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Abstract

Currently, cloud computing is very appealing because it allows the user to outsource his data so it

can later be accessed from multiple devices. The user can also delegate to the cloud computing ser-

vice provider some, possibly complex, operations on the outsourced data. Since this service provider

may not always be trusted, it is necessary to not only preserve the privacy but also to enforce the au-

thenticity of the outsourced data. Lately, a lot of work was put on solving the first problem, specially

after the introduction of the first Fully Homomorphic Encryption scheme. In this work we will focus

on the latter, namely on the use of Homomorphic Message Authentication primitives. We will evalu-

ate the current available solutions, their functionality and their security. Finally, we will provide an

implementation of one of these schemes in order to verify if they are indeed practical.
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Chapter 1

Introduction

A cloud computing provider allows a user to lease computing and storage resources from remote

computers that are far more powerful than the user’s. This enables her to perform operations over

(some portion of) outsourced data that is remotely stored and then only the results of these operations

are returned to the user. However, the current infrastructures of cloud computing services do not

provide any security against untrusted cloud operators, making them unsuitable for storing sensitive

information such as medical, financial or any personal records.

A possible solution to this problem is the use of homomorphic cryptography. This concept was

first presented by Rivest, Adleman, and Dertouzos [RAD78] about 30 years ago. However, it remained

an open problem until recently, when the first truly homomorphic schemes were proposed. With

these schemes it became possible to perform computations on encrypted data such that the cloud

computing provider does not have access to the decrypted information, therefore preserving privacy

of the outsourced data. The first FHE scheme was proposed in a ground-breaking work by Gentry

[Gen09]. His scheme allows the computation of arbitrary computations over encrypted data without

being able to decrypt. Unfortunately it is not yet practical, but several small improvements have been

proposed which could lead it to be practical in the near future.

But, and not only in the context of cloud computing, it is also important to guarantee the authen-

ticity of the computations performed on the outsourced data. FHE schemes by itself only guarantee

privacy, and not authenticity. To do so, two main goals need to be fulfilled: security and efficiency.

Security guarantees that the server is able to “prove” the correctness of the delegated computation.

Efficiency means that the user is able to efficiently check the proof by requiring far less resources than

those needed to execute the delegated computation (including both computation and communication).

1



2 1. INTRODUCTION

1.1 Motivation

To guarantee authenticity for computations on outsourced data a new set of homomorphic primi-

tives were defined: homomorphic signatures (asymmetric setting) and homomorphic message authen-

ticators (symmetric setting).

The first notions of homomorphic signatures were introduced around 15 years ago by Rivest et

al. [RMCR01], and then Johnson et al. [JMSW02] presented a more complete definition. An homo-

morphic signature scheme allows a user to generate signatures σ1, . . . , σk on messages m1, . . . ,mk

so that later anyone (without the private signing key) can compute a signature σ′ that is valid for the

value m′ = f(m1, . . . ,mk). Also, it allows anyone that holds the public verification key to verify the

results. Boneh and Freeman [BF11] constructed a scheme that evaluates multivariate polynomials on

previously signed data, but they also stated that the construction of a fully homomorphic signatures

scheme remains an open problem.

The secret key analogue of homomorphic signatures are homomorphic message authenticators

(homomorphic MACs for short) that were introduced by Gennaro and Wichs [GW12]. In this setting,

there is a public evaluation key and a secret key shared by Alice and Bob, which is used to authenticate

some messages m1, . . . ,mk. Then, anybody who has the public evaluation key can compute a short

tag σ that certifies the value y = f(m1, . . . ,mk) as the output of f . Notice that σ does not simply

authenticate y out of context, it only certifies it as the output of a specific f . Later, Bob can verify that

y is indeed the output of f(m1, . . . ,mk) without even knowing the value of the messages. Gennaro

and Wichs [GW12] also presented a construction with support for arbitrary computations, a fully ho-

momorphic MAC, but its security is based on a weaker model (the adversary cannot ask for verification

queries, only for authentication queries).

To overcome this problem, and relying on much of the work from Gennaro and Wichs, Catalano

and Fiore [CF13] constructed a very simple and efficient scheme with support for a more restricted

class of computations. Furthermore, its security is based on a stronger model with support for multiple

verification queries. But both of these constructions suffered from a common problem: the verification

algorithm runs in time proportional to the size of the function. The scheme from Backes, Fiore, and

Reischuk [BFR13] tries to solve this problem, and it is the first homomorphicMAC schemewith efficient

(amortized) verification.
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1.2 Objectives

We intend to study the current homomorphic MAC constructions in order to better understand

their strengths and pitfalls. Having realized what those are, we want to implement one of these con-

structions, Catalano and Fiore [CF13] to be more precise. The reason we ignore the implementation of

Gennaro and Wichs [GW12] is because of its reduced security and because it relies heavily on lattice

based techniques, which are not yet efficient.

Our main goal is then to measure the overhead introduced by the homomorphic evaluation of

[CF13]. In practical terms, what we intend to measure is the amount of extra work that the external

server must do to homomorphically compute the function in comparison to a normal computation.

We will also measure the complexity of all the other operations of Catalano and Fiore [CF13] in

order to check if it is already practical.

1.3 Structure of the document

This document is split in seven chapters. Chapter 1 is an introduction to the problem of homo-

morphic authentication and describes what is the purpose of this dissertation.

Chapter 2 presents a brief review of the current main techniques used for delegation of computations.

Chapter 3 presents an alternative model of computation based on circuits. We start by defining what

are circuits, and we explain how they can be represented and how can we evaluate them. We

also present two conversion tools that convert C into arithmetic circuits.

Chapter 4 describes the analysis wemade to the homomorphic authentication primitives. We start by

introducing the necessary preliminaries and definitions of homomorphic signatures and MACs,

and then by presenting the actual constructions for both settings. In the end we state what the

current limitations and open problems are in both settings.

Chapter 5 introduces the main algebraic operations necessary for our work. The main point of this

chapter is the study of an efficient polynomial multiplication algorithm based on FFT.

Chapter 6 presents our experimental results. We show here how our implementation performs.

Finally, in Chapter 7 we present the final conclusions of all the work we developed, as well as

what can be done in the future.





Chapter 2

Delegation of computations

Currently, if Alice wants do delegate a program f to an external server (as in “cloud computing”)

she has to store all the data unencrypted on the external server, and then the server can perform the

computation and send the result back to Alice. If the server is not trusted there is no way that Alice

can verify that the output she received is indeed correct, or as importantly than this, Alice’s privacy is

not enforced since the external server has full access to her data. A very recent scandal showed that

governmental agencies may have included backdoors in many famous cloud services that would allow

them to easily have access to the users outsourced data1.

In a perfect world where it is possible for Alice to delegate any computation f over a data set

of arbitrary size, she just sends the encrypted data to an external server, along with a description of

the computation f , and then the server executes f over the encrypted data and returns to Alice the

encrypted result of f . Afterwards, she can obtain the unencrypted result using her secret key. This

technique would enforce the privacy of the outsourced data set, but this would not give Alice the

possibility of verifying the correctness of results. To do so, the server would also be able to send to

Alice some small proof that she could verify very easily, and therefore there would a guarantee of

authenticity.

Unfortunately, there are not yet any practical solutions to achieve this “perfect” scenario. And

in the current world, there is no privacy nor any way to easily verify that the output is correct. There

were however many advances and new techniques introduced in the last few years in order to improve

this, and we will briefly introduce some of them.
1See http://www.theguardian.com/world/2013/jun/06/nsa-phone-records-verizon-court-order or

http://www.theguardian.com/us-news/the-nsa-files.

5
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2.1 Homomorphic encryption

Homomorphic encryption is known to exist for a long time [RAD78]. One of the first realizations

was that RSA [RSA78] was partially homomorphic: given two messagesm1,m2 and their correspond-

ing encryptions with RSA, c1 = Enc(m1), c2 = Enc(m2), it holds that c1 · c2 = Enc(m1 ·m2), i.e., the

product of two ciphertexts is the same as the encryption of the product of two messages.

Other popular partially homomorphic schemes include ElGamal [Elg85], Paillier [Pai99] and

Boneh-Goh-Nissin [BGN05]. Initially, ElGamal was known to be only partially multiplicatively ho-

momorphic, but later an additively homomorphic variant was proposed [CGS97]. Paillier is both addi-

tively and multiplicatively homomorphic. Boneh-Goh-Nissin has the interesting property that allows

it to perform multiple additions over ciphertexts, and one final multiplication. A very useful practical

use for such partially homomorphic encryption schemes is electronic voting (e-voting) [Adi08] 2.

However, these partially homomorphic encryption schemes only support additions and multipli-

cations, so Alice cannot yet delegate the computation of some arbitrary program f . This was actually

an open problem until very recently when Gentry [Gen09] presented the first realization of a Fully

Homomorphic Encryption (FHE) scheme that allows for an unlimited number of computations over

encrypted data, just like we have in our perfect world. But as we are not in this perfect world, FHE

is still very far from being practical, even though many improvements to Gentry’s original work have

been proposed in the last few years.

A FHE scheme is a public-key encryption scheme, and so it is composed of the usual KeyGen,

Enc and Dec algorithms. The message and ciphertext spaces of the scheme areM and C respectively.

A ciphertext c ∈ C encrypts a message m ∈M under key (pk, sk), and Dec(sk, c) returns m.

The extra feature of a FHE scheme is that it comes equipped with an extra efficient algorithm

Evaluate, denoted as Eval. Basically, for every valid key pair (pk, sk), any n encryptions c1, . . . , cn ∈

C of any messages m1, . . . ,mn ∈ M under (pk, sk), and for any n-ary function f : Mn → M,

Eval(pk, f, c1, . . . , cn) outputs a ciphertext c that encrypts f(m1, . . . ,mn), i.e., outputs the result of

Enc(pk, f(m1, . . . ,mn)) without access to m1, . . . ,mn. Essentially, Eval is a public algorithm that

anyone can execute without the secret key, and it works like an “impenetrable box” of encryption that

executes f inside itself.

The following commutative diagram describes a FHE scheme.
2https://vote.heliosvoting.org/

https://vote.heliosvoting.org/
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Cn C

Mn M

Eval(pk,f,·,...,·)

Dec(sk,·,...,·) Dec(sk,·)

f(·,...,·)

As we can see, decryption and application of f is exactly the same as Eval and decryption: either

way, the end result is f(m1, . . . ,mn).

With such a FHE scheme, Alice can now execute programs on her encrypted data saved on an

external server. She simply sends the description of f , and the server simply sends her the output of

Eval. More over, she can also encrypt the description of the program f so that the external doesn’t

know which program she is executing nor over which data in particular. The practical applications of

such a scheme are enormous: we can send an encrypted query to a search engine, and received the

encrypted results; or we can securely store a huge data set, and then compute a complex function over

it and obtain an encrypted result. But unfortunately, there isn’t yet any practical FHE scheme

Current FHE constructions are all built around the same idea: when encrypting a message, some

noise is added to the resulting ciphertext, so that the ciphertexts become “noisy”, and computing over

them increases the noise, so that eventually it becomes too big that decryption is impossible. To over-

take this problem, Gentry introduced the notion of bootstrapping so that it is possible to “refresh” the

ciphertexts in such a way that they can used for an unbounded number of computations. But this is

also the main bottleneck of current constructions of FHE.

In practical terms, a Homomorphic Encryption Library (HELib3) was recently released with the

purpose of making homomorphic encryption a reality. Unfortunately, and because of the complexity

of bootstrapping, only low-level operations are supported.

2.2 Homomorphic authentication

In the current (non-homomorphic) cryptographic protocols, in order to enforce the authentic-

ity of a message, i.e., to prove that it wasn’t tampered or forged in some way, we need to rely on

authentication schemes such as Signatures or Message Authentication Codes (MACs). It would only

be natural to have equivalent schemes on a homomorphic scenario, so that when Alice uses a homo-

morphic encryption scheme, she would receive from the server both the output of the computation as

well as some small proof that she can use to verify the authenticity of the obtained output. As in a

non-homomorphic scenario, there are two homomorphic authentication primitives – Signatures and

MACs.
3https://github.com/shaih/HElib

https://github.com/shaih/HElib
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These authentication primitives must be both secure and efficient, meaning that they should be

able to prove the correctness of the delegated computation, and the verification should be far less

complex than the delegation and computation, i.e., in terms of communication and computation. But

what makes these primitives non-trivial is that the client does not keep a local copy of her data, so

it rules out trivial solutions such as one where the client performs the computation herself, and then

compares the output with the one obtained from the server. Another nice property that homomorphic

authenticators should enjoy is composability, which means that derived signatures should be usable as

inputs for future computations.

Homomorphic Signatures The idea of a homomorphic signature was first introduced in a series of

talks by Rivest et al. [RMCR01], and then formally defined by Johnson et al. [JMSW02]. A homomor-

phic signature scheme allows us to perform computations over signed data, and, besides the regular

signature algorithms KeyGen, Sign and Vrfy, it is augmented with an evaluation algorithm Eval that

performs the homomorphic computation over the signed data, and then returns a short signature. Ba-

sically, if Alice has a data setm1, . . . ,mn of size n, she must first independently sign each messagemi

with her private signing key to obtain n independent signatures σ1, . . . , σn, and then she stores both

the data set and the n signatures on some external server. Later, anyone can ask the server to compute

a signature σ′ that is valid for m′ = f(m1, . . . ,mn), without ever revealing the original data set, and

anyone with access to the public verification key can verify that the server correctly applied f to the

data set by verifying the signature σ′. This derived signature authenticates both the function f and the

result of applying f to the data set.

Informally, the security property of a homomorphic signature states that adversaries that can

(adaptively) see the signatures corresponding to polynomially many messages of their choice, cannot

forge a signature for a new m⋆ ̸= f(m1, . . . ,mn).

The first constructions supported only the computation of linear functions over signed data, and

were specifically tailored for network coding routing mechanism. The only non-linear construction is

the one of Boneh and Freeman [BF11] with support for polynomial functions. The security of BF is

based on hard problems on ideal lattices, and it is performed in the random oracle model.

Homomorphic MACs In the private key setting we have homomorphic MACs, which do not have

the property of public verifiability, since only the holders of the private key can perform the verifica-

tion. The notion was introduced by Gennaro and Wichs [GW12]. With a homomorphic MAC scheme,

anyone who holds the public evaluation key and doesn’t know the secret key can compute a short

MAC that validates some computation over previously authenticated data. The owner of the secret
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key can then verify the results of the computation with ever knowing the original authenticated in-

puts. Just as with homomorphic encryption and signatures, a homomorphic MAC scheme is a regular

non-homomorphic MAC scheme augmented with an evaluation algorithm Eval to perform the homo-

morphic computation over the authenticated data set.

Basically, Alice has a secret key that she uses to authenticate a message m to obtain a MAC σ.

Later, given MACs σ1, . . . , σn authenticating messagesm1, . . . ,mn, anyone can run a program f over

σ1, . . . , σn to generate a short MAC that authenticates the output of f over the original messages

m1, . . . ,mn, and only the holders of the secret key can verify the results of such MAC.

Gennaro and Wichs also presented a construction with support for arbitrary computations, a

Fully Homomorphic MAC, but its security is based on a weaker model where an adversary cannot ask

for verification queries, but only for authentication queries. Having that limitation in mind, Catalano

and Fiore [CF13] presented a simple construction, whose security is based on a stronger model where

an adversary can ask for multiple verification queries. For their construction to be simple and efficient,

they had to reduce the range of accepted computations.

The main drawback of the CF construction, besides the limited range of computations supported,

is that the verification algorithm runs in time proportional to the size of the function. To overcome this

problem, a construction with efficient (amortized) verification based on CF was proposed by Backes,

Fiore, and Reischuk [BFR13]. The security of their construction is also based on a stronger model, but in

order to achieve faster verification times, they introduced an efficient PRF that allows their construction

to verify efficiently in an amortized sense.

2.3 Succinct Non-Interactive Arguments of Knowledge

It would be possible to construct fully homomorphic signatures by using succinct non-interactive

arguments of knowledge (SNARKs) [BCCT11]. Informally, this primitive allows us to create a succinct

argument π for any NP statement, to prove knowledge of the corresponding witness. The length of π

is independent of the statement/witness size, and the complexity of verifying π only depends on the

size of the statement.

Basically, using SNARKs, the output y of a program f can be authenticated by creating a short

argument π that proves the knowledge of “the input dataD along with valid signatures authenticating

D, such that f(D) = y”. Because this is an argument of knowledge, if we were able to forge a signature

for the output of some program f , we would be able to extract a forged signature for the input dataD,

and therefore break the security of signatures.
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Themain drawback of SNARKs is that they are not efficient in practice, and the current construc-

tions rely on the random oracle model or other non-standard, non-falsifiable assumptions.

