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A B S T R AC T

In the last few years, biological and biomedical research has been generating a large amount of quan-

titative data, given the surge of high-throughput techniques that are able to quantify different types

of molecules in the cell. While transcriptomics and proteomics, which measure gene expression and

amounts of proteins respectively, are the most mature, metabolomics, the quantification of small com-

pounds, has been emerging in the last years as an advantageous alternative in many applications.

As it happens with other omics data, metabolomics brings important challenges regarding the ca-

pability of extracting relevant knowledge from typically large amounts of data. To respond to these

challenges, an integrated computational platform for metabolomics data analysis and knowledge ex-

traction was created to facilitate the use of several methods of visualization, data analysis and data

mining.

In the first stage of the project, a state of the art analysis was conducted to assess the existing meth-

ods and computational tools in the field and what was missing or was difficult to use for a common

user without computational expertise. This step helped to figure out which strategies to adopt and the

main functionalities which were important to develop in the software. As a supporting framework, R

was chosen given the easiness of creating and documenting data analysis scripts and the possibility of

developing new packages adding new functions, while taking advantage of the numerous resources

created by the vibrant R community.

So, the next step was to develop an R package with an integrated set of functions that would allow

to conduct a metabolomics data analysis pipeline, with reduced effort, allowing to explore the data,

apply different data analysis methods and visualize their results, in this way supporting the extraction

of relevant knowledge from metabolomics data.

Regarding data analysis, the package includes functions for data loading from different formats and

pre-processing, as well as different methods for univariate and multivariate data analysis, including t-

tests, analysis of variance, correlations, principal component analysis and clustering. Also, it includes

a large set of methods for machine learning with distinct models for classification and regression,

as well as feature selection methods. The package supports the analysis of metabolomics data from

infrared, ultra violet visible and nuclear magnetic resonance spectroscopies.

The package has been validated on real examples, considering three case studies, including the

analysis of data from natural products including bees propolis and cassava, as well as metabolomics

data from cancer patients. Each of these data were analyzed using the developed package with differ-

ent pipelines of analysis and HTML reports that include both analysis scripts and their results, were

generated using the documentation features provided by the package.
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R E S U M O

Nos últimos anos, a investigação biológica e biomédica tem gerado um grande número de dados quan-

titativos, devido ao aparecimento de técnicas de alta capacidade que permitem quantificar diferentes

tipos de moléculas na célula. Enquanto a transcriptómica e a proteómica, que medem a expressão

genética e quantidade de proteínas respectivamente, estão mais desenvolvidas, a metabolómica, que

tem por definição a quantificação de pequenos compostos, tem emergido nestes últimos anos como

uma alternativa vantajosa em muitas aplicações.

Como acontece com outros dados ómicos, a metabolómica traz importantes desafios em relação à

capacidade de extracção de conhecimento relevante de uma grande quantidade de dados tipicamente.

Para responder a esses desafios, uma plataforma computacional integrada para a análise de dados

de metabolómica e extracção de informação foi criada para facilitar o uso de diversos métodos de

visualização, análise de dados e mineração de dados.

Na primeira fase do projecto, foi efectuado um levantamento do estado da arte para avaliar os

métodos e ferramentas computacionais existentes na área e o que estava em falta ou difícil de usar para

um utilizador comum sem conhecimentos de informática. Esta fase ajudou a esclarecer que estratégias

adoptar e as principais funcionalidades que fossem importantes para desenvolver no software. Como

uma plataforma de apoio, o R foi escolhido pela sua facilidade de criação e documentar scripts de

análise de dados e a possibilidade de novos pacotes adicionarem novas funcionalidades, enquanto se

tira vantagem dos inúmeros recursos criados pela vibrante comunidade do R.

Assim, o próximo passo foi o desenvolvimento do pacote do R com um conjunto integrado de

funções que permitem conduzir um pipeline de análise de dados, com reduzido esforço, permitindo

explorar os dados, aplicar diferentes métodos de análise de dados e visualizar os seus resultados, desta

maneira suportando a extracção de conhecimento relevante de dados de metabolómica.

Em relação à análise de dados, o pacote inclui funções para o carregamento dos dados de diver-

sos formatos e para pré-processamento, assim como diferentes métodos para a análise univariada e

multivariada dos dados, incluindo t-tests, análise de variância, correlações, análise de componentes

principais e agrupamentos. Também inclui um grande conjunto de métodos para aprendizagem au-

tomática com modelos distintos para classificação ou regressão, assim como métodos de selecção de

atributos. Este pacote suporta a análise de dados de metabolómica de espectroscopia de infravermel-

hos, ultra violeta visível e ressonância nuclear magnética.

O pacote foi validado com exemplos reais, considerando três casos de estudo, incluindo a análise

dos dados de produtos naturais como a própolis e a mandioca, assim como dados de metabolómica

de pacientes com cancro. Cada um desses dados foi analisado usando o pacote desenvolvido com
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diferentes pipelines de análise e relatórios HTML que incluem ambos scripts de análise e os seus

resultados, foram gerados usando as funcionalidades documentadas fornecidas pelo pacote.
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1

I N T RO D U C T I O N

1.1 C O N T E X T

Metabolomics can be defined as the identification and quantification of all intra- cellular and extra-

cellular metabolites with low molecular mass. It is one of the so called omics technologies that

have recently revolutionized the way biological research is conducted, offering valuable tools in func-

tional genomics and, more globally, in the characterization of biological systems (Nielsen and Jewett,

2007). Indeed, these technologies allow the global measurement of the amounts of different molecules

(e.g. Messenger Ribonucleic Acid (mRNA) in transcriptomics, proteins in proteomics) providing nu-

merous applications in biological discovery, biotechnology and biomedical research. Applications

of metabolomics data include studying metabolic systems, measuring biochemical phenotypes, un-

derstanding and reconstructing genetic networks, classifying and discriminating between different

samples, identifying biomarkers of disease, analyzing food and beverage, studying plant physiology,

providing for novel approaches for drug discovery and development, among others (Nielsen and Jew-

ett, 2007; Villas-Boas et al., 2007; Mozzi et al., 2012).

However, to achieve these goals, metabolomics data also bring important new challenges regarding

the capability of extracting relevant knowledge from typically large amounts of data (Varmuza and

Filzmoser, 2009). Indeed, omics data have promoted the development and adaptation of numerous

methods for data analysis. Unlike transcriptome and proteome technologies that are based in the anal-

ysis of biopolymers with any biochemical similarity, metabolites have a large variance in chemical

structures and properties, making difficult the development of high-throughput techniques and there-

fore reducing the number of molecules that can adequately be measured in a sample (Villas-Boas et al.,

2007). This also implies a higher variety of techniques to be able to span all applications.

In order to respond to the challenges created by the data analysis of metabolomics data, a script

based software was developed to address a wide variety of common tasks on metabolomics data

analysis, providing a general workflow that can be adapted for specific case studies. This package

includes tools for the visual exploration and preprocessing of the data, and further analysis to try

to discover significant features regarding the type of the data with a wide variety of univariate and

multivariate statistical methods, as well as machine learning and feature selection algorithms.
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Chapter 1. I N T R O D U C T I O N

There are a few techniques to obtain metabolomics data. In this work, three techniques will be

the main focus: Nuclear Magnetic Resonance (NMR), Infrared (IR) and Ultraviolet-visible (UV-vis)

spectroscopies. Those will be explained later in more detail.

1.2 O B J E C T I V E S

Given the context described above, the main aim of this work will be the design and development

of an integrated computational platform for metabolomics data analysis and knowledge extraction.

The work will address the exploration and integration of data from distinct experimental techniques,

focusing on NMR, UV-vis, and IR.

More specifically, the work will address the following scientific/technological goals:

• To design adequate pipelines for data analysis adapted to the distinct experimental techniques

and analysis purposes.

• To implement data analysis methods for metabolomics data, taking advantage of existing open-

source software tools, pursuing the development of new methods when needed.

• To design and implement specific machine learning and feature selection algorithms for the

analysis of metabolomics data.

• To validate the proposed algorithms with case studies from literature and others of interest in the

analysis of the potential of natural products, including for instance propolis or cassava samples.

• To write scientific publications with the results of the work.

1.3 D I S S E RTAT I O N O R G A N I Z AT I O N

This dissertation is divided in five chapters. This first chapter made a brief introduction to the theme

of this dissertation and defines the objectives proposed with this work.

On the next chapter, the state of the art regarding metabolomics is covered, mentioning the existing

techniques for metabolomics data acquisition, the workflow of a metabolomics experiment and data

analysis with all its steps, the databases and free tools available for metabolomics, an overview of the

main methods for data analysis (both univariate and multivariate) and a description of data integration

and existing methods.

The third chapter describes the process of software development to reach the proposed package in

R. All the software features are described, as well as the development strategy and the tools that were

used, together with the details of the methods developed for each step of the metabolomics workflow.

