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Abstract

Polymer processing usually requires several experimentation and calibration attempts
to lead to a final result with the desired quality. As this results in large costs, software
applications have been developed aiming to replace laboratory experimentation by computer
based simulations and hence lower these costs. The focus of this dissertation was on one
of these applications, the FlowCode, an application which helps the design of extrusion
forming tools, applied to plastics processing or in the processing of other fluids. The original
application had two versions of the code, one to run in a single-core CPU and the other for
NVIDIA GPU devices.

With the increasing use of heterogeneous platforms, many applications can now benefit
and leverage the computational power of these platforms. As this requires some expertise,
mostly to schedule tasks/functions and transfer the necessary data to the devices, several
frameworks were developed to aid the development - with StarPU being the one with more
international relevance, although other ones are emerging such as DICE.

The main objectives of this dissertation were to improve the FlowCode, and to assess the
use of one framework to develop an efficient heterogeneous version.

Only the CPU version of the code was improved, by first applying techniques to the
sequential version and parallelizing it afterwards using OpenMP on both multi-core CPU
devices (Intel Xeon 12-core) and on many-core devices (Intel Xeon Phi 61-core). For the
heterogeneous version, StarPU was chosen after studying both StarPU and DICE frame-
works.

Results show the parallel CPU version to be faster than the GPU one, for all input
datasets. The GPU code is far from being efficient, requiring several improvements, so
comparing the devices with each other would not be fair. The Xeon Phi version proves to
be the faster one when no framework is used.

For the StarPU version, several schedulers were tested to evaluate the faster one, leading
to the most efficient to solve our problem. Executing the code on two GPU devices is 1.7
times faster than when executing the GPU version without the framework on one input
dataset. Adding the CPU to the GPUs of the testing environment do not improve execution
time with most schedulers due to the lack of available parallelism in the application. Globally,
the StarPU version is the faster one followed by the Xeon Phi, CPU and GPU versions.
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Resumo

O processamento de polímeros requer normalmente várias tentativas de experimentação
e calibração de modo a que o resultado final tenha a qualidade pretendida. Como isto
resulta em custos elevados, diversas aplicações foram desenvolvidas para substituir a parte
de experimentação laboratorial por simulações por computador e consequentemente, reduzir
esses custos. Este dissertação foca-se numa dessas aplicações, o FlowCode, uma aplicação
de ajuda à conceção de ferramentas de extrusão aplicada no processamento de plásticos ou
no processamento de outros tipos de fluidos. Esta aplicação inicial era composta por duas
versões, uma executada sequencialmente num processador e outra executada em aceleradores
computacionais NVIDIA GPU.

Com o aumento da utilização de plataformas heterogéneas, muitas aplicações podem
beneficiar do poder computacional destas plataformas. Como isto requer alguma experiên-
cia, principalmente para escalonar tarefas/funções e transferir os dados necessários para os
aceleradores, várias frameworks foram desenvolvidas para ajudar ao desenvolvimento - sendo
StarPU a framework com mais relevância internacional, embora outras estejam a surgir como
a framework DICE.

Os principais objetivos desta dissertação eram melhorar o FlowCode assim como avaliar
a utilização de uma framework para desenvolver uma versão heterogénea eficiente.

Apenas a versão CPU foi melhorada, primeiro aplicando técnicas na versão sequencial, e
depois procedendo à paralelização usando OpenMP em CPUs multi-core (Intel Xeon 12-core)
e aceleradores many-core (Intel Xeon Phi 61-core). Para a versão heterogénea, foi escolhido
a framework StarPU depois de se ter feito um estudo das frameworks StarPU e DICE.

Os resultados mostram que a versão CPU paralela é mais rápida que a GPU em todos os
casos testados. O código GPU está longe de ser eficiente, necessitando diversas melhorias.
Portanto, uma comparação entre CPUs, GPUs e Xeon Phi’s não seria justa. A versão Xeon
Phi revela-se ser a mais rápida quando não é usada nenhuma framework.

Para a versão StarPU, vários escalonadores foram testados para avaliar o mais rápido,
levando ao mais eficiente para resolver o nosso problema. Executar o código em dois GPUs
é 1.7 vezes mais rápido do que executar para um GPU sem framework em um dos casos
testados. Adicionar o CPU aos GPUs do ambiente de teste não melhora o tempo de execução
para a maioria dos escalonadores devido à falta de paralelismo disponível. Globalmente, a
versão StarPU é a mais rápida seguida das versões Xeon Phi, CPU, e GPU.
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Chapter 1

Introduction

1.1 Context

Polymer processing is a pipelined process that usually requires several experimentation
and calibration attempts to produce satisfactory results, since different flow restrictions pro-
mote unbalanced flow problems. These lab procedures lead to high pre-production costs.
Software based simulations have been developed to reduce these costs. One of these simula-
tors is FlowCode [Gonçalves, 2014], which helps to simulate the extruder and cooling phases
of the process. FlowCode is also the starting application code for this dissertation work.

In recent years, due to the increasing innovation and performance obtained by the pro-
cessors, the scientific community also increased the demands, trying to solve more complex
and larger dimensional problems which also led to the increasing computing power again.
This can be seen as an infinite cycle. However, the process of increasing the computational
power is not as easy as it was before when it was “only needed” to increase processor clock
frequency. This process reached its end since the processors started to consume too much
energy and to produce too much heat. To increase performance, processors with multiple
cores appeared with each core running at a slightly lower frequency than their “heavy” single
core predecessors. This level of parallelism evolved into multiple multi-core CPUs into one
system, each one with its own dedicated main memory (following a Non-Uniform Memory
Access (NUMA) architecture) and attaching computing accelerators. These added a few
constraints such as their computing architecture, specific programming languages, compilers
and memory locality and affinity questions. Programming some of these new devices may
require now a different model due to a different architecture. To help developing parallel
applications for typical CPUs and also other computing accelerators, libraries and technolo-
gies were deployed such as OpenMP and Intel TBB for CPUs and Compute Unified Device
Architecture (CUDA)1 for Graphics Processing Units (GPUs).

Nowadays, parallelism is the way to go, either by increasing the number of cores of each

1http://www.nvidia.com/object/cuda_home_new.html

1
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CHAPTER 1. INTRODUCTION

device or by using multiple distinct devices at the same time - these are called heterogeneous
platforms. These platforms contain different architectures, from multi-core CPUs to comput-
ing accelerators such as the NVIDIA GPUs and the Intel Many Integrated Core (MIC) family
of devices. More “exotic” accelerators are also making their way into the main stream, such
as Field-Programmable Gate Arrays (FPGAs) and some Digital Signal Processors (DSPs).
Deploying applications in these platforms may be a challenge, since each device may have
different programming and memory models.

Frameworks have been designed and built to aid the development of applications that
efficiently use this mix of computing units. These include StarPU [Augonnet et al., 2009] -
the one that gets more international credit - and Dynamic Irregular Computing Environment
(DICE) [Barbosa et al.], a more recent one, which provides support for fewer architectures
and was previously known as GPU And Multi-core Aware (GAMA) [Barbosa, 2012]. Both
have a task-based unified programming and execution model which abstracts the different
models/architectures of the underlying devices on heterogeneous platforms. Since all devices
have their private memory, these frameworks provide a global memory management and also
a workload scheduler, which allows to dynamically assign work to each device at each time
step. Although both these frameworks have similar goals, they have differences on their
implementation and focus on different techniques to deploy a very efficient application code
and execution environment. As heterogeneous systems have different types of devices, it is
important to try and use them all to leverage the computing power of these systems. This
is also one of the main objectives of these frameworks. Furthermore, the capacity to run on
distinct heterogeneous platforms with only one application and to obtain a good performance
on all makes these frameworks desirable.

Scientific applications such as the FlowCode, which require heavy computations consum-
ing large amounts of time, are good real case studies to validate the usefulness of these
frameworks. The FlowCode application has main two components: a CPU version which
only runs in a single core and a GPU version, that due to the parallel nature and high floating
point peak performance of the device, runs several times faster. However, the execution of
these versions of FlowCode on heterogeneous platforms do not leverage all computing power
these platforms provide, since they cannot run on multiple devices at the same time. More-
over, the continuous innovation requirements and the need to solve larger and more complex
problems is another difficulty that makes the use of all heterogeneous platform devices even
more needed.

1.2 Motivation & Goals

The main contributions of this dissertation work is twofold: (i) to parallelize and improve
the efficiency of the original single-core/single-threaded version of FlowCode and (ii) to

2



1.3. DISSERTATION OUTLINE

analyze and evaluate the frameworks StarPU and DICE, stressing their main strengths and
weaknesses and suggesting further improvements to their current status.

It also contributes with an improved version of the FlowCode for execution on multi-core
CPUs and MIC accelerators complemented with suggestions of improvements of the GPU
version.

The main outcome of this dissertation is an heterogeneous application that simultaneously
runs on both CPUs and GPU accelerators. Several conclusions are also discussed on the
different scheduler performance with suggestions to further improve all versions. This new
version outstands all previous ones by executing faster all tested input datasets.

A note is required to state that the GPU version has a potential to improve its execution
time, if some extra time is allocated to better tune the code and associated data structures.

1.3 Dissertation outline

This document has six chapters. Chapter 2 introduces the FlowCode application to be
optimized and ported to heterogeneous systems, whereas chapter 3 discusses the technologies
used in this dissertation, namely the concept of heterogeneous platforms and the types of
devices used in them, complemented by the development frameworks.

Chapter 4 presents the improvements performed on the sequential version and shows the
techniques used to create an heterogeneous application using the StarPU framework.

Chapter 5 shows the profiling results obtained with the different versions of the FlowCode
with particular focus on various StarPU schedulers and their impact on overall performance.

Conclusions about the work done are presented in chapter 6 which also gives suggestions
for future work.

At the start of each chapter, there is an introductory text that shows relevant information
and explains the structure of that chapter. This aims to remind the reader of the content of
the chapter and allows to search information faster. Similarly, a summary is included at the
end of each chapter to quickly resume the relevant outcomes of that chapter.

3
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Chapter 2

FlowCode: numerical modeling of
extrusion forming tools

This chapter introduces the main application of this dissertation which is composed of
two versions – a single CPU core application and a GPU one. It is a simulator applica-
tion that helps the design of extrusion forming tools focusing the extruder and calibration
phases of the pipeline process and helping to minimize real production costs, by reducing
manual and experimental attempts. This chapter explains the methodology employed by
the application.

2.1 The Role of the FlowCode Application

Polymer processing is usually done in several experimentation and calibration attempts
throughout a pipelined process that consists of several stages, typically extruder, extrusion
die, calibration and cooling system, haul-off and saw. The final result is usually not the
expected one by the end of the first trial, because different restrictions to flow, among other
problems, promote unbalanced flow leading to an irregular profile. Several experimental
trials need to be performed until the process and input values are sufficiently tuned. These
experiments represent a large cost, mainly because the production process must be stopped
to use the extruder to perform tests. However, computer science emerged in almost all
areas, including polymer engineering and thus, many experiments passed from laboratorial
ones to computer based simulations. The first experimental attempts are performed using
applications before being validated in laboratory with the extruder.

The software studied in this work is one of the many applications that have been devel-
oped with the aim of solving this kind of problems. This application [Gonçalves, 2014] is able
to perform 3D simulations of incompressible flow of newtonian and generalized newtonian
fluids (FlowCode will be used for short to represent this application in this dissertation)
which are necessary in the extrusion process [Carneiro and Nóbrega, 2012].

5



CHAPTER 2. FLOWCODE: NUMERICAL MODELING OF EXTRUSION FORMING
TOOLS

Several elements such as fluids (and their properties) are involved in this process. Fluids
have various properties which affect the final result of the final processing. For instance, the
viscosity property of a fluid affects its resistance to deformation. Newtonian fluids have this
value always constant (unless by changing the temperature), while in non-newtonian fluids
the viscosity may change. A fashion to model non-newtonian fluids are the generalized
newtonian fluids, using the same governing equations and updating the viscosity with some
function. This viscosity property can be seen in several examples. Oobleck (cornstarch and
water) is a fluid that belongs to the non-newtonian fluids category while water belongs to
the newtonian fluids category. While doing different amounts of pressure on water does not
change its reaction (it will splash more or less), oobleck will react differently for different
quantities of pressure. For less pressure, the oobleck will act as a liquid while for high
pressure it will almost react as a solid (its viscosity is different). This is one of several
characteristics fluids may have, and that the application needs to have into account in the
extrusion process, when computing the flow distribution in the simulation. Otherwise, the
flows can be wrongly predicted.