2.4 Verifiable Computation

Verifiable computation (VC) allows a client with much smaller computational power to outsource

a computationally (heavy) task to a remote server while being able to verify the result in a very efficient

way. A client sends to the server both the function f and its input x, and the server returns y = f(x)

as well as a proof that the function was correctly computed over the input x. The verification of the

proof should be require substantially less computational effort than executing f .

In the most commonly used definition of VC proposed by Gennaro, Gentry, and Parno [GGP09],

a VC scheme is commonly composed of four algorithms: KeyGen, ProbGen, Compute and Verify. The

program f is a parameter of KeyGen, so it outputs a key pair which depends on f . The problem

generation algorithm ProbGen is executed by the client and encodes the input x of f as a public value

σx, which is given to Compute, and as private value used for Verify. Given the public encoding σx,

Compute returns an encoding of the output of f(x). To Verify, we simply need the encoding output

of f(x) and the private value of ProbGen, and then either false or the actual output of the function is

returned. Such a scheme must be correct, secure and efficient.

The correctness property of a VC scheme states that a VC scheme is correct if ProbGen produces

values that allows an honest server to compute values that will verify successfully and corresponding

to the evaluation of f on those inputs.

Intuitively, a VC scheme is secure if a malicious server cannot trick the verification algorithm to

accept an incorrect output. Particularly, for a given function f and input x, a malicious server should

not be able to convince Verify to output y′ such that f(x) ̸= y′.

Finally, to be efficient means that the time to encode the input and to verify the output must be

smaller than the time to compute f .

As we can see, VC is very similar to homomorphic schemes. In the case that we are more in-

terested, homomorphic authentication, the server only knows f and the output of f , while in VC, the

server knows f , the input and output f . It is actually possible to build a VC scheme with homomorphic

signatures or MACs.

Parno et al. [PGHR13] presented a practical VC scheme (Pinocchio), along with an implementa-

tion, where a client can efficiently verify the correctness of an outsourced computation. The verification

times are in the orders of 10ms and the proof’s size is only 288 bytes, with 128 bits of security.
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One other work is the one by Ben-Sasson et al. [BCGTV13] which also includes an implementa-

tion: TinyRAM, a random-access machine tailored for efficient verification of non-deterministic com-

putations. The verification times are in the orders of 5ms and the proof size is also 288 bytes, with

128 bits of security. The main improvement of TinyRAM over Pinocchio is regarding the Compute

algorithm, which they improve about 5.3 times.

2.5 Representation of programs

A natural question we have not addressed until now is how can we represent the programs so

that both the client and the server can act on them? The common way of doing it is to first convert

the original program (in some high level language) to a circuit representation, and then use that as the

program description.

A circuit can be either boolean – only boolean operations such as AND or OR allowed – or arith-

metic – only arithmetic operations such as + or ×. Since a circuit is a directed acyclic graph, these

operations are contained within the internal nodes of the graph, while the inputs of the program are

nodes with in-degree 0. And obviously the function’s output is the node or set of nodes with out-degree

0.

For some cryptographic protocols, specially in the VC setting where fast verification is a must,

the notion of circuits is usually extended with some specific gates. Sometimes it is useful to add a split

gate which is very fast to verify, but for the purpose of our work we will only deal with arithmetic

circuits expressed by + and × gates because we are not interested in achieving efficient verification,

but rather efficient computations.

For our work, we decided to use Pinocchio’s [PGHR13] toolchain to convert a piece of C code into

an appropriate circuit representation. Even though Pinocchio’s focus is on a VC scheme with support

for general computations, it also contains a “C to circuit” converter. More specially, it is able to convert

a substantial subset of C instructions into both boolean and arithmetic circuits.

In the next chapter we define more precisely both types of circuits, and we also show how we

used Pinocchio for our circuit generation.





Chapter 3

Computational Model based on Circuits

The canonical theoretical representation of a computer is the Turing machine [Tur37]. Very

briefly, this representation can handle general computations and is as efficient as modern random

access memory computers up to a polynomial factor. But for a homomorphic scenario we must rely

on an alternative computational model, specially – boolean or arithmetic – circuits that allows us to

represent algorithms in a algebraic form.

These primitives can also handle general computations and almost as efficiently as Turing ma-

chines. More precisely, if there is a Turing machine program that evaluates a function f in at most

n steps, then there is a circuit representing f with size O(n logn) [PF79]. Of course these values de-

pend on the application we are computing. For example, an arithmetic circuit for matrix multiplication

adds essentially no overhead, whereas a boolean circuit for integer multiplication is less efficient than

executing a single 32-bit machine assembly instruction.

In a circuit evaluation of a function or program, the number of computational steps does not de-

pend on the inputs of the function. Because of this one cannot take advantage of certain optimizations

used in today’s computing environments. For instance, the running time of a circuit evaluation for an

“easy” input is practically the same as the one with an “hard” input.

3.1 Boolean circuits

A boolean circuit provides a good mathematical model of the circuitry inside modern computers.

They basically compute the boolean function of their bit inputs using only boolean operations. Formally

it can be defined as follows.

Definition 3.1. A boolean circuit over the set of boolean variables X = {x1, . . . , xn} ∈ {0, 1}n is a

directed acyclic graph with the following properties, where each node of the graph is referred to as a gate.

13



14 3. COMPUTATIONAL MODEL BASED ON CIRCUITS

(i) Gates with in-degree (or fan-in) 0 are inputs, and are labeled by either a variable from X or by a

boolean constant c ∈ {0, 1}.

(ii) Gates with fan-in k > 0 are labeled by one of the boolean functions AND, OR, NOT on k inputs. In

the case of NOT, k = 1.

(iii) Gates with out-degree (or fan-out) 0 are outputs.

The size of a boolean circuit is the total number of gates. The depth is the maximum distance from an

input to an output (i.e., the longest directed path in the graph).

Usually, boolean circuits are composed of only one output gate, and in such cases, it perfectly

represents a boolean function f : {0, 1}n → {0, 1}.

3.2 Arithmetic circuits

Many computational problems can be written down naturally as multivariate polynomials in the

input variables. The arithmetic circuit is a mathematical model that captures a natural class of algo-

rithms that only use algebraic operations of the underlying field – addition and multiplication – to

compute a function. Formally it is defined as follows.

Definition 3.2 ([SY10, Definition 1.1]). An arithmetic circuit f over the field F and the set of variables

X = {x1, . . . , xn} ∈ Fn is a directed acyclic graph with the following properties, where each node of the

graph is referred to as a gate.

(i) Gates with in-degree 0 are input gates, and are labeled by either a variable from X or a constant

field element c ∈ F.

(ii) Every other gate is labeled by either × (product gate) or + (sum gate), and have in-degree k = 2.

(iii) Gates with out-degree 0 are output gates.

An arithmetic circuit is called a formula if it is a directed tree whose edges are directed from the leaves to

the root. The size of the circuit is the total number of gates, and the depth is the maximum distance from

an input gate to an output gate.

For our work, we are specially interested in circuits with just one output gate, which represents

the single output of a function that we wish to authenticate in the setting of homomorphic authenti-

cation. Since each input gate can only take arbitrary values in F or some constant c ∈ F, it is easy

to see that the output of each gate has a nice mathematical interpretation: it is simply a multivariate
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polynomial (evaluated at the inputs). Arithmetic circuits provide a very compact and versatile way of

representing computations that can be expressed as multivariate polynomials.

The polynomial f ∈ F[x1, . . . , xn] is computed by an arithmetic circuit as follows. Input gates

compute the polynomial defined by their label. Sum gates compute the polynomial obtained by the

sum of the two polynomials on their incoming wires. Product gates compute the product of the two

polynomials on their incoming wires. The output of the circuit is the polynomial contained on the

outgoing wire of the output gate. The degree of a gate is defined as the total degree of the polynomial

computed by that gates. The degree of the circuit is defined as the maximal degree of the gates in the

circuit.

x1 x2 x3 x4

10
+

×
×

× +

+

Figure 3.1: Representation of the polynomial f = 10x2(x1+x2)+ ((x3x4)+10x2) as an arithmetic
circuit.

Boolean circuits are not as highly structured as arithmetic circuits due to the algebraic nature of

of the latter. That is why is is possible to prove results in the arithmetic world that are still considered

open in the Boolean world. One very common problem related to circuits is to determine lower bounds

i.e., prove that for a circuit computing f , there isn’t any other better circuit. For arithmetic circuits,

there are super-linear bounds known on the size of the circuit, while in the Boolean case, this is much

harder to prove.

It is worth noting that when using arithmetic circuits we are usually concerned with polynomials

of a particular form, which then fixes the set of computable functions (i.e., polynomials in F[X]). With

Boolean circuits it is usually the reverse, where we are interested in computing functions from F|X| to

F. In the arithmetic case, this is because a function may be expressed by a polynomial in several ways,

while, in general, a polynomial defines a unique function. A simple example is the function f = x2+x,

which defines the zero polynomial, but only under F2.

For arithmetic circuits, a natural question that may arise is: since there are only + and × gates,

why not add a÷ gate to the set of allowed operations? In the past this model was actually considered,

but if we add a ÷ gate, this gate now computes a rational function instead of a polynomial. Also the
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problem of dividing by a zero polynomial arises, so there needs to be a restriction for this case. But as it

turns out, it is possible to represent the division gate using only+ and× gates, with some polynomially

additional cost. These solutions were first introduced by Strassen, and later by Hrubes̆ and Yehudayof

(see [SY10, Section 2.5] for details on both solutions and proof sketches).

From now on we will only focus on arithmetic circuits, and so when using the term circuit we

are referring to an arithmetic circuit.

3.3 Circuit Evaluation

We already know how circuits are represented andwhat operations they compute. But how dowe

efficiently evaluate them? This is critical for us because the evaluation of a circuit shouldn’t become too

slow when comparing to a native evaluation (i.e., evaluation a function on a Turing machine model).

This is even more critical as circuits start to grow, reaching sizes in the orders of hundreds of inputs

and thousands of gates.

If we look at the circuit representation, it is simply a DAG that represents the dependencies be-

tween gates. That is, the inputs of a gate g are its dependencies, and therefore we cannot evaluate g

before we evaluate its inputs. So we can treat a circuit as a dependency graph. For such graphs it is pos-

sible to generate an evaluation order using some topological sort algorithm. Some of these algorithms

perform checks to detect whether the graph is cyclic or not, but for our case we always assume that

graphs are acyclic. These kind of algorithms are fundamental for many of common computing appli-

cations such as program (re)compilation, system package management or spreadsheet calculators.

The common algorithm used for topological sort is based on the DFS [Tar72], a depth search

algorithm over graphs. Basically, edges are explored out of the most recently visited vertex g that

still has unexplored edges leaving it. When all of g’s edges have been visited, the search “backtracks”

to explore edges leaving the vertex from which g was explored. This process continues until all the

vertices that are reachable from the original source have been visited. If a vertex is left unvisited, then

it is used as a new source for the DFS and the “backtracking” process is repeated again. This process is

repeated until all vertices in the graph have been visited. The running time of DFS is Θ(V + E) with

V the number of vertices and E the number of edges. A simple DFS can be implemented as shown in

Algorithm 1.

By the end of DFS there are two timestamps in each vertex u: u.d represents the time at which it

was first visited and u.f represents the time at which all of its children edges where visited. For each

vertex u, it holds that u.d < u.f and their values are in {1, . . . , 2|V |}.
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Algorithm 1 Basic DFS.
1: function DFS(G) ▷ Acyclic graph G = (V,E)
2: for each vertex u ∈ V do
3: u.color ←WHITE
4: end for
5: time← 0 ▷ Global variable to keep track of time
6: for each vertex u ∈ V do
7: if u.color == WHITE then
8: DFS-Visit(G, u)
9: end if

10: end for
11: end function

12: function DFS-Visit(G, u)
13: time← time+ 1
14: u.d← time ▷ Time at which white vertex u was discovered
15: u.color ← GRAY
16: for each vertex v ∈ G.Adj[u] do
17: if v.color == WHITE then
18: DFS-Visit(G, v)
19: end if
20: end for
21: u.color ← BLACK ▷ Vertex u is finished
22: time← time+ 1
23: u.f ← time ▷ Time at which black vertex u was finished
24: end function

A topological sort of a DAG G = (V,E) is a linear ordering of all its vertices such that if G

contains an edge (u, v), then u appears before v in the ordering. Any DAG has at least one topological

ordering. Given an arithmetic circuit, its topological sort can be viewed as an ordering of its gates

along a horizontal line so that all directed edges go from left to right.

With DFS, a topological sorting becomes as simple as the following:

Algorithm 2 A simple topological sorting algorithm, using DFS as in algorithm 1.
1: function Topo-Sort(G)
2: DFS(G) ▷ To compute the finishing times u.f for each vertex of G
3: Output a list L in order of decreasing finishing times
4: end function

Since DFS takes timeΘ(V +E) and the insertions on the list L take timeO(1), the total running

time of a topological sorting based on a DFS is Θ(V + E).

Finally, to perform the circuit evaluation we simply evaluate each gate in the order defined by

the list L obtained with Topo-Sort. Each gate evaluation result is kept on a list, where the last index

corresponds to the circuit’s output gate.
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Wewill be using Pinocchio to generate circuits, and in that case, there is practically no advantage

in using a topological sorting algorithm to perform the evaluation because most of the the circuits from

Pinocchio are already properly sorted. However, if using custom designed circuits or circuits generated

by some other means, it is necessary to generate a topological ordering to be able to efficiently evaluate

the circuit.

The reason why we are solely interested in arithmetic circuits is because they allows to represent

computations as multivariate polynomials that can be efficiently computed. This is very important

specially for our homomorphic scenario.

3.4 Circuit generation

Even though arithmetic circuits are quite clean and simple in theory, there are not many tools to

easily compile a piece of code into a circuit representation. At this moment, the ones from Parno et al.

[PGHR13] (Pinocchio) and from Ben-Sasson et al. [BCGTV13] (TinyRAM) are the most efficient.

Ben-Sasson et al. [BCGTV13] functionality is clearly superior because it is essentially a port of the

gcc1compiler. Basically, TinyRAM takes a C program and compiles it to a specific TinyRAM assembly

language, which is equivalent to an arithmetic circuit. Unfortunately, we cannot easily access the

arithmetic circuit but only its binary representation.

On the other hand, Pinocchio comes equipped with a compiler that converts a subset of the C

language and outputs an arithmetic circuit representation, and this is the reason why we are using it

instead of TinyRAM. They have support for both boolean and arithmetic circuit generation, but as it

was previously mentioned, we are only interested on arithmetic circuits. They also mention that the

use of boolean circuits as opposed to arithmetic circuits proved to be much slower, specially on their

setting of verifiable computation.

The compiler, written in Python, can process a substantial subset of C: global, function and block-

scoped variables; arrays, struct’s and pointers; function calls, conditional loops; static initializers; arith-

metic and bit-wise operators; and pre-processor directives. The piece of code that we wish to convert

to a circuit must be inside the function void outsource(struct Input *, struct Output *).

The parameters describe the input and output values, respectively.

Because circuits only supports expressions and not mutable state and iteration, the C program’s

semantics is restricted. There is no support for dynamic operations (like memory allocations), and

everything must be compile-time constant (as pointers or array dereferences).
1https://gcc.gnu.org/

https://gcc.gnu.org/
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Their notion of arithmetic circuits is complemented with one more gate operation: a split gate.

Basically, given a value a ∈ Fp where p is an integer with k bits, the split gate outputs to k gates,

where each of them represents the bit value ai. Given such binary values, it is possible to compute

Boolean functions using only arithmetic gates: NAND(a, b) = 1 − ab, AND(a, b) = ab, OR(a, b) =

1− (1− a)(1− b); each of these operations comes at the cost of only one multiplication.

The recombination of the k bits into a single gate is given by the expression
∑k

i=1 2
i−1ai. As they

noticed, recombining these k bits into an integer is not very costly as they only perform additions and

multiplications by constants, which are practically free.

In the setting of VC and SNARKs2, the interest is in the verification of computations rather than

efficiently compute them homomorphically (which is our case). That is why they introduced a split

gate, which is very efficiently verifiable and allows them to compute more operations.

3.5 Limitations

One problem with circuit generation has to do with data dependencies. While the circuit’s inputs

do not affect its topology, they affect the program flow and memory accesses. Thus, a circuit must be

ready to support a wide range of program flows and memory accesses, despite the fact that its topology

has already been set. The technique Pinocchio uses to generate circuits is program analysis. With

program analysis, if the program and its inputs are known in advance, generating the corresponding

circuit is simple: build the circuit’s topology tomatch the pre-determined program flow and its memory

accesses. But if only the program is known in advance, and not its inputs, the programmust be analyzed

piece by piece (i.e., unroll loops, branches, etc) so that the circuit can handle different input values.