In the fourth chapter, three case studies were analyzed with the software developed. The details of

each case study, the respective results, as well as the interpretation of those results are included in the

chapter.
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1.3. Dissertation organization

Finally, the last chapter contains the conclusions of the work done and the proposals for future

work.
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2

S TAT E O F T H E A RT

In this chapter, the state of the art of the metabolomics field will be covered. This includes the

description of the main techniques and their characteristics, and the available methods for data pre-

processing and analysis. The workflow of data analysis for a metabolomics experiment will be fully

covered, which includes the preprocessing, metabolite identification and quantification, univariate and

multivariate data analysis, the databases and free tools existent for metabolomics and data integration.

2.1 T E C H N I Q U E S

2.1.1 Nuclear Magnetic Resonance

NMR spectroscopy is one of the most frequently employed experimental techniques in the analysis

of the metabolome. It allows identifying metabolites in complex matrices in a non-selective way,

providing a metabolic characterization of a given cell or tissue sample. The 1D- and 2D-NMR ex-

perimental approaches are useful for structure characterization of compounds and have been applied

for the analysis of metabolites in biological fluids and cells extracts. NMR spectroscopy is a robust

and non-destructive sample technique, relatively inexpensive after the initial high costs of installation,

also useful for quantification of metabolites in biological samples. The main drawbacks are its poor

sensitivity and large sample requirement that can be an obstacle in some situations (Rochfort, 2005).

Some variants (e.g. High Resolution Magic Angle Spinning (HRMAS) NMR) overcome some of

these limitations.

NMR provides a spectrum with the chemical shifts in the x-axis and the intensities of the signal

in the y-axis. These data are typically stored in a matrix where the chemical shifts and classification

labels are the columns, and the samples are the lines (or the reverse). In this form, the data are ready

to be pre-processed, analyzed and interpreted.

As said above, NMR is one of the most popular techniques employed on metabolomics experiments,

so it has a lot of applications in a wide range of areas (Table 1). It was used, for example, to determine

the metabolic fingerprint and pattern recognition of silk extracts from seven maize landraces cultivated

in southern Brazil (Kuhnen et al., 2010), predict muscle wasting (Eisner et al., 2010), identify farm
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Chapter 2. S TAT E O F T H E A RT

origin of salmon (Martinez et al., 2009) or to classify Brazilian propolis according to their geographic

region (Maraschin et al., 2012).

2.1.2 Infrared Spectroscopy

Infrared spectroscopy is a technique based on the vibrations of the atoms in a molecule. An infrared

spectrum is commonly obtained by passing infrared radiation through a sample and determining what

fraction of the incident radiation is absorbed at a particular energy. The energy at which any peak in an

absorption spectrum appears corresponds to the frequency of vibration of a part of a sample molecule.

The infrared spectrum can be divided into three main regions: the far-infrared (<400 cm−1), the

mid-infrared (4000–400 cm−1) and the near-infrared (13 000–4000 cm−1).

The most significant advances in infrared spectroscopy have come about as a result of the intro-

duction of Fourier-transform spectrometers. This type of instrument employs an interferometer and

exploits the well-established mathematical process of Fourier-transformation. Fourier-Transform In-

frared (FTIR) spectroscopy has dramatically improved the quality of infrared spectra and minimized

the time required to obtain data. With the advantage of being simpler and less expensive, infrared

spectroscopy can provide a complementary view of that provided by NMR.

There are many applications where infrared spectroscopy, usually in association with multivariate

statistical methods, has been used with good results (Table 1). In the food and beverage area, infrared

spectroscopy was used to measure milk composition (Aernouts et al., 2011) and detect and quantify

milk adulteration (Santos et al., 2013), classify beef samples according to their quality (Argyri et al.,

2010), compare metabolomes of transgenic and non-transgenic rice (Eymanesh et al., 2009), discrim-

inate between different varieties of fruit vinegars (Liu et al., 2008), monitor spoilage in fresh minced

pork meat (Papadopoulou et al., 2011) and predict different beer quality parameters (Polshin et al.,

2011).

Regarding the biological and medical fields infrared spectroscopy has achieved successful results,

for instance in differentiating mild sporadic Alzheimer’s disease from normal aging of blood plasma

samples (Burns et al., 2009), differentiating strains of bacteria (Kansiz et al., 1999; Preisner et al.,

2007) and yeasts (Cozzolino et al., 2006), and in discriminating different plant populations and the

effects of environmental changes (Khairudin and Afiqah, 2013).
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2.1. Techniques

Reference Description Techniques Preprocessing Analysis

Acevedo et al.
(2007)

Discriminate wines denomina-
tion of origin

UV-Vis Mean centering
SIMCA, SIMCA, KNN,
ANNs, PLS-DA

Urbano et al.
(2006)

Classification of wines UV-Vis First derivative SIMCA

Pereira et al.
(2011)

Predict wine age UVV
Mean centering, Smoothing,
1st and 2nd derivative, MSC,
SNV, OSC

PLS-r

Barbosa-García
et al. (2007)

Distinguish between classes of
tequila

UV-Vis
Derivative, centering of
columns

PLS-DA

Anibal et al.
(2009)

Detect Sudan dyes (4 types) in
commercial spices

UV-Vis Mean centering KNN, SIMCA, PLS-DA

Kruzlicová et al.
(2008)

Classification of different sorts
of olive oil and pumpkin seed
oil, supplemented with oil qual-
ity

UV-Vis, IR None

LDA, Quadratic Dis-
criminant Analysis
(QDA), KNN, Linear
Regression (LR), ANNs

Kumar et al.
(2013)

Clustering and classification of
tea varieties

UV-Vis-NIR Normalization PCA, K-Means, ANNs

Souto et al.
(2010)

Classification of brazilian
ground roast coffee

UV-Vis None SIMCA, LDA

Thanasoulias
et al. (2003)

Discrimination of blue ball
point pen inks

UV-Vis Normalization, Log
PCA, K-Means, Discrim-
inant Analysis (DA)

Adam et al.
(2008)

Classification and individuali-
sation of black ballpoint pen
inks

UV-Vis None PCA

Thanasoulias
et al. (2002)

Forensic soil discrimination
with UV-Vis absorbance spec-
trum of the acid fraction of hu-
mus

UV-Vis Normalization, Log PCA, K-Means, DA

Aernouts et al.
(2011)

Measure milk composition IR

Regions removed, baseline
correction, MSC, SNV, 1st
and 2nd Savitzky-Golay
derivatives, Orthogonal Sig-
nal Correction (OSC), mean
centering

PLS-r

Santos et al.
(2013)

Detect and quantify milk adul-
teration

IR
Normalization, Savitzky-Golay
2nd derivative, mean centering

SIMCA, PLS-r

Argyri et al.
(2010)

Classify beef samples quality
and predict the microbial load

IR
Smoothing (Savitzky-Golay),
mean centering

PCA, ANNs

Eymanesh et al.
(2009)

Comparison of transgenic and
non transgenic rice

IR, NMR Spectra divided in 287 areas PCA, LDA

Liu et al. (2008)
Discriminate the varieties of
fruit vinegars

IR
MSC, 1st and 2nd derivative,
SNV, Smoothing (Savitzky-
Golay)

PLS-DA, SVM

Papadopoulou
et al. (2011)

Quantify biochemical changes
occurring in fresh minced pork
meat

IR
Mean centering, SNV, Outlier
samples removal

PLS, PLS-DA, PLS-r

Polshin et al.
(2011)

Prediction of important beer
quality parameters

IR

MSC, OSC, baseline cor-
rection, SNV, 1st and 2nd
Savitzky-Golay derivatives,
mean centering

PCA, PLS-r
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Chapter 2. S TAT E O F T H E A RT

Burns et al.
(2009)

Differentiating mild sporadic
Alzheimer’s Disease from nor-
mal aging

IR None LR

Kansiz et al.
(1999)

Discriminate between
cyanobacterial strains

IR
Normalization, 1st and 2nd
Savitzky-Golay derivatives,
mean centering

PCA, SIMCA, KNN

Preisner et al.
(2007)

Discrimination between differ-
ent types of the Enterococcus
faecium bacterial strain

IR

MSC, extended MSC, baseline
correction, SNV, 1st and 2nd
Savitzky-Golay derivatives,
mean centering, sample outlier
removal

PCA, Di-PLS

Cozzolino et al.
(2006)

Investigate metabolic profiles
produced by S. cerevisiae dele-
tion strains

IR
Autoscaling, centering, second
derivative

PCA, LDA

Khairudin and
Afiqah (2013)

Discrimination of different
plant populations and study
temperature effects

IR Pareto scaling PCA, PLS-DA

Kuhnen et al.
(2010)

Pattern recognition of silk ex-
tracts from maize landraces cul-
tivated in southern Brazil

NMR Phasing, baseline correction PCA, SIMCA, HCA

Eisner et al.
(2010)

Predict if cancer patients are
losing weight

NMR Log transform

NaiveBayes, PLS-DA,
decision trees, SVM,
Pathway informed
analysis

Martinez et al.
(2009)

Identify farm origin of salmon NMR Peak alignment, normalization
PCA, SVM, Bayesian
belief network, ANNs

Maraschin et al.
(2012)

Classify Brazilian propolis ac-
cording to their geographic re-
gion

NMR
Phasing, baseline correction,
peak alignment, missing values
treatment, data filtering

PLS-DA, Random
Forests, decision trees,
rule set

Masoum et al.
(2007)

Confirmation of wild and
farmed salmon and their
origins

NMR
Filtering uninformative at-
tributes, COW

SVM

Table 1: Applications of NMR, IR and UV-Vis spectroscopies

2.1.3 Ultraviolet-visible

Similar to infrared spectroscopy, ultraviolet-visible spectroscopy refers to the absorption of radiation

as a function of wavelength, due to its interaction with the sample in the ultraviolet-visible spectral

region. It uses light in the visible and adjacent (near-UV-vis and near-infrared) ranges.

