
Universidade do Minho

Escola de Engenharia

Tiago Manuel da Silva Jorge

A Model Repair Application Scenario with
PROVA

Outubro de 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55636682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Tiago Manuel da Silva Jorge

A Model Repair Application Scenario with
PROVA

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor Doutor Manuel Alcino Pereira da Cunha

Outubro de 2014

This thesis is dedicated to my parents, Paulo and Manuela.
Thank you for your love and endless support.

ACKNOWLEDGEMENTS

I would like to express my special appreciation and thanks to my adviser Professor Dr. Manuel
Alcino Cunha, for encouraging and mentoring my research. I would also like to thank my
colleague and researcher Nuno Macedo for his priceless advice. I should also express my
gratitude to José Faria for giving me the opportunity to work closely with industry, as well
as for all the provided support. A great part of this work was done under financial support
of grant BI2-2013_PROVA-23137_UMINHO, granted within the R&D project PROVA -
Platform for Software Verification and Validation (QREN, ADI, SI 2012/023137, 2012-2014).

v

ABSTRACT

Model-Driven Engineering (MDE) is a well known approach to software development that
promotes the use of structured specifications, referred to as models, as the primary develop-
ment artifact. One of the main challenges in MDE is to deal with a wide diversity of evolving
models, some of which developed and maintained in parallel. In this setting, a particular
point of attention is to manage the model inconsistencies that become inevitable, since it is
too easy to make contradictory design decisions and hard to recognise them. In fact, during
the development process, user updates will undoubtedly produce inconsistencies which must
eventually be repaired. Tool support for this task is then essential in order to automate model
repair, so consistency can be easily recovered. However, one of the main challenges in this
domain is that for any given set of inconsistencies, there exists an infinite number of possible
ways of fixing it. While much of researchers recognise this fact, the way in which this problem
should be resolved is far from being agreed upon, and methods on how to detect and fix
inconsistencies vary widely. In this master dissertation a comparison between different ap-
proaches is done and an application scenario is explored in close collaboration with industry.
An off-the-shelf model repair tool leveraging the power of satisfiability (SAT) solving is put
to test, while an incremental technique of complex repair trees is implemented and evaluated
as a promising, yet very distinctive competitor.

Keywords: MDE, consistency rules, model inconsistencies, model repair.

vii

RESUMO

A engenharia orientada aos modelos (MDE), uma abordagem bem conhecida no desenvolvi-
mento de software, promove a utilização de especificações estruturadas, denominadas modelos,
como o artefacto primário de desenvolvimento. Um dos principais desafios neste domínio é
lidar com a grande diversidade de modelos em evolução, muitas vezes desenvolvidos e manti-
dos em paralelo. Neste cenário é essencial gerir as inconsistências dos modelos, que se tornam
inevitáveis uma vez que facilmente se tomam decisões contraditórias e de difícil reconheci-
mento. De facto, durante o processo de modelação, atualizações aos modelos por parte do
utilizador irão sem dúvida produzir inconsistências que devem ser reparadas. Ferramentas que
suportem este processo tornam-se essenciais para automatizar a reparação dos modelos, por
forma a que a consistência seja facilmente recuperada. No entanto, para qualquer conjunto
de inconsistências existe um número potencialmente infinito de possíveis formas de o corrigir,
facto que revela ser um dos principais problemas neste domínio. Embora grande parte dos
investigadores reconheça este desafio, a forma como esta problemática deve ser abordada está
longe de reunir consenso e as soluções propostas variam muito. Nesta dissertação de mestrado
é feita uma comparação entre diferentes abordagens à técnica de reparação de modelos, e um
cenário de aplicação é explorado em estreita colaboração com a indústria. Uma ferramenta
pronta a usar e que aproveita o poder do SAT solving é posta à prova, enquanto que uma
outra técnica, incremental e baseada em complexas árvores de reparação, é implementada e
avaliada como uma abordagem concorrente promissora e bastante distinta.

Palavras chave: MDE, regras de consistência, inconsistência de modelos, reparação de
modelos.

ix

CONTENTS

i preliminary study 1
1 introduction 3

1.1 Motivation 3
1.1.1 A call from industry 4
1.1.2 Problem challenges 4

1.2 Problem example 5
1.3 Contributions 6
1.4 Document structure 7

2 a survey of model repair techniques 9
2.1 Heuristics-driven state-space exploration 9
2.2 Manually specifying repair information 10
2.3 Models as sequences of elementary operations 11

2.3.1 Limited state-space exploration 11
2.3.2 Automated planning 12

2.4 Relational model finding 12
2.5 Repair dependence graph 13
2.6 An incremental approach 13

2.6.1 Repair trees 14
2.7 Least-change repairs with Echo 14
2.8 Collection of comparison points 15

2.8.1 Main remarks 17
3 repairing requirement models - a case study 19

3.1 Application scenario 19
3.1.1 PROVA requirement models 20
3.1.2 The Boilerplates 20
3.1.3 Desired consistency rules 22

3.2 Solving approach with Echo 23
3.2.1 ECore metamodel 23
3.2.2 OCL constraints 24
3.2.3 Check and repair 26
3.2.4 Remarks 27

xi

ii an incremental approach with check-and-repair trees 31
4 maintaining check trees 33

4.1 Technique overview 33
4.1.1 Tree structure and scope 34
4.1.2 Reevaluating 35
4.1.3 Lazy evaluation 36

4.2 Method implementation 36
4.2.1 Subtyping 37
4.2.2 Minimal set of logical operators 38
4.2.3 Terminal nodes and event hooks 41
4.2.4 Constraint language 42

4.3 Evaluation 43
4.3.1 Transition definition 44
4.3.2 Transition 1 - tree increment 45
4.3.3 Transition 2 - collapsing of the tree 46
4.3.4 Transition 3 - out of scope event 48
4.3.5 Transition 4 - rebuilding the tree 48
4.3.6 Formula complexity 49
4.3.7 Discussion of results 50

5 generating repair trees 53
5.1 Generation mechanism 53

5.1.1 Expected logical value 53
5.1.2 Eliminating false and non-minimal repairs 54

5.2 Extending the library 55
5.2.1 Repairing each logical operator 55
5.2.2 Fixing terminal nodes 58

5.3 Repair example 59
5.3.1 Tree structure 59
5.3.2 Interpreting and simplifying repair trees 62

5.4 Challenges to the approach 64
5.4.1 Overlaps 65
5.4.2 Negative side effects 65
5.4.3 Abstract repairs 66

6 conclusion 67
6.1 Main results 67
6.2 Future work 68

L I ST OF F IGURES

Figure 1 Simplified UMLModel of a VOD System (reprinted from Egyed (2006)) 5
Figure 2 Structural view of a requirements model 22
Figure 3 ECore metamodel 24
Figure 4 ECore metamodel annotated with OCL 26
Figure 5 Inconsistency detection 27
Figure 6 least-change repairs 28
Figure 7 Consistency rule for UML (taken from Reder and Egyed (2012b)) 34
Figure 8 Tree for message ’connect’ 34
Figure 9 Reevaluations against changes (taken from Reder and Egyed (2012b)) 35
Figure 10 Adding consistent requirement rC 45
Figure 11 Requirement addition time for increasing scope 46
Figure 12 Adding inconsistent requirement rC 47
Figure 13 Collapse time for increasing scope 47
Figure 14 Adding out of scope requirement rD 48
Figure 15 Out of scope event time for increasing scope 49
Figure 16 Deleting inconsistent requirement rC 49
Figure 17 Rebuilding time for increasing scope 50
Figure 18 Transition times for (left to right) one, two, and five nested quanti-

fiers 50
Figure 19 R(a∧¬(b∧ c), t), where a is false, and b and c are true 55
Figure 20 Flattened repair tree 63
Figure 21 Simplified repair tree 65

xiii

L I ST OF TABLES

Table 1 Comparison of approaches to model repair 16
Table 2 Repairing a∧ b 54
Table 3 Inconsistent model 59

xv

ACRONYMS

MDE Model-Driven Engineering

OMG Object Management Group

MDA Model-Driven Architecture

UML Unified Modelling Language

OCL Object Constraint Language

EMF Eclipse Modelling Framework

DSML Domain Specific Modelling Language

CSP Constraint Satisfaction Problem

MDT Model Development Tools

QVT Query/View/Transformation

SAT Satisfiability

BX Bidirectional Transformations

SMT Satisfiability Modulo Theories

BNF Backus Normal Form

xvii

Part I

P R E L I M I N A RY S T U DY

1

INTRODUCTION

Model-Driven Engineering (MDE) is a well known approach to software development that
promotes the use of structured specifications, referred to as models, as the primary develop-
ment artifact. To support MDE, the Object Management Group (OMG) has launched the
Model-Driven Architecture (MDA) initiative in 2001. As Stevens puts (Stevens, 2007), "The
central idea of the OMG’s Model Driven Architecture is that human intelligence should be
used to develop models, not programs. Routine work should be, as far as possible, delegated
to tools: the human developer’s intelligence should be used to do what tools cannot."
In MDE, different models may capture different views of the same system, for instance

concerning its structure and dynamics, or may represent different levels of abstraction, a
common case when automating the derivation of source code implementations from high-
level specifications. As an effect of the increasing adoption of MDE, large-scale industrial
projects are currently being developed by hundreds of people, making use of several model
instances conforming to different metamodels.

1.1 motivation

One of the main challenges in MDE is to deal with a wide diversity of evolving models, some
of which developed and maintained in parallel. In this setting, a particular point of attention
is to manage the model inconsistencies that become inevitable, since it is too easy to make
contradictory design decisions and hard to recognise them. Providing automated mechanisms
to support these evolving models becomes essential (Van Der Straeten et al., 2009), since
inconsistencies have been revealed as one of the main development problems (Hessellund
et al., 2007). Even a minor inconsistency can lead to serious faults in the system and be
the source of project failure, so developing techniques for inconsistency management becomes
crucial.
As defined by Spanoudakis and Zisman (2001), inconsistency management not only consists

in the detection of inconsistencies but also in their handling. During the development process,
user updates will undoubtedly produce inconsistencies which must eventually be repaired.
However, the resolution of these violations is, currently, mostly a manual task. The user

3

CHAPTER 1. introduction

may manually alter the model to eliminate the violations, but this can be a very challenging
problem due to the complexity of the language or the concrete model. Tool support for
this task is then essential in order to automate model repair, so consistency can be easily
recovered.

1.1.1 A call from industry

An example of the need for solutions to this problem, in this dissertation an application
scenario is explored in close collaboration with industry, namely with Educed1, a startup
company created to exploit the application of formal methods for the development of safe
and reliable software systems. Educed is developing the PROVA (Platform for Software
Verification and Validation) platform, whose goal is to assist engineers in the development
and validation of software requirements for critical systems. In PROVA, multiple views are
used in the definition and analysis of a given system, each view representing a subset of
relevant attributes. Complementary views include, for example, the structural, operational
and behavioural view. Consistency between these views must be maintained.

1.1.2 Problem challenges

In the attempt to detect and repair inconsistencies various challenges arise.

One of the main challenges to model repair, as shown by Nentwich et al. (2003), is that for
any given set of inconsistencies, there exists an infinite number of possible ways of fixing it.
In fact, the number of alternatives may grow exponentially with the complexity of the design
rule and the number of model elements involved. While much of researchers recognise this
fact, the way in which this problem should be resolved is far from being agreed upon, and
methods on how to detect and fix inconsistencies vary widely. Moreover, they are implemented
in different programming languages, on different operating systems, use different modelling
languages, and different input and output formats.

To top it off, other challenges arise such as the impact of a given identified repair, as
a change that fixes one inconsistency may introduce new ones. Potential solutions should
consider this problem, known as side effects, capturing dependencies between consistency
rules and repair plans. Being able to tolerate the presence of certain model inconsistencies,
while being able to resolve others, is also important. This may be necessary, for instance, in
the early stages of software design, where design models will be incomplete and contain a lot
of inconsistencies that can only be resolved in later phases of the development process.

1 http://www.educed-emb.com/

4

1.2. PROBLEM EXAMPLE

1.2 problem example

This section presents a simple example taken from Egyed (2006), showing that even a small
model may contain several inconsistencies that must be resolved.

Figure 1: Simplified UML Model of a VOD System (reprinted from Egyed (2006))

Figure 1 depicts three Unified Modelling Language (UML) diagrams, representing a simpli-
fied video-on-demand (VOD) system.

The class diagram (top) captures the structure of the system, where a Display is used
for visualising movies and receiving user input, a Streamer downloads and decodes movie
streams, and a Server provides the movie data. The state-chart diagram (middle) describes
the behaviour of the Streamer class. It first establishes a connection to the Server and then
toggles between the waiting and streaming mode depending on whether it receives the wait
and stream commands. The sequence diagram (bottom) represents the process of selecting
a movie and playing it. The illustration depicts a user invoking the select method on an
object disp of type Display. This object then creates a new object st of type Streamer, invokes
connect and then wait. Finally, when the user invokes play, disp invokes stream.

Consistency rules describe conditions that a model must satisfy for it to be considered valid
according to its metamodel. These conditions may be, for instance, syntactic well-formedness
and coherence between different diagrams concerning the same model (their static semantics).

5

CHAPTER 1. introduction

In this example, for instance, a consistency rule should state that the name of a message in
the sequence diagram must match a method in the receiver’s class.
This simple model contains different inconsistencies. For example, there is no connect

method in the Streamer class although the disp object invokes connect on the st object. Be-
sides, the disp object calls the st object even though in the class diagram only a Streamer may
call a Display. Moreover, the sequence of incoming messages of the st object (connect;wait;stream)
is not supported by the state-chart diagram which expects a stream after a connect.

As already mentioned, for a given inconsistency usually there are several alternative fixes,
fact which represents an obstacle to existing solutions. For example, regarding the first
inconsistency, a repair could create the connect method in the Streamer class, or alternatively
remove its invocation in the sequence diagram.

1.3 contributions

The contributions resulting from the research activities carried out in the context of this thesis
are:

• A comparison of different existing model repair techniques. In particular, a proposal
is made for a collection of relevant features for comparing these methodologies. This
collection should mature and develop into a well-defined taxonomy.