However, this technique has one big limitation. The class of supported programs is not very broad,

as Pinocchio requires arrays accesses and loop iterations bounds to be compile-time constants, which

forces us to “write around” this limited functionality.

Unfortunately, the introduction of the split gate is a limitation for us because we are not solely

interested in an efficient verification (as with VC and SNARKs), which it limits even more the subset

of C code that we can convert to arithmetic circuits. This means that we cannot have conditional de-

pendencies which means that everything must be known at compile time (except for the input values),

and we cannot also use any bit-wise operation since they give origin to split gates.

However, we can still write simple C programs and use Pinocchio to convert them to arithmetic

circuits, so that they can be used by the CF scheme.

2Pinocchio and TinyRAM were constructed with VC and SNARKs in mind.





Chapter 4

Homomorphic Authenticators

A trivial solution to the problem of enforcing authenticity of outsourced computations would

be to make the server send the entire data and the computed signatures/MACs (we will refer to both

of them as tags from now on) back to the client, and then she would compute the function herself

and compare the results. But by using homomorphic authentication primitives, and by sending only

the tags and the output of the function back to the client, beyond saving bandwidth, the amount of

information revealed to the client about the data set is much smaller. Also, this trivial solution does

not guarantee efficiency which is one of the requirements to enforce the authenticity of computations.

Let us now introduce some basic notions and definitions necessary to build homomorphic au-

thentication schemes, as well as some constructions. From now on, it is always assumed that Alice

stores the data and tags on some possibly untrusted server.

4.1 Homomorphic Signatures

A homomorphic signature scheme allows the computation of functions on previously signed data

to obtain a derived signature, and later anyone with the public key can verify the results. This is

known as public verifiability. The computed signature authenticates both the function and the result

of applying the function to the data.

In the only construction presented so far (beyond linear), Boneh and Freeman [BF11] comple-

mented the definition of homomorphic signatures first introduced by Johnson et al. [JMSW02]. Basi-

cally, Alice has a (numerical) data set m1, . . . ,mn, and she signs each message mi, but before signing

she augments it with a label τ and an index i. For each message, she signs (τ,mi, i) and obtains n

independent signatures σ⃗ = σ1, . . . , σn. The value of the label τ serves as a name to the data set and

binds its members together.

21
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Later, one can ask the server to compute functions on some portion of the data. To compute a

function f , the server uses a public key homomorphic evaluation algorithm that basically signs the

triple (τ,m := f(m1, . . . ,mn), ⟨f⟩), where ⟨f⟩ is an encoding of the function f . This evaluation

algorithm only acts on signatures, not in the original messages. The pair (m,σ) can be made public

and anyone can check that the server correctly computed f over the data set by verifying that σ is

a signature on triple (τ,m, ⟨f⟩). The derived signature σ authenticates both the function f and the

result of computing f over the data. Using the pair (m,σ), one can derive signatures on functions of

m and other signed data. The short label τ is used to prevent mixing of data from different data sets

when evaluating functions.

Like “regular” signature schemes, a homomorphic signature scheme consists of the usual algo-

rithms KeyGen, Sign and Vrfy as well as an additional Eval that evaluates a given function on a set of

previously signed messages. If σ⃗ is a valid set of signatures authenticating messages m⃗, then Eval(f, σ⃗)

should be a valid signature for f(m⃗). It is worth noting once again that Eval only acts on already signed

messages.

Definition 4.1. A homomorphic signature scheme HSIG is a tuple of PPT algorithms (KeyGen, Sign,

Vrfy, Eval) as follows:

KeyGen(1λ, n)→ (pk, sk): Takes a security parameter λ and a maximum data set size n. Outputs a

public and secret key, pk and sk, respectively. The public key also defines a message spaceM, a

signature space Σ and a set F of all “admissible” functions f :Mn →M.

Signsk(τ,m, i)→ σ: Receives a label τ ∈ {0, 1}λ, a messagem ∈M and an index i ∈ {1, . . . , n}, and

outputs a signature σ ∈ Σ.

Vrfypk(τ,m, σ, f)→ {accept, reject}: Receives a label τ ∈ {0, 1}λ, a message m ∈ M, a signature

σ ∈ Σ, a function f ∈ F , and outputs either accept or reject.

Evalpk(τ, f, σ⃗)→ σ′: Receives a label τ ∈ {0, 1}λ, a function f ∈ F , a tuple of signatures σ⃗ ∈ Σn, and

outputs a signature σ′ ∈ Σ.

A signature scheme like the one presented above is said to be F-homomorphic, or homomorphic

with respect to F .

Let πi :Mn →M be the function that projects onto the ith element, i.e., πi(m1, . . . ,mn) = mi.

It is required that for all pk generated by KeyGen, π1, . . . , πn ∈ F . A homomorphic signature scheme

must achieve the following properties: authentication and evaluation correctness, unforgeability and

length efficiency.
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Authentication correctness For each (pk, sk), all labels τ ∈ {0, 1}λ, all m ∈ M, and all i ∈ {1,

. . . , n}, if σ ← Signsk(τ,m, i), then it holds:

Pr[Vrfypk(τ,m, σ, πi) = accept] ≥ 1− negl(λ). (4.1)

Evaluation correctness For each (pk, sk), all τ ∈ {0, 1}λ, all tuples m⃗ = (m1, . . . ,mn) ∈ Mn,

and all functions f ∈ F , if σi ← Signsk(τ,mi, i) for i = 1, . . . , n and σ′ = Evalpk(τ, f, (σ1, . . . , σn))

it must hold:

Pr[Vrfypk(τ, f(m⃗), σ′, f) = accept] ≥ 1− negl(λ). (4.2)

The Eval algorithm can take as input derived signatures produced by Eval itself, but doing so for

a large number of iterations may eventually reach a point where the input signatures are valid, but the

output signature is not. For this reason, and to simplify, the evaluation correctness property is limited

so that it only requires that Eval produces a valid output when given as input only signatures produced

by the Sign algorithm.

Unforgeability Informally, a forgery under a chosen message attack is a valid signature σ on a triple

(τ,m, f) such that m ̸= f(m1, . . . ,mn) where m1, . . . ,mn is the data set signed using label τ .

Definition 4.2. A homomorphic signature scheme HSIG = (KeyGen,Sign,Vrfy,Eval) is unforgeable

if for all n the advantage of any PPT adversary A in the following game is negligible in the security

parameter λ:

Setup: The challenger obtains (pk, sk)←$ KeyGen(1λ, n) and gives pk toA. pk defines a message space

M, a signature space Σ, and a set F of admissible functions f :Mn →M.

Queries: Proceeding adaptively, A specifies a sequence of data sets m⃗i ∈ Mn. For each i, the chal-

lenger chooses label τi uniformly from {0, 1}λ and gives to A the label τi and the signatures

σij ← Signsk(τi,mij , j) for j = 1, . . . , n.

Output: A outputs a label τ∗ ∈ {0, 1}λ, a messagem∗ ∈M, a function f ∈ F , and a signature σ∗ ∈ Σ.

The adversary A wins if Vrfypk(τ
∗,m∗, σ∗, f) = accept and either:

• Type I forgery: τ∗ ̸= τi for all i, or

• Type II forgery: τ∗ = τi for some i, but m∗ ̸= f(m⃗i).

The advantage of A is the probability that A wins the game.
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Privacy In this setting, privacy means that given signatures on a data set m⃗ ∈Mn, the derived sig-

natures on messages f1(m⃗), . . . , fs(m⃗) do not leak any information about m⃗ beyond what is revealed

by computing the functions f1, . . . , fs known to the attacker over the data set m⃗. While the original

data set m⃗ is kept hidden, the fact that a derivation took place is not. The verifier should be able to

verify that the correct function was applied to the original data.

More precisely, privacy is ensured using weakly context hiding. This means that given signatures

on a number of messages derived from two different data sets, the attacker cannot tell from which data

set the derived signatures came from, and furthermore that this holds when the secret key is leaked.

The reason to be called “weak” is that the original signatures on the data are not public.

Definition 4.3. Ahomomorphic signature schemeHSIG = (KeyGen,Sign,Vrfy,Eval) isweakly context

hiding if for all n, the advantage of any PPT adversaryA in the following game is negligible in the security

parameter λ:

Setup: The challenger invokes KeyGen to generate (pk, sk), and gives the pair toA. pk defines a message

spaceM, a signature space Σ, and a set F of admissible functions f :Mn →M

Challenge: A outputs (m⃗∗
0, m⃗

∗
1, f1, . . . , fs) with m⃗∗

0, m⃗
∗
1 ∈ Mn and f1, . . . , fs ∈ F . For all i = 1,

. . . , s it satisfies that fi(m⃗∗
0) = fi(m⃗

∗
1). These functions can be output adaptively after m⃗∗

0, m⃗
∗
1 are

output.

Then the challenger generates a random bit b ∈ {0, 1} and a random label τ ∈ {0, 1}λ. It signs the

messages in m⃗b using the label τ to obtain a vector σ⃗ of n signatures.

Next, for i = 1, . . . , s the challenger computes a signature σi = Evalsk(τ, fi, σ⃗).

It sends to A the label τ and the signatures σ1, . . . , σs.

Output: A outputs a bit b′.

A wins the game if b = b′. The advantage of A is the probability that A wins the game.

If an attacker wins the previous game, it means that she can determine if the challenge signatures

were derived from m⃗∗
0 or m⃗∗

1. A signature scheme is s-weakly context hiding if the attacker cannot win

the game after seeing at most s signatures derived from two different data sets.

Length efficiency Informally, a signature scheme is length efficient if for a fixed security parameter

λ, the length of the derived signatures depends only logarithmically on the size n of the data set.

Definition 4.4. A homomorphic schemeHSIG = (KeyGen,Sign,Vrfy,Eval) is length efficient if there is

some function µ : N→ R such that for all (pk, sk) obtained with KeyGen, all m⃗ = (m1, . . . ,mn) ∈Mn,
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all labels τ ∈ {0, 1}λ, and all functions f ∈ F , if

σi ← Signsk(τ,mi, i) for all i = 1, . . . , n (4.3)

then for all n > 0 and for a derived signature σ = Evalpk(τ, f, (σ1, . . . , σn)), it holds:

Pr[len(σ) ≤ µ(λ) · logn] ≥ 1− negl(λ). (4.4)

4.1.1 Boneh-Freeman

BF is the first homomorphic signature scheme that is capable of evaluating multivariate polyno-

mials of bounded degree. All previous schemes focused solely on linear functions, while their scheme

allows the computation of various statistical functions like mean or standard deviation. They also pro-

posed an improved linear scheme with support for linear functions for small fields Fp, specially for

p = 2.

Here we will present an overview of their two constructions. A more detailed description can be

found in [BF11], as well as suitable parameters and sampling algorithms necessary for the full definition

of the scheme. Both constructions rely on lattice-based techniques. They are build on the “hash-and-

sign” signatures of Gentry, Peikert, and Vaikuntanathan [GPV08].

Abstractly, in GPV, the public key is a lattice Λ ⊂ Zλ and the secret key is a short basis of Λ. To

sign a message m, the holder of the secret key hashes m to an element H(m) ∈ Zλ/Λ and samples a

short vector σ from the coset of Λ defined by H(m). The verification of σ is simply checking that σ is

short and that σ mod Λ = H(m).

Linearly homomorphic scheme

In a (linearly) homomorphic signature scheme, the message space is defined as Fλ
p and a function

f : (Fλ
p)

n → Fλ
p is encoded as f(m1, . . . ,mn) =

∑n
i=1 cimi. The ci are integers in (−p/2, p/2] and

the description of f is ⟨f⟩ := (c1, . . . , cn) ∈ Zn. To authenticate both the message and the function, as

well as binding them together, a single GPV signature is computed that is simultaneously a signature

on the (unhashed) message m ∈ Fλ
p and a signature on the hash of ⟨f⟩.

Such signature is obtained by using the “intersection method”. Boneh and Freeman [BF11] de-

scribed it as follows. Let Λ1 and Λ2 be λ-dimensional integer lattices with Λ1 + Λ2 = Zλ. Suppose

m ∈ Zλ/Λ1 is a message and ωτ : Zn → Zλ/Λ2 is a hash function, dependent of τ , that maps encod-

ings of functions f to elements of Zλ/Λ2. Since m defines a coset of Λ1 in Zλ and ωτ defines a coset

of Λ2 in Zλ, by the CRT the pair (m,ωτ (⟨f⟩)) defines a unique coset of Λ1 ∩ Λ2 in Zλ. Then, a short
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vector σ is computed with the property that σ = m mod Λ1 and σ = ωτ (⟨f⟩) mod Λ2. The vector

σ is a signature on (τ,m, ⟨f⟩) that “binds” m and ωτ (⟨f⟩) – an attacker cannot generate a new short

vector σ′ from σ such that σ = σ′ mod Λ1 but σ ̸= σ′ mod Λ2.

In this linear scheme, Fλ
p
∼= Zλ/Λ1 with the isomorphism given explicitly by the map x⃗ 7→

(⃗x mod Λ1), and Fℓ
q
∼= Zλ/Λ2.

Using the above method, Signsk(τ,m, i) generates a signature on (τ,m, ⟨πi⟩), where πi is the ith

projection function defined by πi(m1, . . . ,mn) = mi and encoded by ⟨πi⟩ = e⃗i, the ith unit vector in

Zn.

To authenticate the linear combination m =
∑n

i=1 cimi previously authenticated, compute the

signature σ :=
∑n

i=1 ciσi. If n and p are sufficiently small, then σ is a short vector. The following

homomorphic property is achieved:

σ mod Λ1 =

n∑
i=1

cimi = m, and

σ mod Λ2 =

n∑
i=1

ciωτ (⟨πi⟩) =
n∑

i=1

ciωτ (⃗ei). (4.5)

If ωτ is linearly homomorphic then
∑n

i=1 ciωτ (⃗ei) = ωτ ((c1, . . . , cn)) for all ci ∈ Z. Since

(c1, . . . , cn) is exactly the encoding ⟨f⟩, the signature σ authenticates both the messagem and the fact

that m is indeed the output of f applied to the original messages m1, . . . ,mn.

Verification of a signature σ is simply checking that

σ mod Λ1
?
= m,

σ mod Λ2
?
= ωτ (⟨f⟩). (4.6)

Correctness The above linearly homomorphic scheme satisfies both authentication and evaluation

correctness. The proofs can be found in [BF11].

Unforgeability The security is based on the SIS problem on q-ary lattices for some prime q. More

precisely, for security parameter λ it follows:

Theorem 4.5. If SISq,λ,β is infeasible for a suitable β, then the above linearly homomorphic scheme is

unforgeable in the random oracle model.

To prove it, it is shown that a successful forger can be used to solve the SIS problem in the lattice

Λ2, which for random q-ary lattices (and suitable parameters) is as hard as standard worst case lattice

problems. The full proof and the suitable parameters can be found in [BF11].
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Privacy The above linearly homomorphic signature scheme is weakly context hiding. Based on the

fact that the distribution of a linear combination of samples from a discrete Gaussian is itself a discrete

Gaussian, it is proved that a derived signature on a linear combination m′ =
∑n

i=1 cimi depends (up

to negligible distance) only on m′ and the ci, and not on the original messages mi. The full proof can

be found in [BF11].

Length efficiency The bit length of a derived signature only depends logarithmically on the size of

the data set. The proof, along with the exact length of a derived signature, can be found in [BF11].

Polynomially homomorphic scheme

The basic idea for this scheme is as follows: what if Zλ has a ring structure and lattices Λ1,Λ2 are

ideals? Then the maps x⃗ 7→ x⃗ mod Λi are ring homomorphisms, and therefore adding or multiplying

signatures corresponds to adding or multiplying the corresponding messages or functions. Since any

polynomial can be computed by repeated additions and multiplications, by adding this structure to the

previous scheme it is possible to authenticate polynomial functions on messages.

LetF (x) ∈ Z[x] be amonic, irreducible polynomial of degree λ and letR be the ringZ[x]/(F (x)).

R is isomorphic toZλ and ideals inR correspond to integer lattices inZλ under the “coefficient embed-

ding”. This embedding maps a polynomial in R to an element in an ideal lattice as follows: if g(x) =

g0+g1x+ · · ·+gλ−1x
λ−1, then coefficient embedding can be defined as: g(x) 7→ (g0, . . . , gλ−1) ∈ Zλ.

Λ1 and Λ2 are specially chosen to be degree one prime ideals p, q ⊂ R of norm p, q respectively,

with p = (p, x − a), q = (q, x − b). R/p and R/q are isomorphic with Fp and Fq , respectively. The

message space is defined by Fp. Sign is now exactly as in the linearly homomorphic scheme, and it

returns a short signature σ ∈ R.