The FlowCode helps calculating the flow distribution at the outlet of the extrusion die
by tacking into account the properties of the fluids used and the environment where they
are processed. The different velocities in several sections at the outlet indicates an unbal-
anced flow distribution which leads to an incorrect profile. Therefore, several changes to
the die geometry must be performed to achieve more constant velocities and a uniform flow
distribution.

[Gonçalves et al., 2013] describe the main characteristics of the application and verify
the correctness of the results obtained using three typical benchmarks. They also show the
usefulness of the application to improve the flow distribution of a medical catheter.

2.1.1 Governing Equations

Depending on the assumptions made about the type of fluids used and their properties,
several equations must be taken into account to describe the fluid flow. The main equa-
tions used are the Navier-Stokes equations which describe the motion of fluid substances.
Other equations are used to represent the particular characteristics of non-isothermal and
non-Newtonian fluids. These equations can be different depending on the fluids physical
assumptions that are made but are generally based on the “convervation” of “momentum”.

Momentum Conservation Equation

This equation is derived from “Newton’s Second Law” and states that “the rate of change
of momentum of a fluid particle equals the sum of the forces on that particle”.

∂(ρui)

∂t
+
∂(ρujui)

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

(2.1)

6



2.1. THE ROLE OF THE FLOWCODE APPLICATION

where ρ is the density, ui the ith velocity component, p the pressure and τ is the stress
tensor which is calculated by another function and depends on the type of fluids and their
viscosity property η.

As stated before, the viscosity of each fluid may depend on its temperature and is given
by viscosity models such as “Power-law” and “Carreau”.

Mass Conservation Equation

This equation is also called “continuity equation” and for incompressible flows, is given
by:

∂ui
∂di

= 0 (2.2)

This equation states that the system mass must remain constant over time if mass is not
added nor removed from the system. Therefore, the mass remains the same over time.

Energy Conservation Equation

This equation states that the total energy of an isolated system cannot change, i.e, energy
cannot be created nor destroyed.

∂(ρcT )

∂t
+
∂(ρcujT )

∂xj
− ∂

∂xj

(
k
∂T

∂xj

)
= Su (2.3)

where u is the velocity, c the specific heat, k the thermal conductivity (which depends on
temperature) and Su the source terms.

General Differential Conservation Equation

The three governing equations presented may be written as a “General Differential Con-
servation Equation” for a given property φ.

∂(pφ)

∂t
+
∂(pujφ)

∂xj
− ∂

∂xj

(
Γ
∂φ

∂xj

)
= Su (2.4)

where Γ is the diffusion coefficient and Su is the source term of property φ. This general
equation is a practical approach to solve the governing equations and comprises four terms
which are respectively, the unsteady term, the adjective term, the diffusive term and the
source term.

Boundary conditions are needed to solve differential equation problems - such as this one
- in addition to initial guesses if a iterative solver is used.

7



CHAPTER 2. FLOWCODE: NUMERICAL MODELING OF EXTRUSION FORMING
TOOLS

2.1.2 Boundary Conditions

These are conditions imposed to simulate the properties and behavior of the system’s
boundaries. Gonçalves describes the possible boundary conditions existent, which are ini-
tially set according to the type of simulation intended simulation.

For the momentum conservation and continuity equations, the boundary conditions are:

• Inlet : Imposed velocity - ui = u0i

• Outlet : Null normal gradient -
∂ui
∂xj

nj = 0

• Wall : no-slip condition - ui = 0

• Symmetry : imposed velocity just with tangential component - uini = 0

For the energy conservation equation, the boundary conditions are:

• Imposed temperature : T = T 0

• Insulated and symmetry :
∂T

∂xi
ni = 0

• Natural convection : k ∂T
∂xi
ni = α(T∞ − Tf ) where α is the convection heat transfer

coefficient at face f , T∞ is the environment temperature and Tf the boundary face
temperature

• Contact between two domains : k
∂T

∂xi
ni = hf (Tf1 − Tf2), where hf is the heat

transfer coefficient at face f , Tf1 and Tf2 are the temperature of the contact faces f1

and f2, respectively.

2.1.3 Discretized System of Equations

The equations that govern the flow and energy transfer were presented leading to equation
2.4. The next step is to discretize the equation over each control volume of a mesh - which
models the physical domain of the problem to solve - at each time step using one of several
methods available. This allows to represent continuous and infinite models into discrete
ones, which can be finitely represented. The most common methods are the Finite Element
Method (FEM), Finite Difference Method (FDM) and the Finite Volume Method (FVM).
The FlowCode uses the FVMmethod as it is usually used to derive numerical approximations
for unstructured meshes.

Meshes are composed by two parts, the geometry and the topology. The former represents
the positions of each element (x, y, z in the case of 3D meshes) while the latter represents
how each element is connected to each other. For structured meshes, the topology is known
and it is given by a regular pattern and thus is not stored in any datastructure. However,
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unstructured meshes do not have regular pattern and the connectivity of each node (topol-
ogy) must be stored in a datastructure. Structured meshes allow an easy improvement and
parallelization process whereas unstructured meshes do not, since the indirect accesses (to
know the connectivity) of mesh elements result in high cache miss rates.

The FlowCode application uses 3D unstructured meshes since they allow to represent
more complex geometries which are used in polymer processing. The ability to refine the
mesh is essential since they can provide better results on critical parts of the simulation
process. The mesh is stored using several datastructures that comprises three arrays which
store faces, boundary faces and cell components of the system. The input meshes are created
using GMSH [Geuzaine and Remacle, 2009]. This program allows to generate two and three
dimensional meshes, using various different types of elements and faces, such as triangles and
tetraedras. The mesh elements are enumerated using gmsh which do not provide a efficient
enumeration algorithm, i.e, it may not assure that neighbor elements are enumerated and
closely stored in memory which may penalize the application’s performance.

Discretizing the “General Differential Convervation Equation” over space and time, using
the FVM method, leads to the linear system of equations 2.5, that can be solved by iterative
methods.

aPφP =
∑
nb

anbφnb + Su (2.5)

The FlowCode assembles each term independently, by computing the contributions of
each control volume aP and by performing a summation of the contributions of the cell’s
neighbors anb. The source term contributions (Su) come from boundary, pressure gradient,
or contributions obtained with values of previous iterations (or initial values). The adjec-
tive term as well as other contributions like the pressure gradient are computed using the
“Least Squares Gradient Reconstruction” method, which uses the gradient computed with
information from cell centers and its neighbors. Since the contribution of the cells to the
gradient depends only on the geometry, which does not change during the execution, it can
be computed only once at each control volume at the beginning of the execution.

However, the equation 2.5 is not enough to solve the fluid flow distribution problem. The
velocity and pressure variables must be calculated but, despite the four equations available
(three “Momentum Conservation Equation” and one “Mass Conservation Equation”) this is
not possible due to some constraints of the governing equations. The system presented is non-
linear, which means that the unknowns appear as variables of a polynomial of degree higher
than one. The “Momentum Conservation Equation” multiplies two velocity components (for
inner faces and cell centers) and the pressure-gradient field is also not known.

9
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2.1.4 The SIMPLE

To solve the problem stated, the SIMPLE method was used. This method begins with
a guessed velocity and pressure to compute the “Momentum Conservation Equations” ob-
taining a new velocity at the cell centers. The boundary faces are updated using this new
velocity by taking into account the boundary conditions presented in section 2.1.2. At this
point, the faces velocities must be corrected which is done by solving a pressure-correction
equation. With the result of this equation, the “guessed” pressures and velocities may now
be corrected. Algorithm 1 presents the pseudo-code for the SIMPLE algorithm.

Algorithm 1 The SIMPLE algorithm
1: Initial guesses (for velocity (u(0), v(0) and w(0) components) and pressure p(0))
2: Solve momentum conservation equations to find u∗, v∗ and w∗
3: Update inner faces velocities
4: Solve pressure-correction equation
5: Correct pressure and velocities
6: Update CVs viscosity
7: Solve energy conservation equations to find T (temperature)
8: Return to the first step assuming the correct pressure (p) as a guess pressure (p∗).

The stage 8 of the algorithm happens each time the convergence criteria is not met.
The convergence criteria used in the application depends on external residual minimum
values for all the systems of equations solved. If all residues are lower than the residual
value set by the user, the application stops the execution. Otherwise, a new iteration is
performed. Sometimes, the solution is not computed due to slow convergence. For this
reason, a maximum number or iteration of the SIMPLE method is imposed by the user.

2.2 Iterative Solvers

Before solving the systems of linear equations, all necessary elements need to be assem-
bled, which includes the matrix A and the independent term b. Different methods may or
may not converge even for the same matrix (depending on the matrix’s characteristics, e.g,
symmetric, positive definite, banded, etc). For the FlowCode application, there are several
possibilities to solve the systems of equations. For the purpose of making a fair comparison
between the CPU and GPU application throughout the development of the code, and be-
cause the implementation of other algorithm was a difficult challenge to implement on the
GPU, the developer chose to solve the equations using the Jacobi algorithm which converge
slower than other alternatives.

There are several alternatives that can replace the Jacobi algorithm to improve the ap-
plication’s performance. All iterative methods need to solve a system that have the general
form of (2.6) where A is a matrix (sparse in the FlowCode application) that stores the
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coefficients, x is the vector solution of the system and b is the right hand-side.

Ax = b (2.6)

2.2.1 Jacobi, Gauss-Seidel and SOR

The Jacobi method is perhaps the most famous algorithm to solve systems of equations,
but it is also one of the slower ones in terms of convergence. This method solves the system
of equations where each equation is represented by (2.7).

xk+1
i =

1

aii

[
bi −

i−1∑
j=1

aijx
k
j −

n∑
j=i+1

aijx
k
j

]
(2.7)

where k is the iteration number and i, the ith equation in the system. The left part of the
system contains the contributions of xi and the righ-hand side contains the other contri-
butions. The algorithm 2 presents the entire method. This method requires an auxiliary
array x̄ to store the values of the current iterations while the x variable stores the values
of the previous iteration. The iterations are independent of each other which allow an easy
parallelization of the method. All algorithms presented in this section appear in [Barrett
et al., 1994].

Algorithm 2 Jacobi algorithm
1: Choose an initial guess x(0) to the solution x
2: for k = 1, 2, ... do
3: for i = 1, 2, ..., n do
4: x̄i = 0
5: for j = 1, 2, ..., i− 1, i+ 1, ..., n do
6: x̄i = x̄i + ai,jx

(k−1)
j

7: end for
8: x̄i = (bi − x̄i)/ai,i
9: end for

10: x(k) = x̄
11: check convergence; continue if necessary
12: end for

Similar and better alternatives are the Gauss-Seidel method and SOR (Successive Over
Relaxation). Unlike the Jacobi method, these alternatives converge faster because they use
the latest updates from the same iteration as represented in (2.8).

xk+1
i =

1

aii

[
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

]
(2.8)

Algorithm 3 shows the complete Gauss-Seidel algorithm according to [Barrett et al.,
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1994]. Unlike the Jacobi method, the iterations are not independent since each equation
depends on all previous computed components (which belong to the same iteration).