• Exploration of an application scenario in close collaboration with industry, namely with
Educed. As a first attempt to find a solution to a provided case study, Echo (Macedo
et al., 2013) was used, an off-the-shelf model repair tool that automates inconsistency
detection and repair using a solver based engine. Some remarks are made about the
pros and cons experienced throughout the design. This analysis allowed one to assess
the suitability of this tool to be used as a model repair component in Educed’s PROVA
platform, also serving as user feedback for future Echo developments.

• Implementation, evaluation and critical analysis of an incremental approach to model
repair (Reder and Egyed (2012b), Reder and Egyed (2012a)), as an alternative to Echo.
Its incremental behaviour focusing on quick feedback was a driving factor for the interest
in this method, in view of the fact that the front-end component of the PROVA platform
intensively explores direct user interaction for the modelling activity. A Python library
was implemented, an open source tool that is free to test and customise. This tool
was the outcome of an opportunity to discover implementation challenges and test the
technique applicability to an arbitrary modelling and constraint language. Different
procedures of the technique are tested, their performance analysed, and the overall
results discussed. A strategy for interpreting and simplifying repairs is suggested, and
some challenges to the approach are discussed.

6

1.4. DOCUMENT STRUCTURE

1.4 document structure

This dissertation is structured as follows.
Part i introduces the preliminary study carried out in the context of this thesis. In Chapter

2, different existing model repair techniques will be discussed from Section 2.1 to 2.7, after
which, in Section 2.8, a proposal is made for a taxonomy of relevant features for comparing
check and repair methodologies. In Chapter 3, Section 3.1 starts by introducing PROVA and
its modelling language as a case study. Some examples of requirements are given and the
desired constraints on their static semantics are defined. Following this, in Section 3.2 the
introduced requirements and rules are modelled and tested in Echo, an off-the-shelf model
repair tool. Some remarks are made about the pros and cons experienced throughout the
design.

In Part ii, an incremental approach to model repair is tackled, as an alternative to Echo.
In Chapter 4, the incremental verification method presented in Reder and Egyed (2012b)
is carefully explained, implemented and tested. Section 4.1 gives an overview of the consis-
tency checking mechanism. Section 4.2 describes the implemented Python library applying
the checking behaviour. After this, in Section 4.3, the tool is tested for constraints on a
metamodel of the PROVA’s front-end. In particular, different tree transformations and con-
straints are tested, their performance analysed, and the overall results discussed. In Chapter
5, the repair method introduced in Reder and Egyed (2012a) is presented as an extension to
the previous checking mechanism. Section 5.1 presents an overview of this repair technique,
while, in Section 5.2, the library is extended with a repair method. In Section 5.3, this new
functionality is tested, results are discussed, and a strategy for interpreting and simplifying
repair trees is suggested. Finally, in Section 5.4, challenges to this repair approach are dis-
cussed. Chapter 6 concludes this dissertation, where Section 6.1 summarises the main results
obtained throughout this work, and Section 6.2 proposes some goals as future work.

7

2

A SURVEY OF MODEL REPAIR TECHNIQUES

As already pointed out, one of the main challenges to model repair is that for any given set
of inconsistencies, there exists an infinite number of possible ways of fixing it. Puissant et al.
(2013) believe that search-based approaches such as meta-heuristics, could be applied to this
problem. They argue the problem satisfies at least three important properties that motivate
the need for search-based software engineering: the presence of a large search space, the
need for algorithms with a low computational complexity, and the absence of known optimal
solutions. On the other hand, Reder and Egyed (2012a) advocate against fully automatic
approaches, such as heuristics that replace the role of the human designer in repairing in-
consistencies. According to this authors, repairing models should be an activity that goes
hand in hand with the creative process of modelling. Indeed, methods on how to detect and
repair inconsistencies vary widely. Moreover, they are implemented in different programming
languages, on different operating systems, use different modelling languages, and different
input and output formats.

Taking this diversity of approaches as motivation, in this chapter different existing model
repair techniques will be discussed from Section 2.1 to 2.7, after which, in Section 2.8, a
proposal is made for a collection of relevant features for comparing check and repair method-
ologies. This collection is used to compare some of the studied approaches. As a future goal,
this collection should mature and develop into a well-defined taxonomy. Main remarks are
presented in Subsection 2.8.1.

2.1 heuristics-driven state-space exploration

Hegedus et al. (2011) present an approach that is based on graph transformations which
generates quick fixes for Domain Specific Modelling Languages (DSMLs). According to the
authors, while domain-specific editors are usually capable of ensuring that elementary editing
operations preserve syntactic correctness (by e.g. syntax-driven editing), most DSMLs include
additional language-specific consistency rules that must also be checked. Their aim is thus
to provide a domain-independent framework (that is applicable for a wide range of DSMLs),
which can efficiently compute complex fixing action sequences even when multiple, overlapping

9

CHAPTER 2. a survey of model repair techniques

inconsistency rule violations are present in the model. Thereby, the authors propose to
adapt the concept of quick fixes (also called error correction, code completion) found in the
programming languages domain to DSMLs.

To capture inconsistency rules of a DSML, they use graph patterns that define declarative
structural constraints. Their technique uses graph transformation rules to specify elementary
fix operations (policies). These operations are automatically combined by a structural con-
straint solving algorithm that relies on heuristics-driven state-space exploration to find quick
fix sequences efficiently. The technique guarantees that the number of inconsistencies on the
model decreases, even if side-effects occur. This is achieved by applying every candidate
fix to the inconsistent model and detecting and counting the inconsistencies in the resulting
model. The heuristics-guided algorithm automatically selects the best solutions. The engine
is capable of generating solutions for a given local scope independently of the total number
of violations in other parts of the model.

2.2 manually specifying repair information

Xiong et al. (2009) present an approach that combines the detection of errors with the gen-
eration of actions to repair them on UML models. They use their own language to define
the consistency relations. This language, called Beanbag, has a syntax similar to Object Con-
straint Language (OCL) and together with the specification of consistency rules, it allows
to specify how models breaking such rules should be fixed. Rules can then be run either in
checking or fixing mode to repair models. More precisely, Beanbag attaches fixing actions to
primitive constraints and functions, and composes them through logic operators and other
high-level constructs.

This approach is completely automatic, i.e., without requiring user interaction. In contrast
to this method, there are approaches which generate fixing actions purely from a consistency
relation, but require human interventions in executing the actions, by specifying some loca-
tions to fix, choosing one among a set of actions or filling some missed parameters. Neverthe-
less, the authors believe both types of approaches are important to consistency management,
because while some consistency relations are suitable to be established all the time through
automatic fixing, some are suitable to be manually resolved by humans.

As the authors state, compared to Constraint Satisfaction Problem (CSP) approaches, Bean-
bag is a more lightweight approach in the sense that it requires users to describe the fixing
behaviour in the Beanbag program, and thus does not suffer from the scalability problem.
Moreover, they compare Beanbag to heuristics-driven methods claiming their approach pro-
vides a more clear, predictable fixing semantics, so that end users can clearly know how their
updates affect other parts of the model.

10

2.3. MODELS AS SEQUENCES OF ELEMENTARY OPERATIONS

2.3 models as sequences of elementary operations

Blanc et al. (2008) propose to represent models by sequences of elementary construction oper-
ations, rather than by the set of model elements they contain. Structural and methodological
consistency rules can then be expressed uniformly as logical constraints on such sequences.

The authors argue that structural and methodological inconsistency detection should be
supported uniformly. Methodological rules constrain the overall construction process, whereas
structural rules only constrain the model obtained at the end of this process. Regarding the
model life cycle, those two kinds of rules are complementary as structural rules constrain
model states whereas methodological rules constrain model changes. They stress the fact
that, to their knowledge, no existing approach allows to define methodological consistency
rules. For instance, OCL is mainly used to specify model structural inconsistency rules, not
being possible to define methodological constraints.
The authors point out that approaches based on elementary operations are the most suitable

for large-scale distributed environments, where there is a need to merge parallel changes that
have been performed to models in a distributed way.
The approach was validated by building a Prolog engine, Praxis, that detects violations of

structural and methodological constraints specified on UML models and requirement models.
It is worthwhile to note that all checks are executed in batch mode. The entire model is
loaded in memory, and the rules are verified one after the other on the entire model. An
incremental consistency checking would be much more effective. Nevertheless, the authors
claim to be able to compute how rules access the sequence of elementary operations using the
introspection facilities of Prolog, making it possible to generate an incremental checker for a
set of rules.

2.3.1 Limited state-space exploration

Silva et al. (2010) developed an approach that generates repair plans based on Praxis. The
generated repair plans also consist of sequences of Praxis actions, in this case those that are
needed to resolve as many inconsistencies as possible causing as few new inconsistencies as
possible. Their key contribution is a search algorithm that is optimised to find the shortest
plan that fixes the bigger number of inconsistencies, by exploring a limited and configurable
subset of all possible plans. In fact, as there exists an infinite number of ways to resolve
inconsistencies, this approach has a configurable exploration level which reduces the number
of repairs. Nevertheless, this solution involves the danger of not being able to resolve the
inconsistencies.
The algorithm is also fitted to build repair plans that start by fixing the most recent causes

of inconsistencies. Moreover, besides obtaining repair plans that correct all inconsistencies in

11

CHAPTER 2. a survey of model repair techniques

a model, it is possible to get partial plans that start by proposing fixes to the inconsistencies
that were more recently introduced in the model. The authors argue that this capacity helps
the developer when correcting models that have too much inconsistency and which would
therefore require too much time to compute a complete repair plan.

2.3.2 Automated planning

Puissant et al. (2013) implemented Badger, an automated regression planner also built with
Praxis that generates model inconsistency resolutions, given concrete and previously detected
inconsistencies (the tool requires as input a model and a set of inconsistencies). The auto-
mated planning is a logic-based approach originating from artificial intelligence. The planner
does not require the user to specify resolution rules manually or to specify information about
the causes of the inconsistency.
As the authors state, to make the approach useful in practice, the resolution preferred by

the user should be among the first generated resolution plans. For this purpose, the user
can adapt the order in which resolution plans are presented by assigning different costs to
edit operations. Furthermore, entire resolution plans can be omitted by attaching an infinite
weight to certain actions.

Although the approach has only been stress-tested on a Java system and on UML models,
the authors claim that relying on a metamodel independent representation (using sequences
of elementary model operations) makes it straightforward to apply the method to other types
of models as well.

2.4 relational model finding

Van Der Straeten et al. (2011) assessed the viability of using Kodkod (Torlak and Jackson,
2007) to perform model repair. Kodkod is a SAT-based constraint solver for first order logic
with relations, transitive closure, bit-vector arithmetic, and partial models. Kodkod is used as
a model finder used in a wide range of applications, including, for instance, code checking, test-
case generation, and lightweight analysis of Alloy (Jackson, 2012) models. Kodkod implements
relational bounds, i.e., relational variables of any arity are bounded by sets of tuples. Basically,
the upper bound specifies the tuples that a relation may contain, while the lower bound
specifies the tuples that it must contain.
In this approach, a repaired model is found by relaxing the bounds on some entities and

associations. More specifically, nodes and edges suspected of causing the inconsistencies are
removed from the lower-bound, and the upper-bound is augmented to allow additions. To
minimise repairs, they first use an external procedure to identify such potentially guilty model
elements. However, this technique does not ensure minimality of the repairs, it only handles

12

2.5. REPAIR DEPENDENCE GRAPH

one inconsistency at a time, and is still not fully automatised (e.g., the relaxation of upper-
bounds is performed manually). The authors claim that, performance wise, Kodkod is not
viable for model repair of large size models.

2.5 repair dependence graph

Demsky and Rinard (2005) present a model-based approach to data structure repair, a tech-
nique for enabling programs to execute successfully in the presence of otherwise fatal data
structure corruption errors. The method involves two views: a concrete view of the data
structures as they are represented in the memory and an abstract view that models the data
structures as sets of objects and relations between objects.

A set of model definition rules, encapsulating the data structure representation complexity,
translates the concrete data structures to the sets and relations in the abstract model. The key
consistency constraints are then expressed using the sets and relations in this model, defining
important data structure consistency properties. An automatically generated repair algorithm
finds and repairs any data structures that violate the defined consistency properties. These
violations are repaired by automatically translating model repairs back through the model
definition rules to automatically derive a set of data structure updates that implement the
repair. The compiler uses goal-directed reasoning to statically map these model repair actions
to data structure updates.

A repair dependence graph is used to capture dependencies between consistency constraints,
repair actions, and the abstract model. Supporting formal reasoning about the effect of repairs
on both the model and the data structures, this graph presents a set of conditions that identify
a class of cycles whose absence guarantees that all repairs will successfully terminate. An
algorithm then removes nodes in the graph to eliminate problematic cycles, preventing the
repair procedure from choosing repair strategies that may not terminate.

2.6 an incremental approach

Egyed (2006) presents an incremental approach for quickly, correctly, and automatically decid-
ing what consistency rules to evaluate when a model changes. Consistency rules are treated as
black-box entities and a form of profiling is used to observe their behaviour during evaluation
in order to identify what model elements they access. The set of model elements that affects
the truth value of a consistency rule is referred to as its change impact scope. This rule needs
to be reevaluated if and only if one such model element changes, a necessary condition for an
efficient incremental approach. Egyed demonstrates that his method produces complete and
small (albeit not minimal) scopes.

13

CHAPTER 2. a survey of model repair techniques

While inconsistencies are detected quickly, following a spirit of toleration, engineers are
not required to fix them right away. All known inconsistencies are continuously tracked while
engineers explore them according to their interests in the model. This is a non-trivial problem
because the scope of an inconsistency is continuously affected by model changes. In fact, it is
significant to understand that the approach maintains a separate scope of model elements for
every instance of consistency rule. This scope is computed automatically during evaluation
and used to determine when to reevaluate rules. In the case of an inconsistency, this scope
tells the engineer all the model elements that were involved.

2.6.1 Repair trees

Egyed (2007) and Egyed et al. (2008) present how to repair inconsistencies in models and
how the generated choices are evaluated. However, according to the authors this approach is
overly conservative and generates repairs for all model elements accessed by the validation of
an inconsistency, while often only a subset thereof causes the inconsistency. In contrast, by
eliminating false and non-minimal repairs, the method introduced in Reder and Egyed (2012a)
vastly reduces the number of repair alternatives (however, not necessarily the exponential
growth inherent to the problem).
This method combines the syntactic and dynamic structure of an inconsistent design rule to

pinpoint exactly which parts of the inconsistency must be repaired. As a result, it generates a
tree of repair actions. A repair tree organises the repair actions in a hierarchical manner that
reflects the structure of the design rule. The authors claim that, for this reason, the repair
tree is intuitive to understand and grows linearly with design rule complexity. However,
these repair plans only consist of sequences of abstract edit operations, which the user must
manually instantiate in order to repair the models. Thus, this is not a fully automatic repair,
as it requires human intervention.
The authors believe that the approach is applicable to arbitrary modelling and constraint

languages.