When considering polynomial functions onFp[x1, . . . , xn], the projection functions πi are exactly

the linear monomials xi, and any polynomial function can be obtained by adding and multiplying

monomials. If an ordering on all monomials of the form xe11 · · ·xenn is fixed, then it is possible to

encode any polynomial function as its vector of coefficients, with the i-th unit vector e⃗i representing

the linear monomials xi for i = 1, . . . , n.

The hash function ωτ is defined exactly as in the linear scheme: for a function f in Fp[x1, . . . , xn]

encoded as ⟨f⟩ = (c1, . . . , cℓ) ∈ Zℓ, define a polynomial f̂ ∈ Z[x1, . . . , xn] that reduces to f mod p.

Then, ωτ (⟨f⟩) = f̂(α1, . . . , αn) where each αi ∈ Fq is the output of the hash function H(τ ||i).

The evaluation algorithm uses the lifting of f to f̂ . Given f and the signatures σ1, . . . , σn ∈ R

on messages m1, . . . ,mn ∈ Fp, the signature on f(m1, . . . ,mn) is given by f̂(σ1, . . . , σn). It returns

a short signature σ ∈ R on triple (τ,m, ⟨f⟩) such that σ = m mod p and σ = ωτ (⟨f⟩) mod q. Let σi



28 4. HOMOMORPHIC AUTHENTICATORS

be a signature on (τ,mi, ⟨fi⟩) for i = 1, 2. The following homomorphic properties can be observed:

σ1 + σ2 is a signature on (τ,m1 +m2, ⟨f1 + f2⟩)

σ1 · σ2 is a signature on (τ,m1 ·m2, ⟨f1 · f2⟩) (4.7)

The verification is essentially the same as in the linearly homomorphic scheme.

Correctness The above scheme satisfies both authentication and evaluation correctness properties.

Proof can be found in [BF11].

Unforgeability To prove that the above scheme is unforgeable, it is shown that a successful forger

can be used to find a solution to the SIVP in the lattice Λ2, which in this scheme is the ideal q.

Privacy For large p, this homomorphic scheme is not weakly context hiding as defined in Defi-

nition 4.3. In [BF11] is is shown exactly why the signature σ leaks information about the original

messages m0,m1.

Length efficiency The bit length of a derived signature only depends logarithmically on the size of

the data set, for polynomials of bounded constant degree and for small coefficients. The proof, along

with the exact length of a derived signature, can be found in [BF11].

4.2 Homomorphic MACs

The symmetric analogue of homomorphic signatures are homomorphic MACs. Basically, Alice

has a secret key which is used to generate a tag σ that authenticates a message m under label τ .

Given a labeled program P = (f, τ1, . . . , τn) and a set of tags σ1, . . . , σn, anyone can execute the

homomorphic evaluation algorithm over P(σ1, . . . , σn) to generate a short tag σ′ that authenticates

m′ = P(m1, . . . ,mn) as the output of the P executed over inputs labeled by τ1, . . . , τn, respectively.

There are three main properties that a homomorphic MAC scheme is required to satisfy. (1) It

must be secure, i.e., an adversary that asks for tags authenticating some messages of his own choice

should not be able to produce valid tags authenticating messages that are not obtained as the output

of P . (2) It should be succinct, i.e., the output of P can be certified using much less communication

that than of sending the original authenticated messages. (3) Lastly, it should be composable meaning

that tags authenticating previous outputs of P should be usable as inputs to further authenticate new
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computations, i.e., the tag authenticating the output of P can be used as one of the inputs of another

labeled program P ′.

However, unlike in homomorphic signatures, it is necessary to explain what it really means to

authenticate a message as the output of a labeled program. In a scenario where many users share the

secret key and authenticate various data-items without keeping any local or joint state, it is necessary

to specify which data is being authenticated and which data the program P should be evaluated on.

With this in mind, Gennaro and Wichs [GW12] defined the concept of labeled programs1.

Labeled Programs Labels are used to index some data. A labeled program P = (f, τ1, . . . , τn)

consists of a circuit2 f : Fn → F and a distinct input label τi ∈ {0, 1}λ for each input wire i ∈ {1, . . . ,

n} of the circuit. This can be seen as way to give useful names to the variables of a program, without

knowing the input values – as an example, we can consider a program that outputs the average salaries

of a company, and each τi can be of the form “salary of worker i”. A message m is then authenticated

with respect to a label τ , and the value of the label does not need to have any meaningful semantics.

This label-message association basicallymeans that the valuem can be assigned to those input variables

of a labeled program P whose label is τ . However, with this definition, a label cannot be re-used for

multiple messages, i.e., two distinct messages m,m′ cannot be authenticated with respect to the same

label τ .

Given some labeled programs P1, . . . ,Pt and a circuit g : Ft → F, the composed program P∗ =

g(P1, . . . ,Pt) consists in evaluating a circuit g on the outputs of P1, . . . ,Pt. The labeled inputs of the

composed program P∗ are just all the distinct labeled inputs of P1, . . . ,Pt, and all the input wires with

the same label are put together in a single input wire. The identity program with label τ is denoted

by Iτ := (gid, τ), where gid is the canonical identity circuit and τ ∈ {0, 1}λ is some input label. Any

program P = (f, τ1, . . . , τn) can be written as a composition of programs P = f(Iτ1 , . . . , Iτn).

Given a labeled program P = (f, τ1, . . . , τn) and a set of tags σ1, . . . , σn that authenticates

messages mi under label τi , anyone can run the homomorphic evaluation algorithm that takes an

input the tuple (P, σ1, . . . , σn) and whose output σ′ will authenticate m′ as the output of P(m1, . . . ,

mn)
3. Then the secret-key verification algorithm takes as input the triple (m′,P, σ′) and verifies that

m′ is indeed the output of the program P executed over some previously authenticated and labeled

data, without knowing the value of the original data.

1Gennaro and Wichs defined labeled programs for boolean circuits f : {0, 1}n → {0, 1}, but here we will consider the
case for arithmetic circuits f : Fn → F where F is some finite field, like Zp for some prime p.

2Or function.
3To be more precise, σ′ only certifies m′ as the output of a specific program P .
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Definition 4.6. A homomorphic message authenticator scheme HMAC is a tuple of PPT algorithms

(KeyGen, Auth, Vrfy, Eval), whereM defines a message space, as follows:

KeyGen(1λ)→ (ek, sk): Takes a security parameter λ. Outputs a public evaluation key ek and a secret

key sk.

Authsk(τ,m)→ σ: Receives an input-label τ ∈ {0, 1}λ and a message m ∈M, and outputs a tag σ.

Vrfysk(m,P, σ)→ {accept, reject}: Receives a message m ∈ M, a labeled program P = (f, τ1, . . . ,

τn) and a tag σ, and outputs either accept or reject.

Evalek(f, σ⃗)→ σ′: Receives a circuit f :Mn →M and a vector of tags σ⃗ = (σ1, . . . , σn) , and outputs

a new tag σ′.

A homomorphic MAC scheme must achieve the following properties: authentication and evalu-

ation correctness, succinctness and security.

Authentication correctness For any m ∈ M, all keys (ek, sk) ←$ KeyGen(1λ), any label τ ∈

{0, 1}λ, and any tag σ ←$ Authsk(τ,m), it holds:

Pr[Vrfysk(m, Iτ , σ) = accept] = 1. (4.8)

Evaluation correctness For a pair (ek, sk) ←$ KeyGen(1λ), a circuit g :Mt →M and any set of

triples {(mi,Pi, σi)}ti=1 such that Vrfysk(mi,Pi, σi) = accept. If m∗ = g(m1, . . . ,mt), P∗ = g(P1,

. . . ,Pt), and σ∗ = Evalek(g, (σ1, . . . , σt)), then it must hold:

Vrfysk(m
∗,P∗, σ∗) = accept. (4.9)

Succinctness The size of a computed tag is bounded by some fixed polynomial in the security pa-

rameter poly(λ) which is independent of the number n of inputs taken by the evaluated circuit.

Security A homomorphic MAC scheme has to satisfy the following notion of unforgeability.

Definition 4.7. A homomorphic MAC scheme HMAC = (KeyGen,Auth,Vrfy,Eval) is unforgeable if

the advantage of any PPT adversary A in the following game is negligible in the security parameter λ.

Setup The challenger generates (ek, sk) ←$ KeyGen(1λ) and gives the evaluation key ek to A. It also

initializes a list Q = ∅.
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Authentication queries The adversary can adaptively ask for tags on label-message pairs of her choice.

Given a query (τ,m), if there is some (τ,m′) ∈ Q for some m′ ̸= m, then the challenger ignores

the query. Otherwise, it computes σ ← Authsk(τ,m), returns σ to A and updates the list Q =

Q ∪ (τ,m). If (τ,m) ∈ Q (i.e., the query was previously made), then the challenger returns the

same tag generated before.

Verification queries The adversary has access to a verification oracle. A can submit a query (m,P, σ)

and the challenger replies with the output of Vrfysk(m,P, σ).

Forgery Eventually, the adversary outputs a forgery (m∗,P∗ = (f∗, τ∗1 , . . . , τ
∗
n), σ

∗). Notice that such

tuple can also be returned by A as a verification query (m∗,P∗, σ∗).

Before describing the output of this game, it is necessary to define the notion of a well-defined program

with respect to a listQ. This notion intends to capture formally, which tuples generated by the adversaryA

should be considered as valid forgeries. Because we are dealing with a homomorphic primitive, it should be

possible to differentiate genuine tags produced by Eval from tags produced in another, possibly malicious,

way.

Well-defined program A labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n) is well-defined with respect to Q

if either one of the following conditions is met:

1. For some i ∈ {0, . . . , n}, there is a tuple (τ∗i , ·) /∈ Q (i.e.,A never asked authentication queries with

label τ∗i ), and f
∗({mj}(τj ,mj)∈Q ∪ {m̃j}(τj ,·)/∈Q) outputs the same value for all possible values of

m̃j ∈M. This means that the inputs m̃j do not affect the behavior of f∗ 4.

2. Q contains tuples (τ∗i ,mi) for some messagesm1, . . . ,mn, i.e., the entire input space of f∗ has been

authenticated.

The adversary A wins if Vrfysk(m
∗,P∗, σ∗) = accept and either:

• Type I forgery: P∗ is not well-defined on Q or,

• Type II forgery: P∗ is well-defined on Q and m∗ ̸= f∗({mj}(τj ,mj)∈Q), which means that m∗

is not the correct output of the labeled program P∗ when executed on previously authenticated

messages (m1, . . . ,mn).

Notice, however, that even maliciously generated tags should not necessarily be considered as

forgeries. This is because the adversary A can trivially modify a circuit C she is allowed to evaluate,
4 Equivalently, it states that f∗({mj}(τj ,mj)∈Q ∪ {m̃j}(τj ,·)/∈Q) is semantically equivalent to f∗({mj}(τj ,mj)∈Q).
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by adding dummy gates and inputs that are simply ignored in the evaluation of the modified circuit.

This does not constitute an infringement of the security requirements because the notion of a well-

defined program P captures this exact case: either P is run on legal inputs (i.e., inputs in Q) only,

or, if this is not the case, those inputs not queried (i.e., the dummy inputs not in Q) do not affect the

computation in any way.

The previous security definition is very similar to the one from fully homomorphic MACs of

Gennaro andWichs [GW12], except for twomodifications. Here it is explicitly allowed to the adversary

to query the verification oracle, and forgeries are slightly different. In [GW12], Type I forgeries are

defined as ones where at least one new label is present, and Type II forgeries contain only labels that

have been queried, butm∗ is not the correct output of P when executed over previously authenticated

messages.

For arbitrary computations, there is no efficient way to check whether a program is well-defined

with respect to a listQ. Themain problem is to check the first condition, i.e., whether a program always

outputs the same value for all possible choices of inputs that were not queried. However, for the case

of arithmetic circuits defined over the finite field Zp, where p is a prime of roughly λ bits, and whose

degree is bounded by a polynomial, this check can be efficiently performed. In a follow-up work by

Catalano et al. [CFGN14], it is noted that testing whether a program is well-defined can be done for

arithmetic circuits of degree d, over a finite field F of order p such that d
p < 1

2 .

As one can observe from the authentication queries phase of the previous game, it is explicitly

not allowed to re-use a label to authenticate more than one value. This is basically a way to keep

track of the authenticated inputs. This is a restriction that has been present on all previous works on

homomorphic authentication primitives.

Backes, Fiore, and Reischuk [BFR13] extended the notion of labeled programs in order to solve

the problem of label re-use. Their notion of multi-labeled programs allows the partial, but safe, re-use

of labels.

Multi-labeled Programs A multi-labeled program P∆ is a pair (P,∆) where P = f(τ1, . . . , τn)

is a labeled-program and ∆ ∈ {0, 1}λ is a binary string denominated data set label. Basically, the

combination of a input label τi and a data set label ∆, defined as a multi-label L = (∆, τi), is used to

uniquely identify a specific data item. In particular, binding amessagemi with amulti-label L = (∆, τi)

means that mi can be assigned to those input variables with input label τi. The multi-label L uniquely

identifies themessagemi. While the re-use of amulti-label L is not allowed, the re-use of a input label τi
is allowed, instead. Composition of multi-labeled programs within the same data set is possible. Given

multi-labeled programs (P1,∆), . . . , (Pt,∆) having the same data set label ∆, and given a function
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g :Mt →M, the composed multi-labeled program P∗
∆ is the pair (P∗,∆) where P∗ is the composed

program g(P1, . . . ,Pt), and ∆ is the data set label shared by all Pi. If fid :M→M is the canonical

identity function and L = (∆, τ) ∈ ({0, 1}λ)2 is a multi-label, then IL = (fid, L) is the identity multi-

labeled program for data set ∆ and input label τ . Like in labeled programs, any multi-labeled program

P∆ = ((f, τ1, . . . , τn),∆) can be expressed as the composition of n identity multi-labeled programs

P∆ = (IL1 , . . . , ILn) where Li = (∆, τi).

Having defined the notion of a multi-labeled program, the definition of a homomorphic message

authenticator from Definition 4.6 can be adapted to support multi-labeled programs.

Definition 4.8. Ahomomorphicmessage authenticatorHMAC -ML is a tuple of PPT algorithms (KeyGen,

Auth, Vrfy, Eval), whereM defines a message space, as follows:

KeyGen(1λ)→ (ek, sk): Takes a security parameter λ. Outputs a public evaluation key ek and a secret

key sk.

Authsk(L,m)→ σ: Receives a multi-label L = (∆, τ) ∈ ({0, 1}λ)2 and a messagem ∈M, and outputs

a tag σ.

Vrfysk(m,P∆, σ)→ {accept, reject}: Receives a message m ∈ M, a multi-labeled program P∆ =

((f, τ1, . . . , τn),∆) and a tag σ, and outputs either accept or reject.

Evalek(f, σ⃗)→ σ′: Receives a circuit f :Mn →M and a vector of tags σ⃗ = (σ1, . . . , σn), and outputs

a new tag σ′.

Authentication correctness For any message m ∈ M, all keys (ek, sk) ←$ KeyGen(1λ), any

multi-label L = (∆, τ) ∈ ({0, 1}λ)2, and any tag σ′ ←$ Authsk(L,m), it holds:

Pr[Vrfysk(m, IL, σ
′) = accept] = 1. (4.10)

Evaluation correctness For a pair (ek, sk) ←$ KeyGen(1λ), a circuit g :Mt →M and any set of

triples {(mi,P∆,i, σi}ti=1 such that all multi-label programsP∆,i = (Pi,∆) andVrfysk(mi,P∆,i, σi) =

accept. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and σ∗ = Evalek(g, (σ1, . . . , σt)), then it must

hold:

Pr[Vrfysk(m
∗,P∗

∆, σ
∗) = accept] = 1. (4.11)

Succinctness The size of a computed tag is bounded by some fixed polynomial in the security pa-

rameter poly(λ) which is independent of the number n of inputs taken by the evaluated circuit.
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Security The security property is extended from Catalano and Fiore [CF13] to the model of multi-

labeled programs. A homomorphic MAC scheme has to satisfy the following notion of unforgeability.

Definition 4.9. A homomorphic MAC scheme HMAC = (KeyGen,Auth,Vrfy,Eval) is unforgeable if

the advantage of any PPT adversary A in the following game is negligible in the security parameter λ.

Setup The challenger generates (ek, sk)←$ KeyGen(1λ) and gives the evaluation key to A.