Algorithm 3 Gauss-Seidel algorithm
1: Choose an initial guess x(0) to the solution x
2: for k = 1, 2, ... do
3: for i = 1, 2, ..., n do
4: σ = 0
5: for j = 1, 2, ..., i− 1 do
6: σ = σ + ai,jx

(k)
j

7: end for
8: for j = i+ 1, ..., n do
9: σ = σ + ai,jx

(k−1)
j

10: end for
11: x

(k)
i = (bi − σ)/ai,i

12: end for
13: check convergence; continue if necessary
14: end for

Successive Over Relaxation is similar to the Gauss-Seidel method and differs only by
applying a relaxation term in each iteration. Equation (2.9) shows this difference.

xk+1
i = (1− ω)xki + ω

1

aii

[
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

]
(2.9)

The algorithm 4 show the Successive Over Relaxation method.

Algorithm 4 SOR algorithm
1: Choose an initial guess x(0) to the solution x
2: for k = 1, 2, ... do
3: for i = 1, 2, ..., n do
4: σ = 0
5: for j = 1, 2, ..., i− 1 do
6: σ = σ + ai,jx

(k)
j

7: end for
8: for j = i+ 1, ..., n do
9: σ = σ + ai,jx

(k−1)
j

10: end for
11: σ = (bi − σ)/ai,i
12: x

(k)
i = x

(k−1)
i + ω(σ − x(k−1)i )

13: end for
14: check convergence; continue if necessary
15: end for
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2.2.2 Stopping Criteria

All algorithms presented must have a stopping criteria which indicates when to stop
iterating. There are several ones, but the most common ones are presented in (2.10) and
(2.11).

||b− Axk||2 ≤ ε (2.10)

||b− Axk||2
||b− Ax0||2

≤ ε (2.11)

where ε is the residual term. The algorithms will stop if this value is less than a predefined
one. As can be seen, most operation performed by these methods are matrix-vector products
(also known as BLAS 2 operations). These operations are memory-bound and are generally
harder to achieve great performance results.

2.2.3 Preconditioned Conjugate Gradient

Another algorithm which is faster than the other ones presented is the Conjugate Gradi-
ent (CG) method which makes part of the Krylov subspaces algorithm type. This method
generates vector sequences of iterates and residuals by using search directions to allow the
approximation to the solution. This algorithm can only be used in situations where the ma-
trix is symmetric and positive definite and may be performed by solving the steps presented
in algorithm 5 using a preconditioner M .

Algorithm 5 The Preconditioned Conjugate Gradient Method
1: Compute r(0) = b− Ax(0) for some initial guess x(0)
2: for i = 1, 2, ... do
3: solve Mz(i−1) = r(i−1)

4: ρi−1 = r(i−1)
T
z(i−1)

5: if i = 1 then
6: p(1) = z(0)

7: else
8: βi−1 = ρi−1/ρi−2
9: p(i) = z(i−1) + βi−1p

(i−1)

10: end if
11: q(i) = Ap(i)

12: αi = ρi−1/p
(i)T q(i)

13: x(i) = x(i−1) − αip
(i)

14: r(i) = r(i−1) − αiq
(i)

15: check convergence; continue if necessary
16: end for

Each iterate is multiplied by a multiple (α) of the search direction vector p(i) while the
residuals of each iteration are computed as: r(i) = r(i−1) − αip

(i). The CG method stops if
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this value is smaller than the predefined one.

2.2.4 GMRES

The Generalized Minimal Residual (GMRES) algorithm was developed by Yousef Saad
and Martin Schultz [Saad and Schultz, 1986; Saad, 2003] and contrary to the CG method,
this has purpose of solving nonsymmetric system of linear equations. The most important
drawback of this method is that the storage required per iteration increases linearly. For
this reason, this method must be “restarted” at each “n” iterations. The last results obtained
are the initial ones for each restart. The method may perform excessive work and use more
storage for a large “n” and may take some time to converge (or even fail) if “n” is to small.
Saad and Schultz state that choosing the best “n” is a matter of experience (and that no rule
exists to compute this value). Algorithm 6 shows the preconditioned GMRES method. For
more information about iterative solvers, refer to [Saad, 2003; Barrett et al., 1994]

Summary

This chapter introduced the case study, an application which performs the simulation of
incompressible flow of newtonian and generalized newtonian fluids for extrusion purposes.
This application aids the forming tools creation process which is used on polymer production.
This is done by solving the SIMPLE iterative method which relies on several linear systems
of equations to compute the velocity, pressure and temperature components of the governing
equations. The main purpose of this application is to minimize costs of production, by
lowering the number of manual experiments.
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Algorithm 6 The Preconditioned GMRES(m) Method
1: x(0) is an initial guess
2: for j = 1, 2, ... do
3: solve r from Mr = b− Ax(0)
4: v(1) = r/||r||2
5: s := ||r||2e1
6: for i = 1, 2, ...,m do
7: solve w from Mw = Av(i)

8: for k = 1, ..., i do
9: hk,i = (w, v(k))

10: w = w − hk,iv(k)
11: end for
12: hi+1,i = ||w||2
13: v(i+1) = w/hi+1,i

14: apply J1, ..., Ji−1 on (h1,i, ..., hi+1,i)
15: construct J1, acting on ith and (i + 1)st component
16: of h.,i, such that (i + 1)st component of Jih.,1 is 0
17: s := Jis
18: if s(i+ 1) is small enough then (UPDATE(x̃, i) and quit)
19: end for
20: UPDATE(x̃,m)
21: end for
22:

23: In this scheme UPDATE(x̃, i)
24: replaces the following computations:
25:

26: Compute y as the solution of Hy = s̃, in which
27: the upper i ∗ i triangular part of H has hi,j as
28: its elements (in least squares sense if H is singular),
29: s̃ represents the first i components of s
30: x̃ = x(0) + y1v

(1) + y2 + ...+ yiv
(i)

31: s(i+1) = ||b− Ax̃||2
32: if x̃ is an accurate enough approximation then quit
33: else x(0) = x̃
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Chapter 3

The Computational Environment

This chapter presents the concept of heterogeneous parallel platforms and why they be-
came popular in recent years by showing their main characteristics and the most relevant
devices available nowadays. It also shows and explain the StarPU and DICE frameworks,
that aid the development of code for efficient use of heterogeneous resources. Each frame-
work has the same goals and uses common techniques, but they also have slightly different
approaches for code execution, which are also explained in this chapter.

3.1 Heterogeneous Parallel Platforms

CPUs have always been part of the High Performance Computing (HPC) community.
These are general purpose processors that aim to efficiently execute code, independently of
the type of problem, data structure and algorithm. Although their performance is fairly
good, in recent years, the community turned its attention into massively parallel devices
such as GPUs (mostly from NVIDIA), originally aimed to execute graphical tasks such as
creating and rendering images. These devices have a different architecture and can execute
a great number of computations (or floating point operations) per second. Recently, Intel
also developed a new massively parallel device to execute a very large number of floating
point operations per second, the Intel Xeon Phi in the MIC architecture family. Both these
devices can be considered as computing accelerators since they aim to speed up the most
heavier parts of an application, usually kernels and well known numerical algorithms.

Nowadays, most desktops and laptops contain CPUs and may contain more than one
GPU; even smartphones contain GPUs. An increasing number of supercomputers in the
TOP5001 list have compute nodes that contain both CPUs and computing accelerators,
either NVIDIA GPU or Intel Xeon Phi. These are considered heterogeneous parallel plat-
forms in this dissertation (see figure 3.1) since they contain several devices from different
architectures that can execute code in parallel.

1Visit http://www.top500.org/ to see the list.
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One of the problems with these systems is that heavy numerical computing tasks are
often offloaded to the accelerators, namely, expensive functions that can be (relatively) easily
parallelized, while the CPU(s) cores are kept idle most of execution time of the program.

CPU chip

Interface

Core

Memory

CoreCore

Core

LL cache

Core

CoreCore

Core

LL cache

Core

CoreCore

Core

LL cache

CPU chip

Core

CoreCore

Core

LL cache

Memory

MemoryMemory

AccDevice

LL cache

AccDevice

LL cache

Figure 3.1: An Heterogeneous Parallel Platform

The main challenge is to have programs executing on both CPU cores and accelerators
at the same time and further increase the performance of applications. Several frameworks
have been created to help solve this challenge such as StarPU and DICE. These frameworks
will be discussed further on section 3.4.

To get high performance from these devices is a hard task. There is a great effort trying
to reduce the gap between the execution times of the applications and the maximum per-
formance the hardware provides (in heterogeneous platforms, it is the sum of the maximum
performance every component can provide).

This is a problem that has not been solved yet due to many reasons. Accelerator devices
introduce many hardware constraints, most of them related to memory limitations, execu-
tion model and the fact that accelerators and CPUs do not share the same memory (the
communication interface showed in figure 3.1 is usually a bottleneck). These limitations do
not allow a traditional multi-threaded approach. Furthermore, because accelerators feature
their own instruction set and a specific execution model, the code offloaded to these co-
processors must be generated by a specific compiler and may be completely different from
the code compiled for the regular cores (this is not the case for the Xeon Phi accelerator).
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Moreover, moving data from main memory to “device” memory takes a significant time and
it is another critical task the frameworks must provide.

Although some less positive aspects have been discussed, the creation and use of special-
ized hardware such as accelerators or coprocessors is interesting and needed, since it serves
to overcome limits faced by the traditional processor microarchitecture.

3.2 Computing Accelerators

The two most popular accelerators were introduced in the previous section, the NVIDIA
GPU and the Intel Xeon Phi which had become popular in the HPC community (see the
past TOP5002 list). These will be detailed below.

3.2.1 GPU and CUDA Programming Model

The most known GPUs are from NVIDIA, although AMD also produces this type of
accelerators. Both have a similar architecture with the difference that NVIDIA GPUs can
be programmed using either CUDA or OpenCL, while AMD GPUs can only be programmed
using OpenCL. This dissertation focus only on NVIDIA GPUs and the CUDA programming
model since they are the most used actually. Therefore, all GPU references hereafter are
relative to NVIDIA GPUs.

These devices have a different architecture and programming model, which means that
they require a different programming approach which is known as CUDA C – a C extension.
The GPUs were previously used only in graphics processing, mainly in video content and
games. But their great computing performance, namely in vector operations, lead to a
new generation of GPUs called General Purpose Graphics Processing Units (GPGPUs).
Nowadays, there are two version of GPUs, one aiming graphics boards and the other one
aiming high performance computing – known as Tesla GPUs.

Before presenting the CUDA programming model, the GPU architecture is presented
and detailed since it hugely differs from “normal” architectures. At the time this document
was written, there are three generation of high performance computing GPUs, namely Tesla,
Fermi and Kepler. They all have similar characteristics but they differ mostly in terms of
number of simple cores and capacity. The latter is the more powerful device available. As
one of the devices used in this dissertation is a Kepler, its architecture is explained along
with the Fermi to compare them and show their main differences.

Each device contain a variable number of Streaming Multiprocessors (SMs) for Fermi
or Next Generation Streaming Multiprocessors (SMXs) for Kepler. The architecture of the
Kepler device is shown in figure 3.2.

2http://www.top500.org/
3http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
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Figure 3.2: Kepler Architecture – full chip3

The figure shows 15 SMXs that share a level 2 cache and that are connected to memory
by 6 memory controllers that allow a great memory bandwidth.

The architecture of a SMX can be see in figure 3.3. Each SMX contains 192 single-
precision floating-point compute elements (more commonly known as CUDA cores). Apart
from that, they contain 64 double-precision units, 32 Special Function Units (SFUs), and 32
load/store units. They can provide a little more than one Teraflop of double precision peak
performance and almost four Teraflops in the case of single precision. NVIDIA claims that
the main performance difference between the single and double precision operations is that
single precision peak performance is twice the double precision one (in Fermi) and next to
3 times faster in Kepler.

There are also 4 warp schedulers and 8 dispatch units which provide work to each SMX.
More information about this terminology will be explained further on with the CUDA pro-
gramming model.

The GPUs execute CUDA kernels which are parallel implementations written in CUDA
C. A CUDA kernel is executed by a grid or array of threads (where each thread will be
executed by a CUDA core). All threads in a grid will run the same kernel code following a
Single Program Multiple Data (SPMD) approach. Each thread has indexes that are used to
compute memory addresses and make control decisions. The thread array (grid) is divided
in thread blocks that can contain a maximum of 1024 threads each in the last CUDA version.
To launch a kernel, both grid and thread blocks numbers must be provided.