2.7 least-change repairs with echo

Macedo et al. (2013) present Echo, a tool based on model finding for model repair and model
transformations. Echo is deployed as an Eclipse plugin, developed on top of the popular
Eclipse Modelling Framework (EMF), with metamodels being specified in ECore. To en-
hance metamodels with constraints, it follows the technique proposed by Model Development
Tools (MDT), of embedding OCL constraints as metamodel annotations. Moreover, Echo also
supports the specification of Query/View/Transformation-Relations (QVT-R OMG (2011))
Bidirectional Transformations (BX). QVT-R is a declarative language designed to specify con-

14

2.8. COLLECTION OF COMPARISON POINTS

straints between related models. BX can be seen as a generic approach to recover inter-model
consistency, being a particular case of model repair. Actually, if no propagation direction
is imposed and both models are encompassed in a single global artifact, the problems be-
come equivalent. Thus, Echo is able to check and repair both intra-model and inter-model
consistency.

Its engine works by translating both metamodels (annotated with OCL) and QVT-R trans-
formations to Alloy, a lightweight formal specification language with support for automatic
model finding via SAT solving. Besides being correct, in the sense that resulting models are
always fully consistent, Echo is also minimal, as it follows the principle of least-change. This
principle states that repaired models should be as close as possible to the original inconsistent
ones. There may be more than one consistent model at minimal distance, so Echo presents
all possible repaired models by increasing distance, allowing the user to choose the desired
one, at which time the update is effectively applied to the original model.

Since models can be seen as graphs, the standard graph edit distance, that just counts addi-
tions and deletions of nodes and edges, can be used to measure distances. Echo automatically
infers this measure for any given metamodel. A user-parametrised model distance measure is
also available, that requires the user to specify the allowed edit operations in the metamodel,
enabling a finer degree of control over valid repairs.

2.8 collection of comparison points

After studying different approaches, a collection of the most relevant check and repair features
was made. Those which appear to reveal greater importance in comparing the different
methodologies are listed in Table 1. Due to some ambiguity faced and the need for a more
detailed study in the future, a record of such features is currently only made for a subset of
the mentioned approaches. Also, for those considered, some answers are yet to be discovered,
and are left blank in the table.

Several features were chosen concerning incrementality, user interaction, automation, com-
pleteness, manual effort, inconsistencies resolution, side effects, least-change behaviour, con-
trol over repairs and underlying technique. Being a direct result of the study carried out,
this collection represents a proposal for a vector of comparison between different model repair
approaches:

• Incremental - an approach is incremental if it does not operate in batch mode, allowing
reusing results from previous checking phases. Here, only the necessary set of rules
engaged in the last model modification need to be tested. This allows the approach to
scale.

15

CHAPTER 2. a survey of model repair techniques

in
cr
em

en
ta
l

us
er

ca
n
ch
oo

se
re
pa

irs

re
pa

irs
au

to
m
at
ic
al
ly

ap
pl
ie
d

co
m
pl
et
e

no
m
an

ua
lly

sp
ec
ifi
ed

re
pa

irs

on
e
in
co
ns
ist

en
cy

at
a
tim

e

sid
e
eff

ec
ts

ha
nd

lin
g

pr
in
ci
pl
e
of

lea
st
-c
ha

ng
e

co
nt
ro
lo

ve
r
re
pa

ir
ge
ne

ra
tio

n

sy
nt
ac
tic

-b
as
ed

Xiong et al. (2009) X 7 7 7 X X
Puissant et al. (2013) X 7 X X 7 7 X 7

Van Der Straeten et al. (2011) 7 X X X X X 7 7 7

Reder and Egyed (2012a) X X 7 X X X X 7 7 X
Macedo et al. (2013) 7 X X X X 7 X X X 7

Demsky and Rinard (2005) 7 X X 7 X 7 X X

Table 1: Comparison of approaches to model repair

• User can choose repairs - more control is given to the user when he/she can choose
between the generated repairs. This flexibility is important in the modelling activity.

• Repairs automatically applied - repair plans may consist of sequences of abstract edit
operations, which the user must manually instantiate in order to effectively repair the
models. This is not a fully automatic repair, as it requires human intervention in
executing the actions, by specifying some locations to fix, choosing one among a set of
actions or filling some missed parameters.

• Complete - all possible repairs are considered, albeit in a bounded exploration space.
Non complete approaches may fail to repair inconsistencies or to include the one the
designer wants.

• No manually specified repairs - the user is not required to manually specify repair
operations along with the consistency rules, a laborious and error-prone activity with
no guarantee for completeness or correctness. Do not confuse this with user intervention
in instantiating repairs, occurring only after some abstract repair have been generated.

• One inconsistency at a time - generated repairs only concern a certain detected incon-
sistency (and eventually its side effects). This approach is more scalable than resolving
all consistencies at once. Besides, this method follows the spirit of tolerating inconsis-
tencies.

• Side effects handling - when applying a generated repair other inconsistencies are typ-
ically raised, and mechanisms that trace and resolve this dependencies should be im-

16

2.8. COLLECTION OF COMPARISON POINTS

plemented. This can also be solved by approaches like solving, since they resolve all
consistencies at the same time and ensure the generated models are correct.

• Principle of least-change - the principle of least-change requires repaired models to be
as close as possible to the original. This approach becomes more predictable to the
designer.

• Control over repairs generation - most of the repairs are undesirable. Allowing to
somehow steer the repair generation mechanism, can result both in a more predictable
fixing semantics and in the elimination of undesirable fixes. This can be achieved, for
instance, by defining specific allowed repair operations and assigning weights to them.

• Syntactic-based - these techniques typically derive repair plans by syntactic analysis of
the constraints and model instances. This is usually very efficient and scalable, but can
be less expressive and flexible than, for instance, solving. Moreover, syntactic analysis
is not as well suited to deal with multiple inconsistencies, nor inconsistencies that affect
a large portion of the model.

2.8.1 Main remarks

Although the approach from Xiong et al. (2009) repairs models automatically, the user has
to manually specify the fixing behaviour, an error-prone approach without guarantees of
completeness. In Puissant et al. (2013), once the resolution plan is generated, the user must
replace temporary elements by concrete elements, so this is not a fully automatic approach.
However, no fixing annotations need to be manually specified, and users can adapt the order
in which resolution plans are presented by assigning different costs to edit operations.
In Demsky and Rinard (2005), a repair dependence graph is used to capture dependencies

and resolve side effects. However, it is not incremental nor evaluates models without the need
to translate them to an abstract representation.
Among all approaches, the one from Reder and Egyed (2012a) appears to be the one which

scales better, since it is iterative, evaluates models directly, does not necessarily repair all
inconsistencies at once, and follows a syntactic-based analysis. However, the approach is not
fully automatic as the user must instantiate proposed repairs, does not follow the least-change
principle and no control over repairs generation is given.
Although less scalable when compared to Egyed’s approach, the one from Macedo et al.

(2013) is fully automatic, generating repaired models which are as close as possible to the
original, and provides control over repairs generation through the specification of allowed edit
operations. Straeten’s technique (Van Der Straeten et al., 2011) does not ensure minimality
of the repairs nor control over its generation.

17

3

REPAIR ING REQUIREMENT MODELS - A CASE STUDY

An application scenario was explored in close collaboration with industry, namely with Educed,
a startup company created to exploit the application of formal methods for the development
of safe and reliable software systems. Educed is developing the PROVA platform, whose
goal is to assist engineers in the development and validation of software requirements for
critical systems. Section 3.1 starts by introducing PROVA and its modelling language. Some
examples of requirements are given and desired constraints on their static semantics are
defined.

As a first attempt to find a solution to this case study, an off-the-shelf model repair tool
was used to implement it. Therefore, in Section 3.2 the introduced requirements and rules
are modelled and tested in Echo (Macedo et al., 2013), a tool that automates inconsistency
detection and repair using a solver based engine. Echo was chosen since it was the tool which
revealed the most active support and clearer documentation. Furthermore, it was fairly easy
to install and test. It is deployed as an Eclipse plugin, developed on top of the EMF, and
supports constraints specified in the standard OCL. Some remarks are then made about the
pros and cons experienced throughout the design.

The chapter ends by concluding that, currently, Echo may not be well suited to the require-
ments of the PROVA platform. This served as a motivation for studying and developing the
incremental approach presented in Part ii of this dissertation. Nevertheless, the performed
modelling and test activities served as a realistic case study from industry which may help
developing Echo.

3.1 application scenario

This section starts by introducing PROVA, in particular the motivation behind its require-
ments modelling framework. Next, some structural boilerplates (requirement specification
blocks) are presented and examples of requirements (their instances) are given in the con-
text of an illustrative model. Finally, some desired consistency rules are informally defined,
constraints concerning the static semantics of the language of boilerplates.

19

CHAPTER 3. repairing requirement models - a case study

3.1.1 PROVA requirement models

Developing a critical software system is recognisably an arduous task, both by the usual
inherent complexity of the problem to solve and by the very high assurance required. In
this process, getting the requirements right is key, as it is against them that the final system
behaviour is analysed and verified. Undetected errors at the requirements stage propagate
throughout the development and later become much more costly to correct.
Nowadays, requirement analysis is usually conducted in a relatively informal way, since

requirements are commonly described in natural language using a text document. Although
this process can follow a rigorous methodology, because requirements are written in natural
language it becomes impossible to perform an automatic and rigorous analysis. Moreover,
as these documents are usually pretty long, carrying out a proper analysis without any au-
tomated support is a daunting task. Modelling languages like UML are very expressive and
already form part of the curriculum of a software engineer. However, most UML tools avail-
able in the market focus on model construction only and not on their analysis or simulation.
This is due to the semi-formal nature and semantics of UML, which hinders the development
of verification tools. On the other hand, various languages and tools for formal modelling have
been developed in the academia context, for instance Alloy (Jackson, 2012). While these offer
opportunities for automated analysis, the specification languages provided are not attractive
enough to most engineers.
PROVA explores the design of a requirement specification language that is familiar to the

engineer, but also suitable for formal and automated processing. This language comprises
a set of requirement specification blocks named boilerplates (Hull et al., 2011). For each
boilerplate a sentence in natural language expressing its semantics is defined. Each sentence
has a set of placeholders to be filled by the engineer, this being the way in which actual
requirements are instantiated. A requirements model is then translated to a Satisfiability
Modulo Theories (SMT) problem providing the desired simulation capabilities, consistency
analysis and verification of properties.
In PROVA, multiple views are used in the definition and analysis of a given system, each

view representing a subset of relevant attributes defined with boilerplates of a specific type.
Complementary views include, for example, the structural, operational and behavioural view.

3.1.2 The Boilerplates

PROVA supports different types of boilerplates, one for each view of the system being mod-
elled. For instance, structural boilerplates define the static part of the system, i.e., existing
entities, their attributes and relationships; operational boilerplates express operations carried
out by the different entities on the system; behavioural boilerplates define the system dynam-

20

3.1. APPLICATION SCENARIO

ics as a state machine. As a proof of concept, we will focus on structural boilerplates only.
These can be further subdivided in subtypes such as Specialisation, Relation, and Restriction.
In the following examples, while the first two boilerplates introduce entities and relations to
a specification, the third one restricts existing relations. Figure 2 shows the structural view
(in UML-like notation, to be more familiar) of a requirements model where these examples
appear, so it helps understanding the context in which they are used.

enumeration This is a boilerplate of type Specialisation. As its type suggests, it is
used to define a requirement specialising a certain model entity into an enumeration of more
specific entities. Below, its formal syntax in Backus–Naur Form (BNF), and a requirement
example along its informal semantics:

<enumeration> ::= "every" <entity> "shall be enumerated by" <entity-list>

<entity-list> ::= <entity> "and" <entity-list> | <entity>

<entity> ::= string

Example: every State shall be enumerated by Empty and NonEmpty
Informal semantics: An entity of type State is always an entity of type Empty or NonEmpty.

association This is a boilerplate of type Relation. It is used to define a named associ-
ation relating two model entities and respecting some multiplicity. Below, its formal syntax
in BNF, and a requirement example along its informal semantics:

<association> ::= "every" <entity> "shall have" <mult> <relation> <entity>

<mult> ::= "Some" | "One" | "Lone" | "Any"

<relation> ::= string

Example: every Message shall have One message_source Partition
Informal semantics: message_source relates to every Message exactly One Partition, its

source. This implicitly defines a transposed relation _message_source with a predefined
multiplicity.

generalisation This is a boilerplate of type Restriction, being used to constrain com-
posing relations. Below, its formal syntax in BNF, and a requirement example along its
informal semantics:

<Generalisation> ::= "every" <relation-list> "of" <entity> "is" <relation-list>

"of" <entity>

<relation-list> ::= <relation> "of" <relation-list> | <relation>

Example: every _message of Message is _channel_state of NonEmpty

21

CHAPTER 3. repairing requirement models - a case study

Figure 2: Structural view of a requirements model

Informal semantics: The channel_state of a channel associated with a Message via message
is NonEmpty.

3.1.3 Desired consistency rules

For a system’s model to be valid for further analysis, the static semantics of the Boilerplate’s
language must be obeyed first, being either intra-view or inter-view constraints. These con-
straints on the static semantics of the language can not be captured by a simple grammar.
As examples of consistency rules that should be obeyed, consider the following (informally

defined) three constraints:

• Rule SPEC_ONCE - An entity can only be specialised once, unless no requirement
Enumeration is used. For example, having 2 requirements: every A shall be enumerated
by A1 and A2 and A3 and every A shall be enumerated by A4 and A5 is illegal.

22

3.2. SOLVING APPROACH WITH ECHO

• RuleNO_SELF_SPEC - Entities do not specialise themselves. Circular or self-references
between any requirements of type Specialisation are illegal. For instance, having: every
A shall be enumerated by A1 and A2 and A3 and every A2 shall be enumerated by A4
and A is illegal. This rule together with the previous one ensure that specialisations
remain consistent.