Authentication queries The adversary can adaptively ask for tags on multi-labels and messages of her

choice. Given a query (L,m) where L = (∆, τ), if this is the first query with data set ∆, the

challenger initializes a listQ∆ = ∅. Then, if (τ,m′) ∈ T∆ for somem′ ̸= m, the challenger ignores

the query. Otherwise, if (τ, ·) /∈ Q∆, the challenger computes σ′ ←$ Authsk(L,m), returns σ′ to

A and updates list Q∆ = Q∆ ∪ (τ,m). If (τ,m) ∈ Q∆, then the challenger returns the same tag

generated before.

Verification queries The adversary has access to a verification oracle. A can submit a query (m,P∆,

σ), and the challenger replies with the output of Vrfysk(m,P∆, σ).

Forgery The game ends when A returns a forgery (m∗,P∗
∆∗ = (P∗,∆∗), σ∗) for some P∗ = (f∗, τ∗1 ,

. . . , τ∗n). Notice that such tuple can be returned by A as a verification query (m∗,P∗
∆∗ , σ∗).

Just as with labeled programs, it is necessary to define the notion of well-defined programs with respect to

a list Q∆. The notion is exactly the same as for labeled programs, except that now we are within a data

set∆.

The adversary A wins the game if Vrfysk(m
∗,P∗

∆∗ , σ∗) = accept and one of the following holds:

• Type I Forgery: no list Q∗
∆ was created, i.e., no message m has been authenticated within data set

label∆∗.

• Type II Forgery: P∗ is well-defined with respect to Q∆∗ andm∗ ̸= f∗({mj}(τj ,mj)∈Q∆∗ ), i.e.,m∗

is not the correct output of labeled program P∗ when executed on previously authenticated message

(m1, . . . ,mn).

• Type III Forgery: P∗ is not well-defined with respect to Q∆∗ .

This definition of security is similar to the one from Catalano and Fiore [CF13] previously pre-

sented, but extended to the model of multi-labeled programs. Just as with labeled programs, it is not

possible to check in polynomial time if whether an arbitrary computation is well-defined with respect

to a listQ, but for the specific case of arithmetic circuits defined over the finite field Zp and of polyno-

mial degree, this check can be efficiently performed.
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Efficient Verification Thenotion of multi-labels by itself does not guarantee an efficient verification

algorithm. To achieve this it is necessary to introduce a property of efficient verification. This efficiency

property is defined in an amortized sense, meaning that the verification is more efficient when the

same program P is executed on different data sets. To achieve efficient verification, the definition of a

homomorphic MAC scheme previously defined has to be augmented with two new algorithms.

Definition 4.10. A homomorphic MAC scheme HMAC -ML = (KeyGen,Auth,Vrfy,Eval) satisfies ef-

ficient verification if there exist two additional algorithms (VrfyPrep, EffVrfy) as follows:

VrfyPrepsk(P)→ vkP : Given a labeled program P = (f, τ1, . . . , τn), it generates a concise verification

key vkP . This verification key does not depend on any data set label ∆.

EffVrfysk,vkP (∆,m, σ): Given a data set label∆, a messagem ∈M and a tag σ, it outputs either accept

or reject.

These new algorithms need to achieve two properties: correctness and amortized efficiency.

Correctness Let (ek, sk) ←$ KeyGen(1λ) be a pair of honestly generated keys, and (m,P∆, σ) be

any tuple message/program/tag with P∆ = (P,∆) such that Vrfysk(m,P∆, σ) = accept. Then, for

every vkP ←$ VrfyPrepsk(P), it holds that:

Pr[EffVrfysk,vkP (∆,m, σ) = accept] = 1. (4.12)

Amortized efficiency Let P∆ = (P,∆) be a multi-labeled program, let (m1, . . . ,mn) ∈ Mn be

any vector of messages, and let t(n) be the time required to compute P(m1, . . . ,mn). If vkP ←

VrfyPrepsk(P), then the time required for EffVrfysk,vkP (∆,m, σ) is O(1) (independent of n).

In this efficiency requirement the cost of computing vkP is not considered. That is because the

same vkP can be re-used in many verification operations with the same labeled program P , but many

different data sets ∆. Given this, the cost of computing vkP is amortized over many verifications of

the same function on different data sets.

4.2.1 Catalano-Fiore

These constructions only support a restricted set of functions. More precisely, they support poly-

nomials {fn} over F which have polynomially bounded degree, meaning that both the number of vari-

ables and the degree of fn are bounded by some polynomial p(n). The class VP contains all polynomi-

ally bounded degree families of polynomials that are defined by arithmetic circuits of polynomial size

and degree.
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Homomorphic MAC from OWFs

The security of this construction relies only on a PRF (and thus on OWFs). It is very simple and

efficient, and allows the homomorphic evaluation of circuits f : Zn
p → Zp for a prime p of roughly λ

bits.

This construction is restricted to circuits whose additive gates do not get inputs labeled by con-

stants. Without loss of generality, and when needed, one can use an equivalent circuit where there is

a special variable/label for the value of 1, and the MAC of 1 can be published.

The description of the scheme (which we will refer to as CF1) with security parameter λ is as

follows:

KeyGen(1λ)→ (ek, sk). Let p be a prime of roughly λ bits. Choose a seed K ←$ {0, 1}λ of a PRF

function FK : {0, 1}∗ → Zp and a random value α←$ Zp. Output ek = p and sk = (K,α). The

message spaceM is defined as Zp.

Authsk(τ,m)→ σ. To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ, compute rτ = FK(τ),

set y0 = m, y1 = (rτ − m)/α mod p and output σ = (y0, y1). y0, y1 are the coefficients of a

degree-1 polynomial y(x), where y(0) evaluates to m and y(α) evaluates to rτ .

In this construction, tags σ will be interpreted as polynomials y ∈ Zp[x] of degree d ≥ 1 in

some (unknown) variable x, i.e., y(x) =
∑

i yix
i (the value of d is increased by successive calls

to Eval).

Evalek(f, σ⃗)→ σ′. Receives an arithmetic circuit f : Zn
p → Zp and a vector of tags σ⃗ = (σ1, . . . ,

σn). Basically, Eval consists in evaluating the circuit f on the tags σ⃗ instead of evaluating it on

messages. But since the values of σi’s are not valid messages in Zp, but rather polynomials in

Zp[x], it is necessary to specify how the evaluation should be done.

Eval proceeds gate-by-gate, and at each gate g, given two tags σ1, σ2 (or a tag σ1 and a con-

stant c ∈ Zp), it runs the sub-routine σ′ ← GateEvalek(g, σ1, σ2) that returns a new tag σ′,

which is then passed as input to the next gate in the circuit. When the last gate of the circuit is

reached, Eval outputs the tag vector σ′ obtained by running GateEval on the last gate. GateEval

is described as follows:

GateEvalek(g, σ1, σ2)→ σ′: Let σi = y⃗(i) = (y
(i)
0 , . . . , y

(i)
di
) for i = 1, 2 and di ≥ 1.

If g = +, then:

• let d = max(d1, d2). It is assumed that d1 ≥ d2, so d = d1.
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• Compute the coefficients (y0, . . . , yd) of the polynomial y(x) = y(1)(x) + y(2)(x).

This can be done efficiently by adding the two vectors of coefficients such that y⃗ =

y⃗(1) + y⃗(2) (y⃗(2) is eventually padded with zeros in positions d1 . . . d2).

If g = ×, then:

• let d = d1 + d2.

• Compute the coefficients (y0, . . . , yd) of the polynomial y(x) = y(1)(x)∗y(2)(x) using

the convolution operator ∗, i.e., ∀j = 0, . . . , d : yj =
∑j

i=0 y
(1)
i · y

(2)
j−i.

If g = × and one of the inputs5 is a constant c ∈ Zp, then:

• let d = d1.

• Compute the coefficients (y0, . . . , yd) of the polynomials y(x) = c · y(1)(x).

Finally, GateEval returns σ′ = (y0, . . . , yd). The size of a tag grows only after the evaluation

of a× gate (where both inputs are not constants). After the evaluation of a circuit f , it holds

that |σ′| = deg(f) + 1.

Vrfysk(m,P, σ)→ {accept, reject}. Let P = f(τ1, . . . , τn) be a labeled program , m ∈ Zp and σ =

(y0, . . . , yd) be a tag for some d ≥ 1. Verification is done as follows:

• If y0 ̸= m, then output reject. Otherwise, continue.

• For every input wire of f with label τ compute rτ = FK(τ). Then compute ρ = f(rτ1 , . . . ,

rτn), and use α to check if

ρ
?
=

d∑
i=0

yiα
i (4.13)

If this is true, then output accept. Otherwise, output reject6.

Efficiency The generation of a tag with Auth is extremely efficient as it only requires one PRF eval-

uation (e.g., one AES evaluation).

Eval’s complexity mainly depends on the cost of evaluating the circuit f , and the additional over-

head due the GateEval sub-routine and to that the tag’s size grows with the degree of the circuit.

With a circuit of degree d, in the worst case, this overhead is going to be O(d) for addition gates, and

O(d log d) for multiplication gates7

The cost of Vrfy is basically the cost of computing ρ plus the cost of computing
∑d

i=0 yiα
i, or

O(|f |+ d).
5Usually, σ2 is the constant.
6If using an identity program Iτ , the Vrfy just checks that rτ = y0 + y1 · α and y0 = m.
7Algorithms based on FFT can be used to efficiently compute the convolution. See Chapter 5 for details.
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Correctness Essentially, correctness follows from the special property of the tags generated by Auth,

i.e., that y(0) = m and y(α) = rτ . In particular, this property is preserved when evaluating the circuit

f over tags σ1, . . . , σn.

Security The security of this scheme is based on the following theorem.

Theorem 4.11. If F is a PRF, then the previously defined homomorphic MAC scheme is secure.

Compact Homomorphic MAC

In CF1, the tags’ size grows linearly with the degree of the evaluated circuit. This may be accept-

able in some cases, e.g., circuits evaluating constant-degree polynomials, but it may become impractical

in other situations, e.g., when the degree is greater that the input size of the circuit.

To overcome this problem, a second scheme (CF2) was proposed by Catalano and Fiore that is

almost as efficient as the previous one. An interesting property of this second scheme is that the tags

are now of constant size. But to achieve this a few restrictions arise. First, there is a fixed a-priori

bound D on the degree of allowed circuits. Second, the homomorphic evaluation has to be done in

a “single shot” i.e., the authentication tags obtained from Eval cannot be used again to compose with

other tags.

Because of these restrictions, another interesting property, local composition, is achieved. With

this, one can keep a locally non-succinct version of the tag that allows for arbitrary composition. Later,

when it comes to send an authentication tag to the verifier, one can securely compress such non-

succinct tag in a compact one of constant-size.

Besides a PRF, the security of this scheme relies on a re-writing of the ℓ-Diffie-Hellman Inversion

problem. Basically, the definition of ℓ-Diffie-Hellman Inversion is that one cannot compute gx−1 given

g, gα, . . . , gα
D . The re-write for this scheme states that one cannot compute g given values gα, . . . , gαD .

The description of the scheme (which we refer to as CF2) with security parameter λ is as follows:

KeyGen(1λ, D)→ (ek, sk): LetD = poly(λ) be an upper-bound so that the scheme supports circuits

of degree at most D. Generate a group G of order p where p is a prime of roughly λ bits, and

choose a random generator g ←$ G. Choose a seed K of a PRF FK : {0, 1}∗ → Zp and a

random value α ←$ Zp. For i = 1, . . . , D compute hi = gα
i . Output ek = (h1, . . . , hD) and

sk = (K, g, α). The message space is defined as Zp.

Authsk(τ,m)→ σ: This algorithm is exactly the same as the one from the previous construction.

Returns a tag (y1, y2) ∈ Z2
p.
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Evalek(f, σ⃗)→ σ′: Takes as input an arithmetic circuit f : Zn
p → Zp and a vector of tags σ⃗ = (σ1,

. . . , σn) such that each σi ∈ Z2
p (i.e., it is a constant-sized tag for a degree-1 polynomial). First,

proceed exactly as in the first scheme to obtain the coefficients (y0, . . . , yd). If d = 1 then return

σ = (y0, y1). Otherwise, compute Λ =
∏d

i=1 h
yi
i and return σ = Λ.

Vrfysk(m,P, σ)→ {accept, reject}: Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ be

a tag of either the form (y0, y1) ∈ Z2
p or Λ ∈ G. First, proceed as in the first scheme to compute

ρ (i.e., evaluate the circuit with inputs (rτ1 , . . . , rτn)). If P computes a polynomial of degree 1,

then proceed exactly as in the first scheme. Otherwise, use g to check whether the following

holds:

gρ
?
= gm · Λ (4.14)

If everything is satisfied, then output accept. Otherwise, output reject.

Efficiency This scheme is practically as efficient as CF1. Both the tagging and verification algorithms

have exactly the same complexity. In the evaluation, the complexity is still dominated by the cost of

evaluating the circuit and the cost of the sub-routine GateEval.

Correctness Correctness is achieved much like as in CF1. Additionally, the Equation 4.14 is essen-

tially the same as checking that ρ ?
=

∑d
i=0 yiα

i, which is the same as Equation 4.13.

Security The security of this scheme is based on the following theorem.

Theorem 4.12. If F is a PRF and the (D− 1)-Diffie Hellman Inversion Assumption holds in G, then the

previously defined homomorphic MAC scheme is secure.

Local composition As it was already mentioned, CF2 introduces local composition. This allows

us to locally keep the large version of the tag (the polynomial y with its d + 1 coefficients), but the

compact version Λ is the one that is sent to the verifier. By keeping this large y, it is possible to have

composition as in the previous scheme. This is particularly interesting for applications where not too

many parties are involved, as it allows for succinct tags and local composition of partial computations

at the same time.

4.2.2 Backes-Fiore-Reischuk

Both CF and GW schemes suffer from an inefficient verification algorithm. The time to execute

Vrfy is proportional to that of executing the programP , i.e., evaluating the circuit f . Backes, Fiore, and
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Reischuk solved this problem and additionally, they considered the case of performing computations

over very large sets of inputs. In this case, besides the already mentioned requirements of security and

efficiency, it is desirable to achieve input-independent efficiency, meaning that verifying the correctness

of a computation f(m1, . . . ,mn) requires time independent of input size n. Additionally, two more

crucial requirements should be achieved: unbounded storage, meaning that the size of the outsourced

data should not be fixed a-priori; and function independence, meaning that a client should be able to

outsource its data without having to know in advance what functions she will be delegating later.

Input-independent efficiency is achieved in the amortized model: after a first computation with

cost |f |, the client can verify every subsequent evaluation of f in constant time. By fulfilling un-

bounded storage and function independence, outsourcing data and function delegation are completely

decoupled: a client can continuously outsource data, and the delegated functions do not have to fixed

a-priori.

Their construction is also limited to support a restricted set of functions, namely arithmetic cir-

cuits of degree up to 2. However, even with this restricted set it is possible to compute a wide range

of interesting statistical functions, like counting, summation, (weighted) average, arithmetic mean,

standard deviation, variance, co-variance, weighted variance with constant weights, quadratic mean

(RMS), mean squared error (MSE), the Pearson product-moment correlation coefficient, the coefficient

of determination (R2), and the least squares fit of a data set {(xi, vi)}ni=1.

In the verification algorithm from both CF constructions it is always necessary to compute ρ =

f(rτ1 , . . . , rτn). One way to accelerate this process would be to, after the first computation of ρ, to

re-use it in order to verify other computations using f . However, this involves the re-use of labels,

which is clearly forbidden by the security definition of CF. The security of their scheme completely

breaks down in the presence of label re-use.

The proposed solution by Backes, Fiore, and Reischuk to solve this critical problem involves two

new ideas. The first one allows the partial, but safe, re-use of labels. This is accomplished with the

introduction of multi-labels as previously defined. The other one is a new construction of a PRF that

allows the pre-computation of a piece of label-independent information ωf that can be re-used to

efficiently compute ρ.

Before presenting the actual construction, we introduce some definitions and utilities necessary

to build a PRF with efficient (amortized) verification. We start by presenting some basic definitions

regarding the homomorphic evaluation of arithmetic circuits over values defined in some appropriate

set J ̸=M. Usually, f : Zn
p → Zp, but sometimes the message space may be defined in J , and so it is

necessary to obtain an equivalent algorithm that evaluates messages from J over f .
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Homomorphic Evaluation over Polynomials Consider that Jpoly = Zp[x1, . . . , xm] is the ring

of polynomials in variables x1, . . . , xm over Zp. For every tuple a⃗ = (a1, . . . , am) ∈ Zm
p , let ϕa⃗ :

Jpoly → Zp be the function defined asϕa⃗(y) = y(a1, . . . , am) for any y ∈ Jpoly. ϕa⃗ is a homomorphism

from Jpoly to Zp. Given an arithmetic circuit f : Zn
p → Zp, there exists another structurally equivalent

circuit f̂ : J n
poly → Jpoly such that ∀y1, . . . , yn ∈ Jpoly : ϕa⃗(f̂(y1, . . . , yn)) = f(ϕa⃗(y1), . . . , ϕa⃗(yn)).