Also with the advantage of being simpler and less expensive than more sophisticated techniques,

ultraviolet-visible spectroscopy can provide a fast way of discriminating samples, thus offering a

complementary view to other types of data in many situations.

Ultraviolet-visible spectroscopy has been applied successfully with chemometrics analysis in areas

such as food and beverage, and forensics (Table 1). It was used, for instance, to classify wines

according to their region, grape variety and age (Acevedo et al., 2007; Urbano et al., 2006; Pereira

et al., 2011), discriminate different classes of tequila (Barbosa-García et al., 2007), determine the
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2.2. Workflow of a metabolomics experiment

adulteration of spices with Sudan I-II-III-IV dyes (Anibal et al., 2009), classify different sorts of olive

oil and pumpkin seed oil (Kruzlicová et al., 2008), discriminate different Indian tea varieties (Kumar

et al., 2013) and classify Brazilian ground roast coffee (Souto et al., 2010).

In forensics, ultraviolet-visible spectroscopy was used in cases such as the discrimination of ball-

point pen inks (Thanasoulias et al., 2003; Adam et al., 2008) and the discrimination of forensic soil

(Thanasoulias et al., 2002).

2.2 W O R K F L O W O F A M E TA B O L O M I C S E X P E R I M E N T

Two distinct approaches can be chosen for planning and executing a metabolomics experiment. The

first, known as a chemometrics approach or metabolic fingerprinting, makes use of the preprocessed

data, normally spectra or peaks list, and the analysis is done over that data typically for sample discrim-

ination. That approach was for instance used in the discrimination between wild and farmed salmon

and their origins (Masoum et al., 2007). The second approach, known as metabolic target analysis or

profiling focuses on the identification and quantification of compounds present in the sample, being

that information used to run the analysis. A metabolic target analysis was for instance used in predict-

ing cancer-associated skeletal muscle wasting from 1H-NMR profiles of urinary metabolites (Eisner

et al., 2010). The second approach is used mostly for NMR data, since identifying and quantifying

metabolites in IR and UV-vis data is complex.

The general workflow of a metabolomics experiment generally consists in the steps of sample prepa-

ration, data acquisition, preprocessing, data analysis and data interpretation (see Fig. 1). Once the

samples are prepared and the data is acquired, it will be preprocessed to correct some issues and im-

prove the performance of the next step, data analysis, where the information will be extracted. The

last two steps will be the main focus of this project.

9
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Figure 1: General workflow of a metabolomics experiment

2.2.1 Preprocessing

As this step has great importance in the results, almost all the literature has put some thought in

preprocessing, testing sometimes a few combinations of methods and analyzing the results obtained,

to know which preprocessing methods are better or worse with the data being analyzed. Preprocessing

is important to make samples analyzable and comparable. Normally, the preprocessing steps consist

on missing values and outlier removal, some peak spectra processing and normalization or scaling.

There are two major choices regarding missing values handling: their removal, removing the feature

or the sample containing the missing value, or replacing by a value such as the row or column mean,

or using more sophisticated methods (e.g. nearest neighbors). Also, there are sometimes samples or

variables that are considered outliers (observation point that is distant from other observations) due to

variability in measurement or experimental error. Those are typically excluded from the dataset.

Peak spectra processing refers to corrections or selections made over the spectra. For that task,

there are methods such as baseline correction, which, as the names indicates, is needed to correct an

unwanted linear or non-linear bias along the spectra. Another method is smoothing, which means

reducing the noise of the spectra, and help for both visual interpretation and robustness of the analysis

by trying to smooth enough to reduce the noise while retaining as much as possible of the peaks,
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especially the small ones. One popular method of smoothing is the Savitzky-Golay filter which is a

process known as convolution that fits successive sub-sets of adjacent data points with a low-degree

polynomial by the method of linear least squares.

There are some other methods related to peak spectra processing like binning, peak alignment,

among others. Binning is useful when there are a large number of measurements per spectrum, it

divides the spectrum into a desired number of bins, forming a new spectra with fewer variables. The

reasons for using binning are that the number of variables can be too high and another less obvious

reason is the implicit smoothing and the potential for correcting small peak shifts. There are a few

dangers regarding the bad placing of the bins, by removing information or producing false informa-

tion.

In NMR, peaks can be shifted due to instrumental variations, sample pH or interferences in the anal-

ysis, for example. Those shifts need to be corrected before the data analysis, so that each metabolite

appears where it is expected. There are a few methods of doing peak alignment, some simpler than

others which are more robust. The simplest form of peak alignment is to divide the spectra into a num-

ber of local windows where peaks are shifted to match across spectra. That is fast, since everything is

done locally, but may lead to misalignment when peaks fall into the wrong local window or are split

into two windows, just as when binning. One of the more robust peak-alignment procedures is called

Correlation Optimized Warping (COW). It uses two parameters – section length and flexibility – to

control how spectra can be warped towards a reference spectrum (Liland, 2011).

In many cases, to make variables comparison possible, the data needs to be standardized to be

comparable. The common process of standardizing values does their subtraction by the mean and

division by the standard deviation. An alternative process is the use of median and the mean absolute

deviation. Centering the data can make many data analysis techniques work better and it means that

the mean spectrum is subtracted from each of the spectra. It depends on the particular dataset whether

centering the data does make sense or not.

The calculation of derivatives of the spectrum is often used mostly in UV-vis and IR spectroscopy. It

is the result of applying a derivative transform to the data of the original spectrum, being useful for two

reasons: the first and second derivatives may swing with greater amplitude then the original spectra,

in many cases separating out peaks of overlapping bands. In some cases, this can be a good noise

filter since changes in baseline have negligible effect on derivatives. Multiplicative Scatter Correction

(MSC) is a pre-processing step needed for measurement of many elements. It is a transformation

method used to compensate for additive and/or multiplicative effects in spectral data.

On ultraviolet-visible spectroscopy’s metabolomics literature, it can be perceived that in compar-

ison to infrared spectroscopy, less methods were used regarding peak spectra processing and the

raw data were typically just normalized and derivatives calculated (check Table 1). On infrared

spectroscopy, more methods for peak spectra processing were applied such as smoothing, with the

Savitzky-Golay method being the most used, baseline and scatter correction, most often using MSC.

In this case, derivatives were also calculated (first and second derivatives) and the data normalized.
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On NMR data, peak spectra processing was employed such as peak alignment, binning and baseline

correction, while usually standardization is also applied.

The methods of preprocessing used can vary much from dataset to dataset, taking into account the

data’s quality and the type of the data. In Table 1, the various preprocessing methods used in several

cases from the literature are summarized in the fourth column.

2.2.2 Metabolite identification and quantification

Since NMR produces a large number of peaks from possibly hundreds of metabolites, the identifica-

tion and quantification of metabolites is quite difficult due to shifting peak positions, peak overlap,

noise and effects of the biological matrix. Figure 2 shows an example of peak overlap. So, this is

a complex problem to solve with 100% accuracy, but there are some tools that achieve good results

such as Bayesian AuTomated Metabolite Analyser for NMR spectra (BATMAN), MetaboMiner or

Metabohunter which will be described briefly next.

BATMAN, is an R package which deconvolutes peaks from 1-dimensional NMR spectra, automat-

ically assigning them to specific metabolites and obtaining concentration estimates. The Bayesian

model incorporates information on characteristic peak patterns of metabolites and is able to account

for shifts in the position of peaks commonly seen in NMR spectra of biological samples. It applies

a Markov Chain Monte Carlo (MCMC) algorithm to sample from a joint posterior distribution of the

model parameters and obtains concentration estimates with reduced mean estimation error compared

with conventional numerical integration methods (Hao et al., 2012).

MetaboMiner is a standalone graphics software tool which can be used to automatically or semi-

automatically identify metabolites in complex biofluids from 2D NMR spectra. MetaboMiner is able

to handle both 11H-1H Total Correlation Spectroscopy (TOCSY) and 1H-13C heteronuclear single

quantum correlation (HSQC) data. It identifies compounds by comparing 2D spectral patterns in

the NMR spectrum of the biofluid mixture with specially constructed libraries containing reference

spectra of 500 pure compounds. Tests using a variety of synthetic and real spectra of compound

mixtures showed that MetaboMiner is able to identify >80% of detectable metabolites from good

quality NMR spectra (Xia et al., 2008).