The execution of a kernel will generate several thread blocks that will be assigned to the
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Figure 3.3: The SMX Architecture in Kepler

SMXs. Each block is further divided in sets of 32 threads called warps that are scheduled
and executed via the warp schedulers and dispatch units of each SMX which are showed in
figure 3.3. Each SMX can execute 4 warp (each warp executing two independent instructions
per clock-cycle).

Each SMX core has a private L1 cache (with 64 KB) and a read-only cache (with 48
KB). There is also the presence of a “shared memory” but this memory shares the physical
L1 cache memory. The user can configure the L1 cache memory to be:

1. 16 KB share memory and 48 KB L1 cache

2. 32 KB share memory and 32 KB L1 cache

3. 48 KB share memory and 16 KB L1 cache
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Previous versions of GPUs could only use configurations number 1 and 3. These caches
are not designed to reduce memory latency, but to allow high throughput. It is important
to notice that threads inside a block can share information using the “shared memory”
and threads in other blocks do not see or access this information. Unlike CPUs, GPUs
typically do not have branch prediction and data forwarding and the CUDA cores ALU’s are
heavily pipelined. The “Kepler” K20 has a maximum peak double precision floating point
performance of 1.17 Tflops and 3.52 Tflops for single precision according to the NVIDIA
“Kepler” family datasheet4.

In short, CPUs are best used in situations where latency matters, while the GPUs should
be used where parallelism is important (throughput). While this is true, having processing
power idle is not convenient and this is why the frameworks addresses this important topic.

For more information about Kepler and CUDA C, refer to [NVIDIA, 2012a,b] and
[NVIDIA, 2013a] respectively.

3.2.2 Intel Xeon Phi - MIC

Recently, another type of accelerator was developed by Intel. The Intel Xeon Phi be-
longs to a new generation of accelerators, following the MIC architecture. These processors
contain a large number of cores running at low frequency (1.1Ghz or less). They have the
great advantage that it is not needed to learn a new language to program the accelerators,
since they share similar features of common CPUs and can programmed using for example,
OpenMP [OpenMP Architecture Review Board, 2013] , MPI, Intel TBB or Pthreads. The

Figure 3.4: Xeon Phi core

more common number of cores is 60/61. As can be seen in figure 3.4, each core has a dual
issue pipeline and has support for 4 in-order instructions that shares 512KB of L2 cache.
Thus, the total amount of second level cache memory is more than 30MB for the entire

4http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
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coprocessor. The more powerful feature of the MIC is the vector processing unit of 512 bits,
allowing the execution of 8 double precision or 16 single precision operations in parallel (with
a Single Instruction Multiple Data (SIMD) approach). This is a difference over the GPUs.
While GPUs follow a SPMD/SIMT approach – that is, the same program is executed in
different data elements and each thread executes the same instruction respectively –, the
MIC uses a vector unit that executes the same instruction over different data elements at
the same time.

The floating point peak performance is given by:

• 16 (SP SIMD) x 2 (FMA) x 1.238 (GHz) x 61 (# cores) = 2.416 TFLOPS for single
precision arithmetic

• 8 (DP SIMD) x 2 (FMA) x 1.238 (GHz) x 61 (# cores) = 1.208 TFLOPS for double
precision arithmetic

Each core has also support for Fused Multiply-Add (FMA) and together with the vector
units, the Xeon Phi has a theoretical peak performance of more than 2 Teraflops for single-
precision and more than 1 Teraflop for double precision. These values indicate that the
Xeon Phi and Kepler K20 accelerators have a similar peak performance for double precision
arithmetic.

Also, it should be noted that the fact that the pipeline issue instructions in-order increases
memory related problems. For instance, when there is a stall on a thread, this thread needs
to wait for data to be fetched from memory, which generally takes many clock cycles for
each stall. Intel overcome this problem with hyper-thread 4-ways. Thus, when one thread
is waiting for data, another one may issue instructions.

3.3 Efficient Data Representation and Processing

The previous section showed that accelerators have different objectives and characteristics
from the ones of a CPU. Hence, data representation and processing may need to be different
to achieve good performance of each device. Several topics are relevant to address, and these
include memory locality, storage format and vectorization.

3.3.1 Memory Locality

Memory locality is relevant for both CPUs and accelerators to achieve good performance.
If consecutive accesses to sets of data are in contiguous memory locations, few fetches will be
needed to load the data into memory caches. However, memory locality is even more critical
to GPUs when threads of a warp try to fetch data. If the 32 threads accesses contiguous data
positions, a single fetch operation is needed by coalescing all accesses into a single request.
But if threads do not access contiguous positions, more fetch operations may be needed
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up to a maximum of 32. This is one of the main reasons why it is hard to achieve good
performance on the FlowCode or similar ones (and mostly on GPUs). The memory locality
also lead to the importance of data representation on data-structures, being the common
ones Array of Structures (AoS) and Structure of Arrays (SoA).

3.3.2 AoS VS SoA and Vectorization

AoS is a collection of contiguous structures. This has the advantage of having the in-
formation compactly represented. If some tasks need all data that is in a structure, this
representation may be a good fit as all data cache lines fetched will contain only data needed
by the task. If the structure would be represented in the SoA format, each line fetched
would only contain on element really used by the task (and thus fetching much more lines
would be necessary). In this case, using AoS could be the best option. However, with the
increasing capacity of vector operations (either in CPUs or accelerators), the SoA may be a
better fit. This model gathers several arrays into a structure and thus, operations that are
performed in contiguous data of an array can be performed using vector operation (vector-
ization) leading to a performance increase. The same cannot be done with the AoS model.
As Pascal Costanza56 states, the advantages and disadvantages of each configuration can be
summarized as:

• AoS

– All member of each instance next to each other.

– Good for data locality, less good for Vectorization.

– Not good when only a subset of the members is needed.

• SoA

– Each member of all instances next to each other.

– Good for Vectorization, less good for data locality. (SSE2, AVX, ...)

– Good when only a subset of the members is needed.

Therefore, it is hard to devise which one must be used to obtain the best possible per-
formance. A typical decision is to use AoS in CPUs and SoA in GPUs, mostly because of
its SIMD architecture and coalesced memory access.

3.3.3 Matrix Storage Format

The matrix storage format is also relevant to allow good performance. If the matrix has
many zeros, it does not make sense to store and represent all these zeros which leads to the

5https://indico.cern.ch/event/214784/session/7/contribution/475/material/slides/0.pdf
6https://github.com/ExaScience/arrow-street
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use of matrix representations. The sparse matrix used in the FlowCode is stored using the
Compressed Row Storage (CRS) format. There are several different types of storage formats
but most of them are basically variants of the same, i.e., storing the non-zero elements of
the matrix into a linear array and the row and column indexes into two auxiliary arrays.

The most common ones are:

• Compressed Row Storage (CRS)

• Compressed Column Storage (CCS)

• Block Compressed Row Storage (BCRS)

• Compressed Diagonal Storage (CDS)

All these storage format store the non-zero elements of the matrix in a “values” array.
The CRS stores the index of the first element of each row into a “row_ind” array and in a
“col_ind” array, the column index in the original matrix of each element of “values”. CCS
does the opposite, by storing the first element of each column into an array and the row
index of each matrix element into another one. The BCRS format is a block version of the
CRS format. It is an interesting format for matrices that have regular pattern of dense
blocks of non-zeros elements. It consists of three arrays. The first is a two dimensional
array that stores the values of the non-zero blocks (of length “n”) in a row wise fashion. The
zero elements of the non-zero blocks blocks are also stored but blocks that only contain zero
elements are not stored. The “col_ind” array stores the column indices in the matrix of
the non-zero blocks while the “row_ind” stores the indices of the first block of each block
row. This format provides less indirect accesses than the previous ones, which may lead to
more efficient computations on the matrix. The CDS format tries to leverage the property
of banded matrices which have a more or less constant bandwidth from row to row. The
original matrix is stored into another one which only contains the sub-diagonals of each row.
This format may also store some zero elements or even sub-diagonals of zero elements.

No storage format can be considered the most efficient one, since the usage of one or
another may depend on the type of problem, the platform where the application will run
and the characteristics of the matrix.

3.4 Frameworks for Heterogeneous Platforms

Section 3.2 showed the typical accelerators used in heterogeneous platforms as well as
their powerful features which makes them essential in situations where high peak floating-
point performance is needed. It also showed their main characteristics which makes executing
code simultaneously along with CPUs such a hard task. The use of StarPU or DICE may
ease this problem.
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3.4.1 StarPU

StarPU [Augonnet et al., 2009, 2011] is a scheduling system of graphs of tasks which
are assigned to heterogeneous platforms devices. The only thing that is required is an
implementation of the code for the different architectures the platform contain and all the rest
will be done without the programmer’s awareness. StarPU is responsible for two important
aspects which are the data management and the workload scheduling policy over the several
computing units of a heterogeneous platform.

To manage the data of an application, all data is registered to StarPU. This data will be
kept in main memory and will be automatically transferred to the processing units (and also
device memory in the case of accelerators), as they are needed by tasks. This is done using
a virtual shared memory model with relaxed consistency (to avoid over-synchronization).

To control workload scheduling, StarPU provides several task scheduling policies, which
are presented in table 3.1. Most of them relies on a common scheduling strategy and adds a

Name Policy description
eager scheduler uses a central task queue, from which workers draw tasks to

work on. This however does not permit to prefetch data since the schedul-
ing decision is taken late. If a task has a non-0 priority, it is put at the
front of the queue.

prio scheduler also uses a central task queue, but sorts tasks by priority (be-
tween -5 and 5)

random scheduler distributes tasks randomly according to assumed worker overall
performance

ws (work stealing) scheduler schedules tasks on the local worker by default.
When a worker becomes idle, it steals a task from the most loaded worker

dm (deque model) scheduler uses task execution performance models into
account to perform an HEFT-similar scheduling strategy: it schedules
tasks where their termination time will be minimal.

dmda (deque model data aware) scheduler is similar to dm, it also takes into
account data transfer time.

dmdar (deque model data aware ready) scheduler is similar to dmda, it also sorts
tasks on per-worker queues by number of already-available data buffers.

dmdas (deque model data aware sorted) scheduler is similar to dmda, it also
supports arbitrary priority values

peager is similar to the eager scheduler, it also supports parallel tasks (using
OpenMP)

pheft similar to the dmda scheduler, it also supports parallel tasks (using
OpenMP)

Table 3.1: Scheduling strategies implemented in StarPU [INRIA, 2014].

feature which help to improve the scheduling a little bit more. Although the table is almost
self describing, more information about these schedulers need to be provided. The “eager”
scheduler uses a central task queue (which is stored in main memory) and from which workers
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pop tasks to work on. The “prio” is similar to the previous scheduler with the difference of
allowing priority tasks. The queue is then a priority queue. The “random” scheduler may
seem quite inefficient and it can be on most situations but it has the advantage of not making
computation to know to which device it needs to send data. It only generates a random
number (based on power/speed of the device) with the purpose of assigning a higher number
of tasks to the more powerful devices. Sometimes however, even when distributing tasks to
the workers according to their speed may not be the best option, mostly because tasks may
not be equally expensive. The schedulers that start withdm are based in the “dm” scheduler
– which performs some calculations to know to which device to send information for the task
termination to be minimal. This model can be improved by taking into account in which
device the data required by a task is (and a possible data transfer time) – and decide whether
it is better to move data or to migrate the task to another processing unit [Augonnet et al.,
2010a] – , or even having queues in each device. A characteristic of all these schedulers is
that they can only push tasks to a queue when there are no dependencies left. The “peager”
and “pheft” are experimental and may not be as stable as the other ones. They are based
in the “eager” and “dmda” respectively but allow a task to be executed in parallel in CPUs
using OpenMP while the other schedulers execute a task in each core (or devices in the case
if GPUs). Some schedulers such as “dm” support performance models. These models allow
to estimate the duration of a task before it was executed, and thus allow StarPU to achieve
a good scheduling policy. To have these models, StarPU must execute several times (10
executions are recommended) to gather accurate data. StarPU extensibility allows to the
user to define a new scheduling policy by defining several methods, a method called at the
initialization of StarPU, and the push and the pop methods that implement the interaction
with the abstract queue. For more information about the scheduling policies, refer to [INRIA,
2014].