The only difference is that in every gate the operation in Zp is replaced by the corresponding operation

in Zp[x1, . . . , xm].

More precisely, for every positive integer m ∈ N and a given f , the computation of f̂ on

(y1, . . . , yn) ∈ J n
poly can be defined as PolyEval(m, f, y1, . . . , yn) → Zp. For every gate fg , on in-

put two polynomials y1, y2 ∈ Jpoly, proceeds as follows: if fg = +, it outputs y = y1 + y2 (adds all

coefficients component-wise); if fg = ×, it outputs y = y1 · y2 (uses the convolution operator on the

coefficients). Notice that every× gate increases the degree d of y, as well as its number of coefficients.

If y1, y2 have degree d1, d2 respectively, the degree of y = y1 · y2 is d1 + d2.

Bilinear Groups Let G(1λ) be an algorithm that on input the security parameter 1λ, outputs the

description of a bilinear group bgpp = (p,G,GT , e, g) where G and GT are groups of the same order

p > 2λ, g ∈ G is a generator and e : G×G→ GT is an efficiently computable bilinear map, or pairing

function. G is a bilinear group generator.

Homomorphic Evaluation over Bilinear Groups Let bgpp = (p,G,GT , e, g) be the description

of a bilinear group as previously defined. With a fixed generator g ∈ G, then G ∼= (Zp,+) (i.e.,

G and the additive group (Zp,+) are isomorphic) by considering the isomorphism ϕg(x) = gx for

every x ∈ Zp. Similarly, by the property of the pairing function e, GT
∼= (Zp,+) by considering

the isomorphism ϕgT (x) = e(g, g)x. Since both ϕg and ϕgT are isomorphisms, there also exist the

corresponding inverses ϕ−1
g : G → Zp and ϕ−1

gT
: GT → Zp, even though these are not known to be

efficiently computable.

For every arithmetic circuit f : Zn
p → Zp of degree at most 2, the GroupEval(f,X1, . . . , Xn)

algorithm homomorphically evaluates f with inputs in G and outputs in GT .

Basically, given a circuit f of degree at most 2, and given an n-tuple of values (X1, . . . , Xn) ∈ Gn,

GroupEval proceeds gate-by-gate as follows: if fg = +, it uses the group operation in G or in GT ; if

fg = ×, it uses the pairing function, thus “lifting” the result to the group GT . By using only circuits

of degree at most 2, the multiplication is well defined.

GroupEval achieves the desired homomorphic property:
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Theorem 4.13. Let bgpp = (p,G,GT , e, g) be the description of bilinear groups. Then, the algorithm

GroupEval satisfies: ∀(X1, . . . , Xn) ∈ Gn : GroupEval(f,X1, . . . , Xn) = e(g, g)f(x1,...,xn) for the

unique values {xi}ni=1 ∈ Zp such that Xi = gxi .

The proof of Theorem 4.13 can be found in [BFR13].

PRFs with Amortized Closed-Form Efficiency A closed-form efficient PRF is just like a standard

PRF, plus an additional efficiency property. Consider a computation Comp(R1, . . . , Rn, z⃗)which takes

random inputs R and arbitrary inputs z⃗, and runs in time t(n, |z⃗|). By considering the case where

each Ri = FK(Li), then the PRF F is said to satisfy closed-form efficiency for (Comp, L⃗) if, with the

knowledge of the seed K , one can compute Comp(FK(L1), . . . ,FK(Ln), z⃗) in time strictly less than t.

Themain idea is that in the pseudo-random case allRi values have a shorter closed-form representation

(as a function ofK), and this might also allow for the existence of a shorter closed-form representation

of the computation Comp.

From the above considerations it possible to define a new property for PRFs: amortized close-form

efficiency. The idea is to address computations where eachRi is generated as FK(∆, τi). All the inputs

of F share the same data set label ∆. Then, F satisfies amortized closed-form efficiency if it is possible

to compute ℓ computations {Comp(FK(∆j , τ1), . . . ,FK(∆j , τn), z⃗)}ℓj=1 in time strictly less than ℓ · t.

A PRF is defined as follows:

KeyGen(1λ)→ (pp,K): Given a security parameter, output a secret key K and some public parame-

ters pp that specify domain X and rangeR of the function.

FK(x)→ R: Receives x ∈ X and uses the secret key K to compute a value R ∈ R.

A PRF must satisfy the pseudo-randomness property. More precisely, (KeyGen, F) is secure if for every

PPT adversary A it holds:

|Pr[AFK(·)(1λ, pp) = 1]− Pr[Aϕ(·)(1λ, pp) = 1]| ≤ negl(λ) (4.15)

(K, pp)←$ KeyGen(1λ), and ϕ : X → R is a random function.

Definition 4.14. Consider a computation Comp(R1, . . . , Rn, z1, . . . , zm) with random n input values

andm arbitrary input values. Comp takes time t(n,m). Let L⃗ = (L1, . . . , Ln) be arbitrary values in the

domain X of F such that Li = (∆, τi). A PRF (KeyGen, F) satisfies amortized closed-form efficiency for

(Comp, L⃗) if there exist algorithms CFEvaloff
Comp,τ⃗ and CFEvalon

Comp,∆ such that:
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1. Given ω ← CFEvaloff
Comp,τ⃗ (K, z⃗), then

CFEvalon
Comp,∆(K,ω) = Comp(FK(∆, τ1), . . . ,FK(∆, τn), z1, . . . , zm) (4.16)

2. The running time of CFEvalon
Comp,∆(K,ω) is o(t).

The ω obtained from the offline computation CFEvaloff
Comp,τ does not depend on data set label ∆,

which means that it can be re-used in further online computations CFEvalon
Comp,∆(K,ω) to compute

Comp(FK(∆, τ1), . . . ,FK(∆, τn), z⃗) for many different ∆’s. Because of this, the efficiency property

puts a restriction only on CFEvalon
Comp,∆ in order to capture the idea of achieving efficiency in an

amortized sense when consideringmany evaluations over of Comp(FK(∆, τ1), . . . ,FK(∆, τn), . . . , z⃗),

with different data set label ∆ in each evaluation. Essentially, one can pre-compute ω once, and then

use it to run the online phase as many times as needed, almost for free.

The structure of Comp may impose some restrictions on the range R of the PRF, and due to

the pseudo-randomness property, the output distribution of CFEvalon
Comp,∆(K,CFEvaloff

Comp,τ⃗ (K, z⃗)) is

computationally indistinguishable from the output distribution of Comp(R1, . . . , Rn, z⃗).

Amortized Closed-Form Efficient PRF Before introducing the description of BFR scheme, it is

necessary to define this new and more efficient PRF, namely a PRF with amortized closed-form effi-

ciency for GroupEval. This PRF uses two generic PRFs which map binary strings to integers in Zp, and

a weak PRF whose security relies on the Decision Linear assumption introduced by Boneh, Boyen, and

Shacham [BBS04], and is presented below:

Definition 4.15. Let G bilinear group generator, and bgpp = (p,G,GT , e, g) ←$ G(1λ). Let g0, g1,

g2 ←$ G and r0, r1, r2 ←$ Zp be chosen uniformly at random. The advantage of a PPT adversary A in

solving the Decision Linear problem is

AdvDLin
A (λ) = | Pr[A(bgpp, g0, g1, g2, gr11 , gr22 , gr1+r2

0 ) = 1]−

Pr[A(bgpp, g0, g1, g2, gr11 , gr22 , gr00 ] = 1| (4.17)

The Decision Linear assumption holds for G if for every PPT adversary A if AdvDLin
A (λ) ≤ negl(λ).

Syntax The syntax of an amortized closed-form efficient PRF is as follows:

KeyGen(1λ)→ (pp,K): Let bgpp = (p,G,GT , e, g) be the description of bilinear groups G and GT

having the same prime order p > 2λ and such that g ∈ G is a generator, and e : G × G → GT
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is an efficiently computable bilinear map. Choose two seeds K1,K2 for a family of PRFs F′
Ki

:

{0, 1}∗ → Z2
p for i = 1, 2. Output K = (bgpp,K1,K2) and pp = bgpp.

FK(x)→ R: Let x = (∆, τ) ∈ X . To compute R ∈ G, generate (u, v) ← F′
K1

(τ) and (a, b) =

F′
K2

(∆), and output R = gua+vb.

The previous PRF is pseudo-random. The proof of the following theorem can be found in [BFR13].

Theorem 4.16. If F′ is a PRF and the Decision Linear assumptions holds for G, then the function (KeyGen,

F) presented above is a PRF.

Amortized Closed-Form Efficiency for GroupEval The previously defined PRF satisfies amortized

closed-form efficiency for (GroupEval, L⃗). Recall that GroupEval : f × Gn → GT , with arithmetic

circuit f : Zn
p → Zp and R1, . . . , Rn ∈ G random values. L⃗ is a vector (L1, . . . , Ln) with each Li =

(∆, τi) ∈ X .

CFEvaloff
GroupEval,τ⃗ (K, f)→ ωf : LetK = (bgpp,K1,K2) be a secret key generated by KeyGen(1λ) of a

closed-form efficient PRF. Compute {(ui, vi)← F′
K1

(τi)}ni=1 and set ρ⃗i = (0, ui, vi). Basically, ρ⃗i
are the coefficients of a degree-1 polynomial ρi(x1, x2) in two unknown variables x1, x2. Then,

run PolyEval(2, f, ρ1, . . . , ρn) to compute the coefficients ρ⃗ of a polynomial ρ(x1, x2) such that

∀x1, x2 ∈ Zp : ρ(x1, x2) = f(ρ1(x1, x2), . . . , ρn(x1, x2)). Output ωf = ρ⃗.

CFEvalon
GroupEval,∆(K,ωf )→W : Let K = (bgpp,K1,K2) be a secret key and ωf = ρ⃗ the result of

the previous algorithm. Generate (a, b) ← F′
K2

(∆), and then use the coefficients ρ⃗ to compute

w = ρ(a, b). Output W = e(g, g)w.

Theorem 4.17. Let L⃗ = (L1, . . . , Ln) be such that Li = (∆, τi) ∈ X and let t be the running time of

GroupEval. Then the PRF (KeyGen,F), extendedwith the algorithmsCFEvaloff
GroupEval,τ⃗ andCFEvalon

GroupEval,∆

satisfies amortized closed-form efficiency for (GroupEval, L⃗) according to Definition 4.14, with running

times of O(t) and O(1) for CFEvaloff
GroupEval,τ⃗ and CFEvalon

GroupEval,∆, respectively.

The proof can be found in [BFR13].

Homomorphic MAC with Efficient Verification Having defined the PRF that allows to more ef-

ficiently compute the ρ from the verification algorithm, we can now present the construction of an

homomorphic MAC scheme with an efficient verification algorithm.

BFR scheme works for circuits whose additive gates do not get inputs labeled by constants. And

just like in the CF, without loss of generality, one can use an equivalent circuit where there is a special
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variable/label for the value of 1, and the MAC of 1 can be published. The description of the EVH-MAC

construction is as follows:

KeyGen(1λ)→ (ek, sk): Run bgpp ←$ G(1λ) to generate the description of bilinear groups with

bgpp = (p,G,GT , e, g). The message spaceM is Zp. Choose a random value α ←$ Zp, and

run (K, pp) ←$ KeyGen(1λ) to obtain seed K of a PRF function FK : {0, 1}∗ × {0, 1}∗ → G.

Output sk = (bgpp, pp,K, α) and ek = (bgpp, pp).

Authsk(L,m)→ σ: Receives a multi-label (∆, τ) ∈ ({0, 1}λ)2 and a message m ∈ M. Compute

R← FK(∆, τ) and set y0 = m and Y1 = (R · g−m)1/α. Output the tag (y0, Y1) ∈ Zp ×G.

If we consider the y1 ∈ Zp to be the unique value such that Y1 = gy1 , then (y0, y1) are simply

the coefficients of a degree-1 polynomial y(x) such that y(0) = m and y(α) = ϕ−1
g (R).

Evalek(f, σ⃗ → σ′): Receives a vector of tags σ1, . . . , σn and an arithmetic circuit f : Zn
p → Zp. Just as

in CF scheme, the values of σi’s are not valid messages in Zp, and so it is necessary to specify the

sub-routine GateEval. At a given gate fg , given two tags σ1, σ2, GateEval proceeds as follows:

GateEvalek(fg, σ1, σ2)→ σ′: Let σi = (y
(i)
0 , Y

(i)
1 , Ŷ

(i)
2 ) ∈ Zp × G × GT for i = 1, 2. Assume

that Ŷ (i)
2 = 1 whenever it is not defined.

If fg = +, then compute (y0, Y1, Ŷ2) as:

• y0 = y
(1)
0 + y

(2)
0

• Y1 = Y
(1)
1 · Y (2)

1

• Ŷ2 = Ŷ
(1)
2 · Ŷ (2)

2

If fg = ×, then compute (y0, Y1, Ŷ2) as:

• y0 = y
(1)
0 · y

(2)
0

• Y1 = (Y
(1)
1 )y

(2)
0 · (Y (2)

1 )y
(1)
0

• Ŷ2 = e(Y
(1)
1 , Y

(2)
1 )

Since this construction assumes that deg(f) ≤ 2, it can be assumed that σi = (y
(i)
0 ,

Y
(i)
1 ) ∈ Zp ×G for i = 1, 2.

If fg = × and one of the two inputs is a constant c ∈ Zp (assume that σ2 is the constant),

then compute (y0, Y1, Ŷ2) as:

• y0 = c · y(1)0

• Y1 = (Y
(1)
1 )c

• Ŷ2 = (Ŷ
(1)
2 )c
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Return σ′ = (y0, Y1, Ŷ2).

Vrfysk(m,P∆, σ)→ {accept, reject}: Receives a message m ∈ M, a multi-labeled program P∆ =

(f, τ1, . . . , τn),∆) and a tag σ = (y0, Y1, Ŷ2). For i = 1 to n, compute Ri ← FK(∆, τi). Then

run W ← GroupEval(f,R1, . . . , Rn) ∈ GT , and check that both:

m
?
= y0

W
?
= e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2

If both checks are satisfied, output accept. Output reject otherwise.

The previous verification algorithm is still not efficient. The description of EVH-MAC needs to

be complemented with VrfyPrep and EffVrfy to achieve efficient verification.

VrfyPrepsk(P)→ vkP : Let sk = (bgpp, pp,K, α). Receives a labeled program P = (f, τ1, . . . , τn). A

concise verification key vkP = ω is computed, with ω ← CFEvaloff
GroupEval,τ⃗ (K, f).

EffVrfysk,vkP (∆,m, σ)→ {accept, reject}: Let sk = (bgpp, pp,K, α) and vkP = ω and σ = (y0,

Y1, Ŷ2). First, run the online closed-form efficient algorithm of F for GroupEval to compute

W ← GroupEvalon
GroupEval,∆(K,ω). Then, it runs the same checks as in Vrfy, and returns accept

if both checks are satisfied, false otherwise.

Correctness EVH-MAC satisfies both authentication and evaluating correctness. The respective

proofs can be found in [BFR13].

Efficient Verification EVH-MAC satisfies efficient verification.

Theorem 4.18. If F has amortized closed-form efficiency for (GroupEval, L⃗), then EVH-MAC satisfies

efficient verification.

The verification preparation VrfyPrep runs in time equal to CFEvaloff
GroupEval,τ⃗ , and the efficient

verification EffVrfy runs in time equal to CFEvalon
GroupEval,∆. From Theorem 4.17, VrfyPrep and EffVrfy

run in time O(|f |) and O(1), respectively. The full proof can be found in [BFR13].

Security The security of EVH-MAC is based on the following theorem.

Theorem 4.19. Let λ be the security parameter, F be a PRF with security ϵF, and G be a bilinear group

generator. Then, any PPT adversary A making Q verification queries has at most probability

Pr[HomUF− CMAA,HMAC -ML = 1] ≤ 2 · ϵF +
8Q

p− 2(Q− 1)
(4.18)
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of breaking the security of EVH-MAC.

4.3 Limitations and open problems

Homomorphic signatures are still far from being a truly practical primitive. The data set size has

to be fixed a-priori, and besides the BF scheme with support for polynomials of bounded degree, only

linear realizations have been proposed. However, for quadratic and higher degree polynomials, the

derived signatures leak information about the original data set. This privacy property is only achieved

for linear functions, and therefore, it remains an open problem to extend it for quadratic and higher

polynomials.