MetaboHunter is a web server application which can be used for the automatic assignment of 1H-

NMR spectra of metabolites. MetaboHunter provides methods for automatic metabolite identification

based on spectra or peak lists with three different search methods and with the possibility for peak drift

in a user defined spectral range. The assignment is performed using as reference libraries manually

curated data from two major publicly available databases of NMR metabolite standard measurements

(HMDB and MMCD). Tests using a variety of synthetic and experimental spectra of single and multi-

metabolite mixtures have shown that MetaboHunter is able to identify, in average, more than 80%

of detectable metabolites from spectra of synthetic mixtures and more than 50% from spectra corre-

sponding to experimental mixtures (Tulpan et al., 2011).
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Figure 2: Example of a peak overlap

2.2.3 Univariate data analysis

On data analysis, the input is usually a matrix, with either a compound list or a peak list and their

values for different samples. Either way, the complexity of metabolomics data requires complex

analysis methods. Data analysis can be used to predict values like beer quality parameters (Polshin

et al., 2011) or to predict the class label of a certain sample, as in the identification of the farm origin

of salmon (Martinez et al., 2009). There are three main types of methods for data analysis: univariate

analysis, unsupervised multivariate techniques and supervised multivariate techniques, these last two

explained in more detail in subsection 2.2.4 and subsection 2.2.5. With the first approach, the analysis

is carried out on a single variable at a time and several statistical measures can be employed to describe

the data. The unsupervised and supervised multivariate approaches on the other hand use more than

one statistical outcome variable at a time in the analysis. The differences between the last two is that

the first do not use any metadata, e.g. information about natural groups within the data, while the

latter requires samples that are divided into at least two classes (or groups) to allow the methods to

conduct a learning (or training) process.

This section will focus on univariate statistical analysis. From the many techniques, a few most

popular ones will be explained given their importance in metabolomics data analysis, namely t-tests,

Analysis of Variance (ANOVA) and fold change analysis.

A t-test is a statistical hypothesis test in which the test statistic follows a Student’s t distribution.It

can be used only for situations where the data is splitted into two groups, being applied to a single data

variable. The method can determine if the means of the variable in the two groups are significantly
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different from each other by giving a p-value. If this value is inferior to 0.05 (or any other significance

level that is selected) the null hypothesis is rejected, which means that we can say that the means of

the variable for the two groups are different. On the contrary, if the p-value is superior to 0.05, the

null hypothesis cannot be rejected, which means that the estimate of the mean of the two groups can

be identical. Applied to metabolomics, t-tests can be used on each of the variables (ppm, wavelength,

etc) to see what are the most significant ones in the discrimination between two classes.

ANOVA constitutes a set of statistic models and tests associated that is used to analyze the differ-

ences between group means and associated procedures. In the simplest form of ANOVA, one-way

ANOVA, it provides a statistical test to check if the means of several groups are equal, and so it gen-

eralizes the t-test to more than two groups. Some post hoc tests can be used with ANOVA like the

Tukey’s Honest Significance Difference (HSD) test used to compare all possible pairs of group means.

The F-test plays an important role in one-way ANOVA, it is used for testing the statistical signif-

icance by comparing the F statistic, which compares the variance between groups with the variance

within groups. The ANOVA F-test is known to be nearly optimal in the sense of minimizing false

negative errors for a fixed rate of false positive errors.

In the cases where multiple tests need to be conducted, as it is the case with metabolomics data,

the p-values can be adjusted for multiple testing using various methods. One of the most common is

the False Discovery Rate (FDR). It controls the expected proportion of false discoveries amongst the

rejected hypotheses. The FDR is a less stringent condition than the family-wise error rate.

An ANOVA only tells you that there are differences between your groups, not where they lie. There-

fore a post-hoc test like Tukey’s HSD can be used to examine where the differences lie.

Also, ANOVA generalizes to the study of the effects of multiple factors (Two-way ANOVA, three-

way ANOVA, etc). It examines the influence of two or more different categorical independent vari-

ables on one dependent variable. It can determine the main effect of contributions of each independent

variable and also identifies if there is a significant interaction effect between them .

The Fold Change (FC) is a measure that shows how much a variable mean changes within two

groups. It is calculated by getting the ratio of the mean value of the variable in one group to the same

value in the other group. The higher the fold change value is for a feature, the more likely that feature

is significant to discriminate the two groups.

2.2.4 Unsupervised Methods

Usually, Principal Component Analysis (PCA) is employed to check if natural groups (clusters) arise

and/or to reduce dimensionality. PCA is the most frequently applied method for computing linear

latent variables (components). PCA can be seen as a method to compute a new coordinate system

formed by the latent variables (which are orthogonal) and where only the most informative dimensions

are used. Latent variables from PCA optimally represent the distances between the objects in a high-

dimensional variable space. It is a very popular technique and it is used frequently on all types
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of metabolomics data (Varmuza and Filzmoser, 2008). The results of a PCA analysis include the

scores of the supplied data on the principal components, i.e. the transformed variable values that

corresponds to a particular data point, the matrix of variable loadings, which are the weights of each

original variable on the new coordinates and the standard deviations (or variance) explained by each

of the principal components (or cumulative).

Also, to verify if natural groups arise and determine their composition, clustering techniques such

as k-means or hierarchical clustering can be used. Cluster analysis tries to identify coherent groups

(i.e., clusters) of objects, while no information about any group membership is available, and usually

not even the optimal number of clusters is known. In other words, cluster analysis tries to find groups

containing similar objects (Varmuza and Filzmoser, 2008). There are two main types of clustering

methods, hierarchical and nonhierarchical clustering.

Hierarchical Cluster Analysis (HCA) organizes data in tree structures with the main clusters con-

taining subclusters and so on. Generally, there are two types of HCA, the first is agglomerative which

means that the process starts with each observation as a cluster, and then pairs of clusters are merged

as the hierarchy moves up. On the other hand, the second approach is divisive, which means that all

observations start in a single cluster and then the splits are done recursively as the hierarchy moves

down. The result from HCA is generally a dendrogram. In order to know what clusters should be

splitted or merged, a measure of dissimilarity between sets of observations is required. Commonly

that measure is achieved with the use of a distance metric between two observations (e.g. Euclidean

or Manhattan distances) and a linkage criterion (e.g. nearest neighbour or complete linkage) that

calculates the distance between sets of observations as a function of the pairwise distances between

observations.

Nonhierarchical clustering organizes data objects into a set of flat groups (typically non overlap-

ping). It is a class of methods that aim to partition a dataset into a pre-defined number of clusters,

typically using iterative algorithms that optimize a chosen criterion. One important methods is k-

means clustering, where heuristics that start from initial random clusters, proceeds by transferring

observations from one cluster to another, until no improvement in the objective function can be made.

k-means clustering is a nonhierarchical clustering method that seeks to assign each observation to a

cluster, minimizing the distance of the observation to the cluster mean.

2.2.5 Supervised Methods: machine learning

The general workflow of machine learning consists of creating predictive models in order to classify

new samples to a specific output, i.e. the goal is to learn a general rule that maps the inputs into

outputs. To construct a predictive model, the learner algorithm must generalize from its experience,

i.e. training examples must be provided (labeled) and from those, the learner has to build a general

model to try to predict new unlabeled samples with good accuracy results. There are two approaches,

classification and regression. Classification is used when the output that we are trying to predict is a
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non-numeric value, i.e. a set of categories, and the algorithm will try to assign the unlabeled sample

to one of the categories. Regression is used when the output is a numeric value and the algorithm will

try to predict the numeric output value for the new sample.

Besides the accuracy, which is the proportion of samples correctly classified, to evaluate the per-

formance of the models built, there are many other metrics, like the Kappa statistic, which compares

the observed accuracy with an expected accuracy. The calculation of the expected accuracy is related

to the actual number of instances of each class, along with the number of instances that the classifier

labeled for each class. Let nc be the number of classes, ti be the actual number of instances of a class

i, ci the number of instances that the classifier labeled as belonging to that class and n the total number

of instances, the expected accuracy is calculated as it shows in Equation 1.

expected_accuracy =

nc
∑

i=1

ti×ci
n

n
(1)

Formula 1: Expected accuracy

Now the Kappa statistic can be calculated using both the observed accuracy and the expected accu-

racy, as shown in Formula 2.

kappa_statistic =
observed_accuracy− expected_accuracy

1− expected_accuracy
(2)

Formula 2: Kappa statistic

Essentially, the Kappa statistic is a measure of how closely the instances classified by the classifier

matched the actual data label, controlling for the accuracy of a random classifier as measured by the

expected accuracy.

Popular supervised methods, used commonly in metabolomics experiments, are Partial Least Squares

- Discriminant Analysis (PLS-DA) (Partial least squares – discriminant analysis), k-Nearest Neigh-

bors (kNN), Linear Discriminant Analysis (LDA) and Soft Independent Modeling of Class Analogy

(SIMCA) for classification tasks. For regression, Partial Least Squares - regression (PLS-r) (Partial

least squares – regression) is usually applied.