• Rule WELL_TYP_COMP - The lists of composing relations in requirements of type
Restriction must be well-typed, i.e., the associated requirements of type Relation must
share some entity types in a way such that hooking them becomes possible. For instance
if we have ... r2 of r1 ... (equivalent to r2◦r1) in one of the lists of a requirement of
type Generalisation, then two requirements of type Relation must exist, such that
the type of the second entity of r1 is the same as the type of the first entity of r2.

Besides employing a consistency checker that would perform the verification of these rules,
it would also be desirable for PROVA to provide feedback, by warning the user of the existing
conflicts and providing suggestions for correction.

3.2 solving approach with echo

In this section, the boilerplates presented in Subsection 3.1.2 are modelled using ECore, the
language for specifying metamodels in Echo, and the consistency rules informally defined in
Subsection 3.1.3 are formally specified as embedded OCL annotations. The check and repair
mechanisms are tested, and some remarks are made about the pros and cons experienced
throughout the design.

3.2.1 ECore metamodel

In Echo, metamodels are defined using the ECore language. The boilerplates presented in
Subsection 3.1.2 were modelled using this language. Figure 3 shows the resulting meta-
model, capturing the variable attributes of the boilerplates (the relevant ones), that is, their
placeholders, as collections of names (class Name). Classes Relation, Specialisation and
Restriction host common attributes required by their subclasses. Here, one subclass per
type is shown, respectively Assoc, Enum and Generalisation, the boilerplates previously in-
troduced. Since order is relevant for modelling lists of composing relations, a self-referenced
class is used, namely CompositionElem. This is due to a current limitation of the tool and
not of ECore, which already covers sequences.

23

CHAPTER 3. repairing requirement models - a case study

Figure 3: ECore metamodel

3.2.2 OCL constraints

To enhance the Ecore metamodels with additional constraints, Echo follows the technique
of embedding OCL rules as annotations. Next, the consistency rules informally defined in
Subsection 3.1.3 are formally specified as embedded OCL annotations. While the first rule
was quite simple to specify, the other two introduced a considerable degree of complexity.

Rule SPEC_ONCE is defined for each requirement of type Enum, so its context becomes
that same class (line 1):

1 <Enum >
2 spec_once :
3 Specialisation . allInstances ()
4 ->forAll (s | s <> self implies s. entity <> self. entity)

As the entity of this kind of requirement can only be specialised once, the rule must prevent
the existence of any other Specialisation, s, sharing the same entity (lines 3 and 4, <>

denoting the difference operator).

24

3.2. SOLVING APPROACH WITH ECHO

Rule NO_SELF_SPEC is a reachability property, so it was necessary to add the extra
attribute Name.specs (a class self-reference) to the metamodel, use auxiliary constraints
(name_specs, lines 5 and 11), and resort to semantically more complex OCL operators
(closure and includes):

1 <Name >
2 no_self_spec :
3 not self -> closure (specs)->includes (self)
4
5 name_specs :
6 self.specs -> forAll (n|
7 Specialisation . allInstances () ->exists (spec|
8 spec. entity = self and spec. spec_entities -> includes (n)))
9

10 <Specialisation >
11 name_specs :
12 self. spec_entities -> forAll (e|self. entity .specs -> includes (e))

Auxiliary constraint name_specs is a two-part rule ensuring that the new attribute Name.specs

exclusively (lines 5 to 8) references every specialisation of entity Name (lines 11 and 12). Re-
sorting to the closure operation applied on the new attribute, no_self_spec then ensures
that no Name (entity) specialises itself, by prohibiting its own inclusion in the closure (line 3).

Rule WELL_TYP_COMP is defined for every requirement of type Restriction, ensuring
that each composition of two relations is well-typed. Only the constraint for the first list is
shown, since this is analogous for the second. Also having a considerable degree of complexity,
this rule resorts to nested quantifiers of multiple variables, and to semantically rich operations
such as union and closure:

1 <Restriction >
2 well -typ -comp:
3 self. first_relation_first_list
4 ->union(self. first_relation_first_list -> closure (next))
5 ->forAll (e1 ,e2|
6 e1.next=e2 implies Relation . allInstances ()
7 ->exists (a1 ,a2|
8 e1. relation = a1. relation and
9 e2. relation = a2. relation and

10 a1. second_entity = a2. first_entity))

As already mentioned, when order became necessary, as in the case of these lists, a self-
referenced class was used, namely CompositionElem (the type of first_relation_first_list),
where each instance references a relation. All pairs e1,e2 of such elements are fetched from

25

CHAPTER 3. repairing requirement models - a case study

the union of the very first element with the closure applied on its attribute next (lines
3 to 5). From here, all pairs which compose are required to be consistent with two require-
ments a1,a2 of type Relation (’a’ from subtype Association), which must exist (lines 6 and
7). To be consistent, their relation names must match and a1 must hook to a2 by obeying
a1.second_entity = a2.first_entity (lines 8 to 10).

3.2.3 Check and repair

Figure 4 shows part of the ECore metamodel, now annotated with OCL rules. Rule no_self_spec

is highlighted, as well as the extra attribute and auxiliary constraints needed. Two sub-
classes of Specialisation were added for testing purposes and are highlighted also, namely
ExtendsAbs and Extends.

Figure 4: ECore metamodel annotated with OCL

Resorting to SAT solving, Echo is able to detect instances of the metamodel violating
specified constraints. Figure 5 shows a small instance which violates rule no_self_spec,
since there are specialisation cycles between entities String0 and String1. As shown, Echo
correctly reported this design inconsistency.
Besides detecting inconsistencies, Echo is able to repair erroneous instances (also by SAT

solving) fully automatically. The repair mechanism follows the principle of least-change, in

26

3.2. SOLVING APPROACH WITH ECHO

Figure 5: Inconsistency detection

that it generates a valid model which is as close as possible to the original. The measure
of distance (or difference) is calculated based either on the number of elementary modifica-
tions made to the model as a graph (Graph Edit Distance mode), or on the number of applied
custom operations, optionally defined by the user (Operation Based Distance mode). Alterna-
tive repairs are generated by request, in which case successively greater distances are explored.
Figure 6 shows two possible repairs (GED mode) generated for the previous inconsistency.

3.2.4 Remarks

intuitive with good ocl support Echo was quite intuitive to use, in that every
check and repair feature was easily found and applied. The tool proved to have a good support
for OCL, as every consistency rule was successfully tested, even those requiring semantically
complex operations such as closures.

automatic but undesired repairs Echo computed repaired models fully automat-
ically, i.e., without any user intervention. Besides, no manually specified repair information
was needed during the modelling process. The tool was always correct, in the sense that
every resulting model was always fully consistent with no side effects. However, the desired
repairs did not always arise among the first models generated by Echo. For instance, instead
of deleting one of the requirements, as shown in Figure 6, one could simply want to change the

27

CHAPTER 3. repairing requirement models - a case study

OR

Figure 6: least-change repairs

entity of requirement Extends from String1 to String2. In fact, the least-change principle
does not always yields the desired repairs firstly.

not fast enough In every test run, Echo revealed reasonable response times. In
particular, checking instances for consistency took execution times on the order of tenths of
a second, while generating repair suggestions required a longer processing, yet never above a
few seconds. However, the tested model instances have a relatively small size when compared
to full requirement models, so these performance times are not satisfactory enough for an
approach with scalability issues such as Echo, as it is based on SAT solving.

lacking incrementality and traceability The key component of Echo is a
target oriented model finding procedure built on top of a SAT solver. For this reason, before
anything else, models have to be translated into a proper evaluation representation. This not
only constitutes an overhead in performance but hinders the implementation of an incremental
mechanism. Consequently, Echo does not reuse results from previous checks, always having to
consider the whole set of design rules, regardless of the impact that the last modification may
have had. This represents an obstacle to the scalability of the approach. Another problem
experienced was the inability of the tool to pinpoint which particular rules were violated by

28

3.2. SOLVING APPROACH WITH ECHO

the last modification. Here, resorting to the extraction of UNSAT cores can be a solution to
consider. These problems make

verdict The identified problems related to automation, performance, incrementality,
and traceability, led to the conclusion that, currently, Echo may not be well suited to be
integrated into the PROVA platform as a model repair component. In fact, a more quick
feedback is required in a highly interactive environment, pinpointing exactly which rules
were violated, thus making clearer to the user how to fix the models, not having to rely on
automatically generated suggestions. This served as a motivation for studying and developing
the incremental approach presented in Part ii.

29

Part II

A N I N C R E M E N TA L A P P ROAC H W I T H C H E C K - A N D - R E PA I R
T R E E S

4

MAINTAIN ING CHECK TREES

As one of the two approaches chosen to be studied in the context of this thesis, in this
chapter the incremental verification method presented in Reder and Egyed (2012b) is carefully
explained, implemented and tested. Aiming at a quick, correct, and automatic decision on
what specific consistency rules to evaluate when a given model change happens, this technique
represents a quite different, yet promising alternative approach to solving. Its incremental
behaviour focusing on quick feedback was a driving factor for the interest in this method, in
view of the fact that the front-end component of the PROVA platform intensively explores
direct user interaction for the modelling activity.

Section 4.1 gives an overview of the consistency checking mechanism, explaining the struc-
ture of a tree, its scope, reevaluation and lazy behaviour. Thereafter, Section 4.2 describes
the implemented Python library applying the checking behaviour, a tool free to test and cus-
tomise which was the outcome of an opportunity to discover implementation challenges and
test the technique applicability to an arbitrary modelling and constraint language. Besides
detecting inconsistencies, this method can be extended to generate repair suggestions, as in-
troduced in Reder and Egyed (2012a). Later in Chapter 5 this repair functionality will be
presented as an extension (also implemented) to the library. In Section 4.3 the tool is tested
for constraints on a metamodel of the PROVA’s front-end, the application component which
would greatly benefit from incremental verification due to its interactive nature. In particular,
different tree transformations and constraints are tested, their performance analysed, and the
overall results discussed.

4.1 technique overview

This section gives an overview of the consistency checking mechanism. Starting with and
example of how the structure of a tree relates to its consistency rule and current scope, it
then describes how reevaluations are performed in a bottom-up fashion, ending by introducing
the crucial concept of lazy evaluation.

33

CHAPTER 4. maintaining check trees

4.1.1 Tree structure and scope

As an example of how this method works, consider the consistency rule shown in Figure 7,
defined over UML models. This rule states that (first operand of the conjunction) every two
objects l1, l2, related by some message m in the sequence diagram, must be associated in the
class diagram, through an attribute a, according to m’s direction. Moreover (second operand),
it declares that each message must correspond to a defined operation in the class of every
receiver object.

Figure 7: Consistency rule for UML (taken from Reder and Egyed (2012b))

For each message m, a validation tree (as shown in Figure 8 for message connect) is created
and dynamically maintained at run-time. Each tree follows the syntactic structure of the
consistency rule, each node corresponding to a logical operator and storing the logical value
of the subtree (or subformula) having it as its root. The node truth value is computed by
recursively validating its child nodes.

Figure 8: Tree for message ’connect’

For each element referenced by the range of a quantifier, a subtree (or branch) representing
the condition of the quantifier must be created. For instance, the range of the universal
quantifier m.receiveEvent.covered references every l object life line which is receiving message
m in the sequence diagram. In the figure one can see that this universal quantifier has

34

4.1. TECHNIQUE OVERVIEW

only one subtree, meaning that only one life line is receiving the connect message. In turn,
the class associated with this lifeline, Streamer, has two o operations, stream and connect,
which are compared with the message in two separate subtrees. The leafs of a tree reference
elements/properties of the model. Examples are o[stream] and m[connect] which represent
the names being compared. An element can be seen as a property of another element, so this
two names are used interchangeably.
The set of properties accessed through these leaves represents the scope of the tree, neces-

sary for getting the states of the model required to evaluate the tree consistency. The size of
this scope is kept to a minimum for lazy evaluation purposes, as we shall see in Subsection
4.1.3.

Figure 9: Reevaluations against changes (taken from Reder and Egyed (2012b))

4.1.2 Reevaluating

Changes to the model, being element additions, element deletions or changes to element
properties, should be monitored in order to trigger tree reevaluations, otherwise these would
become obsolete. In fact, if a change to the model occurs, then all those trees need reevaluation
which include the changed property in their scope. This approach is incremental since, once a
validation tree has been created, any subsequent change to the model will result in a possible
update of the tree state (reevaluation), where previously computed information is reused.
As the accessed model elements (scopes) are referenced at the bottom of the tree (the

leaves), the impact of a model change always start at the leaves and is propagated upward

35

CHAPTER 4. maintaining check trees

towards the root. Therefore, while the initial generation and validation of a tree are strictly
top down, incremental reevaluations are, instead, bottom up.
Figure 9 shows two reevaluations (as results of two modifications), one represented by a

thick line (labelled 1) and the other by a dashed line (labelled 2). The first change (1) is
the renaming of the operation connect to wait. The second change (2) is the renaming of
operation stream to play. While reevaluation 1 propagates upwards until it reaches the root
of the tree (thus changing its consistency as a whole), reevaluation 2 does not propagate to
upper nodes, since the equality remains false, despite the modification. This demonstrates
that changes propagate upward for as long as the nodes are affected by the change only. Since
the consistency tree stores all intermediate Boolean results, only changes to these results must
be computed anew.

4.1.3 Lazy evaluation

As a result of reevaluation 1, the left branch of the conjunction at the top is marked as
discarded. In fact, whenever one of the two branches of a conjunction is evaluated to false, the
other branch can be discarded, as its logical value will not change that of the conjunction. Only
when the former turns true, it becomes necessary monitoring and evaluating the latter again.
This reasoning can also be applied to quantifiers. For example, as an existential quantifier is
equivalent to a concatenated disjunction, it follows that if the existential quantifier evaluates
to true, then only one of its consistent elements must be monitored, as the quantifier can
change its truth value only if (at least) that element validation fails.
This mechanism keeps the size of the scope to a minimum in the sense that if any minimal

set of elements sufficient to determine the formula truth value is found, no other element
will need evaluation (thus unnecessary to monitor) until some state change occurs which
renders that set insufficient. This minimum scope and its management correspond to the
implementation of the concept of lazy evaluation since, by definition, lazyness states that
evaluations should only be made when needed, ie when some result is required. Thanks to
this lazy evaluation approach, a reevaluation focuses on the filtered validation tree only and
ignores changes that would have affected discarded parts of the validation tree. This process
saves both memory (as trees become smaller) and has the potential to improve performance
because a change becomes less likely to affect the validation tree. This is further discussed in
Section 4.3.