The security of BF scheme could be strengthened by removing the random oracle model which

is used to simulate signatures on a chosen message attacker, but it is not known if that’s even possible

without losing the homomorphic properties.

In the private key setting, the existence of a fully homomorphic MAC scheme is already known as

it was shown by Gennaro andWichs [GW12]. However, its security model does not allow an adversary

to ask for verification queries, and it would be interesting to improve the GW scheme to support an

unbounded number of verification queries. Just as with the CF constructions, the complexity of the

verification algorithm of a fully homomorphic MAC is not independent of the complexity of a program

P . This, and the fact that it relies on FHE “machinery”, makes the GW scheme not practical.

The CF and BFR schemes only support a limited class of functions. Even though they allow the

computation of many interesting functions, and because of their superior efficiency compared to fully

homomorphic MACs, it would be very interesting to extend them to a broader class of functions, i.e.,

to construct a fully homomorphic MAC for circuits of arbitrary size.

Another interesting open problem is the existence of a Fully Homomorphic Signature scheme

which could authenticate the computation of any function on signed data. This scheme would be

particularly useful to be used alongside a FHE scheme like the one from Gentry [Gen09]. It is also not

clear whether processes from Gentry’s construction could be applied to signature schemes in order to

improve their security and efficiency. While that is not possible, it would be useful to enlarge the set

of admissible functions of homomorphic signatures schemes.





Chapter 5

Efficient algebraic computation

algorithms

Almost all existing cryptographic primitives offering more than the most basic of functionalities

heavily relies on algebraic operations. That is why when implementing such primitives one must pay

special attention to the way these algebraic operations are performed. The “classical” textbook way

may be efficient enough for small (and not so practical) parameters, but when dealing with thousand

bit numbers things become noticeably slow.

In CF’s homomorphic evaluation, more preciselyGateEval is the critical and the slowest operation

and thus needs to be implemented as efficiently as possible. This sub-routine is simply an arithmetic

circuit evaluation, but instead of using input values from field Fp , it uses polynomial coefficients from

Fp[X] as a result of previous Auth’s or Eval’s of n messages. Sum gates and product gates compute

the addition and multiplication of two polynomials, respectively.

To the sum gate there isn’t much that we can do since the straightforward algorithm takesΘ(n).

On the other hand, the product gate is where a big optimization can be introduced. The straightforward

method of multiplication takes Θ(n2), and for big enough values of n, this becomes extremely slow,

and therefore compromises the efficiency of the entire homomorphic scheme. So it is obvious that this

is where we have to find some more efficient algorithms in order to reduce this time complexity. As

for the multiply by a constant, the straightforward way is Θ(n) as well. Following on the suggestion

by Catalano and Fiore, the product problem can be mitigated by using algorithms based on the fast

Fourier Transform (FFT), which can reduce the multiplication of two polynomials to Θ(n logn).

Fourier Transforms are widely used in signal processing, and without them we wouldn’t have

much of the technological developments of today. A signal is given in the time domain: as a function

mapping time to amplitude. The Fourier analysis allows us to express the signal as a weighted sum of
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phase-shifted sinusoids of varying frequencies. Theweights and phases associated with the frequencies

characterize the signal in the frequency domain. Fast Fourier analysis is widely employed in many

of our applications of today: audio recording, MP3 audio compression or JPEG image encoding and

compression.

Signal processing is just one of the many applications of Fourier Transforms. One other field

where it can be used, and the one of interest to us, is where it can be used to perform an efficient

multiplication of two polynomials.

5.1 Polynomials

A polynomial in the variable x over the field F can be represented as a summation like:

P (x) =

n−1∑
i=0

pix
i

The pi values are the coefficients of the polynomial, and are drawn from the underlying field F. The de-

gree of the polynomial P (x) is d if its highest nonzero coefficient is pd; we denote it by degree(P ) = d.

Any integer strictly greater than the degree of the polynomial is the degree-bound of that polynomial.

The degree of a polynomial of degree-bound nmay be any integer between 0 and n− 1, inclusive. The

usual operations over polynomials, and the ones that are of interest to us, are addition and multiplica-

tion.

For polynomial addition, if A(x) and B(x) are polynomials of degree-bound n:

A(x) =

n−1∑
i=0

aix
i and B(x) =

n−1∑
i=0

bix
i,

their sum is a polynomial C(x) = A(x) +B(x), also of degree-bound n, as:

C(x) =

n−1∑
i=0

cix
i, such that ci = ai + bi (5.1)

As a result, it holds that degree(C) = max(degree(A), degree(B)).

The straightforward way of multiplying two polynomials A(x) and B(x) of degree-bound n,

resulting in the product C(x) = A(x)B(x) of degree bound 2n− 1, is expressed as:

C(x) =

2n−2∑
i=0

cix
i, such that each ci =

i∑
j=0

ajbi−j (5.2)
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If A(x) and B(x) are of degree-bound na and nb, respectively, and since that clearly degree(C) =

degree(A) + degree(B), then C(x) is of degree-bound na + nb − 1. Because every polynomial of

degree-bound n is also of degree-bound n+ 1, we can also say that C(x) is of degree-bound na + nb.

5.1.1 Representation

The way we represent polynomials can be directly related to the time it takes to execute some

operation over them, especially in the case of multiplication. We now present the two common repre-

sentations, which are the ones used to obtain a faster polynomial multiplication with FFT.

Coefficient representation The most natural and simple representation is the coefficient represen-

tation, where a polynomial A(x) =
∑n−1

i=0 aix
i of degree-bound n is represented as a vector of coeffi-

cients a = (a0, . . . , an−1).

This representation is very convenient for some operations. For instance, the evaluation of the

polynomial A(x) at a given point x0 can be done in Θ(n) time using Horner’s rule:

A(x0) = a0 + x0(a1 + x0(a2 + . . .+ x0(an−2 + x0(an−1)) . . . , ))

Adding two polynomials in coefficient representation is also very simple: having two vectors a

and b representing the polynomials A(x) and B(x), respectively, the addition is simply their vector

addition c = (a0 + b0, . . . , an−1 + bn−1) which takes Θ(n) time.

But if we look at polynomial multiplication (with coefficient representation) of two polynomials

A(x) and B(x) of degree-bound n, we get a multiplication with Θ(n2) time. That is because we have

to multiply each coefficient of vector a by each coefficient in vector b. The resulting vector c is also

called the convolution of the input vectors a and b, denoted as c = a⊗ b.

Point-value representation A point-value representation of a polynomial A(x) of degree-bound n

is a set of n point-value pairs

{(x0, y0), . . . , (xn−1, yn−1)}

such that all xi are distinct and for each i = 0, . . . , n − 1 it holds that yi = A(xi). A polynomial has

many different point-value representations since we can choose any set of n distinct points x0, . . . ,

xn−1.

The conversion from coefficient to point-value representation is simple: select n distinct points

x0, . . . , xn−1 and then evaluate everyA(xi) for i = 0, . . . , n−1. With Horner’s rule, this evaluation at
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n points takes Θ(n2) time. But there is another way of performing this conversion in time Θ(n logn)

if we carefully choose the n points in a certain way, as we will see later in this chapter.

The inverse of polynomial evaluation is interpolation – determine the coefficient form of a poly-

nomial given a set of point-value pairs. The following theorem shows that interpolation is well defined

when the desired interpolating polynomial must have a degree-bound equal to the given number of

point-value pairs.

Theorem 5.1 ([CLRS09, Theorem 30.1]). For any set {(x0, y0), . . . , (xn−1, yn−1)} of n point-value pairs

such that all xi values are distinct, there is a unique polynomial A(x) of degree-bound n such that yi =

A(xi) for i = 0, . . . , n− 1.

Theorem 5.1 shows the uniqueness of an interpolating polynomial (see [CLRS09] for the full proof)

and it also describes an algorithm based on solving a set of linear equations. But the fast algorithm to

solve those equations has time Θ(n3).

A faster algorithm for n-point interpolation is based on Lagrange’s formula:

A(x) =

n−1∑
i=0

yiℓi(x) where ℓi(x) =
∏

0≤j≤n−1
j ̸=i

x− xj
xi − xj

(5.3)

Just like n-point evaluation, interpolation with Lagrange’s formula takes time Θ(n2).

A nice property is that n-point evaluation and interpolation are well-defined inverse operations

that transform between the two polynomials representations: coefficient and point-value.

Just like in coefficient representation, we can perform many operations on the point-value rep-

resentation of the polynomial, namely addition and multiplication.

For addition, it follows that if C(x) = A(x) +B(x), then C(xi) = A(xi) +B(xi) for any point

xi. More precisely, if we have:

A(x) = {(x0, y0), . . . , (xn−1, yn−1)} and B(x) = {(x0, y′0), . . . , (xn−1, y
′
n−1)}

then a point-value representation for C(x) is:

C(x) = {(x0, y0 + y′0), . . . , (xn−1, yn−1 + y′n−1)}

and so the time to addition of two polynomials of degree-bound n in point-value representation is

Θ(n).
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Now, and unlike in coefficient representation, polynomial multiplication can be faster. If C(x) =

A(x)B(x), then C(xi) = A(xi)B(xi) for any point xi, thus it is now possible to simply point-wise

multiply a point-value representation ofA by a point-value representation ofB to obtain a point-value

representation ofC . But we a have a small problem because it must hold that degree(C) = degree(A)+

degree(B) (C is polynomial of degree-bound 2n), but with a standard point-wise multiplication of

point-value representations of A and B yields only n point-value pairs, and we are expected to obtain

2n pairs in order to interpolate a polynomial of degree-bound 2n. So in order to fix this problem, we

first must add n extra points to the point-value representations of A and B, so that they end up with

2n point-value pairs each. Basically, A and B are represented as:

A(x) = {(x0, y0), . . . , (x2n−1, y2n−1)} and B(x) = {(x0, y′0), . . . , (x2n−1, y
′
2n−1)}

and the resulting C(x) = A(x)B(x) as:

C(x) = {(x0, y0y′0), . . . , (x2n−1, y2n−1y
′
2n−1)}

Such a multiplication technique takes Θ(n) time, much less than with the usual coefficient rep-

resentation.

As for the evaluation of a polynomial in point-value representation at a new point (i.e., computing

the value of A(xi) on a given point xi) there is no known direct technique. The best alternative is to

first convert from point-value to coefficient representation, and then evaluating it at the new point.

n-point Evaluation Interpolation Addition Multiplication

Coefficient Θ(n2) – Θ(n) Θ(n2)

Point-value – Θ(n2) Θ(n) Θ(n)

Table 5.1: The Evaluation column refers to the conversion of a polynomial in coefficient form to a
polynomial in point-value form, while the Interpolation column represents the inverse operation. The
Addition times are the same in both representations, but Multiplication is clearly faster with a point-
value representation. However, the conversion between both representations is not efficient.

We saw the two common representations of polynomials and some operations that can be exe-

cuted over them. On Table 5.1 you can find an overview of the execution time of such operations. And

as we can see, the time to convert between coefficient form and point-value is very slow. But is there a

way to improve these conversions, in order to take advantage of the linear time multiplication method

for polynomials in point-value form?

As it turns, yes, it is possible. The trick is to choose the evaluation points (when converting from

coefficient to point-value) carefully, and then it is possible to convert between both representations in
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only Θ(n logn). This result is possible by choosing complex roots of unity as the evaluation points,

and then by using Fourier Transform to convert between both representations.

The following is a brief description of the Θ(n logn) multiplication for two polynomials A(x)

and B(x) of degree-bound n, where both input and output are in coefficient form. It is assumed that

n is a power of 2; this can always be met if we add high-order zero coefficients.

1. Double degree bound: Add n high order zero coefficients to the coefficient representations ofA(x)

and B(x), so that they become polynomials of degree-bound 2n.

2. Evaluate: Convert the two coefficient representations to point-value representations, using a

(Discrete) Fourier Transform with Θ(n logn) time.

3. Point-wisemultiply: Compute a point-value representation for the polynomialC(x) = A(x)B(x)

by multiplying them point-wise. The result C(x) contains 2n point-value pairs.

4. Interpolate: Convert the point-value representation of C(x) to coefficient representation by ap-

plying the (inverse Discrete) Fourier Transform with Θ(n logn) time. In the end, we have C(x)

in coefficient representation.

In the following section we will introduce the Fourier Transforms of (2) and (4).

5.2 Fourier Transforms

As stated before, the trick to have fast conversions between coefficient and point-value represen-

tations is to carefully choose the evaluation points as complex roots of unit. In this section we show

what are they, and we also define the DFT, and then show how FFT computes the DFT and its inverse

in time Θ(n logn).

From this section on, because we start to use complex numbers, the symbol j is exclusively used

to denote
√
−1.

5.2.1 Complex roots of unity

A complex nth root of unity is a complex number ω such that ωn = 1. There are exactly n complex

nth roots of unity:

e2πj
k
n 0 ≤ k < n (5.4)

To interpret Equation 5.4, we use Euler’s formula that reads as eju = cosu+ j sinu.

All complex nth roots of unity can be written as powers of the principal nth root of unity, denoted

as ωn = e2π
j
n . The 7th complex roots of unity can be seen in Figure 5.1.
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Figure 5.1: The values of the 7th complex roots ω0
7 , . . . , ω

6
7 in the complex plane, where ω7

7 = e2π
j
7

is the principal 7th root of unity.

The n complex nth roots of unity ω0
n, . . . , ω

n−1
n form a group under multiplication with the same

structure as the additive group (Zn,+) modulo n, since ωn
n = ω0

n = 1 implies that ωk
nω

i
n = ωk+i

n =

ω
(k+i) mod n
n . Similarly, ω−1

n = ωn−1
n .

We now present some lemmas to better understand some essential properties of complex nth

roots of unity. We refer to [CLRS09] for the full proofs.

Lemma 5.2 (Cancelation lemma [CLRS09, Lemma 30.3]). For any integers n ≥ 0, k ≥ 0, and d > 0,

ωdk
dn = ωk

n (5.5)

Corollary 5.3 ([CLRS09, Corollary 30.4]). For any integer n > 0,

ωn/2
n = ω2 = −1 (5.6)

Lemma 5.4 (Halving lemma [CLRS09, Lemma 30.5]). If n > 0 is even, then the squares of the n complex

nth roots of unity are the n/2 complex (n/2)th roots of unity.

Lemma 5.5 (Summation lemma [CLRS09, Lemma 30.6]). For any integer n ≥ 1 and non-zero integer k

not divisible by n,
n−1∑
i=0

(
ωk
n

)i
= 0 (5.7)
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5.2.2 Discrete Fourier Transform

We want to evaluate a polynomial A(x) of degree-bound n at the n complex nth roots of unity1.

Assuming that A(x) is given in coefficient form a = (a0, . . . , an−1), we want to obtain a vector y =

(y0, . . . , yn−1), where each yk is of the form:

yk = A(ωk
n)

=
n−1∑
i=0

aiω
ki
n (5.8)

The vector y is the Discrete Fourier Transform of the coefficient vector a, or more succinctly, y =

DFTn(a). Note that this still takes Θ(n2) time.

5.2.3 Fast Fourier Transform

By using a fast Fourier Transform, which takes advantage of the special properties of the complex

roots of unity, it is possible to compute DFTn(a) in time Θ(n logn). It is assumed that n is a power of

2.

The FFT technique uses a divide-and-conquer strategy by dividing A(x) into two polynomials of

degree-bound n/2:

A(0)(x) = a0 + a2x+ a4x
2 + . . .+ an−2x

n/2−1

A(1)(x) = a1 + a3x+ a5x
2 + . . .+ an−1x

n/2−1

Because A(0) contains all the even-indexed coefficients and A(1) contains all the odd-indexed coeffi-

cients, we have that:

A(x) = A(0)(x2) + xA(1)(x2). (5.9)

So basically, the problem of evaluating A(x) at the n complex nth roots of unity reduces to:

1. evaluate the degree-boundn/2 polynomialsA(0)(x) andA(1)(x) at the points (ω0
n)

2, . . . , (ωn−1
n )2,

and then

2. combine the results according to Equation 5.9.

Because of Lemma 5.4 (halving lemma), the list of points in (1) has not n distinct values but only

n/2 complex (n/2)th roots of unity, with each root occurring exactly twice. This means that we can
1In the context of polynomial multiplication, the length n is actually 2n, but for clarity we use n instead of 2n in this

section.
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divide a n-element DFTn computation into two n/2-element DFTn/2 computations. This is the basis

for the definition of the recursive FFT algorithm, which computes the DFT of an n-element vector

a = (a0, . . . , an−1), with n a power of 2. Such algorithm is presented in Algorithm 3.