Partial Least Squares (PLS) is a supervised multivariate calibration technique that aims to define

the relationship between a set of predictor data X (independent variables) and a set of responses

Y(dependent variables). The PLS method projects the initial input–output data down into a latent

space, extracting a number of principal components, also known as Latent Variables (LV) with an

orthogonal structure, while capturing most of the variance in the original data. The first LV conveys

the largest amount of information, followed by the second LV and so forth. PLS-DA is a variant used

when the Y is categorical (Varmuza and Filzmoser, 2008).

16



2.2. Workflow of a metabolomics experiment

SIMCA is a method based on disjoint principal component models proposed by Svante Wold. The

idea is to describe the multivariate data structure of each group separately in a reduced space using

PCA. The special feature of SIMCA is that PCA is applied to each group separately and also the

number of PCs is selected individually and not jointly for all groups. A PCA model is an envelope,

in the form of a sphere, ellipsoid, cylinder, or rectangular box optimally enclosing a group of objects.

This allows for an optimal dimension reduction in each group to reliably classify new objects. Due to

the use of PCA, this approach works even for high-dimensional data with a small number of samples.

In addition to the group assignment for new objects, SIMCA also provides information about the

relevance of different variables to the classification or measures of separation (Varmuza and Filzmoser,

2008).

K-nearest neighbor (kNN) classification methods require no model to be fitted because they can be

considered as memory based. These methods work in a local neighborhood around a considered test

data point to be classified. The neighborhood is usually determined by the Euclidean distance, and the

closest k objects are used for estimation of the group membership of a new object.

Also, more sophisticated machine learning techniques have been used to build classification models

in order to give good prediction results. Techniques like Artificial Neural Network (ANN), Support

Vector Machine (SVM)s (Support Vector Machines), random forests, decision trees and rule induction

algorithms were applied on some metabolomics experiments with very good results on NMR, IR and

UV-vis data that can be used to predict new unlabeled samples (see Table 1).

SVMs are a machine learning approach that can be used for both classification and regression. In

the context of classification they produce linear boundaries between object groups in a transformed

space of the variables (using a kernel), which is usually of much higher dimension than the original

space. The idea of the transformed higher dimensional space is to make groups linearly separable.

Furthermore, in the transformed space, the class boundaries are constructed to maximize the margin

between the groups. On the other hand, the back-transformed boundaries are nonlinear.

Decision trees are represented by n-ary trees where each node specifies a test to the value of a

certain input attribute and each branch that exits the node corresponds to a value of that attribute,

originating a similar sub-tree. In the bottom of the tree are the leaves that represent the predicted

values. The classification process is recursive, beginning in the root of the tree and going from branch

to branch according to the attribute value until a leaf is reached. An example of this technique is the

C4.5 algorithm and its implementation in the J48 method included in the WEKA data mining tool

(Quinlan, 1993; Witten et al., 2011).

Classification rules follow a similar structure as decision trees, but instead of an n-ary tree, they

consist of a list of rules ordered by the quality of the rules. If an example’s attributes follow the con-

ditions of the rules then the classification output is the output value of the rule. An implementation of

this is JRip, which implements a propositional rule learner, Repeated Incremental Pruning to Produce

Error Reduction (RIPPER) (Cohen, 1995; Witten et al., 2011).
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Random forests are an ensemble learning method for classification and regression, consisting of a

set of decision trees. It uses the bagging method as a way to choose the examples and selects the set

of attributes to test in each tree randomly. The CART algorithm is used as the tree induction algorithm

and uses the out-of-bag error for validation (Breiman, 2001).

ANN are computational representations that mimic the human brain, trying to simulate its learning

process. The term "artificial" means that neural nets are implemented in computer programs that

are able to handle the large number of necessary calculations during the learning process. The most

popular type of ANN has three layers, the input layer, the hidden layer and the output layer. Input

data are put into the first layer, the hidden layer nodes do some calculations and the output is gathered

from the last layer. ANNs can be used for regression and classification.

In Table 1, some of these (and other) methods used in metabolomics data analysis studies available

in the literature are listed. These include tasks of visual analysis, data reduction, classification and

regression tasks.

2.2.6 Feature Selection

Feature selection tries to find the minimum set of features (in metabolomics, can be compounds or

peaks, for instance) that achieves maximum prediction performance. Feature selection is important

in various ways. It makes models more robust and generally improves accuracy, also providing im-

portant information to users regarding which variables are more discriminant. There are two main

approaches: filters and wrappers. Filters select features on the basis of statistical properties of the val-

ues of the feature and those of the target class, while wrappers rely on running a particular classifier

and searching in the space of feature subsets, based on an optimization approach.

A number of feature selection methods has been proposed in the literature. Among them, the most

popular wrappers are interval selection methods, such as interval Partial Least Squares (iPLS) used

in species identification using infrared spectroscopy (Lima et al., 2011) and Genetic Algorithms (GA)

used in bacteria discrimination using FTIR spectroscopy (Preisner et al., 2007).

In the iPLS method, the data are subdivided into non-overlapping partitions; each of these groups

undergoes a separate PLS modeling to determine the most useful variable set. To capture relevant

variation in the output, models based upon the various intervals usually need a different number of

PLS components than do full-spectrum models (Balabin and Smirnov, 2011).

A GA is a metaheuristic optimization algorithm that has a population of candidate solutions. Over a

number of generations, it will evolve the population of candidate solutions, generating new solutions

in each generation using selection operators and reproduction operators. For each solution its quality

is given by a fitness value, calculated using a defined objective function.

Also Recursive Feature Elimination (RFE), also known as backward selection, is a wrapper ap-

proach. It first uses all features to fit the model, and then each feature is ranked according to its

importance to the model. Then for each subset the most important variables are kept and the model
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is refitted and performance calculated, with the rankings for each feature recalculated. Finally, the

subset with the best performance is determined and the top features of the subset are used to fit the

final model.

Regarding filter approaches, simple univariate statistical tests can be used to pre-select the features

that pass some specific criterion (e,g. information gain, correlation with output variable) and then the

model is built with those selected features. Also flat pattern filters that remove variables with low

variability among instances can be used to filter the features prior to the construction of the model.

2.3 DATA B A S E S O F M E TA B O L O M I C S DATA

As said before, the number of databases of metabolomics data made available to the public is growing

(Table 2). The most notable database that can be mentioned is the Human Metabolome Database

(http://www.hmdb.ca/). For experimental data, there is also MetaboLights (http://www.

ebi.ac.uk/metabolights/). Other databases provide also complementary information about

metabolites and metabolism, such as KEGG (http://www.genome.jp/kegg/), PubChem (http:

//pubchem.ncbi.nlm.nih.gov/) and others.

2.3.1 HMDB

The Human Metabolome Database is a freely available electronic database containing detailed infor-

mation about small molecules (metabolites) found in the human body. It is intended to be used for ap-

plications in metabolomics, clinical chemistry, biomarker discovery and general education. Four addi-

tional databases, DrugBank (http://www.drugbank.ca), T3DB (http://www.t3db.org),

SMPDB (http://www.smpdb.ca) and FooDB (http://www.foodb.ca) are also part of the

HMDB suite of databases. DrugBank contains equivalent information on ∼1600 drugs and drug

metabolites, T3DB contains information on 3100 common toxins and environmental pollutants, and

SMPDB contains pathway diagrams for 440 human metabolic and disease pathways, while FoodDB

contains equivalent information on ∼28,000 food components and food additives. (Wishart et al.,

2013)

2.3.2 MetaboLights

MetaboLights is a database for metabolomics experiments and derived information. The database

is cross-species, cross-technique and covers metabolite structures and their reference spectra as well

as their biological roles, locations and concentrations, and experimental data from metabolic experi-

ments. It will provide search services around spectral similarities and chemical structures (Haug et al.,

2013).
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Name URL Short description
HMDB http://www.hmdb.ca Detailed information on metabolites found in the human body

Metabolights http://www.ebi.ac.uk/metabolights Database for metabolomics experiments and derived information
MMMDB http://mmmdb.iab.keio.ac.jp Mouse multiple tissue metabolome database

SMDB http://www.serummetabolome.ca Serum metabolome database
MeKO@PRIMe http://prime.psc.riken.jp/meko/ A web-portal for visualizing metabolomic data of Arabdiopsis

MPMR http://metnetdb.org/mpmr_public/ A metabolome database for medicinal plants
ECMDB http://www.ecmdb.ca/ E. coli metabolome database
YMDB www.ymdb.ca Yeast metabolome database
SMPDB http://www.smpdb.ca Small Molecule Pathway Database
FooDB http://www.foodb.ca Resource on food constituents, chemistry and biology

DrugBank http://www.drugbank.ca Combines drug data with comprehensive drug targets
BMRB http://www.bmrb.wisc.edu/metabolomics Central repository for experimental NMR spectral data
MMCD http://mmcd.nmrfam.wisc.edu Database on small molecules of biological interest

BML-NMR http://www.bml-nmr.org/ Birmingham Metabolite Library NMR database
IIMDB http://metabolomics.pharm.uconn.edu/iimdb Both known and computationally generated compounds
KEGG http://www.genome.jp/kegg/ Contains metabolic pathways from a wide variety of organisms

PubChem http://pubchem.ncbi.nlm.nih.gov Database of chemical structures of small organic molecules

Table 2: Databases of metabolomics data

2.4 AVA I L A B L E F R E E T O O L S F O R M E TA B O L O M I C S

Computational tools for metabolomics have been growing in the past years being already available

a good set of free tools (Table 3). One notable example is MetaboAnalyst (Xia et al., 2009, 2012),

a web-based metabolomic data processing tool. It accepts a variety of input data (NMR peak lists,

binned spectra, Mass Spectrometry (MS) peak lists, compound/concentration data) in a wide variety

of formats. It also offers a number of options for metabolomic data processing, data normalization,

multivariate statistical analysis, visualization, metabolite identification and pathway mapping. In par-

ticular, MetaboAnalyst supports methods such as: fold change analysis, t-tests, PCA, PLS-DA, hier-

archical clustering SVMs. It also employs a large library of reference spectra to facilitate compound

identification from most kinds of input spectra. It works based on the open-source R scientific com-

puting platform (http://www.r-project.org).