4.2 method implementation

A Python library applying the incremental verification method described in the previous
section was implemented. This task was carried out since the current tool that supports

36

4.2. METHOD IMPLEMENTATION

this approach (the Model/Analyser) is deployed as a plug-in for he IBM Rational Software
Architect framework, which is proprietary software. Moreover, besides ending up with a
tool free to test and customise, it was an opportunity to discover and better understand
the implementation challenges in detail. By independently implementing a library it was
possible to freely define a constraint language (simpler than OCL, the one the plugin uses)
and evaluate the approach more flexibly. As for the modelling language, Python itself was
a suitable choice where classes and objects were used, respectively, to create metamodels
(statically) and models (dynamically). As claimed by the authors in Reder and Egyed (2012b),
the approach is designed to be applicable to arbitrary modelling and constraint languages, so
this was also an opportunity to corroborate that.

This library is tested in Section 4.3 for constraints on a metamodel of the PROVA’s front-
end. This test case was chosen in order to test the approach suitability in a realistic scenario.
Moreover, the front-end is the application component which would greatly benefit from in-
cremental verification due to its interactive nature. This option also justifies the choice for a
dynamic language such as Python, as the front-end is fully coded in JavaScript (not chosen
instead for familiarity reasons).
The following implementation description refers only to the consistency checking mecha-

nism. Later in Chapter 5 we will present the repair functionality as an extension to this
library.

4.2.1 Subtyping

Subtyping is a kind of polymorphism wherein a name may denote instances of many dif-
ferent classes as long as they are related by some common superclass. In object-oriented
programming, which was the programming model followed, this is often referred to simply
as polymorphism. This technique became useful since the different logical operators were
implemented as classes sharing method names, method signatures (and even some method
implementations), and attributes, while at the same time requiring different implementations
for some of their methods. For instance, while the method reevaluate is the same in ev-
ery situation, the method evaluate is specific for each individual logical operator. Thus, a
superclass Formula was implemented for hosting common data and behaviour.
Method reevaluate, an example of a shared procedure, is triggered by some change to the

model, calls evaluate for rechecking consistency, and recursively propagates itself to upper
nodes, stopping at the root or when the new logical value of the current node equals its
previous state (reevaluation 2 from Figure 9 is an example of the latter case):

1 class Formula :
2 def reevaluate ():

37

CHAPTER 4. maintaining check trees

3 evaluate ()
4 if oldResult != result and parent != None:
5 parent . reevaluate ()

4.2.2 Minimal set of logical operators

Each logical operator corresponds to a different subclass of Formula. The set of implemented
subclasses form a minimal set of first order logic. This way, by combining the logical operators
in this set, one is capable of expressing any formula. The supported operators are Negation

for negation, Equals for equality, Conjunction for conjunction, and Exists for the existen-
tial quantifier. From this minimal set other operators can be derived, such as disjunction,
implication and the universal quantifier.
The choice for a minimal set of operators was made for simplicity and fast prototyping. How-

ever, the size of a tree becomes larger as more operators are eventually needed for expressing
the same formula. This naturally implies not only more memory usage but some potential
performance loss, as the number of procedure calls for traversing a tree grows. Therefore,
implementing each desired logical operator separately should be a more efficient version for
future implementation.
Next we will see the implementation of method evaluate for each operator, where the

logical value of a node is calculated based on its child nodes.
Whenever a node is evaluated, meaning that one wants to check the consistency of the tree

having that node as its root, the new logical value is stored in the instance variable result.
For this reason, and because the reevaluate method needs to compare this fresh value with
its previous state, the first thing to do is to save result in oldResult before updating it.

Validating a Negation is very simple, as it suffices to evaluate its single subtree and negate
that result. Notice, however, that this validation of the child node may not be necessary if it
is already evaluated. This happens in reevaluations, where nodes call their parents only after
being checked:

1 class Negation (Formula):
2 def evaluate ():
3 oldResult <- result
4 evaluate childFormula if not evaluated
5 result <- not childFormula . result

Validating Equals is also straightforward, being done by testing the equality of the values
accessed through its two children, instances of class Access corresponding to leaves of the
tree:

38

4.2. METHOD IMPLEMENTATION

1 class Equals (Formula):
2 def evaluate ():
3 oldResult <- result
4 result <- (leftAccess .value == rightAccess .value)

Validating a conjunction is more complex, mainly due to the implementation of the lazy
evaluation concept, where one of the two child nodes may be deactivated (or discarded):

1 class Conjunction (Formula):
2 def evaluate ():
3 oldResult <- result
4
5 if leftChildFormula is active :
6 evaluate leftChildFormula if not evaluated
7 if leftChildFormula . result == true:
8 activate rightChildFormula if not active
9 else:

10 result <- false
11 deactivate rightChildFormula
12 return
13
14 if rightChildFormula is active :
15 evaluate rightChildFormula if not evaluated
16 if rightChildFormula . result == true:
17 if leftChildFormula is not active :
18 activate leftChildFormula
19 evaluate ()
20 else:
21 result <- true
22 return
23 else:
24 result <- false
25 deactivate leftChildFormula
26 return

After recursively validating one active child (lines 6 and 15), in the case its result is false,
the conjunction is also false, so its sibling can be deactivated (lines 11 and 25). This sibling
can already be inactive, in which case the request is ignored. If the former is otherwise true,
its sibling needs, instead, to be activated (lines 8 and 18) and evaluated (again, lines 6 and
15), because its logical value will dictate the result of the conjunction. Notice that every
validation is only performed if the concerned child has not already been evaluated. The same
happens for activation purposes.

The implementation for Exists is also a bit complex:

39

CHAPTER 4. maintaining check trees

1 class Exists (Formula):
2 def evaluate ():
3 oldResult <- result
4
5 if formula is None:
6 result <- false
7 else:
8 evaluate formula if not evaluated
9 result <- formula . result

10 if oldResult == false and result == true:
11 trueBranch <- get first true branch
12 for every other branch :
13 deactivate branch
14 formula <- trueBranch
15 return
16
17 if oldResult == true and result == false:
18 reset formula
19 build formula
20 evaluate ()

This type of node have a variable number of child branches, each one being relative to
an element included in the range of the quantification. These branches are organised as
a concatenated disjunction referenced by formula. If this formula is empty it means that
there are no elements to evaluate, so the result must be false (lines 5 and 6). This situation
can occur if there are no model elements included in the range of the quantifier, or simply
because formula was previously referencing only one element satisfying the quantifier which
was removed (better understood next). If this is not the case, formula is evaluated (if
necessary) and its result is assigned to that of the quantifier (lines 8 and 9). Following this,
two important cases must be handled in order to respect the lazy evaluation mechanism. One
corresponds to the quantifier turning true, the other one being the inverse case (lines 10
and 17, respectively). In the former situation, since at least one element which satisfies the
quantification now exists (the first found is chosen), any other elements can be discarded and
the branch of such element assigned to formula (lines 11 to 15). In the latter case (possibly
also reached when formula is empty), as the element which satisfied the quantifier, now does
not, it becomes necessary to search for other satisfaction evidence. To this end, it is necessary
to rebuild formula (by adding branches for the elements in the range of the quantifier) and
rerun the algorithm (lines 18 to 20). Handling these two cases may be quite expensive, as
discussed in Section 4.3.

40

4.2. METHOD IMPLEMENTATION

4.2.3 Terminal nodes and event hooks

In order to reevaluate a consistency tree in response to a model change, a mechanism must
be implemented which associates these changes (events) with actions to execute on the tree.
These associations are done with instances of EventHook:

1 class EventHook ():
2 def add(handler):
3 handlers += handler
4 def trigger (args):
5 for handler in handlers :
6 handler (args)
7 def clearHandlers (leaf):
8 remove from handlers every handler belonging to leaf

Each object in a scope should maintain attributes of type EventHook, each representing an
event type associated with a set of actions to execute (handlers) whenever that specific event
is triggered (method trigger) on the object. There are three kinds of events, namely changes,
additions and deletions. Handlers are methods in terminal nodes which are responsible for
updating the tree and start reevaluations. It is important to note that these associations
should be eliminated (method clearHandlers) when objects are removed from the scope of
the tree, so that their events no longer trigger calls to previously associated handlers.
One should better understand this mechanism by analysing an example for class Access,

representative of a leaf node. This class is not a formula but rather a node that references
elements and properties of the model. Its parent is always an Equals (which accesses model
information through its children) and it has a single handler called changed:

1 class Access ():
2 def changed (ref , att):
3 find ref , att in access_list
4 update every subsequent reference
5 for every newRef :
6 newRef . onChange += changed
7 parent . reevaluate ()

The most important attribute of this class is the list of references to the observed ele-
ments/properties, namely access_list. For example, in the expression a.b.att one intends
to access the value of property att of an element b, which in turn is a property of an element
a. In this case, the list would keep references to a, b, and att. As an handler, method
changed is invoked through the event management mechanism whenever any observed ele-
ment (a or b) or the final attribute (att) changes (event of type change). This method first

41

CHAPTER 4. maintaining check trees

updates access_list so that this always keeps the correct path to the final attribute (line
4). Besides keeping the correct path, the associations between events and handlers should
also be updated. To this end, in lines 5 and 6, for each new referenced object in the path,
method changed itself is being added as an handler to onChange, the object’s EventHook of
type change. After these updates, a reevaluation is started (line 7). Thus, it is through this
event mechanism that changes in models lead to reevaluations.
Class Source, also a terminal node, may be seen as a structure analogous to Access, but

in which two more handlers are necessary, added and deleted (events of type addition and
deletion), invoked when an element is added or removed from the range of some quantifier,
respectively:

1 class Source ():
2 def added(ref):
3 if parent . result == false:
4 parent . addBranch (ref)
5 parent . reevaluate ()
6
7 def deleted (ref):
8 parent . deleteBranch (ref)
9 if parent . result == true:

10 parent . reevaluate ()

These two handlers invoke the associated Exists object (the parent), which updates the
tree by adding or removing branches (lines 4 and 8). Also here we can see the application of
lazy evaluation. If the existential quantifier is true, adding a new branch will not change it
to false, so the addition and reevaluation is skipped. In the other hand, if the quantifier is
false, removing some branch will not change it to true, so no reevaluation is needed.

4.2.4 Constraint language

In order to define consistency rules a simple language was implemented. The parsing of a
formula results in a syntax tree from which a corresponding consistency tree is generated,
already with all the necessary leaf handlers associated to the events of the model elements in-
cluded in its starting scope. As already stated, certain logical operators (such as the universal
quantifier) are translated into combinations of operators from the minimum set supported.
As an example of a consistency rule defined using the implemented language, consider

constraint enumerated_once (lines 21 to 31) on the PROVA’s front-end, which metamodel
was statically designed with Python classes (here partially presented):

42

4.3. EVALUATION

1 class Monitored ():
2 def init ():
3 onChange = EventHook ()
4 ...
5 #### Metamodel ####
6 class Boilerplate (Monitored):
7 def init(ty , sbty , ...):
8 type <- ty
9 subtype <- sbty

10 ...
11 class Requirement (Monitored):
12 def init(blpt , ent , ...):
13 bplate <- blpt # Boilerplate
14 entity <- ent
15 ...
16 class FtEndModel (Monitored):
17 def init ():
18 requirements <- [] # [Requirement]
19 ...
20 # constraints
21 enumerated_once <- "
22 forall r1 in requirements : (
23 r1. bplate . subtype = ’ENUM ’
24 ->
25 forall r2 in requirements : (
26 r2. bplate .type = ’EXTENDS ’
27 ->
28 (r1 != r2 -> r1. entity != r2. entity)
29)
30)
31 "

This consistency rule states that no two different requirements, r1 and r2, have the same
entity if one of them has subtype ’ENUM’ and the other has type ’EXTENDS’. The needed data
about each requirement is accessed through class attributes which reference the requirement
entity and boilerplate (bplate). In turn, the boilerplate has the information about its type

and subtype. Notice how each class inherits from Monitored, so that their objects can be
associated, through EventHook, with handlers from trees having them in their scopes.

4.3 evaluation

In this section some evaluation of the implemented library is presented. The evaluation
objectives were to 1) confirm that certain events triggered the expected tree transformations
and reevaluations (or simply, transitions), to 2) demonstrate and compare the performance

43

CHAPTER 4. maintaining check trees

of different transitions for a given consistency rule, and to 3) evaluate, for a given transition,
the impact in performance that the complexity of the rule may have. After this analysis, all
results are discussed, in particular the cost of lazy evaluation, that is, of maintaining minimum
scopes.

Every test was run several times in order to get more accurate and stable results. Some
empiric correctness analysis was also done by always comparing the logical values of each tree
with the ones from equivalent consistency rules defined and checked using Python assertions.

4.3.1 Transition definition

When a change is made to a model, being an addition, deletion or update, that change is
associated with a model element/property. As we saw previously, an event occurring in one
element is associated with handlers from leaf nodes belonging to trees which have that element
included in their scope. Once triggered, an handler perform a tree transition which depends
on the current state of the tree. These transitions correspond to tree transformations and
reevaluations. Thus, a transition can be seen as a function from a pair of tree state and event,
to another tree state resulting from a deterministic transformation and reevaluation:

transition : (tree, event)⇒ tree′

Next, different transitions are tested for consistency trees relative to the rule presented
in Subsection 4.2.4. Alongside an explanation for each state transformation, a complexity
analysis is done and its result corroborated by testing the transition performance for increasing
scope sizes. Yet, lets first understand how each tree is going to be represented.

The consistency tree depicted in Figure 10 is a simplified version of the actually generated
tree for a model with three consistent requirements. This simplification is done for a clearer
visualisation and interpretation of each transition. Only the nodes corresponding to the
universal quantifiers are shown. In fact, all tested requirements satisfy the left operands
(lines 2 and 5) of the first two implications (’ENUM’ is actually a subtype of ’EXTENDS’), so
these can be omitted. Furthermore, the quantifiers ultimately determine the volume of the
tree. The subtrees corresponding to the third implication here are abstracted as leafs by only
depicting the two requirements being compared, the left one coming from the range of the
outer quantifier, the right one coming from the range of the inner quantifier.