Globally, the framework can be seen as an application that perform pushing tasks to
queues (which are controlled by a scheduler) and then are sent to processing units. Some-
times, data structures of one kind can be efficient on CPUs but not on GPUs. StarPU has
a great feature which allows to have different data structures for CPUs and GPUs and it
can convert them (only some schedulers are optimized for this feature). This conversion is
basically a task but it is managed by StarPU internally.

In a programming perspective, tasks consists of a codelet (a function that contains func-
tion implementations for several architectures) working on a list of handles, which are inter-
faces to data that is managed by StarPU [Hugo et al., 2013; Agullo et al., 2010]. The access
mode (e.g., read-write) of each handle is also required so that the runtime can compute the
dependencies between tasks. Unregistering the handles causes that everything goes back to
the global memory.

StarPU tasks are asynchronous and submitting a task is a non-blocking operation. When
StarPU knows that for one device, data will not change with the next tasks, it will send
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information to all other devices in the system. This works similarly to write-trough caches.
If information keeps changing constantly, and information is sent to other devices memories,
this would generate useless memory traffic.

StarPU also has the advantage of giving the user two possible ways of using the frame-
work, either by using the C extension or by using the StarPU API [Courtès, 2013]. The
former provides a quick and easy way to execute and application on a heterogeneous plat-
forms, while the latter is more powerful and can be used by programmers with more expertise
to further improve the performance of their applications.

Resuming, there are several steps to be able to port an application to StarPU. These are:

• Register the different data to StarPU

• Create wrappers for the different kernels implementations

• Describe the algorithm as a set of tasks and submit them.

• Task dependencies are either given explicitly or automatically derived from data de-
pendencies if the different tasks are submitted in an order that corresponds to a valid
sequential execution.

Moreover, to avoid unnecessary transfers, StarPU keeps data where it was last needed,
even if was modified there, and it allows multiple copies of the same data to reside at the
same time on several processing units as long as it is not modified. StarPU tries to improve
performance by overlapping data transfers with computation [Augonnet et al., 2010b].

StarPU can create a graph of task dependencies using several mechanisms. The first one
which does not require a large effort for the developer, is created by using “permissions” for
each handle (which represent at a higher level the program data such as arrays or variables).
When submitting a task, each data handle of the task will be assigned a permission, R
(read-only), W (write-only) and RW (read-write) and StarPU will automatically compute
the dependencies between tasks. Another way to let StarPU know of task dependencies is
by using the callback mechanism. For example, tasks that must be executed after “TaskA”
will be launched by the callback function of “TaskA”. Callback functions are always executed
in the CPU which is why they do not perform heavy tasks but launch other tasks instead.
A third way to perform the same operation is by using tags. When creating a task, each
one can be assigned a tag and also an array of tags representing tasks that need to finish
executing before the task can start execution.

StarPU also allows to define an interface to represent the data-structures. There are
already some predefined ones such as for vector structures. The same happen for filters.
For each interface, StarPU has several filters to split data into smaller pieces that can be
executed by tasks concurrently.
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3.4.2 DICE

The previous framework is maybe the reference in the field. It was built throughout
several year by researchers at the University of Bordeaux and Inria7. DICE is a relatively
recent alternative that was born from a partnership between elements from the University
of Minho and University of Texas at Austin. This framework claims to have a strong point
which is great efficiency in irregular algorithms and applications – at least based on several
results presented in [Barbosa et al.].

As opposed to StarPU which has many different task scheduling possibilities (plus the
ones the user can create), DICE only has two:

• Static - the framework will use a configuration file which explicitly contains the load
of each device. This can be useful to calibrate by hand or by using a script.

• Adaptive - the framework will assign chunks of the workload (jobs/tasks) to the
devices depending on the current state and the job execution history and work stealing
will also be enabled.

The static scheduler reads a file that contains numbers representing the percentage of
work each device may process, and uses them to assign tasks. Devices that have a larger
number will have more tasks to execute.

The adaptive scheduler and the ability to perform dicing is what makes DICE a strong
alternative. Dicing has several purposes and is used in several situations. This operation
allows to split tasks into fine-grained ones, which can then be assigned to devices. The
various devices of a heterogeneous platform may have certain restrictions in terms of the size
of tasks that it can process. GPUs will tend to process coarser tasks whereas CPUs will tend
to process finer ones. Therefore, the dicing function may be used to split tasks accordingly
to the device capacity by beginning with a coarse task and recursively divide it, improving
work-sharing distribution.

There are two levels of dicing . The first level has the objective of splitting the job as best
as possible to all available devices. In the second level, the dicing function has the purpose
of splitting the work to available cores (i.e., in a CPU). The dicing function can be applied
the split tasks but currently, the opposite (that is, gather work to create coarser tasks) is
not possible, because an efficient way to do so have not be found and implemented. Most of
the time, dicing is used to split work across available devices.

A great feature of DICE and its adaptive scheduler, is the ability of work stealing. When
a device has no more tasks to execute, it will try to stole work from other devices. This
technique is essential to provide a good performance on recursive and irregular algorithms.
This feature can also be found in the Intel TBB8 parallel library. The work stealing only
happens at the device level, i.e., there is no work stealing inside a device such as a CPU.

7Visit http://www.inria.fr/
8Visit https://www.threadingbuildingblocks.org/
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This mechanism works as follows: a thread from the device without work will communi-
cate with the “superthread” - the thread that knows how much work each device has - and
will ask for work. The superthread will watch in its table and answer with the device that
has more work to do. The thread will steal work from that device.

It may be needed to use the dicing function after work stealing. This happens most of
the time when a CPU/core stoles work from a GPU.

To further improve efficiency, synchronization barriers are used with timers which know
how much work has been done and how much free time each device had. In the next task
distribution, work sharing will be readjusted.

In short, efficiency results from two mechanisms: the synchronizations barriers which al-
lows to improve the workload distribution and the work stealing which reduce task execution
time while workload distribution balance has not been achieved.

DICE and StarPU have a similar memory model which is characterized by a weak con-
sistency model. Without it, programs would perform poorly, since every operation in shared
data would need a synchronization operation. To accomplish this, DICE keeps track of “stor-
age classes” data copies within accelerator embed memories and features a data prefetching
engine.

There are three types of “storage classes” in DICE [Barbosa et al.]:

• Read-only (RO) - As the data is read-only, every device can have a copy of it and no
synchronization operations are needed. There is no write operations in global memory,
which means the the data is always consistent and thus, every device can have a copy
of it.

• Device-exclusive (DE) - Only one device at a time has access to this page. Tasks
that needs this page (but dot not have access to it yet) will be delayed.

• Pinned Memory - Every write operation requires synchronization and happens in
the global memory. These pages are shared across all available devices. Application
performance decreases tremendously when using these pages.

These classes are needed to provide a global memory management model so that each
device may see the global memory and DICE may provide synchronization. One of these
classes must be associated to each defined task. RE are efficient, since there are no synchro-
nization operations associated with them and DE pages are similar to locks – only one task
may work on the DE data at each time. While these pages can be used without large costs,
the use of pinned memory pages should be avoided as operations executed in these pages are
synchronized. Part of the global memory will be kept in each device for efficiency reasons
and all RO and DE pages from a task will be copied to the device for task execution. Recall
that a task can only be executed when it is possible to copy memory pages from global
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memory to device memory. This is only true when a task is executed in a device whose
memory is not the global memory.

3.4.3 Similarities and Differences

Both frameworks have the same purpose of executing applications in all resources of an
heterogeneous platform. There are similarities and differences between the two to attain
this same goal, which have been presented in past sections. This section quickly summarizes
several of them.

Both frameworks may change task execution order. This increases somewhat the com-
plexity of using these frameworks. Once data is registered, the application does not access
it anymore through its memory but through an abstraction (handles in case of StarPU and
SmartPointers in the case of DICE). Both frameworks can perform asynchronous transfers
and execute asynchronous tasks and they rely on performance measurements from previous
executions to better distribute tasks, optimizing policies incrementally. Each task/work job
must have an implementation for the device targets (CPU and GPU), although this is not
strictly the case regarding DICE, which allows to use the same code implementation for
running in both platforms/devices. Both frameworks require a CPU core to control a GPU
device.

They both have support for external frameworks/libraries such as MAGMA and Intel
MKL [Intel, 2013c,a,b] and use a relaxed consistency model that avoid constant synchroniza-
tion operations. For extreme performance, they need to guarantee a great balance between
task distribution and data transfer.

StarPU gives the programmer the choice of using the “C extension” or the API. This
can be useful for programmer that do not have great experience. On the other hand, and
although DICE may actually be more challenging to use, the fact the it does not (optionally)
require code written in CUDA can be helpful.

StarPU offers a large number of task scheduling policies by incrementally adding features
to a set of core schedulers, which result in an improved work balancing. DICE only offers
two schedulers and the adaptive one provides both good work balancing and work stealing,
a characteristic that is also used in other frameworks for irregular algorithms.

Summary

This chapter explained the key concepts of heterogeneous platforms, and also the GPU
and MIC devices that are the core of these platforms. To help lowering the hard work that
is needed to create applications that fully run on heterogeneous platforms – applications
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that do not offload heavier parts to the accelerators, but instead run them on all available
resources at the same time – several frameworks were created as DICE and StarPU. These
share the same objective but have some differences in their approach.
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Chapter 4

MultiFlowCode: Efficiency
Improvements

This chapter describes the several techniques used to improve and parallelize the CPU
version, and also addresses some issues of the MIC and GPU versions. The steps taken to
create the StarPU implementation are also explained, which take into account the limitations
and features of both the FlowCode and the framework.

4.1 FlowCode CPU

There are several ways to improve an application such as performing sequential or parallel
improvements. To perform sequential improvements, the profiling of the application has been
done. This is useful to know the main bottlenecks of the application and to evaluate which
part of the application deserves a deeper attention. The profiling was performed using
GNU gprof, with the help of the gprof2dot1 application to allow the graphic visualization
and interpretation of the profiling information. The profiling was done using one of the
input datasets available, with a number of elements ranging from three hundred thousands
to two million elements. This and other datasets are used to evaluate the benefits of the
optimization techniques in chapter 5. The analysis showed that the application spends most
of its time in two functions that are called from the SIMPLE function, the main function of
the application. The time spent on the system of equations solver (in this case, Jacobi) and
the get_gradient function as can be seen in figure 4.1. The jacobi function takes between
20-25 percent of total execution time, whereas get_gradient takes more than 40 percent.
However, there is a great difference between the two functions, which is the number of time
each one is called. This means that one call of the Jacobi function takes large amounts
of time when compared to the get_gradient function. The number of times this function
is called indicates that one possible problem for consuming large amounts of time is the

1Visit https://code.google.com/p/jrfonseca/wiki/Gprof2Dot for more information about this tool.
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Figure 4.1: FlowCode profiling

function calling overhead. To improve this situation, the get_gradient and other functions
have been inlined. This means that the overhead for pushing and poping things out of the
stack disappears, greatly reducing the function’s execution time. This function was also
called a large amount of times to perform computations that would return the same values
frequently, when those values only change for each different velocity component. Hence, they
were computed only once per system of equation at the beginning of the assembly phase and
stored on a datastructure to be used by the other assembly functions. Other values were also
calculated many times even though they remained the same throughout all the execution.
These values have been computed before the SIMPLE algorithm and stored in a structure
to be used in the algorithm.

It is important to notice that many other functions have been omitted from the figure
due to the fact of their execution time being residual. The figure also helps to see what
is happening in the code, showing which functions calls which. The get_gradient function
is called from many functions such as the assemble functions which have the purpose of
gathering the necessary elements for the several system of equations. Among these, the
diffusion_b and convection_b functions - which compute the diffusive and convective term
- seem to take significant time.