Also, there are several packages from Bioconductor project (http://www.bioconductor.

org) for R, which target a set of biological data analysis tasks, focusing on omics data, with some

specific metabolomics packages mainly for MS, which is another technique for metabolomics data ac-

quisition that will not be the focus here (http://bioconductor.org/packages/release/

BiocViews.html#___Metabolomics).

Still for R, there two important packages, hyperSpec and ChemoSpec. ChemoSpec is a collection of

functions for plotting spectra (NMR, IR, etc) and carrying out various forms of top-down exploratory

data analysis, such as HCA, PCA and model-based clustering. Robust methods appropriate for this

type of high-dimensional data are employed. ChemoSpec is designed to facilitate comparison of

samples from treatment and control groups. It also has a number of data pre-processing options

available, such as normalization, binning, identifying and removing problematic samples, baseline

correction, identifying and removing regions of no interest like the water peak in 1-NMR or the CO2

peak in IR (Hanson, 2013).
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2.5. Data integration

Name URL Short description
MetaboAnalyst http://www.metaboanalyst.ca Web application to analyze metabolomic data

hyperSpec http://hyperspec.r-forge.r-project.org R package to handle spectral data and metadata
ChemoSpec http://cran.r-project.org/web/packages/ChemoSpec R package to handle spectral data

Metabolomic Package http://cran.open-source-solution.org/web/packages/Metabonomic/
R-package GUI for the analysis of metabonomic
profiles

speaq https://code.google.com/p/speaq/
Integrated workflow for robust alignment and
quantitative analysis of NMR

Automics https://code.google.com/p/automics/
Platform for NMR-based spectral processing
and data analysis

MeltDB https://meltdb.cebitec.uni-bielefeld.de
Web-based system for data analysis and
management of metabolomics

metabolomics http://cran.r-project.org/web/packages/metabolomics
Collection of functions for statistical analysis
of metabolomic data

metaP-Server http://metabolomics.helmholtz-muenchen.de/metap2/ Web application to analyze metabolomic data

Bioconductor
http://bioconductor.org/packages/release/BiocViews.html
#___Metabolomics Bioconductor R packages for metabolomics

Table 3: Available free tools for metabolomics data

hyperSpec is a R package that allows convenient handling of hyperSpectral data sets, i. e. data sets

combining spectra with further data (metadata) on a per-spectrum basis. The spectra can be anything

that is recorded over a common discretized axis. hyperSpec provides a variety of possibilities to

plot spectra, spectral maps, the spectra matrix, etc. It also provides preprocessing and data analysis

methods. Regarding proprocessing, hyperSpec offers a large variety of methods, such as cutting the

spectral range, shifting spectra, removing bad data, smoothing, baseline correction, normalization or

MSC. In data analysis, PCA and clustering techniques can be performed with this package (Beleites,

2012).

As wee can see from Table 3, there are many tools for the metabolomics analysis, but MetaboAna-

lyst, which is the only integrated framework looses flexibility because it is more oriented to graphical

user interfaces (GUI).

2.5 DATA I N T E G R AT I O N

Data integration tries to aggregate data from different techniques in order to improve performance

of the prediction models; this is also known as data fusion. There are mainly three types of fusion

strategies, namely, information/data fusion (Low-Level Fusion (LLF)), feature fusion (Intermediate-

Level Fusion (ILF)), and decision fusion (High-Level Fusion (HLF)). The first two work on variable

level while the latter works on the decision level.

Variable level integration concatenates the variables into a single vector, which is called a “meta-

spectrum”. Data must be balanced (all variables in the same scale) prior to the fusion process. If

the number of concatenated variables is quite high, a variable selection is required. LLF involves

combining the outputs from two or more techniques to create a single signal (see Fig. 3). ILF first

involves feature extraction onto each source of data, followed by a simple concatenation of the feature

sets obtained from multiple information sources (see Fig. 4) (Subari et al., 2012). Decision level
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data fusion combines the classification results obtained from each individual technique using different

methods like fuzzy set theory or Bayesian inference.

There are some studies using data integration from different techniques. In some, data integration

does not improve classification performance significantly comparing to the individual results, but in

some other cases, data integration can improve significantly the classification results.

Data fusion for determining Sudan dyes in culinary spices (Anibal et al., 2011), which combines

data from 1H-NMR and UV-vis spectroscopy, applies the two types of data integration and uses fuzzy

set theory in the decision level approach, improving the overall performance of classification. Also

pure and adulterated honey classification (Subari et al., 2012), which combines data from e-nose and

IR spectroscopy, two types of variable level data integration, namely LLF and ILF, gave better results

than a single technique alone.

Classifying white grape musts in variety categories (Roussel et al., 2003a,b), which combines data

from UV-vis and IR spectroscopy, also applies the two main approaches. The variable level approach,

LLF, does not significantly improve results while the decision level approach, which employs data

integration based on the Bayesian inference, improved the classification results.

Figure 3: Low-level fusion example

Figure 4: Intermediate-level fusion example
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D E V E L O P M E N T

This chapter will cover the details about the developed package and the development process. The

general structure to keep spectral or other types of metabolomics data will be explained, as well

as the different functional sections of the package such as: the preprocessing, univariate analysis,

unsupervised and supervised multivariate analysis, including machine learning and feature selection.

Also, the technologies used (software, plugins, packages, etc) will also be referenced.

3.1 D E V E L O P M E N T S T R AT E G Y A N D T O O L S

To achieve the defined goals, a package with features covering the main steps of the metabolomics

data analysis workflow was developed, containing functions for the data reading and dataset creating,

preprocessing and data analysis.

The package was developed with functions easy to call, i.e. with few mandatory parameters, but

also very flexible, since while most functions have default parameters, they also have a large number of

parameters that users can use to change the default behavior. The package integrates many functions

imported and sometimes adapted from other packages, integrating various packages over a unique

interface. The package’s functions were meant to be easy to use and to provide abundant graphical

visualization options of the results. The idea is to minimize the number and complexity of the lines

of code needed to make a pipeline analysis over a certain dataset, but also to easily allow creating

variants for this analysis with low complexity.

The package was developed using the R environment (http://www.r-project.org), a free

integrated software environment for data manipulation, scientific and statistical computing and graph-

ical visualization. The most relevant characteristics of this platform are the data handling and storage

facilities, a base set of operators for matrix calculations, a large set of tools for data analysis, the

graphical facilities that can generate various types of graphics for data analysis. Also, it has a well

developed and effective programming language, the ’S’ language, allowing to develop new functions

and scripts. Since it is a free environment, it has the contribution of a large collection of packages

developed by anyone who wants to contribute (Venables et al., 2014). With such characteristics and

the goal of this thesis in mind, the choice of using R became clear.
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RStudio (http://www.rstudio.com) was the Integrated Development Environment (IDE)

chosen to develop the R scripts and assemble the package. Reports were made using a RStudio plu-

gin named R Markdown (http://rmarkdown.rstudio.com), a plugin that can create easily

dynamic documents, presentations and reports from R.

RStudio is a free integrated development environment for R. It comes with a console, an editor

that supports direct code execution with syntax highlighting, tools for plotting, easy installation of

packages, workspace management and history. RStudio is written in the C++ programming language

and uses the graphical user interface from the Qt framework (Verzani, 2011). It also has very easy to

use tools to assemble a package with the source code and the functions documentation.

R Markdown uses the syntax of markdown (http://daringfireball.net/projects/

markdown/basics) together with embedded R code chunks that are run, and the output of that

code is included in the generated report. This framework can create HTML, PDF and Microsoft

Word documents, and also some presentation formats. This allows to quickly see the results from

different pipelines of the data analysis and provide easy to generate and self-running reports of such

analyses. It uses the knitr package (http://yihui.name/knitr/ as the engine for dynamic

report generation with R.