44

4.3. EVALUATION

Requirement Entity

rA X
rB Y
rC Z

∀(T ⇒ T)

∀(T ⇒ T)

rA,rA rA,rB rA,rC

∀(T ⇒ T)

rB,rA rB,rB rB,rC

∀(T)

rC,rA rC,rB rC,rC

Figure 10: Adding consistent requirement rC

4.3.2 Transition 1 - tree increment

The first tested transition is shown in Figure 10, where requirement rC is added to a model
of two consistent requirements, rA and rB. The thin line corresponds to the starting state of
the tree, while the thick line represents new branches in the resulting state. As we can see, a
subtree comparing rC with all requirements is appended to the right of the outer quantifier.
Besides, the other subtrees, corresponding to rA and rB, gained an extra branch for comparison
with rC, as rC is also an element included in the range of the inner quantifier. This particular
situation where ranges overlap can originate redundant evaluations, so potential optimisations
may be subject for future work.

Whenever a new branch is added to a consistent universal quantifier (or inconsistent ex-
istential quantifier, for direct comparison with the pseudo code from Section 4.2) the latter
must be reevaluated. This reevaluation is performed by 1) validating the quantifier, which
in turn results in validating newly created branches, 2) updating the quantifier’s truth value
accordingly, performing tree transformations if necessary (for lazy evaluation purposes), and
finally by 3) propagating the reevaluation to the parent node if the quantifier’s logical value
has changed. The incrementality advantages are leveraged in the first step, where already
existing branches do not need to be evaluated, as their state is reused instead. Reevaluations
of nodes are represented by an arrow between the starting and resulting truth values. A single
truth value with no arrow appears in newly created nodes, evaluated for the first time. The
resulting model is still consistent since all the entities remain different from each other.

A high-level complexity analysis of each tested transition was done, corroborated by a
performance test for increasing scope sizes. The complexity of an algorithm corresponds to
the number of operations performed as a function of input size. Consider the input size n to
be the number of requirements in the initial state, and one operation to be the processing of
a leaf node (in Figure 10 corresponding to a subtree comparing two requirements), either its
addition, deletion, validation, or any combination of these. Thus, for the transition seen we
have

45

CHAPTER 4. maintaining check trees

(n + 1) + n = 2n + 1 = O(n)

, where (n+ 1) and n come, respectively, from processing the right subtree (relative to rC),
and processing every extra branch added to the other already existing subtrees. This equates
to a linear complexity O(n), resulting in a time execution directly proportional to the input
size, fact corroborated by the performance results presented in Figure 11.

Figure 11: Requirement addition time for increasing scope

4.3.3 Transition 2 - collapsing of the tree

The second transition tested was to add an inconsistent requirement rC to the same starting
consistent tree of two requirements. In Figure 12 we can see that, this time, the right subtree,
relative to rC, has its two rightmost branches marked as discarded (dashed line). This is
due to the fact that, since an inconsistent pair violating the universal quantifier was found
(entities from rC and rA are equal), according to the lazy evaluation logic, every other branch
of the quantification must be ignored. This consequently also happens for the outer quantifier
as its truth value turns false. Therefore, both the other subtrees are discarded as well. All
these deactivations make the tree collapse into a single branch witnessing the inconsistency
cause.

46

4.3. EVALUATION

Requirement Entity

rA X
rB Y
rC X

∀(T ⇒ F)

∀

rA,rA rA,rB

∀

rB,rA rB,rB

∀(F)

rC,rA rC,rB rC,rC

Figure 12: Adding inconsistent requirement rC

For this second transition we have

(n + 1) + n2 = O(n2)

, where (n + 1) and n2 come, respectively, from processing the rightmost subtree, and pro-
cessing every other branch. Notice that deactivation is also a type of operation which has to
reach each leaf in order to unbind their handlers. Also realise that, unlike what happened for
the first transition, here no extra branch is added to already existing subtrees. This happens
since the outer quantifier deactivates the inner ones before their handlers notice the event.
The previous expression equates to a quadratic complexity O(n2), resulting in a time execu-
tion proportional to the square of the input size, as corroborated by the performance results
presented in Figure 13. It should be noted that this cost can be amortised by other more
efficient transitions.

Figure 13: Collapse time for increasing scope

47

CHAPTER 4. maintaining check trees

Requirement Entity

rA X
rB Y
rC X
rD Z

∀(F)

∀(F)

rC,rA

Figure 14: Adding out of scope requirement rD

4.3.4 Transition 3 - out of scope event

The third transition tested was to take the resulting state of the second transition and perform
an event outside the scope of the consistency tree. As depicted in Figure 14, this is done by
adding requirement rD. As the scope of the starting tree is composed only of requirements rC

and rA (since their state alone is sufficient to determine the overall consistency), any event
that does not concern these two requirements will fall out of scope, thus resulting in a void
transition.

This time one has

O(1)

, which equates to a constant complexity, resulting in the same time execution regardless
of the input size. This is corroborated by the performance results presented in Figure 15.
This figure does not reveal an exactly horizontal line, because the time values are almost
instantaneous and the axis scale used quite accurate.

4.3.5 Transition 4 - rebuilding the tree

The fourth transition tested consisted of deleting the inconsistent requirement rC, added in
the second transition. Figure 16 shows that this deletion triggers a reconstruction of the
tree that recovers those branches which had been previously ruled out. This happens since
the deletion takes place when the universal quantifier is in a false state, therefore becoming
necessary to check what happened to other elements, as there may be other evidence of
falsehood. Because all the remaining requirements (rA and rB) have different entities, a
consistent state is reached.

For this transition we have

1 + (n− 1)2 = O(n2)

48

4.3. EVALUATION

Figure 15: Out of scope event time for increasing scope

, where 1 and (n − 1)2 come, respectively, from deleting the single existing branch, and
rebuilding/checking all the other combinations. This equates to a quadratic complexity O(n2),
resulting in a time execution proportional to the square of the input size, as corroborated by
the performance results presented in Figure 17.

4.3.6 Formula complexity

In order to demonstrate the impact that the complexity of a rule may have in performance,
the same transition type was tested for trees/rules of increasing complexity, yet for the same

Requirement Entity

rA X
rB Y
rC X

∀(F ⇒ T)

∀(T)

rA,rA rA,rB

∀(T)

rB,rA rB,rB

∀(F)

rC,rA

Figure 16: Deleting inconsistent requirement rC

49

CHAPTER 4. maintaining check trees

Figure 17: Rebuilding time for increasing scope

Figure 18: Transition times for (left to right) one, two, and five nested quantifiers

set of scope sizes. The transition type chosen was the collapsing of a tree, as happened in the
second example tested. This is done by adding an element which makes all other branches
unnecessary. The metric used as a measure of the complexity of a rule was the number of
quantifiers. Figure 18 shows, from left to right, the times obtained for one, two and five
quantifiers. As expected, it becomes clear that the more complex a rule is, the less scalable
to verify it becomes. For instance, the times for checking the more complex rule hit the order
of seconds just for a relatively small scope of approximately twenty-five requirements.

4.3.7 Discussion of results

Testing different transitions, for the same consistency rule, has shown different performance
behaviours between them. As the scope grows, that is, as it becomes necessary to evaluate

50

4.3. EVALUATION

more elements in order to check the consistency of the model, some have proved to scale better
than others. Their different complexities resulted in a significant and increasing cost variabil-
ity as the scope gets larger. Importantly, the particular transitions tested demonstrated that
this variability can mainly be due to lazy evaluation. This mechanism is attained by keeping
scope sizes to a minimum. As already pointed out in Section 4.1, as soon as any minimal set
of states sufficient to determine the logical value of a rule is found, no other state will need
evaluation until that set changes and is no longer sufficient for checking consistency. There-
fore, any event relative to any state outside this minimum set must not trigger any transition
in the tree. Only this way evaluations are made only when their results are needed, as a lazy
approach advocates. This restriction is attained by discarding branches, which also makes the
approach more efficient in terms of memory usage. Nevertheless, implementing this concept
induces the observed variability. As shown, while an event which falls out of scope does not
trigger any transformation or evaluation, one that requires the tree to collapse or be rebuilt
can be quite expensive to check.

Maintaining minimum scopes is somewhat arguable. An incremental approach by definition
reuses previously computed states to avoid bulk evaluations. Discarding branches, although
leveraging laziness advantages, it dumps previously computed states and ignores future up-
dates, fact which sometimes will make bulk evaluations necessary for recovering the states of
all the ignored parts of the model. Moreover, as evidenced, large scopes and complex rules
can make this maintenance very expensive. In this sense, lazy evaluation and incrementality
somehow conflict. In the other hand, if an eager evaluation is followed instead, where all ele-
ments are observed which have the potential to be included in the scope, there is no need to
rebuild and evaluate branches when the states of those elements eventually become relevant
(collapses are also avoided). In this setting, it would be expected to observe a lower variability
in checking times. However, this approach implies that the number of evaluations performed
are maximum, as every potentially relevant event must be tracked, case in which a great part
of them may end up being useless, since the concerned elements may never become pertinent,
or only very rarely. Another implication of this eagerness is a greater memory usage, since
trees would be always at their maximum size.
In conclusion, as there are many variables at stake, such as the complexity of the formulae,

the size of the scopes (relative to the model as a whole), and available memory, it seems rea-
sonable to test both approaches in real contexts to determine which shows better performance
in each particular case. A probable trade-off seems to be a better overall performance with
an eager approach, for those cases where few model elements and considerably complex rules
(with several nested quantifiers) prevail, while laziness would better fit to situations where
a large number of model elements are constrained by simpler constraints. A considerable
number of case studies from PROVA may help decide which particular technique should be
used in the platform.

51

5

GENERATING REPAIR TREES

Repairing inconsistencies can be much harder than detecting them because the number of
repair alternatives grows exponentially with the complexity of the design rule and the number
of model elements involved (Reder and Egyed, 2012a). In this chapter the repair method
introduced in Reder and Egyed (2012a) is presented as an extension to the previous checking
mechanism that allows, for a given consistency tree, the generation of a corresponding repair
tree. Section 5.1 presents an overview of this repair technique. In Section 5.2, the library
of Section 4.2 is extended with a repair method which propagates through the tree in a top-
down manner, generating alternative sequences of modifications, also arranged as a tree. In
Section 5.3, this new functionality is tested for a slightly modified version of the consistency
rule presented in Subsection 4.2.4, results are discussed, and a strategy for interpreting and
simplifying repair trees is suggested. Finally in Section 5.4, other challenges to this repair
approach are also discussed, as overlaps, negative side-effects and automation.

5.1 generation mechanism

In Reder and Egyed (2012a) a technique for repairing models is introduced which turns out
to be an extension to the method of incremental verification studied in Chapter 4. This
technique generates a repair tree from an inconsistent check tree, the former exhibiting all
the minimal sequences of abstract modifications to the model which make the latter shift to
a consistent state. This section presents an overview of the generation mechanism.

5.1.1 Expected logical value

Generating a repair tree requires a repair function R(t, E) which receives a consistency tree
t and a Boolean result E representing the expected logical value for its root. This repair
function requires that the consistency tree is already evaluated, since its operation depends
on the comparison of the expected result E with the actual observed logical value, let us say,
O. The procedure starts by checking if E differs from O, in which case the tree is inconsistent

53

CHAPTER 5. generating repair trees

a b O(a∧ b) E R(a∧ b, E)

f t f t R(a, t)
t f f t R(b, t)
f f f t R(a, t) and R(b, t)
t t t f R(a, f) or R(b, f)

Table 2: Repairing a∧ b

and must be repaired. The repair tree is then generated based on the type of t, i.e. the logical
operator of its root. This mechanism propagates recursively in a top down fashion, stopping
by repairing leaf nodes or when E equals O. The leaves of the repair tree correspond to actual
repair suggestions for the respective leaves in the check tree. Thus, each repair either suggests
modifying a property of an element, adding an element to the range of some quantifier, or
removing it instead.
For each recursive call, computing E is simple. The expected result for the top node of t

is always true, as the design rule is expected to evaluate to true to be consistent. The value
of E propagated down to the child nodes depends on the parent’s type. For instance, if a
conjunction is expected to be true (E = true) then its subtrees are expected to be true also,
while in the case of negation, the opposite value ¬E is expected for its single child.

5.1.2 Eliminating false and non-minimal repairs

Computing the repair alternatives for any given logical operation is more complex. For
instance, Table 2 enumerates all possible repair actions for a conjunction, based on the values
of E and O. If O is false and E is true, then there are three possible repair alternatives: 1)
repair the first operand, R(a, t), 2) repair the second operand, R(b, t), or 3) repair both, R(a, t)

and R(b, t). This list appears reasonable, however, it may contain incorrect repair alternatives
and non-minimal repair actions. For example, if a is true already, then 1 is incorrect because
it would repair something that is not broke, and 3 is non-minimal as it would repair more
than necessary. Therefore, to identify the appropriate choices, repair alternatives are guarded.
For example, if it is known that a is true, b is false and the expected result E is true, then
2 is the right choice. If E is false and O is true, then the repair alternatives change because
either a or b need to be false, in which case R(a, f) or R(b, f) would be the proper repair. By
eliminating false and non-minimal repairs, the approach vastly reduces the number of repair
alternatives, however, not necessarily the exponential growth. As the extension to the library
is described in Section 5.2, the repair method behaviour for every other supported logical
operator is also explained.
Every node in a repair tree aside from the leafs ends up being an and or an or repair node,

respectively representing the conjunction (sequence) and disjunction (alternative) of their

54

5.2. EXTENDING THE LIBRARY

and

R(a, t) or

R(b, f) R(c, f)

Figure 19: R(a∧¬(b∧ c), t), where a is false, and b and c are true

repair subtrees. Since it was generated from a check tree t, each repair tree also reflects the
syntactic structure (at least partially) of the concerned design rule (see Figure 19). According
to the authors, this makes the repair tree intuitive to understand. Apparently, this is not
always the case, as discussed further ahead in Section 5.3.