Algorithm 3 Recursive FFT.
1: function Recursive-FFT(a)
2: n← a.length
3: if n == 1 then
4: return a
5: end if
6: ωn ← e2π

j/n

7: ω ← 1
8: a(0) ← (a0, a2, . . . , an−2)
9: a(1) ← (a1, a3, . . . , an−1)

10: y(0) ←Recursive-FFT(a(0))
11: y(1) ←Recursive-FFT(a(1))
12: for k = 0 to n/2− 1 do
13: yk ← y

(0)
k + ω y

(1)
k

14: yk+(n/2) ← y
(0)
k − ω y

(1)
k

15: ω ← ω ωn

16: end for
17: return y
18: end function

To analyze the running time of Algorithm 3, note that each invocation of the function Recursive-

FFT (excluding the recursive calls) takesΘ(n) time, where n is the length of the input vector. Therefore,

the recurrence for the running time is:

T (n) = 2T (n/2) + Θ(n)

= Θ(n logn)

In other words, we can perform the evaluation of a polynomial of degree-bound n at the complex

nth roots of unity in time Θ(n logn) using the FFT.

5.2.4 Interpolation at the complex roots of unity

To complete the polynomial multiplication method we just need to interpolate the complex roots

of unity by a polynomial, so that after we can convert the point-value representation back to coefficient

representation.
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Essentially, we want to compute the inverse DFT, denoted as DFT−1
n (y). The inverse DFT is given

by:

ai =
1

n

n−1∑
k=0

ykω
−ki
n 0 ≤ i < n (5.10)

If we compare the DFT of Equation 5.8 with Equation 5.10, we see that we can use the FFT (Al-

gorithm 3) to compute both the DFT and its inverse as well. We simply switch the roles of a and y,

replace ωn by ω−1
n , and divide each element of the result by n. Thus, we can compute the DFT−1

n in

Θ(n logn) time as well.

Having the DFT and its inverse, we can use FFT to transform a polynomial of degree-bound n

back and forth between its coefficient and point-value representation in time Θ(n logn).

For the polynomial multiplication, we have the convolution theorem defined as follows:

Theorem 5.6 ([CLRS09, Theorem 30.8]). For any two vectors a and b of length n, where n is a power of

2,

a⊗ b = DFT−1
2n (DFT2n(a) · DFT2n(b))

where the vectors a and b are padded with 0s in order to have length 2n and the operator · denotes the

component-wise product of two 2n-element vectors.

This basically concludes the polynomial multiplication algorithm based on FFT, with Θ(n logn)

time.



Chapter 6

Implementation and experimental

results

In the previous chapters we have introduced the two homomorphic MACs (CF1 and CF2) that

we intend to implement, as well as the necessary theory behind them. Now we will present some

implementation details, and finally an analysis of the efficiency of the two homomorphic MACs.

6.1 Programming Language and Libraries

Our choice of programming language was C. It is a language that provides more low-level oper-

ations which are quite useful to cryptographic applications. However, that can be both an advantage

and a disadvantage, as it is easier too create complicated situations with nasty side-effects, which are

not clear at first sight. But for our work we think that by using Cwe can obtain the best possible results

that otherwise wouldn’t be possible in some other higher level languages such as Python or Java.

For cryptographic purposes we always need to work with big numbers, but C only has native

support for fixed-length arithmetic (normally with machine specific length). Therefore we need to

either use an existing big number library, or to implement our own. The latter option is clearly a bad

idea since we already have at our disposal many efficient and mature libraries ready for a wide range

of machines and architectures.

We choose to use GMP [Gt14] for “bignum” arithmetic. GMP is designed to have good perfor-

mance with both small numbers and big numbers with thousands of bits. GMP chooses algorithms

depending on the size of the operands, so the algorithm used for a small number multiplication is dif-

ferent from the one used to multiply two “bignums”. The great speed of GMP is the fruit of many years

of optimizations provided by the community, which we canmake use of without having to worry about
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the underlying machine’s hardware. Besides “bignum” arithmetic, GMP also provides the facilities for

random numbers generation.

However, GMP does not have support for polynomial arithmetic, whichwe need for CF tags. Once

again, instead of implementing from scratch all the algorithms presented in Chapter 5, we decided to

use an established library, in this case NTL [Sho14]. NTL is a high-performance, portable, C++ library

with support for many Number Theory operations, including the FFT multiplication that we need1.

Lastly, CF makes use of a PRF in both authentication and verifications phases. Just as suggested

by Catalano and Fiore, we can use AES since it is extremely efficient. We used Libgcrypt’s [Kt14]

implementation of AES. Besides cryptographic protocols, Libgcrypt also has support for big number

arithmetic, but is based on an older version of GMP, and therefore it is not as efficient for “bignum”

operations.

6.2 Polynomial arithmetic

We have already seen that (univariate) polynomial arithmetic is critical for the efficiency of the

CF schemes. Both addition and multiplication by a constant take Θ(n) time, where n is the number of

coefficients of a polynomial. But on the other hand, the classical multiplication method takes Θ(n2)

time, and that’s why it’s better to use the FFT multiplication method described in Chapter 5, which

takes Θ(n logn) time.

We now present a brief overview on how we implemented these three operations using the li-

braries mentioned in the previous section.

Addition Polynomial addition is quite straightforward: given with two polynomials in coefficient

representation (i.e., simple arrays in C), addition is simply the addition of two vectors element-by-

element. Such addition is done using the function from GMP.

Multiply by constant Multiplication by constant is fairly similar to addition, but where one of the

arrays has just one element i.e., the constant value. By using the GMP multiplication function, we

can take advantage of the possible optimizations present in it where a different algorithm (classical,

Karatsuba, FFT, etc) is chosen based on the size of the operands.

Multiplication of two polynomials It is not hard to implement a machine specific FFT (i.e., using

only machine numbers such as float’s), but the complexity involved to achieve an implementation

closer to Θ(n logn) is very high. One other aspect is that we are working with big numbers, and to
1Although it is written in C++, we can still link it in such a way that it can be used with our C code.
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implement FFT with such numbers would introduce even more complexity. The time spent in trying

to achieve an efficient implementation would be significant, and we probably would never end up with

a time closer to Θ(n logn). And also, when implementing a FFT, it is usual to use an iterative version

rather than the recursive version of Section 5.2 which improves efficiency, but is also significantly

raises the efforts of implementation.

With these limitations in mind, Fateman [Fat10] studied the impact of using libraries like NTL

instead of choosing to implement FFT from scratch, and reached the conclusion that it is much better

to rely on an existent library given that it is much simpler, and guaranteed to be fast (if the library is

obviously efficient). Fateman also noticed that using NTL for FFT multiplication can be more efficient

if NTL is compiled with GMP support2.

To use the NTL’s multiplication function we have to first convert the GMP numbers to the corre-

sponding NTL format, and then use them to create a NTL polynomial. After the NTL multiplication,

the inverse conversion is done to obtain the resulting polynomial as GMP coefficients. These conver-

sions obviously introduce a small, non-visible, overhead in the overall multiplication process, but it’s

only a very small price to pay for a full-fledged FFT multiplication function.

6.3 Experimental results

We now present our experimental results by first explaining how we generated our test case

circuits, and then by providing more details of the CF’s performance. All tests were performed using a

x86_64 GNU/Linux on a machine with 4GB RAM and an Intel(R) Core(TM)2 Duo CPU T9600 2.8GHz.

The C compiler was gcc 4.9.1 x86_64 and the library versions were: GMP 6.0.0, NTL 6.2.1 and Libgcrypt

1.6.2.

Circuits generation To measure the performance of CF we tested it with circuits computing poly-

nomials of various degrees. What we did was to create random polynomials using Sage [St14], and

then convert them to an appropriate arithmetic circuit representation.

We generated polynomials of degree n between 10 (small enough) and 300 (big enough). The

average dimensions of the generated circuits are shown in Table 6.2, and since Pinocchio also contains

some example polynomials, we test themwith CF as well (we refer to them as Pinocchio’s polynomials).

CF performance Using the polynomials we previously generated, we can now measure the perfor-

mance of CF.
2NTL’s author also advises to compile NTL with GMP support for better results
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n Inputs Coeffs Muls
10 13 24 128
20 25 53 545
50 66 129 3472
100 127 307 16178

n Inputs Coeffs Muls
125 149 312 19766
150 186 378 29075
200 269 532 55473
300 372 741 112195

(a) Average dimensions of the circuits computing our randomly
generated polynomials of degree n.

n Inputs Coeffs Muls
12 4 247 186
30 6 16807 55250
35 6 32768 110624
40 6 131022 203428
50 6 500040 350042

(b) Dimensions of the example circuits of de-
gree n included with Pinocchio.

Table 6.2: Dimensions of our randomly generated circuits and from Pinocchio’s polynomial examples.
Pinocchio’s polynomials are of lower degree, but have much more coefficients and multiplications than
ours.

The results we are more interested in are the execution times of Eval. In a practical scenario, Eval

is executed by the external server, which is expected to have much more computational power than

the client who executes Vrfy.

Because Vrfy runs in time proportional to a circuit evaluation, we know that execution times will

be similar, with only (small) overhead of Vrfy because of the algebraic operations it performs over the

“polynomial tag”.

We tested both sets of polynomials with CF1 and CF2, but the only difference between the two is

that the latter has a slower KeyGen (because of the necessary D exponentiations) and creates succinct

tags of constant size (they are simply a group element), which is why we omitted CF2 from the results.

To measure CF’s performance, we used a different set of keys for each circuit, and the input mes-

sages and labels were chosen at random. The detailed performance results are shown in Table 6.3 (for

our randomly generated polynomials) and in Table 6.4 (using Pinocchio’s polynomials). For Table 6.3

we run CF once in every one of the 100 circuits of each degree, and the results presented are the average

of all these executions; for Table 6.4 we run CF 10 times for each circuit and show the average times

for each circuit.

Without much surprise, the authentication algorithm Auth is extremely fast (in less than 2ms

we can authenticate about 300 messages). Also note that in a practical scenario, the client might not

outsource (and therefore authenticate) all the messages at once, but do it incrementally instead.

Just as expected, the homomorphic evaluation Eval is the slowest operation. However, the ob-

tained results are still very good for a homomorphic primitive. In Table 6.3, to homomorphically evalu-

ate a polynomial of n = 300, it “only” takes about 80s. But once again, in a realistic scenario we would

be using a much more powerful machine for the homomorphic evaluation and the results would cer-

tainly be more efficient.

However, as mentioned by Catalano and Fiore, the tag’s size of CF1 grows linearly with the degree

of the evaluated circuit, and with n = 300 we obtain tags of about 10kB. By using CF2 we can obtain
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KeyGen Auth Eval Vrfy Circuit Tag Size
n λ (ms) (ms) (s) (ms) (ms) (kB)

10 128 0.37 0.42 0.004 0.64 0.50 0.19
256 1.23 0.63 0.007 0.62 0.58 0.38

20 128 0.41 0.60 0.024 0.38 0.41 0.35
256 1.20 0.47 0.039 0.46 0.37 0.70

50 128 0.39 0.44 0.31 1.17 1.06 0.83
256 1.14 0.44 0.47 1.66 1.51 1.66

100 128 0.37 0.60 2.57 6.32 5.57 1.63
256 1.16 0.79 4.01 8.61 7.44 3.26

125 128 0.35 0.61 3.79 7.79 6.91 2.03
256 1.07 0.88 5.87 10.26 8.94 4.06

150 128 0.48 0.71 6.94 11.63 10.31 2.43
256 1.40 0.98 10.46 15.48 13.79 4.86

200 128 0.38 0.88 17.00 23.76 22.50 3.23
256 1.22 1.32 26.40 30.87 29.08 6.49

300 128 0.34 1.20 51.77 50.69 49.53 4.83
256 1.21 1.83 79.40 64.07 62.94 9.66

Table 6.3: CF1 Performance. All circuits representing polynomials of degree n are generated as men-
tioned before. The security parameter λ is either 128 or 256 bits. The Circuit column refers to a circuit
evaluation (as demonstrated in Section 3.3) where the inputs are the original messages used in Auth.
The Tag Size refers only to CF1, since that for CF2 the tag size is a group element of either 16 or 32
bytes for λ of 128 or 256 bits, respectively.

KeyGen Auth Eval Vrfy Circuit Tag Size
n λ (ms) (ms) (s) (ms) (ms) (kB)

12 128 0.47 0.17 0.007 0.22 0.59 0.22
256 1.33 0.3 0.012 0.27 0.24 0.45

30 128 0.72 0.36 2.89 46.75 47.63 0.51
256 1.74 0.53 4.49 55.38 52.72 1.02

35 128 0.75 0.43 6.34 100.42 97.53 0.59
256 1.85 0.56 10.72 134.26 128.12 1.18

40 128 0.82 1.09 12.81 198.60 201.63 0.67
256 2.33 0.99 19.70 227.37 229.74 1.34

50 128 1.44 0.44 23.92 363.63 352.24 0.83
256 2.09 0.57 36.93 404.12 399.78 1.66

Table 6.4: CF1 Performance. Circuits computing the polynomials used as examples in Pinocchio of
degree n. For each circuit, the CF was executed N = 10 times. The security parameter λ is either 128
or 256 bits. The Circuit column refers to a circuit evaluation (as demonstrated in Section 3.3) where
the inputs are the original messages used in Auth. The Tag Size refers only to CF1, since that for CF2
the tag size is always one group element of either 16 or 32 bytes for λ of 128 or 256 bits, respectively.

smaller tags consisting of only one group G element, at the cost of losing composition of programs,

and by turning the KeyGen operation slower because of the necessary D exponentiations.

It is also not a surprise to see that the Vrfy times do not differ much from the circuit evaluation,

with the introduction of only a small overhead responsible for the algebraic computations.

Regarding the results of Pinocchio’s polynomials in Table 6.4, their circuit evaluation consists of

a much larger number of gate multiplications than our randomly generated polynomials. Because of

this, their circuit evaluation takes more time which makes both the homomorphic evaluation Eval and

Vrfy slower.
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The full source code and the respective documentation is available online as a Git repository3.

3https://bitbucket.org/ntfc/cf-homomorphic-mac/overview

https://bitbucket.org/ntfc/cf-homomorphic-mac/overview


Chapter 7

Conclusion

We now present a comprehensive synthesis of all the work accomplished, as well as what could

be done in the future in order to further enhance this work.

Once the objectives of this dissertation were defined, we started studying some interesting prim-

itives regarding delegation of computations. We did an informal review of Homomorphic Encryption,

Verifiable Computation and Succinct Non-Interactive Arguments of Knowledge, as well of Homomor-

phic Authentication.

All of these primitives need some way to represent the computations so that both clients and

servers are able to execute or verify them. The common way of doing it is by using a circuit represen-

tation of the program – boolean or arithmetic. We also studied two tools that are able to convert code

from higher level languages to an equivalent circuit representation.

We then proceeded to perform a more detailed analysis of Homomorphic Authentication, spe-

cially Homomorphic Signatures and Homomorphic MACs. We were able to list and understand their

current limitations in both security and practicability, which lead us to the conclusion that Homomor-

phic Signatures are not yet practical nor totally secure.

We then chose to implement the two constructions of Catalano and Fiore [CF13] because they

seemed to be ones with more practical application. Our main focus was on determining if the homo-

morphic computation of a function (to obtain a MAC) was practical so that it could easily be computed

by a more powerful external machine.

In order to achieve efficient results, we had to study an efficient method for the multiplication of

two polynomials inΘ(n logn) time: the Fast Fourier Transform. This faster method becomes specially

critical when the degree of the polynomials is high.
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Finally, after having an implementation of Catalano and Fiore [CF13] in C, and by using the FFT for

polynomial multiplications, we were ready to measure its performance by using random polynomials,

described as arithmetic circuits.

As we stated in the previous chapter, the obtained results were very positive, which means that

Catalano and Fiore [CF13] is practical. The major problem is within the homomorphic computation

as expected, but if we consider that these computations are supposed to be executed by a powerful

machine, our results seem very good.

7.1 Future work

From a practical point of view, there are many possible things that could be done in the future.

The first and the most obvious one is to implement the work of Backes, Fiore, and Reischuk [BFR13],

which we could use to obtain an efficient verification algorithm (in the amortized sense).

One other area with room for improvement is the size of the input messages we use, which now

is only of 128 and 256 bits. If we supported bigger message sizes we would be able to use more practical

message values. A possible solution would be the use of a Luby and Rackoff [LR88] construction (using

AES as the round function) that would allows us to use messages up to 512 bits.

Another interesting work would be the creation of a library with support for various Homomor-

phic Authentication primitives, much like the efforts done with HELib1for Homomorphic Encryption.

Such library could also be developed further to offer a better integration with Pinocchio or TinyRAM

to easily convert C programs into arithmetic circuits.

1https://github.com/shaih/HElib

https://github.com/shaih/HElib
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