In the future the developed package will be made available on CRAN, which is a network of ftp

and web servers that store identical and up-to-date versions of code and documentation for R packages

available for the community. Currently, the package can be accessed through the following reposito-

rium with GIT (http://git-scm.com/):

git clone https://chrisbcl@bitbucket.org/chrisbcl/metabolomicspackage.git

It can also be installed and loaded in R automatically with the following commands:

library(devtools)

install_bitbucket("metabolomicspackage","chrisbcl")

library(metabolomicsUM)

The package also comes with the functions documentation, including all details as the description

of the parameters, the return value and a short description of the function.

Different R packages were used to help developing the R scripts, which will be referred in the

sections where they were used.

3.2 DATA S E T S T RU C T U R E A N D C R E AT I O N

3.2.1 Dataset structure

The basic structure to keep spectral or other types of metabolomics data will be general, independent

of the type of data and source.

A dataset will be an R list consisting of the following fields:
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3.2. Dataset structure and creation

• description - a brief textual description of the dataset and possible pre-processing steps per-

formed to reach it;

• type - a string indicating the type of data; possible values, at this stage, are “nmr-peaklist”,

“nmr-spectra”, “concentrations”, “ir-spectra”, “uvv-spectra”, “raman-spectra”, “fluor-spectra”

and “undefined”;

• data - the metabolomics data, kept in a numeric matrix with columns representing samples and

rows representing the x axis values of the data (wavelengths, frequencies, shifts, compound

names, etc); values in the matrix represent y axis values (intensity, absorbance, concentrations,

etc); row names of the matrix keep the x axis values (as text strings); column names keep sample

identifiers;

• metadata - extra variables defining information about the samples; kept in a data frame (rows

are samples, columns are variables) – allows numerical and categorical (factors in R) variables;

• labels - list that allows to define labels for the x-axis ($x) and for the y-axis values ($val), to be

used in plotting for example.

In Figure 5, a graphical representation of the data structure is provided.

Figure 5: Representation of the structure of the data in a dataset

In this structure, the data matrix and the type cannot be NULL. The other fields can be NULL,

including the metadata. When handling spectral data, the row names of the data matrix are assumed
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to be numerical and can be interpreted as numerical values in many functions. If a set of non-numerical

row names are defined for spectral data, the dataset will be considered invalid.

3.2.2 Reading data and creating datasets

The core function create.dataset allows to create the structure mentioned above. A number of different

file formats are supported by the package, which includes Comma Separated Values (CSV) or Tab

Separated Values (TSV) text files and (J)DX spectra files. The function read.dataset.csv allows to read

data from CSV/TSV files (one for data and another, optionally, for metadata) specifying a number of

options for the file format. For reading (J)DX files, the function read.dataset.dx can be used, where

each file represents a distinct sample. Metadata can be additionally given as a CSV/TSV file. The

core reading functions for (J)DX are provided by the ChemoSpec package, which was described in

section 2.4.

Apart from the general structure given above, the package also handles data in other formats that

can typically be processed to datasets in the format defined. One of these cases is the peak list format,

used in the case of NMR. The structure of a peak list is simple: it is an R list, where each sample is one

field of the list (the name of the field is the sample name). Each sample is represented as a data frame

with two columns: one with the peak name or abscissa (e.g. frequency) and the other with the peak

intensity. The functions read.multiple.csvs and read.csvs.folder allow to read a set of CSV files with

peak lists, and dataset.from.peaks function creates a dataset from a list of peaks. Also peak alignment

functions were developed and 2 different algorithms implemented, one originally developed in this

work and another taken from MetaboAnalyst software which was mentioned in section 2.4. Both use

a moving window and a defined step. The function that allows the grouping of peaks is the group.peaks

function.

Both algorithms group peaks based on their ppm values with a moving window (default is 0.03

ppm). Peaks that are in the same group are aligned to their median ppm. For each group, if more

than one peak is detected from the same sample, it will be replaced by their sum. If a group contains

peaks that are in less than half of the samples, these will not be included in the alignment. The main

difference of the algorithms is that the MetaboAnalyst one does allow overlapping of the windows,

with a step size that is typically half of the window size, while the developed algorithms uses a simpler

strategy by considering non-overlapping windows.

3.2.3 Conversion to/from other packages

The developed package interfaces well with other R packages devoted to the analysis of metabolomics

data. Interfaces with the data structures of hyperSpec and ChemoSpec packages were already devel-

oped.
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The interface with the hyperSpec package provides functions to convert from an hyperSpec object

into our dataset and also to convert our datasets into hyperSpec objects. This allows to easily take

advantage of functions implemented in this package.

Similarly, this package implements the conversion of a dataset in the format of ChemoSpec to our

own format. The reverse conversion is not possible since ChemoSpec does not provide functions to

create objects, as these are only created from data files.

3.3 E X P L O R AT O RY A N A LY S I S

3.3.1 Statistics

The package includes a number of functions that allow to calculate global statistics over the data. The

functions stats.by.variable and stats.by.sample allow to calculate the main descriptive statistics over

the data matrix of a dataset. The difference of the functions is that the first is for variables and the

second for samples. These functions allow to get the minimum and maximum value, the first and

third quantiles and the mean and median. For specific calculations, the functions apply.by.variable

and apply.by.sample allow to apply any function to the variables or samples of a dataset, allowing to

easily calculate means, medians, standard deviations or any other statistic. All these functions can be

applied, by default, to the full dataset, or to subsets of samples or variables, specified by name or by

index.

3.3.2 Graphics

Also, a number of functions to provide graphical visualization of the data are available. A basic

visualization function allows to see the distribution of values for (a subset of) the variables in the

dataset in the form of boxplots (function boxplot.variables). In Figure 6 we have a example of the

plot with the distribution of values for a subset of the variables (in this case metabolites) in the dataset.

Figure 6: Boxplot for a subset of the metabolites in a dataset

The functions plot.spectra.simple and plot.spectra allow to visualize plots of the spectra in the

dataset, in the last case colored by a given metadata variable (factor). Both allow to define specific
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subsets of samples and variable bounds. These functions are only applicable to spectral data (where

variables are represented by numerical values). Figure 7 shows an example of each spectra plot.

For these graphical visualization functions, the base graphics system of R was used.

(a) (b)

Figure 7: (a) Plot of plot.spectra.simple function from a subset of a dataset with 5 samples. (b) Plot of
plot.spectra function from a subset of a dataset with 20 samples and colored by a metadata variable.

3.4 P R E P RO C E S S I N G

3.4.1 Filtering/subsetting data

To extract relevant parts of a dataset, a number of functions were developed. The functions sub-

set.samples, subset.x.values and subset.metadata allow to extract relevant subsets of samples, data

variables and metadata variables, respectively. The first two options can be combined through the

use of function subset.by.samples.and.xvalues. To use these functions the user must specify which

samples or/and values are intended in the new subset.

Specific functions allow, for instance, to create a subset of random samples from the dataset (sub-

set.random.samples) specifying the number of samples, or to select samples from the dataset accord-

ing to the values of a metadata variable (subset.samples.by.metadata.values).

Similar functions are available to remove data from the dataset. These allow to define the data to

be removed, rather than the data to be kept. Specific functions allow to remove samples or variables

that have a number of missing values higher than a defined value (functions remove.samples.by.nas

and remove.variables.by.nas).

Also, there is a function to aggregate samples (aggregate.samples) according to a vector specifying

the groups of samples to aggregate and an aggregation function to apply to the values of the data.

3.4.2 Spectral Corrections

A number of functions for spectral correction are provided. These include functions for shifting

and smoothing the spectra, as well as for baseline, offset and background correction, MSC and the

calculation of the first derivative.
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For shifting the spectra, two methods were implemented: constant and interpolation, where inter-

polation can be done by spline interpolation or linear interpolation. The shifts, if not given, can be

automatically calculated. The implementations were based on the hyperSpec package and on the

examples provided by the vignette in section 12.2 (Beleites, 2014).

Regarding smoothing, the function smoothing.interpolation has two methods implemented, also

from the hyperSpec package, namely the bin method and loess method. The first bins the spectral axis

by averaging every by data points, while the second applies the R’s loess function, that fit a polynomial

surface determined by one or more numerical predictors using local fitting, for spectra interpolation.

For spectra correction, the background and offset correction functions were implemented also with

the help of hyperSpec package. The baseline correction used the baseline package and the MSC

used the function msc from the pls package. The functions to do the spectra correction are back-

ground.correction, offset.correction, baseline.correction and msc.correction. Both background and

offset correction use the function sweep to obtain the summary statistics, quantile and min respec-

tively. The methods for baseline correction can be:

• als - Asymmetric Least Squares, baseline correction by 2nd derivative constrained weighted

regression;

• fillPeaks - An iterative algorithm using suppression of baseline by means in local windows;

• irls - Iterative Restricted Least Squares, an algorithm with primary smoothing and repeated

baseline suppressions and regressions with 2nd derivative constraint;

• lowpass - Low-pass filter, an algorithm for removing baselines based on Fast Fourier Transform

filtering;

• medianWindow - an implementation and extension of Mark S. Friedrichs’ model-free algo-

rithm;

• modpolyfit - Modified polynomial fitting, an implementation of Chad A. Lieber and Anita

Mahadevan-Jansen’s algorithm for polynomial fitting;

• peakDetection - A translation from Kevin R. Coombes et al.’s MATLAB code for detecting

peaks and removing baselines;

• rfbaseline - Robust Baseline Estimation, Wrapper for Andreas F. Ruckstuhl, Matthew P. Jacob-

son, Robert W. Field, James A. Dodd’s algorithm based on LOWESS and weighted regression;

• rollingBall - Ideas from Rolling Ball algorithm for X-ray spectra by M.A.Kneen and H.J. An-

negarn. Variable window width has been left out.