5.2 extending the library

The implemented check library presented in Section 4.2 was extended to support the genera-
tion of repair trees, by following the method described in the previous section.
As previously explained, generating a repair tree requires a repair function which receives

some consistency tree and its expected logical value. Since this procedure behaves differently
depending on the type of the root node, it becomes suitable to take advantage of polymor-
phism, by having separate implementations for each node type, yet with the same method
signature. To this end, a repair method with a specific implementation was added to each
class, the expected logical value being the only necessary argument. The invocation of the
repair method is propagated in a top-down fashion, according to a specific control logic which
eliminates false and non-minimal repairs, as already seen for the particular case of conjunction
(Table 2). In this section, the implementation of this logic is presented for each supported
operator.

5.2.1 Repairing each logical operator

Any implementation of the method repair must begin with the comparison of the observed
logical value (from now on referred to as the tree’s result) with the expectation (argument
e). When these values match, the repair propagation stops.
For Negation the logic is simple. Here, the repair is immediately propagated to the sub-

formula with the expected value negated (line 4):

1 class Negation (Formula):

55

CHAPTER 5. generating repair trees

2 def repair (e):
3 return None if result == e
4 return childFormula . repair (not e)

As seen, for Conjunction things get more complex, since false and non-minimal repairs
must be avoided:

1 class Conjunction (Formula):
2 def repair (e):
3 return None if result == e
4
5 if e == false:
6 return (leftChildFormula . repair (e) OR rightChildFormula . repair (e))
7
8 if e == true:
9 if leftChildFormula . result == false:

10 r1 <- leftChildFormula . repair (e)
11 activate rightChildFormula with no triggers
12 evaluate rightChildFormula
13 if rightChildFormula . result == false:
14 r2 <- rightChildFormula . repair (e)
15 repair <- (r1 AND r2)
16 else:
17 repair <- r1
18 deactivate rightChildFormula
19 else:
20 ...
21 return repair

Lines 5 and 6 correspond to the last line of Table 2, where e is false and the observed
result is true. Here the proper suggestion is the alternative between repairing (to false) the
left subtree and the right subtree, so an OR node is returned.
Lines 8 to 20 address the other three possible repair cases. If result is false, one of the

branches is also false and the other is deactivated thanks to the lazy evaluation mechanism.
Only the algorithm for an active left branch is shown (lines 10 to 18), the control logic for the
reverse case being analogous. Since the branch is false and e is true, at least this branch must
be repaired. Note, however, that there is the need to reactivate and evaluate (lines 11 and
12) the other branch (potentially expensive) in order to determine if its result is also false,
in which case it would be necessary to repair it as well (lines 14 and 15). Since it is crucial
not to affect the independent checking mechanism, this activation must be only temporary,
not enabling any triggers (line 11 and 18).
For Equals, ignoring the existence of constants, the repair simply corresponds to the alter-

native between repairing the first access and repairing the second access, thus represented as

56

5.2. EXTENDING THE LIBRARY

a repair tree of type disjunction (OR node). Notice that repairing an instance of Access does
not requires an expected value, since it is not a subclass of Formula, but rather a terminal
node. To make things clearer another method name is used, namely fix. This method, next
explained in Subsection 5.2.2, generates three types of repairs depending on its caller and on
an optional argument:

1 class Equals (Formula):
2 def repair (e):
3 return None if result == e
4 return (leftAccess .fix () OR rightAccess .fix ())

For Exists, if result is false, to make it true (lines 5 to 8) it will be necessary to make
at least one of its branches also true, or, alternatively, to add a new branch satisfying the
quantification.

1 class Exists (Formula):
2 def repair (e):
3 return None if result == e
4
5 if e == true:
6 for every branch :
7 repair <- (repair OR branch . repair (e))
8 return (repair OR source .fix(’add ’))
9

10 else:
11 buildFormula in temporary mode
12 for every branch :
13 evaluate branch
14 if branch is true:
15 alt <- (branch . repair (e) OR
16 source .fix(’del ’, branch))
17 repair <- (repair AND alt)
18 return repair

In the opposite case (lines 10 to 18), ie, for an expected result of false but where at least
one branch is true, it will be necessary, for every consistent branch, to repair it or delete it.
In this case, all branches (other than the one satisfying the quantifier) must be temporarily
reactivated and evaluated (again, without interfering with the checking mechanism), so that
all other cases that also satisfy the quantifier are found. As discussed in Section 4.3, this
rebuild operation can be quite expensive.

57

CHAPTER 5. generating repair trees

5.2.2 Fixing terminal nodes

Next, the repairs of the leaf nodes are presented. For these cases a different method name is
used since it does not require an expected value, representing an end point of the recursive
chain. It is here where the three possible actual repair suggestions will be generated, namely
MODIFY, ADD and DELETE. As expected, MODIFY is generated in an instance of Access, while
ADD and DELETE repair the Source of quantifiers.

Since an Access represents a chain of accesses to properties, any modification to that chain
will eventually change the final value accessed. Thus, the desired repair will be the disjunction
of all possible modifications to the chain. To better understand this, consider for example
that one wants to change the grandfather of a person, accessed by person.father.father.
This can be achieved by directly changing that person’s grandfather, that is, the father

property of person.father, but also by changing the father of that person, that is, the
father property of person. Therefore, each modification refers to a pair of element reference
and respective attribute (line 4):

1 class Access ():
2 def fix ():
3 for every ref , att in access_list :
4 repair <- (repair OR (’MODIFY ’, ref , att))
5 return repair

In case of Source, fix is invoked with an argument indicating the need to add or remove
an element:

1 class Source ():
2 def fix(operation , ref):
3 if operation is ’add ’:
4 return (’ADD ’, parent . formulaString)
5 else:
6 return (’DELETE ’, ref)

If adding an element is necessary, the ADD message and the constraint that the new element
should satisfy are returned (line 4). It will be up to the user to somehow add this element to
the set. In the case of deletion, DEL is returned along the element reference (line 6). Since
this repair is deterministic, it can be executed automatically.

58

5.3. REPAIR EXAMPLE

Requirement Entity

rA X
rB X
rC Y

Table 3: Inconsistent model

5.3 repair example

In this section a repair tree is generated from an inconsistent tree of a slightly modified version
of the rule presented in Subsection 4.2.4. The generated structure is explained and the way to
interpret it is discussed. Following this, a strategy is presented for simplifying the repair tree
by eliminating redundant information and uncovering those suggestions with greater repair
potential, this way making it more intuitive to the user.

5.3.1 Tree structure

Consider that one intends to ensure that any requirement r1 with subtype ENUM must have
the same entity of any requirement r2 of type EXTENDS:

1 forall r1 in requirements : (
2 r1. bplate . subtype = ’ENUM ’
3 ->
4 forall r2 in requirements : (
5 r2. bplate .type = ’EXTENDS ’
6 ->
7 r1. entity = r2. entity
8)
9)

Consider also that one adds a requirement rC with entity Y to a model with two require-
ments, rA and rB, with the same entity X (see Table 3). Assume that these three requirements
have the subtype ENUM, and that EXTENDS is the supertype of ENUM itself. This operation re-
sults in a model with three requirements which violates the consistency rule, since there are
now different entities (X and Y) when, in the scenario considered, they should all be the same.
A repair tree was generated by invoking the repair method on the violated consistency

tree. To facilitate the comprehension of the tree structure as a mirror of the rule’s syntax,
each repair node was labelled with the check node from which it was generated - OutForall

for the outer quantifier, InForall for the inner quantifier, -> for any implication, A for any
Access, = for any Equals, InSource for the source of the inner quantifier, and OutSource for

59

CHAPTER 5. generating repair trees

the source of the outer quantifier. When appropriate, a label is followed by the requirement
the repair node respects to (as in line 2):

1 AND - OutForall
2 OR - OutForall (rA)
3 . OR - ->
4 . . OR - A
5 . . . (’MODIFY ’, rA , ’bplate ’) - A
6 . . . (’MODIFY ’, bplate , ’subtype ’) - A
7 . . OR - InForall (rC)
8 . . OR - ->
9 . . . OR - A

10 (’MODIFY ’, rC , ’bplate ’) - A
11 (’MODIFY ’, bplate , ’type ’) - A
12 . . . OR - =
13 . . . (’MODIFY ’, rA , ’entity ’) - A
14 . . . (’MODIFY ’, rC , ’entity ’) - A
15 . . (’DELETE ’, rC) - InSource
16 . (’DELETE ’, rA) - OutSource
17 OR - OutForall (rB)
18 ...
19 OR - OutForall (rC)
20 ...

The generated repair tree is a conjunction (AND node) of three subtrees (lines 2, 17 and
19), each one concerning one of the requirements. In turn, these subtrees are disjunctions (OR

node), here labelled as OutForall (rA), OutForall (rB), and OutForall (rC). In order
to understand why this is the case, consider the else block of the repair method of class
Exists. Since an universal quantifier is obtained from an existential quantifier through rule
∀xP (x) ≡ ¬∃x¬P (x), an expected value of true for the former equates to an expected value
of false for the latter. An expected value of false will then make the else block run. As
already explained in Section 5.2, this block generates a repair tree which is a conjunction of
disjunctions, one disjunction per branch which evaluates to true. Since a branch is ¬P (x)

instead of P (x), we will end up with one disjunction for every x requirement for which P (x)

evaluates to false, P being the outer implication. In this case all requirements satisfy the
latter condition (as we shall see next) so three OR subtrees are generated.

Let us now focus on the subtree for requirement rA, with root OR − OutForall (rA), line 2.
This repair tree presents two repair alternatives, one for repairing the requirement (line 3) and
another one for deleting it (line 16). The latter is already a specific repair suggestion (a leaf
node), while the former is another subtree with two possibilities. Repairing the requirement
can be done by either modifying its subtype (lines 4 to 6), in which case it would violate
the first operand of the outer implication (which in turn would become true anyway), or

60

5.3. REPAIR EXAMPLE

pushing the repair further to the inner quantifier (line 7). The tree of the inner quantifier was
also generated in the else block, but since only requirement rC is inconsistent with rA, this
subtree is not a conjunction of disjunctions, being rather one single disjunction. Analogously,
here one can delete rC (line 15) or push the repair even further by either making rA violate
the first operand of the inner implication (lines 9 to 11), or repairing the violated equality
(lines 12 to 14), the latter being an alternative between modifying the entity from rA or the
entity from rC.
The repair subtree for requirement rB is analogous. In order to simplify the output, here-

after terminal subtrees are represented with labels. TrX is used to represent the modification
of the type or subtype of any requirement rX. MrX is used to represent the modification of
any other attribute, while DrX stands for requirement deletion. Notice that rC is the only
requirement inconsistent with rB, therefore being the one which appears in this subtree, as
also occurred for rA:

1 ...
2 OR - OutForall (rB)
3 OR - ->
4 . TrB - A
5 . OR - InForall (rC)
6 . OR - ->
7 . . TrC - A
8 . . OR - =
9 . . MrB - A

10 . . MrC - A
11 . DrC - InSource
12 DrB - OutSource
13 ...

The repair subtree for rC is a bit more complex because this requirement is inconsistent
with the other two. Following the same pattern, the difference here is that the inner quantifier
(lines 5 to 19) is a conjunction of two disjunctions, one for rA and another one for rB:

1 ...
2 OR - OutForall (rC)
3 OR - ->
4 . TrC - A
5 . AND - InForall
6 . OR - InForall (rA)
7 . . OR - ->
8 . . . TrA - A
9 . . . OR - =

10 . . . MrC - A

61

CHAPTER 5. generating repair trees

11 . . . MrA - A
12 . . DrA - InSource
13 . OR - InForall (rB)
14 . OR - ->
15 . . TrB - A
16 . . OR - =
17 . . MrC - A
18 . . MrB - A
19 . DrB - InSource
20 DrC - OutSource

5.3.2 Interpreting and simplifying repair trees

Trying to analyse the entire tree was an arduous and unintuitive task, even for a small scope
and relatively simple rule. Although all those nested nodes mirror the syntax structure of
the rule, quickly realising what are the actual repair combinations seems to be much more
important in what respects to intuitiveness. As shown in figure 20, the first simplification
suggested is to flatten every subtree having only Or nodes into a single Or root with all
alternatives listed. However, despite making more obvious to the user what are the possible
repair combinations, the resulting repair tree still has some problems, concerning not only
intuitiveness. Let us investigate the matter further.
First it is important to understand how to read a repair tree. We could consider all possible

combinations a repair tree allows, but a major part of these combinations are redundant or
even senseless. The repair tree in figure 20 has a total of 648 combinations, resulting from
multiplying the number of alternatives of every disjunction at the same tree level. However
there is a high level of redundancy due to hidden positive side effects. A positive side effect
occurs when a certain change to the model repairs more than one subtree (or even entire repair
trees). For instance, considering repair MrC, that repair alone has the potential of repairing the
whole tree. Yet this high repair potential is somehow hidden throughout different branches
when the user’s best interest is to immediately spot these cases.

Due to the positive side effects, a large number of combinations become undesirable. For in-
stance, choosing TrA in the topmost disjunction repairs that OR node but also repairs the other
disjunction where it reappears lower in the three. Thus any given alternative for repairing
this other disjunction become redundant or, even worst, potentially unnecessary. Considering
this problem, the way a repair tree should be read is by immediately considering the posi-
tive side effects of a chosen suggestion, this in order to discard all further options belonging
to consequently repaired trees. Yet, another existing problem has to do with non minimal
repairs, even if one correctly reads a repair tree by ignoring certain combinations. Consider,
for instance, choosing TrA in the topmost disjunction and MrC in the following OR node. As

62

5.3. REPAIR EXAMPLE

R
AND

OR
TrA
TrC
MrA
MrC
DrC
DrA

OR
TrB
TrC
MrB
MrC
DrC
DrB

OR
TrC
AND

OR
TrA
MrC
MrA
DrA

OR
TrB
MrC
MrB
DrB

DrC

Figure 20: Flattened repair tree

63

CHAPTER 5. generating repair trees

previously seen, MrC has the potential for repairing the entire tree, making TrA unnecessary.
Unless one considers that TrA is somehow cancelled or that there is no specific choosing order
(case in which considering MrC first would discard TrA from the user’s choice), the resulting
repair becomes non minimal. In short, not only the repair tree has a lot of redundant and
cluttered information, even worse, all this analysis is left up to the user.