The FlowCode’s datastructures follow an AoS approach that allows more locality for each
element, typically more important for CPU implementations as was explained in section 3.3.2
(although the larger SIMD operations available in CPUs nowadays may be a good fit for
a SoA approach). It has three main structures responsible for the solver properties, the
systems of equations to solve and the mesh. Other structures are used to help representing
the mesh, faces and cells, namely:

• Vertex This structure stores the x, y and z coordinates of a vertex.
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• Vector Structure similar to the “Vertex” but adds the length of the vector.

• Face Structure that stores the velocity at the center of the cell, its center coordinates,
area and other data. It also keeps the location of the two neighbor cells which can be
accessed in the cells datastructure.

• Boundary face Structure similar to the “Face” structure. It contains the boundary
type and an array of the properties presented in chapter 2 such as temperature, velocity
(3 components), pressure, etc.

• Cell Contains geometrical properties such as the cell center. It also contains several
properties - most of them equal to the “Boundary_face” structure - such as the dif-
fusivity, viscosity, temperature, pressure and velocity components. The properties of
both structures are changed in each iteration of the SIMPLE method.

• Mesh Main structure of the FlowCode application. It contains arrays of vertices,
faces, cells and boundary faces (these last three are updated at each iteration of the
SIMPLE method).

• Matrix This structure represents a matrix in the CRS format.

• Solver Simple structure that contains several solver properties such as maximum
number of iterations for each system of equations and their its residues.

As stated in chapter 2, SIMPLE is an iterative algorithm which solves, for each itera-
tion, several systems of equations and performs operations such as updates on some of the
datastructures presented above. Some of these operations were performed in application the
same way as they were devised. Hence, several function and loop iterations were used to
perform operations that could be done in only one loop iteration. In every place where two
or more loop traversals of the same structure could be done at the same time, these have
been replace by one. These are called loop fusion and loop reordering techniques, which
can make the code less readable but allows a faster execution by reducing the loop traversal
overhead. An overview of the main functions and tasks of the SIMPLE method are presented
next along with an explanation of their purposes and the loop techniques applied to improve
their performance.

Assemble Matrix A for velocity

This task comprises three functions responsible for assembling the “diffusion”, “convec-
tion” and “unsteady” elements of the system of equations. The first only iterates over the
face and boundary face arrays, and for each face, it stores in the matrix, the contributions
of the two neighbor cells.
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The fact of contributing to two cells at the same time poses a problem when more than
one thread is executing. This could lead to threads updating the same value, but only one
of those succeeding in this operation leading to a wrong result. There are several ways to
surpass the problem which will be explained in section 4.1.2. The function responsible for
assembling the convection element also iterates through the face and boundary face arrays
and thus, also suffer from the same problem. Since both functions iterate over the same
structures, these have been replaced by one function performing only a loop traversal. The
third function iterates through the cell array and for each cell writes in the diagonal position
of the matrix.

Assemble Rigth Hand Side for velocity

Four functions are used to assemble the contributions to the right-hand side of the system,
namely the “diffusion”, “convection”, “unsteady” and “pressure” contributions. The first two
are similar with the ones used when assembling the matrix A. Thus they have been replaced
by one function which iterates though the faces and boundary faces only a single time.
However, they also suffer from the problem of contributing to the two neighbor cells a the
same time if multiple threads are used. The other two functions iterates through the cell
array and can be parallelized safely. Since they iterate through the same structure, these
have also been replaced by one function only.

Jacobi

This function solves the different system of equations. It is easily parallelized since this
method computes mostly matrix-vector operations.

Update Boundaries Flow

This task is comprised of two function that update the velocity and pressure components
of the boundary faces and depend on the boundary type. Again, these have been replaced
by one function that iterates through the structure once, performing both tasks at the same
time.

Flow Correction

Corrects the velocity components of each boundary face. This function has been merged
into the previous one since they iterate through the boundary faces.

Get Face Velocity

This function updates the velocity of each face with velocity contributions coming from
their two neighbor cells.
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Assemble Pressure Correction

This task contains functions which iterates through all faces and boundary faces creating
a new matrix (using the diagonal values of the velocity matrix) and a new right hand side
with the updated boundary properties. Both functions are similar with the tasks “Assemble
Matrix A for velocity” and “Assemble right hand side for velocity”, and thereby, contain the
same problem of writing in multiple places at the same time (when using multiple threads).
Loop fusion have also been applied here. The pressure-correction system is then solved using
the “Jacobi” method and the solution is used to correct the velocities of faces and cells.

Correct Face Velocities

This function corrects the velocities of each face using the diagonal of the pressure-
correction matrix.

Update Velocities & Update Viscosity

Both tasks update the properties for each cell using the diagonal of the pressure-correction
matrix.

4.1.1 Iterative Solvers

As the Jacobi iterative solver was also taking a significant amount of time, this solver
has been replaced by other other ones that allow faster convergence [Saad, 2003]. For the
velocity equations, the method used was the GMRES method but other ones could be used
such as the BiConjugate Gradient method. For the pressure equations, which provides a
symmetric system of equations, the CG method was used.

The Intel MKL library has been used to implement both solvers. These solvers are based
in reverse communication - the library contains these solvers and may pass the control of
the solver to the user which can on its turn perform control operations. This means the user
can apply several different preconditioners and may change residual error values and the
maximum number of iterations while the algorithm is running. The diagonal preconditioner
was used to improve convergence of the system.

4.1.2 Coloring Scheme

As stated, parallelizing the assembly function requires a slightly different approach, since
multiple threads may write data from the mesh to the same positions of the matrix when
assembling data from the faces and boundary faces. This happens because each face con-
tributes to two positions on the matrix. In the sequential code, the single thread can add the
contributions to the two cells in the matrix at the same time, but when two or more threads
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performs this same strategy they may write in the same memory position, overwriting the
correct result. To solve this problem, a coloring scheme method was used. There are other
alternatives to solve this type of problem, such as performing a cellwise approach. With this
approach, there are only iterations through the cells arrays and each thread is responsible
for assembling the contributions to its own cell. Unlike with the coloring scheme, where the
values computed in each face and boundary face contribute to two cells at the same time,
this approach needs to perform twice the computations but offers more parallelism and may
provide better results [Kampolis et al., 2009]. This approach has not been implemented since
it would require changing significant parts of the code for both CPU and GPU at an already
advanced stage of the dissertation.

Therefore, before executing the SIMPLE method, a mesh coloring phase occurs, which
was the approach taken in the GPU implementation. This is done by iterating through the
faces of each cell ensuring that each one has a different color. This same process is applied
to the boundary faces. The algorithm used in the GPU version was applied slightly different
and performs in O(n2) of complexity. For each face, it iterates through all faces again and
search for faces that share the same two cells. It is not necessary to iterate two times over
both faces and boundary faces arrays. As the cell structure already stores the positions
of the faces and boundary faces for each cell, it is only necessary to iterate one time the
cells structure and for each one, color its faces and boundary faces, reducing the complexity
from O(nn) to only O(n). With this scheme, when iterating the faces and boundary faces
arrays for each color, all the threads will safely write in independent positions. However,
this option makes the improved code execute more functions/tasks than the initial version.
For each iteration over the faces and boundary faces of the initial code, the improved one
must perform n more tasks, where n is the maximum number of colors.

This algorithm has not the objective of coloring the mesh with the minimum number of
colors. This means that more colors than necessary may be used as can be seen in figure 4.2.
Figure 4.2a shows an example of a 2D mesh with the minimum number of colors which is
3. However, the same mesh can be colored by the algorithm with 4 colors, depending of
the order of which each cell has been colored as can be seen in figure 4.2b. As the “perfect”
coloring scheme is an algorithm computationally intensive and that could take more time
than the SIMPLE method itself, a more relaxed algorithm was used.

4.1.3 Multi-thread Implementation

With the coloring scheme method implemented, the parallelization of the code was per-
formed by using the OpenMP library. Every function from the SIMPLE algorithm has been
parallelized with the exception of the algorithm’s control flow.

As the FlowCode consists of nearly eight thousand lines of code, with the SIMPLE algo-
rithm taking the major part, many problems appeared during the parallelization of the CPU
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(a) With 3 colors (b) With 4 colors

Figure 4.2: Example of coloring scheme on a 2D mesh

code, mostly for locating which functions generated the wrong results when parallelizing.

4.2 FlowCode MIC

Intel states [Reinders, 2012; Jeffers and Reinders, 2013] that the best way to obtain
performance from the Xeon Phi coprocessor, is to improve the code on typical Intel CPUs.
As this has already been done, focus has been made in the implementation of vectorization
of some parts of the code. However, as the major portion of the code depends on the access
of the mesh elements (which is irregular due to the use of unstructured meshes), this was not
possible to implement - only small regular portions such as some updates to the mesh were
vectorized. Some effort was done in compile testing by finding the required flags the execute
the application as well as installing all required components such as libraries and the input
meshes. The improved CPU application was ported in the Xeon Phi natively, which means
that the application runs entirely in the coprocessor.

4.3 FlowCode GPU

No real improvements to the FlowCode GPU version were made. This version helped
the parallelization of the CPU code. However, several performance problems have been
identified, which may serve as future reference for performing improvements of this version.

The coloring scheme of this implementation performed in complexity O(n2), and although
this poor approach was more or less efficient for smaller meshes, it can be an important
bottleneck for larger ones. Hence, the approach used for the CPU version was also used
here.

According to [Farber, 2011], the SoA format performs better for GPU accelerators. The
AoS format does not allow the use of memory coalesced access. This results in many load
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instructions to get data available in cache for each thread. For each warp, 32 accesses may be
needed instead of 1 if each thread was accessing contiguous data in memory. Hence, changing
the datastructures and how the data is represented could give and important speedup. Also,
exploiting the use of shared memory to reuse data could benefit some kernels, such as the
ones performing the assembly of the systems of equations.

Control flow is greatly important and most of the kernels contain branch instructions
that lower performance. Since each warp thread must execute the same instructions, when
there is a branch instruction, each thread must execute two times (one for each branch).
This may greatly compromise performance and the GPU execution could improve if all warp
threads follow the same control path. These were the main problems identified. However,
profiling the application could show other problems which are not visible in the application’s
code.

4.4 FlowCode StarPU

This implementation uses both the improved CPU and GPU versions. The analysis
performed on the two frameworks in chapter 3 showed their main characteristics. The
reasons to choose StarPU are related with much more features this framework provides,
being more stable as well as better documentation. The fact that this framework has been
improved over several years was also a key factor. On the other hand, the DICE framework
cannot be installed or configured the same way as a normal application and is undergoing
several changes. As StarPU provides two methods for using the framework, the low level
Application Programming Interface (API) was used instead of the C extension. The main
reason was that the former provided more control of each task and the documentation is more
extensive. The latter has only some simple examples which do not represent the difficulty
found in the FlowCode.

To improve the performance and communication between devices, the malloc function
was replaced by the starpu_malloc function to allocate all datastructures of the application.
This helps StarPU to achieve more performance by delegating the allocation to CUDA which
will pin the corresponding allocated memory. This enables asynchronous data transfers which
may overlap with computation. Pinning memory is a great strategy for CPU applications
which offloads computations to the GPU, but is even more useful for StarPU which can
transfer updated data without compromising computation.

4.4.1 Parallel Approach

A common way to let StarPU create several parallel tasks that can be executed at the
same time is to parallelize each task into fine grained ones. This could be seen as a similar
approach with the one adopted on the CPU version. Instead of having each thread executing
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some portion of work, this work would be encapsulated into a task, that could be executed
by any worker. However, this approach cannot be performed for some tasks of the algorithm,
since multiple tasks cannot write in the same handle (such as the right-hand sides of the
system of equations) at the same time. StarPU would thereby sequentially execute each
task.

To somehow overcome this problem, a higher approach has been used instead of paral-
lelizing each task. The SIMPLE algorithm already allows the execution of several tasks in
parallel.

