of Hill and moments estimators, against k upperorder statistis, of S onerning the estimation of c.Aording to step 4, we apture the observations orresponding to random oe�ients, Z, onsideringthe signi�ane regions Bυ for υ = 0.05, 0.1, . . . , 0.45 and ĉ = 0.8.Implementing step 5, we applied the Kolmogorov-Smirnov test for the distribution Beta(1.82/0.8+1, 1)to the sample of random variables Z aptured in the step 4. The rejetion is obtained for υ ≥ 0.3. ByFigure 6, the value υ = 0.15 seems to be an appropriate hoie (with 21 observations aptured) and isin agreement with the simulation study onduted in Ferreira and Canto e Castro ([13℄ 2010, Setion4.1). Therefore, we onsider that the model pRARMAX with c = 0.8 and β = 1.82, an be used for themodeling of the transformed data XDJ.Now we are going to estimate the dependene of (XSP
i , XDJ

i ), i = 1, . . . , 7731, based on the dependene
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Figure 5: Left: sample path of the heavy tailed test statisti, against k upper order statistis, applied tothe separated innovations W , aording to step 3 (horizontal line: ritial value above whih rejet thenull hypothesis of a heavy tailed domain of attration); Center and right, respetively: sample paths ofHill and moments estimators, against k upper order statistis, of W onerning the estimation of the tailindex β−1.
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Figure 6: Empirial and theoretial distribution funtions of the random oe�ients Z aptured on step4, for signi�ane regions with, υ = 0.05 (�u 05"),. . ., υ = 0.45 (�u 45").funtion A (Pikands [30℄ 1981) of a GEV distribution G, de�ned by
G(x1, x2) = exp

{
−(x−1

1 + x−1
2 )A(x1(x1 + x2)

−1)
}
.In order to have a dataset more oherent with an MEV model, we take blok maxima within eah



21marginal. We use the Pikands ([30℄ 1981), the Capérà et al. ([6℄ 1997) and the Hall and Tajvidi ([16℄2004) nonparametri estimators for the funtion A, and thus free of model assumptions underlying thedata. We also onsider the Lesourret and Robert estimator ([22℄, 2006), given by
Â(w) = min


1,max



∑n

i=1 max
(
(1− w)X̃i

SP

, wX̃i

DJ
)

∑n
i=1

(
(1− w)X̃i

SP

+ wX̃i

DJ
) , w, 1− w




 , (29)with

(
X̃i

SP

, X̃i

DJ
)
=



(

Xi
SP

Xn−k:n
SP

)β̂SP

,

(
Xi

DJ

Xn−k:n
DJ

)β̂DJ


 1{Xi

SP>Xn−k:n
SP,Xi

DJ>Xn−k:n
DJ},where X1:n

j ≤ . . . ≤ Xn:n
j, j ∈ {SP, DJ}, are the respetive order statistis. We have onsidered Â(w) =

(Â(w)+ Â(1−w))/2 in order to onstrain the estimators to be symmetri. This estimator was developedfor fator models with a ommon fator Y , as desribed in Setion 5. The multivariate pRARMAX model(Example 4) was derived within this ontext. Observe in Figure 7 that the estimators are quite lose,speially if we onsider the bimonthly maxima, an indiation that the multivariate pRARMAX may bea plausible model.
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Figure 7: Estimation of the dependene funtion A in (29) for the bivariate data (Xi
SP, Xi

DJ
), i =

1, . . . , 7731, using the non parametri estimators of Capéraà et al. [6℄ (◦), Pikands [30℄ (+), Hall andTajvidi [16℄ (△) and using the estimator of Lesourret and Robert [22℄ (×; grey), onsidering (top-to-bottom and left-to-right, respetively) the weekly, monthly, bimonthly, three monthly, quarterly andanual maxima.
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