An alternative is to try to simplify the generated repair tree using simple rules from propo-
sitional logic. For instance, using the distributive property one can merge positive side effects
in higher level nodes, this way reducing redundancy and making more obvious to the user
their greater repair potential. Using this and other simple laws, the generated tree was re-
duced to a much more simple and intuitive structure of only 12 combinations to reason about
(see figure 21):

(TrA ∨ TrC ∨MrA ∨MrC ∨DrC ∨DrA) ∧ (TrB ∨ TrC ∨MrB ∨MrC ∨DrC ∨DrB)

∧ (TrC ∨ ((TrA ∨MrC ∨MrA ∨DrA) ∧ (TrB ∨MrC ∨MrB ∨DrB)) ∨ DrC)

⇐⇒ distributive (MrC)

(TrA ∨ TrC ∨MrA ∨MrC ∨DrC ∨DrA) ∧ (TrB ∨ TrC ∨MrB ∨MrC ∨DrC ∨DrB)

∧ (TrC ∨ (MrC ∨ ((TrA ∨MrA ∨DrA) ∧ (TrB ∨MrB ∨DrB))) ∨ DrC)

⇐⇒ associative

(TrA ∨ TrC ∨MrA ∨MrC ∨DrC ∨DrA) ∧ (TrB ∨ TrC ∨MrB ∨MrC ∨DrC ∨DrB)

∧ (TrC ∨ MrC ∨ ((TrA ∨MrA ∨DrA) ∧ (TrB ∨MrB ∨DrB)) ∨ DrC)

⇐⇒ distributive + associative (TrC MrC DrC)

TrC ∨ MrC ∨ DrC ∨ ((TrA ∨MrA ∨DrA) ∧ (TrB ∨MrB ∨DrB)

∧ ((TrA ∨MrA ∨DrA) ∧ (TrB ∨MrB ∨DrB)))

⇐⇒ (associative + idempotent)

TrC ∨ MrC ∨ DrC ∨ ((TrA ∨MrA ∨DrA) ∧ (TrB ∨MrB ∨DrB))

5.4 challenges to the approach

In this section, some other challenges to the presented repair approach are briefly described.
Starting with overlaps between repairs, next we will see negative side effects, ending with a
discussion about the extent to which automation is possible.

64

5.4. CHALLENGES TO THE APPROACH

R
OR

TrC
MrC
DrC
AND

OR
TrA
MrA
DrA

OR
TrB
MrB
DrB

Figure 21: Simplified repair tree

5.4.1 Overlaps

A problem which can occur in certain repair combinations of a repair tree has to do with
overlapping model changes. This happens when two repair actions have the model element
and property in common or when the value of the property of one action is the model element
of the other action. As an example of the latter case, deleting some requirement (DrX) would
make it impossible to modify any attribute of that requirement (MrX). In the repair tree of
the previous section this is not a problem, since the positive side effects of any deletion would
discard further changes to the requirement in question. Yet, the problem may arise in other
repair trees with different structures, or if an incorrect interpretation of the tree is done.
As a solution to this problem, Reder and Egyed (2012a) suggest to filter out these incorrect

combinations. However, this solution can not simply reduce the tree presented to the user.
Although not explicitly said, interactively restricting allowed repair combinations, as soon as
the user chooses some action, seems to be the most reasonable approach.

5.4.2 Negative side effects

Repairs to inconsistencies may affect other design rules since they may solve other inconsisten-
cies or they may cause other inconsistencies. As already mentioned, understanding these side
effects is important during the repairing of inconsistencies to get an overview of the overall
effect of a repair action on the model.
The previous section introduced positive side effects, in that one repair may also repair

other inconsistencies (or their parts). Side effects may also be negative in that one repair may

65

CHAPTER 5. generating repair trees

cause an inconsistency where there is none. Hence, it becomes necessary to identify all model
elements affected by a choice in order to determine all consistency rule instances that are
affected by that choice. Following this, Egyed et al. (2008) detect such potential side effects
by checking whether a repair action of a repair tree references a model element in the scope of
a consistent design rule. All repair operations in this condition are then eliminated resulting
in refined repair plans. Yet, this solution seems to have some problems. In fact, there may be
cases where a negative side effect should not be ignored. For instance, this can occur when
repairing the model may actually involve successive repairs as the user builds upon his or her
design (for example, more elements/relations become necessary as a consequence of the last
change), or even remodels it differently (after all the user realises, thanks to the introduced
inconsistency, that he/she wanted something else).

5.4.3 Abstract repairs

The generated fix operations presented are in fact abstract repairs, in the sense that it is up
to the user to manually instantiate them. For instance, suggesting to add an element to a
certain collection does not state whether the element should be created anew or should come
from elsewhere. Suggesting to modify some property does not reveal what value one should
assign to it. As they require human intervention these are not fully automatic repairs. Choice
generation functions can however be used to generate possible values that specific fields of a
model element may take (Egyed et al., 2008). Nevertheless, as considering all possible values
would not scale, this approach typically only considers values that are already present in the
model.

66

6

CONCLUS ION

In this dissertation, a comparison of different existing model repair techniques was done, and a
proposal was made for a taxonomy of relevant features for comparing these methodologies. A
case study provided by Educed was implemented with the off-the-shelf model repair tool Echo,
and an analysis was done assessing its suitability to be used as a model repair component
in the PROVA platform. The incremental approach to model repair introduced in Reder
and Egyed (2012a) was then implemented and evaluated as a promising alternative to Echo.
Alongside some critical analysis, different aspects of the technique were evaluated, and a
strategy for interpreting and simplifying repairs was suggested.

6.1 main results

The following list summarises the main results obtained throughout this work:

• The proposed taxonomy for comparing model repair approaches includes features con-
cerning incrementality, user interaction, automation, completeness, manual effort, in-
consistencies resolution, side effects, least-change behaviour, control over repairs and
underlying technique.

• Among all compared approaches, the one from Reder and Egyed (2012a) appears to be
the one which scales better, since it is iterative, does not necessarily repair all inconsis-
tencies at once, and follows a syntactic-based analysis. However, the approach is not
fully automatic and no control over repairs generation is given. Although less scalable,
Echo (Macedo et al., 2013) is fully automatic, generating repaired models which are as
close as possible to the original, and provides control over repairs generation through
the specification of allowed edit operations.

• Echo was quite intuitive to use and have proved to have a good support for OCL. Al-
though useful, a least-change automation does not necessarily yields the desired repairs
firstly. Besides, the performance times were not satisfactory enough for an approach
with scalability issues such as Echo. The tool does not reuse results from previous

67

CHAPTER 6. conclusion

checks, and was unable to pinpoint which particular rules were violated. These prob-
lems led to the conclusion that, currently, Echo may not be well suited to be integrated
into the PROVA platform as a model repair component.

• Regarding the incremental approach, as the scope of a tree grows, some transitions
have proved to scale better than others. Their different complexities resulted in a
significant and increasing cost variability as the scope gets larger. Importantly, the
particular transitions tested demonstrated that this variability can mainly be due to
lazy evaluation. A probable trade-off seems to be a better overall performance with
an eager approach, for those cases where few model elements and considerably complex
rules prevail, while laziness would better fit to situations where a large number of model
elements are constrained by simpler rules.

• Trying to analyse a generated repair tree can be an arduous and unintuitive task, even
for a small scope and relatively simple rule. Although its nested nodes mirror the syntax
structure of the rule, quickly realising what are the actual repair combinations seems
to be much more important in what respects to intuitiveness. Flattening a repair tree
makes it more obvious what are the actual repair alternatives. However, there is still a
high level of redundancy and a large number of undesirable combinations due to existing
positive side effects. These are hidden throughout different branches, when the user’s
best interest is to immediately spot these cases with high repair potential. For these
reason, the way a repair tree should be read is by immediately considering the positive
side effects of a chosen suggestion, this in order to discard all further options belonging
to consequently repaired trees. Simplifying the flattened repair tree using simple rules
from propositional logic can greatly facilitate the its interpretation. For instance, using
the distributive property one can merge positive side effects in higher level nodes, this
way reducing redundancy and making more obvious to the user their greater repair
potential.

6.2 future work

As future work, the following goals are proposed:

• Develop the collection of comparison features into a more mature, well-defined, and
hierarchically organised taxonomy.

• Compare more existing model repair approaches, performing some performance study
when possible.

• Help in developing Echo, by implementing other realistic case studies.

68

6.2. FUTURE WORK

• Collect and implement more case studies from PROVA in order to assess which partic-
ular incremental repair technique, lazy or eager, better suits the platform needs.

• Investigate more ways to simplify repair trees and innovative solutions for tackling
associated challenges, such as negative side effects and lack of automation.

69

BIBL IOGRAPHY

Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. Detecting model incon-
sistency through operation-based model construction. In Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference on, pages 511–520. IEEE, 2008.

Brian Demsky and Martin Rinard. Data structure repair using goal-directed reasoning. In
Proceedings of the 27th international conference on Software engineering, pages 176–185.
ACM, 2005.

Alexander Egyed. Instant consistency checking for the UML. In Proceedings of the 28th
international conference on Software engineering, pages 381–390. ACM, 2006.

Alexander Egyed. Fixing inconsistencies in UML design models. In Software Engineering,
2007. ICSE 2007. 29th International Conference on, pages 292–301. IEEE, 2007.

Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Generating and evaluating
choices for fixing inconsistencies in UML design models. In Automated Software Engineering,
2008. ASE 2008. 23rd IEEE/ACM International Conference on, pages 99–108. IEEE, 2008.

A Hegedus, Akos Horváth, István Ráth, Moisés Castelo Branco, and Dániel Varró. Quick fix
generation for DSMLs. In Visual Languages and Human-Centric Computing (VL/HCC),
2011 IEEE Symposium on, pages 17–24. IEEE, 2011.

Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wasowski. Guided development with
multiple domain-specific languages. In Model Driven Engineering Languages and Systems,
pages 46–60. Springer, 2007.

Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements engineering. Springer, 2011.

Daniel Jackson. Software abstractions-logic, language, and analysis, revised edition, 2012.

Nuno Macedo, Tiago Guimaraes, and Alcino Cunha. Model repair and transformation with
Echo. In Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 694–697. IEEE, 2013.

Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Consistency manage-
ment with repair actions. In Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 455–464. IEEE, 2003.

71

BIBLIOGRAPHY

OMG. MOF 2.0 Query/View/Transformation Specification (QVT), Version 1.1, January
2011. Available at http://www.omg.org/spec/QVT/1.1/.

Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens. Resolving model incon-
sistencies using automated regression planning. Software & Systems Modeling, pages 1–21,
2013.

Alexander Reder and Alexander Egyed. Computing repair trees for resolving inconsistencies
in design models. In Automated Software Engineering (ASE), 2012 Proceedings of the 27th
IEEE/ACM International Conference on, pages 220–229. IEEE, 2012a.

Alexander Reder and Alexander Egyed. Incremental consistency checking for complex design
rules and larger model changes. In Model Driven Engineering Languages and Systems,
pages 202–218. Springer, 2012b.

Marcos Aurélio Almeida Silva, Alix Mougenot, Xavier Blanc, and Reda Bendraou. Towards
automated inconsistency handling in design models. In Advanced Information Systems
Engineering, pages 348–362. Springer, 2010.

George Spanoudakis and Andrea Zisman. Inconsistency management in software engineer-
ing: Survey and open research issues. Handbook of software engineering and knowledge
engineering, 1:329–380, 2001.

Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and open
questions. In Model Driven Engineering Languages and Systems, pages 1–15. Springer,
2007.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 632–647. Springer, 2007.

Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Challenges in model-driven
software engineering. In Models in Software Engineering, pages 35–47. Springer, 2009.

Ragnhild Van Der Straeten, Jorge Pinna Puissant, and Tom Mens. Assessing the kodkod
model finder for resolving model inconsistencies. InModelling Foundations and Applications,
pages 69–84. Springer, 2011.

Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato Takeichi, and Hong Mei. Sup-
porting automatic model inconsistency fixing. In Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 315–324. ACM, 2009.

72

http://www.omg.org/spec/QVT/1.1/

	Dedication
	Preliminary study
	1 Introduction
	1.1 Motivation
	1.1.1 A call from industry
	1.1.2 Problem challenges

	1.2 Problem example
	1.3 Contributions
	1.4 Document structure

	2 A survey of model repair techniques
	2.1 Heuristics-driven state-space exploration
	2.2 Manually specifying repair information
	2.3 Models as sequences of elementary operations
	2.3.1 Limited state-space exploration
	2.3.2 Automated planning

	2.4 Relational model finding
	2.5 Repair dependence graph
	2.6 An incremental approach
	2.6.1 Repair trees

	2.7 Least-change repairs with Echo
	2.8 Collection of comparison points
	2.8.1 Main remarks

	3 Repairing requirement models - a case study
	3.1 Application scenario
	3.1.1 PROVA requirement models
	3.1.2 The Boilerplates
	3.1.3 Desired consistency rules

	3.2 Solving approach with Echo
	3.2.1 ECore metamodel
	3.2.2 OCL constraints
	3.2.3 Check and repair
	3.2.4 Remarks

	An incremental approach with check-and-repair trees
	4 Maintaining check trees
	4.1 Technique overview
	4.1.1 Tree structure and scope
	4.1.2 Reevaluating
	4.1.3 Lazy evaluation

	4.2 Method implementation
	4.2.1 Subtyping
	4.2.2 Minimal set of logical operators
	4.2.3 Terminal nodes and event hooks
	4.2.4 Constraint language

	4.3 Evaluation
	4.3.1 Transition definition
	4.3.2 Transition 1 - tree increment
	4.3.3 Transition 2 - collapsing of the tree
	4.3.4 Transition 3 - out of scope event
	4.3.5 Transition 4 - rebuilding the tree
	4.3.6 Formula complexity
	4.3.7 Discussion of results

	5 Generating repair trees
	5.1 Generation mechanism
	5.1.1 Expected logical value
	5.1.2 Eliminating false and non-minimal repairs

	5.2 Extending the library
	5.2.1 Repairing each logical operator
	5.2.2 Fixing terminal nodes

	5.3 Repair example
	5.3.1 Tree structure
	5.3.2 Interpreting and simplifying repair trees

	5.4 Challenges to the approach
	5.4.1 Overlaps
	5.4.2 Negative side effects
	5.4.3 Abstract repairs

	6 Conclusion
	6.1 Main results
	6.2 Future work