4.4.2 System of Equation with Multiple Right-hand Sides

The process of solving the velocity components (u, w and z) for the “Momentum Conser-
vation Equations” was performed sequentially in the CPU version. The system of equation
was assembled for u, solved and then updated in the mesh. This process was repeated for
both w and z. However, a closer look to the SIMPLE algorithm reveals that all velocity
components can be computed at the same time, i.e., the several system of equations can
be seen as only one with multiple right-hand sides. Therefore, to improve this algorithm,
three right-hand side (b) as well as three solution (x) arrays and handles were used. The
system can now be assembled for the three velocity components and solved concurrently.
The downside of this solution is the use of more memory which may be important when
solving problems with very large meshes.

Other tasks can be executed in parallel such as updating different elements of the mesh,
such as faces, boundary faces or cells properties. However, the fact that a handle represents
a AoS structure which stores faces, boundary faces, and cells prevents StarPU to create
parallelism. Although the “Pressure Relaxation Field”, “Update Viscosity” and “Correct
Face Velocities” tasks changes different values of the AoS, as they are represented by one
handle, StarPU will sequentialize the execution of these three tasks. This problem could
be solved using “real” StarPU tags to inform the framework that these tasks are completely
independent (instead of relying on the default submission mechanism). However, this would
not be the better approach, as when finishing executing these tasks, this same handle would
be invalidated on all other workers, which would require a fresh copy of all data (even though
only a small section of the handle data has been changed). To allow parallelism and minimize
data transfers, the structure fields that need to be updated in the SIMPLE method where
removed from their AoS structure and instead, simple arrays have been used (each one with
a respective handle). Therefore, only the data that has really changed will be invalidated on
all other workers, minimizing data transfers and maximizing parallelism. While in the CPU
version every task was executed by multiple threads but each task at a time, the StarPU
version executes multiple tasks at the same time (with each one being executed also in
parallel). The figure 4.3 shows the diagram of task dependencies and the tasks that can be
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executed concurrently. As can be seen, the number of tasks that can be executed in parallel
is limited and the maximum number of tasks executed in parallel is 4. The main reason for
this limited tasks parallelism is that each tasks cannot be further divided into fine grained
ones. Another approach to overcome this problem would be to use replicas. With this
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Figure 4.3: Dependencies task graph for each SIMPLE iteration

approach, several auxiliary arrays would be used per right-hand side so that each task being
responsible for a number of faces (or a color) could write data into its own array. At the
end of this operation, a reduction operation would be executed to assemble the data arrays
to each respective right-hand side. Therefore, the three right-hand sides could be assembled
at the same time, each one with multiple concurrent tasks. However, this has the cost of
having several data handles over multiple arrays (as many as the level of parallelism of each
assembly task) which would consume much more memory. A third approach to increase
parallelism would be to remove the coloring scheme, and iterate the main structures in a
cell-wise approach as stated in 4.1.2.
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StarPU leverages heterogeneous platforms when there are many tasks to execute (most
of them preferentially in parallel). As the SIMPLE algorithm has a stopping criteria based
on the residues of the system of equations, there is no way to know the number of iterations
of the algorithm. This is not a problem for applications that are not task-based such as
the CPU version but may be hard to handle for the ones that are. One way to solve this
problem would be to execute a bunch of tasks corresponding to one iteration and testing
if the residues are lower than the predefined value. This would perform poorly since a low
number of tasks would be submitted at each iteration. To overcome this problem, a simple
heuristic has been used. As the user that uses the software knows and gives as input the
maximum number of iterations as well the residual threshold, the StarPU version will submit
one third of the iterations and perform the stopping tests after that. If all conditions are met,
the program will stop. Otherwise, another one third of the maximum number of iterations
will be launched. With this approach, a higher number of tasks can be submitted to StarPU
without interruption. However, this means that in an example where the maximum number
of iterations is 300 and the solution is found in iteration 201, the StarPU version would
execute the 300 iterations of the SIMPLE method, more 99 than it was needed.

4.4.3 Challenges when using StarPU

StarPU offers several interfaces which users can use to register their data to the StarPU
memory management system. The most used ones are the vector/array interface which
allows to register contiguous memory positions to StarPU. StarPU also offers the possibility
to create a custom interface. To try simplifying the FlowCode application, the creation of a
custom interface was attempted to represent the mesh. However, due to some problems that
arose when submitting tasks and which were difficult to find, this interface was dropped.
The array interface was used instead to represent each array of the mesh datastructure.
Also, StarPU may pose some problems for the developer, as most errors do not give enough
information to find the main reasons of such errors and are not easily debugged.

Summary

This chapter presented the improvements made on the FlowCode. The original version
was improved sequentially first, with techniques such as loop reordering, loop fusion or by
storing auxiliary values instead of computing them in each iteration and parallelized after-
wards using OpenMP. This improved version was also ported to the Xeon Phi coprocessor
in a native way. Only some improvement advices were made about the CUDA version. Both
the improved CPU and CUDA versions were used to develop a heterogeneous implementa-
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tion. This has required the change of some datastructures as well as the algorithm to allow
concurrent execution of the assemble functions, solver of system of equations and update
functions.
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Chapter 5

Profiling Results

This chapter describes the testing methodology and shows the experimental measure-
ments. A critical analysis is made for each result, which include the sequential, OpenMP,
GPU and MIC versions. Several schedulers have been used with StarPU. Their performance
over different configurations of the environment is described along with an explanation for
the results obtained. This chapter ends by showing the overall speedups of all versions when
compared with the single-threaded best value.

5.1 Testing Environment

The experimental environment used to perform the measurements consists of two compu-
tational dual socket nodes from the SeARCH cluster at the Department of Informatics each
with a different accelerator attached. The CPU devices at the nodes have the characteristics
presented in table 5.1. The “compute-562-1” computational node contains two NVIDIA Ke-
pler GPUs with the characteristics presented in table 5.2 and the “compute-562-6” contains
two Xeon Phi coprocessors, whose characteristics are showed in table 5.3.

Model Intel Xeon E5-2695
#CPUs 2

#Cores/CPU 12
#Thread/Core 2

Clock freq 2.40 GHz
L1 cache size/core 64 KB
L2 cache size/core 256 KB

L3 shared cache size/CPU 30 MB
RAM 64 GB (2 x 32 GB)

Table 5.1: CPU of both computational nodes

All versions of the FlowCode where compiled using gcc 4.8.2 with the exception of the
MIC version. Although the gcc compiler for the Xeon Phi co-processor is supported, it lacks
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Model Tesla K20m (Kepler)
#SM 13

#CUDA cores/SM 192 (2496 total)
Clock frequency 706 MHz
L1/memory 64 KB
L2 cache 1.25 MB

Global memory 4800 MB

Table 5.2: compute-562-1 Kepler GPU

Model Intel Xeon Phi 7120P
#CPU 1
#Cores 61

#Thread/Core 4
Clock freq 1238 MHz

L1 cache size/core 64 KB
L2 cache size/core 512 KB (30.5 MB total)

RAM 16 GB

Table 5.3: compute-562-6 Xeon Phi co-processor

some support and optimization flags that are necessary to executed code efficiently and
thereby, the icc (Intel Compiler) was used instead. The GPU version was also compiled with
the lasted version of CUDA (v. 6.5). The latest StarPU version has been used, currently
1.1.3 along with “hwloc” 1.9 which is used by StarPU for topology information of the compute
nodes.

5.2 Testing Methodology

As the critical path of the application was the SIMPLE method, which would take more
than 90% of total execution time in the sequential application, only this portion was im-
proved. Hence, only this method was measured to obtain the speedup of each version over
the sequential one. The only exception is the coloring scheme function which was also taken
into account since it is needed for the parallel versions. Operations such as loading the mesh
and perform initial arithmetic for the geometry were not taken into account. Each measure-
ment was taken eight times, and the fastest three picked. If the second and third values
were between the interval of 95% and 105% of the best value, this best value was picked.
Otherwise, more measurements have been taken until this condition was met.

Three data sets have been used to perform the performance evaluation. These represent
three common problems which are the poiseuille flow between parallel plates, lid-driven cavity
and the flow around a cylinder. The number of elements of their meshes are presented in
table 5.4 whereas their geometry are presented with less elements on the appendix A. Some
of the meshes are refined in specific locations to improve the results’ accuracy.
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Input Vertices Faces Boundary faces Cells
poiseuille 3956050 3941384 3956048 1973136
ldc 1054152 1049800 1054150 525625
fac 868358 1294462 1732676 864320

Table 5.4: Input datasets

Although the CPU version of the FlowCode is able to solve flow distribution (velocity/-
pressure) and heat problems, the provided GPU version does not. Hence, the measurements
presented here are only relative to the first type of problems.

5.3 Performance Results without a Framework

5.3.1 Original Sequential vs Improved Single Threaded

As the sequential version has also been improved (before paralelization), both original
and improved versions have been compared. Figure 5.1 shows the speedup obtained with the
parallel version running with only one OpenMP thread (“cpu_1”) when compared with the
original sequential application. For the “poiseuille” and “ldc” problems, the speedups are

Figure 5.1: Speedups over seq_original

almost non-existent whereas with the “fac” problem, speedups almost attain 1.3. Even though
the used coloring scheme implies more function calls, the techniques applied in section 4.1
surpasses this overhead. However, the sequential speedups obtained are theoretically inferior
to the real speedups since there is always some overhead from the OpenMP library.
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5.3.2 CPU Scalability

For the parallel version, the OpenMP threads were binded to their respective cores. This
avoid situations where context switching of a thread from a core to another one increases
cache misses due to the fact that the cache does not contain the last values (because it
contains values from other thread that was previously executing on that core). Thread
binding ensures that each thread will run in the same CPU core from the beginning to the
end of program execution. The scalability of the parallel version when using different number
of cores is presented in figure 5.2. Although it does not scale linearly, it presents reasonable
speedups when using 6 cores (almost 4). However, this does not hold true for 12 and 18 cores
where the speedup increases at a slower rate. For “poiseuille” and “ldc” problems, speedup
starts to decrease when using hyperthreads which is the opposite of the “fac” problem that
seems to benefit from them. These values reflect the behavior of the application which is

Figure 5.2: CPU scalability with increasing #threads

memory bounded - the indirections when accessing mesh values increases the cache misses
significantly. The maximum speedups obtained are 4.7, 5.4 and 6.2 for the “poiseuille”, “ldc”
and “fac” problems respectively. This poor thread scalability suggests that a mix of processes
and threads could produce mode efficient results. However, this approach would require to
split the mesh so that each process execute in its own partial mesh.

5.3.3 MIC Scalability

The threads were binded in the same way as the OpenMP version to avoid cache misses.
As Intel states [Reinders, 2012; Jeffers and Reinders, 2013], when improving performance
on a Xeon processor, the MIC version will also benefit from these improvements. As the
parallel version has been optimized, running the application natively should be enough to
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have significant gains over a typical CPU. The execution was native - the application exe-
cutes completely in the coprocessor - but only measurements of the SIMPLE (and coloring
scheme) algorithm were taken (which are the paralelized functions). Offloading the SIMPLE
algorithm only, instead of a native execution would not really improve global performance.
Figure 5.3 shows the scalability of the MIC version when running with different number of
threads and using 60 cores. The last core has not been used because the co-processor runs
a OS inside which uses one core and as stated in [Rahman, 2013], “often a 61 core processor
may end up with 60 cores available for pure computation”. The results show that the MIC

Figure 5.3: Xeon Phi scalability with increasing #threads

version has a better scalability than the CPU version. From 30 to 60 threads, the improve-
ments are linear. When using hyperthreads, the improvements are slightly less significant.
As explained in 3.2.2, the maximum device performance can be obtained theoretically when
using 120 threads (when an instruction may be issued by each core in each clock cycle), if the
program and the execution are perfect. Hence, it is interesting to note that when using 180
and 240 threads, the performance always increases meaning that adding more threads help
lowering memory indirections problems and leverage the memory bandwidth of the Xeon
Phi.

5.3.4 CPU vs GPU vs MIC

The GPU version has not been improved apart from the coloring scheme but other things
have been changed, such as function calls to the [NVIDIA, 2013b] library, since the API has
changed for some functions from CUDA 5 to CUDA 6.5. All versions speedup were measured
against the single-threaded improved version. Figure 5.4 shows that the GPU version is the
slower one for all inputs. This may seem strange, since a GPU is typically faster than a CPU,
but this dissertation has not the objective to really compare the devices but the performance
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Figure 5.4: Speedups over cpu_1

obtained for each version instead. Since the GPU version has not been improved, it would
not be fair to perform an evaluation of the devices performance. The MIC version achieves
the best results for the “poiseuille” and “fac” problems and it is only surpassed by the CPU
version for the “ldc” problem. The maximum speedup obtained by the best version is 5.7,
5.4 and 6.4 for the “poiseuille”, “ldc” and “fac” problems respectively.

5.4 Performance Results with StarPU

As StarPU provides several schedulers with different characteristics, which have impact
on the execution time, five of them have been chosen, which are “dm”, “dmda”, “ws”, “pheft”
e “peager”. To further understand the impact of CPU and GPU devices for each sched-
uler of the framework, measurements were taken for different configurations of the testing
environment - CPU only, 2 GPUs, CPU + 1 GPU and CPU + 2 GPUs. The MIC co-
processor was not used with StarPU. Although there is some support, it only exists in the
trunk repository and it has not been released officially. Some effort has been made to use
it, but compile problems appeared which have not been solved by the StarPU team. This
prevented performing measurements on a distinct platform, which would emphasize the im-
portance of heterogeneous frameworks to develop applications that can execute in platforms
with different devices.

The framework has an option to show the number of tasks executed in each device, which
helps to explain the performance results of each scheduler. However, these results have not
been taken into account since this option affects (although only slightly) the measurements.
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5.4.1 Performance with CPU

Figure 5.5 shows the performance of the five schedulers when executing only in the dual
socket CPU when compared with the parallel OpenMP version. The parallel versions of the
“eager” and “heft” schedulers are the faster ones. These results were expected, since the two
can execute each task across all CPU cores. However, “pheft” presents better results. By
analyzing the number of tasks executed by both schedulers, it seems that “pheft” executes
more tasks on more cores than “peager”, where a fewer number of cores are responsible for
executing most of the tasks. Nevertheless, their performance results are worst than the
best OpenMP result, mostly due to the StarPU scheduling overhead. Also, as the task

Figure 5.5: StarPU with CPU only

parallelism is limited (as showed in figure 4.3), the other schedulers do not leverage all CPU
cores at the same time. Instead, only a maximum of 4 cores can execute tasks simultaneously.
The “dm” and “dmda” schedulers have similar results which are explained by the fact that
both are the same scheduler when there is no data awareness, i.e, when there is no need for
data transfers between devices (which is the case). The “ws” is the slowest scheduler due to
the fact that each core will pop out a task from the queue in order, providing a balanced
execution over all CPU cores. With this scheduling policy, the core caches will not have the
values needed when starting executing a task and a high number of cache misses will occur.
This is the main difference when compared with the previous two schedulers (which mostly
use the same cores during all execution).

5.4.2 Performance with CPU and GPUs

The last section presented values suggesting that it does not make sense to use StarPU
to parallelize an application only in a (dual socket) CPU if it will use OpenMP to do that.
StarPU only adds overhead over an application which uses OpenMP. This is different when
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using more than one device of different types. Figure 5.6 shows the performance obtained by

(a) dm (b) dmda

(c) peager (d) pheft
,

(e) ws

Figure 5.6: Schedulers performance over different system configurations

the schedulers over different configurations of the testing environment when compared with
the parallel OpenMP version. The “dm” scheduler has speedups when using it with 2 GPUs
or 1 CPU and 2 GPUs. For the “fac” problem, both almost attain 1.7 of speedup, which are
good results specially when using two GPUs, since adding the CPU does not improve the
result. Using the CPU and only a GPU does not provide good results since a task on the
CPU will only execute on one core and there are only a maximum of 4 tasks (as showed in
figure 4.3) than may execute concurrently (1 on the GPU and 3 on the CPU) and thereby,
synchronization overhead between the devices penalizes the lack of computation.

The “dmda” shows the worst results of all schedulers. Analysis of the number of tasks
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executed in each device over the different configurations shows that the scheduler tends to
execute most of the tasks on the CPU (which again, only executes a task on one core). The
objective of the scheduler is to minimize the execution time of each task alone and not all
tasks. Since the scheduler is data aware, the time spent transferring the data needed by
the task and executing it is greater than executing locally (in the CPU), which is why most
tasks are executed in the CPU. Again, figure 5.6 shows that there are several sets of tasks
that can be executed serially but are independent of each other. This means that executing
this sets on different devices could improve performance but “dmda” cannot schedule the
tasks in this way since it is data aware. The best results are obtained when using only two
GPUs, but again, only one GPU executes most of the tasks. Therefore, the poor results are
consequence of low task parallelism (which affect mostly the CPU which has many cores)
and little use of the devices because of the data awareness.

The “peager” scheduler does not suffer from low parallelism on the CPU device since it
can use OpenMP to execute a task using multiple cores. It suffers however from not been
able to prefetch data before the tasks needs it, since the scheduling decisions are taken late.
Results show that the maximum speedup obtained is of almost 1.2 for the “fac” problem
when using all resources of the compute node. Although the scheduler does not give the
best results when comparing with other ones, it seems to behave steadily independently of
the configuration.

As the “pheft” is similar to the “dmda” scheduler, the results are more or less the same,
with the difference that when using a configuration that uses the CPU, the performance
achieved is greater. This indicates that it does not make sense to use the “eager” and “dmda”
schedulers, since the “peager” and “pheft” schedulers have the same characteristics and also
provide parallel tasks.

For the last scheduler, “ws”, it only offers good performance when using two GPUs.
When using GPUs and CPU cores, each worker executes a similar amount of tasks, which
will penalize the configurations that uses the CPU due to the lack of parallel tasks. A
speedup of 1.32 and 1.47 is obtained for the “poiseuille” and “fac” problems respectively.

5.4.3 Overall Speedup

The figure 5.7 shows the speedups obtained from the several versions developed when
compared with the single threaded improved. For the StarPU version, only the best value
from all schedulers and system configurations has been taken. The heterogeneous version
is the faster one for each input problem and attains a speedup of 6.2, 5.9 and 10.35 for the
“poiseuille”, “ldc” and “fac” problems respectively.
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Figure 5.7: Overall speedup

Summary

This chapter showed that the improved CPU version presents better results for all inputs
when compared with the GPU version and that it is possible to obtain good results on
the Xeon Phi accelerator only by improving it on a Xeon CPU. According to the results,
StarPU reveals to leverage the computational power of a heterogeneous platform, improving
the GPU version by using two GPU devices, even tough, the paralelization is limited by the
number of tasks that can be executed at the same time. The same also happens with some
schedulers when using all resources of the testing environment (although the results are less
expressive). Several conclusions can be made about the schedulers used. The performance of
each scheduler depend on the characteristics of the application as well as the characteristics
of the system were the application runs. Some schedulers are useless as there are other ones
that are similar and behave better for CPU since they can execute parallel tasks.
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6.1 Conclusions

Polymer processing is a process that has on the laboratorial experimentation and calibra-
tion its downsides, as they represent high production costs. However, software applications
have been developed to model and simulate these tasks. The FlowCode application, which
aids the design of extrusion forming tools, is one example. Two versions of this code have
been developed, one to be executed on GPU devices as computing accelerators, another for
sequential execution on a single CPU core. In an era where multiple devices may co-exist in
a single system, each one with its characteristics, it is crucial that these applications fully
leverage the available computing power of heterogeneous systems. Most heterogeneous sys-
tems available nowadays contain CPUs and accelerator devices such as NVIDIA GPUs and
Intel Xeon Phi’s. As a GPU version had already been developed, the focus of this work was
on improving and parallelizing the CPU version.

Profiling the application identified the most computationally intensive as being a function
in the SIMPLE method, which is the main method of the FlowCode to solve several systems
of equations in each time-step. Therefore, this function was the main target of improvements
in the sequential application. Using several techniques, the improved version is now able to
run faster than the original single core code, even though the coloring scheme implemented
for the paralelization reduces some of the benefits. Using the multiple cores available in the
testing environment, we managed to achieve speedups between 4.5 and 6, which provides
better results than the GPU implementation. This improved version has also been ported to
the MIC accelerator, a many-core device with 61 Pentium cores, where it was run natively.
Results shows that this version runs faster in each case, when comparing to a dual 12-core
CPU device and GPU implementations. Speedups on the MIC ranges from 4.9 and 6.4,
when comparing with the improved single threaded version.

With all implementations developed, focus have been made into heterogeneous platforms.
The StarPU and DICE frameworks were studied, and their main strengths and weaknesses
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identified. With this evaluation, the StarPU framework has been chosen to develop an
heterogeneous application and to control its execution, with adequate work balance and
data transfers. Several techniques have been implemented to allow the execution of tasks
on several devices at the same time, even though the parallelism is limited due to some
constraints. The coloring scheme prevents parallelism when gathering all components for the
system of equations and the solution of each system is done entirely on one worker. Although
some of these tasks can be concurrently executed due to the nature of the SIMPLE method,
each one cannot be further split into tasks with a finer grain. The measurements were taken
using five different schedulers provided by StarPU, with different execution configurations
across the devices of the environment. When executing the application only on the CPU, the
StarPU version (with the five schedulers) is slower than the OpenMP version, as expected
since the CPU parallel version already uses all cores of the system and StarPU only creates
overhead. When executing on the two GPUs, a maximum of 1.7x and 1.5x speedup has been
obtained with the “dm” and “ws” schedulers, respectively when comparing with the improved
single-core CPU version.

Results when executing the application on both CPU and GPUs are slower than using
only the two GPUs, with most schedulers. This results can be explained by the lack of
parallelism and for most schedulers since that each core is a single worker (as with the
GPUs). This means that for twelve worker configuration (10 cores + 2 GPUs), only 4 may
execute at each time. Global evaluation of the results shows that the StarPU version is the
faster one with speedups varying between 5.9, and 10.35, when comparing with the improved
single threaded application. Following are the MIC and CPU versions. The GPU version
is the slower one, but this implementation is far from being efficient and it has not been
improved throughout this dissertation. Therefore, any comparison between devices such as
MIC and GPU would not be fair.

The results obtained, although limited by the parallelism of the application and the
schedulers of the framework, shows the benefit of heterogeneous platforms and frameworks
to leverage the available computing power of many different computing systems with a single
application.

6.2 Further Work

Several techniques have been discussed throughout the dissertation which have not been
tested. Some of these are different approaches to solve the same problems, and may or may
not improve the applications’ performance. For the StarPU application, the parallelism was
limited and was done at a higher level. It would be interesting to follow a cell-wise approach
instead of a coloring scheme to allow the parallelism of each tasks into fine grained ones.
This approach would create multiple levels of parallelism, generating more independent tasks
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and benefiting CPU sequential schedulers such as “dm” and “dmda” as they do not support
openMP. This approach would perhaps benefit more the DICE framework since it can find
the best granularity for each task. Therefore, further work should also be focused on the
DICE framework to perform a fair comparison between them.

Testing the framework with the Xeon Phi co-processor was not possible due to unsolved
bugs on the StarPU application in the trunk repository. But once these problem are solved,
obtaining results from the framework is an easy task since there is nothing to do to other than
compile the application with MIC support. Therefore, it would be interesting to compare
the performance obtained with a Xeon Phi without the framework and two Xeon Phi’s and
see if the improvements are on the same order with the ones obtained when using GPUs.

This dissertation focused on the CPU, MIC and StarPU versions. But, as stated before,
several improvements may be done in the GPU version such as focusing in vectorization,
by changing the datastructrures format from AoS to SoA. These improvements would also
benefit the applications which use the frameworks.
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Appendix A

Input meshes

Figure A.1: Poiseuille

Figure A.2: Lid-driven cavity
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Figure A.3: Flow around a cylinder
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