The hyperSpec package is mentioned in section 2.4.
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3.4.3 Missing Values

To identify missing values in the dataset, the function count.missing.values allows to count the number

of missing values in the dataset. If there are any, the function missingvalues.imputation allows to

replace those values, according to distinct methods: a constant user-defined value, the mean or median

of the variable, by the kNN or by linear interpolation. The kNN method uses the impute package from

Bioconductor.

An alternative is to remove samples and/or variables that have a number of missing values above a

given threshold, as mentioned above in subsection 3.4.1.

3.4.4 Data normalization, transformation and scaling

For sample normalization, data transformation and scaling there are a number of functions that allow

performing these operations.

Regarding sample normalization, the normalize function implements a number of options including

the use of a reference sample or feature, and dividing by the sum or the median of the values in the

sample.

The function transform.data implements two transformation methods, the first is the logarithmic

transformation and the second one, cubic root transformation. The formula for the logarithmic trans-

formation, which is tolerant to zero and negative values, is presented below in Formula 3, where x are

the sample’s values and min.val is minimum absolute value from the dataset divided by 10:

f (x) = log2

(
x +
√

x2 + min.val2

2

)
(3)

Formula 3: Logarithmic transformation

The cubic root transformation formula is presented in Formula 4, with x being the sample’s values:

f (x) = 3
√

x (4)

Formula 4: Cubic root transformation

For the purpose of data scaling, the function scaling comes with a few method options, which

are auto scaling (subtracting by the mean and dividing by the standard deviation, Formula 5), Pareto

scaling (divides by the square root of standard deviation, Formula 6), range scaling (divides by the

range, Formula 7) and scaling to a specific interval (Formula 8). The scaling is applied to the variables

and in the formulas presented below, x represents the variable’s values of the samples and sup.i and

in f .i the corresponding superior and inferior limits of the defined interval. Also, σx represents the
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standard deviation of x, x̄ the mean of x, max x the maximum value of x and min x represents the

minimum of x.

f (x) =
x− x̄

σx
(5)

Formula 5: Auto scaling

f (x) =
x− x̄√

σx
(6)

Formula 6: Pareto scaling

f (x) =

x, if max x = min x
x−x̄

max x−min x , otherwise
(7)

Formula 7: Range scaling

f (x) =

x× (sup.i− in f .i) + in f .i, if max x = min x
x−min x

max x−min x × (sup.i− in f .i) + in f .i, otherwise
(8)

Formula 8: Scaling to a specific interval

3.4.5 Flat pattern filtering

Flat pattern filtering can be used to reduce the size of the data by removing variables that show low

variability. This package implements flat pattern filtering using the function flat.pattern.filter, where

several functions can be used to measure the variability, which are: standard deviation, interquartile

range, mean absolute deviation, relative standard deviation, mean and median. The number of vari-

ables to filter can be chosen as a percentage of the variables in the dataset or, alternatively, a threshold

can be defined for the values calculated by the filtering function.

3.5 U N I VA R I AT E DATA A N A LY S I S

This package includes a number of distinct univariate analysis methods implemented by several func-

tions. The main types of analysis are: correlation analysis, fold change analysis, t-tests and ANOVA.

Regarding correlation analysis, the function correlations.dataset can be used to calculate the corre-

lations between variables or samples in the dataset and three distinct methods can be used: Pearson,
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Kendall or Spearman. The correlations result matrix can be visualized as a heatmap with the function

heatmap.correlations.

The function fold.change allows to calculate fold changes of values considering two groups of

samples as defined by a metadata variable. Also, we can visualize the result from fold change by

plotting the results with the function plot.fold.change and give a threshold value (cyan horizontal

line) for the dots in the plot appear blue in case the values are higher than the threshold and grey

otherwise. An example can be seen in Figure 8b where the x-axis represents the variables and the

y-axis represents the fold change value (or the base 2 logarithm of the fold change values).

To perform t-tests, the function tTests.dataset allows to measure differential values considering two

groups of samples as defined by a metadata variable. Also, we can visualize the result of the t-test

by plotting the results with the function plot.ttests and as the fold change plot, a threshold is given in

this one too. In Figure 8a there is an example, where the x-axis represents the variables and the y-axis

represents the logarithm to the base 10 of the p-values.

It is also possible to generate a volcano plot that intersects both results from fold change and t-

test. This plot combines the measure of the p-value from the t-test with the fold change value that

enables a quick visualization and identification of those variables that have higher changes and also

are statistically significant. In figure 8c there is an example, where the x-axis represents the logarithm

to the base 2 of the fold change values and the y-axis represents the negative logarithm to the base 10

of the p-values. The points that are above the thresholds for both fold change and t-test also appear in

blue.
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(a) t-test plot (b) Fold change plot

(c) Volcano plot

Figure 8: t-test, fold change and volcano plot from a metabolite’s concentrations dataset

Regarding ANOVA, the package implements one-way ANOVA with the Tukey HSD post-hoc test

and also multifactorial ANOVA. The functions to do the analysis are aov.all.vars and multifactor.aov.all.vars

for multifactor ANOVA. In both cases, the aproach is similar to the t-tests, where the procedure is re-

peated over the variables in the dataset, gathering a p-value for each and providing a rank of the

variables to highlight which ones can discriminate best the groups.

All these functions use the stats package that contains functions for statistical calculations and

random number generation from the base R system library.

3.6 U N S U P E RV I S E D M U LT I VA R I AT E A N A LY S I S

3.6.1 Dimensionality reduction

The package includes functions to perform PCA and a number of ways to visualize the results. To

function pca.analysis.dataset allows to perform a PCA analysis, which uses the prcomp function

from the already mentioned stats package. The function does the calculation by a Singular Value

Decomposition (SVD) of the data matrix and the returned results include the standard deviations

explained by the principal components (sdev), the matrix of variable loadings (rotation) and the scores

matrix. Another alternative implemented is the pca.robust function that uses internally the PCAgrid
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function from the pcaPP package, which computes a desired number of robust principal components

using the grid search algorithm in the plane (Filzmoser et al., 2014).

As said before, the package has implemented a number of ways to visualize the results and the

available plots are:

• Scree plot - function pca.screeplot that shows the individual percentage of the explained vari-

ance of each principal component and the cumulative percentage;

• Scores plot - functions pca.scoresplot2D, pca.scoresplot3D and pca.scoresplot3D.rgl that show

the scores of two different principal components in 2D and 3D;

• Biplots - functions pca.biplot and pca.biplot3D produce 2D and 3D biplots that display samples

as points while the variables are displayed either as vectors, linear axes or nonlinear trajectories;

• Pairs plot - function pca.pairs.plot that produce a pairs plot of the scores of the defined principal

components;

• Other plots with k-means results - functions that combine some plots mentioned above with

k-means results for coloring the points according to the cluster they belong.

Some of the plots use different packages to give the plot a nicer look. The 2D scores plot, with

the function pca.scoresplot2D, that allows to see the scores of 2 different principal components uses

the ggplot2 package and also draws the ellipses around the data points belonging to a certain group

using the ellipse package. For the 3D scores plot and 3D biplot, the rgl package was used and allows

to interactively move the plot to see from all the angles. The pairs plot uses the GGally package to

show the result of a few principal components as well the correlations score of the different groups.

In Figure 9 there is example of a few of these plots.
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(a) Scree plot
(b) 2D scores plot

(c) 3D scores plot

(d) Biplot

Figure 9: (a) PCA scree plot generated by pca.screeplot function. (b) 2D PCA scores plot (PC1 and PC2)
from the function pca.scoresplot2D. (c) 3D PCA scores plot (PC1, PC2 and PC3) from the function
pca.scoresplot3D. (d) PCA Biplot generated by pca.biplot function.

3.6.2 Clustering

Two clustering methods were implemented in the package: k-means clustering and HCA. To perform

the specific methods, the functions hierarchical.clustering and kmeans.clustering are defined. We

can choose the distance method according to dist function from stats package, as well the cluster-

ing method for the hierarchical clustering. For HCA, the available distance methods are: euclidean,

maximum, manhattan, canberra, binary and minkowski (RCoreTeam, 2014b). For the agglomeration

methods the available methods are: ward, single, complete, average, mcquitty, median and centroid

(RCoreTeam, 2014a). For k-means the number of clusters must be given and the clustering can be

done on samples or variables.

Both HCA and k-means functions use the stats package to perform the clustering analysis.

Clustering results can also be plotted. The functions dendrogram.plot and dendrogram.plot.col

were developed to create a dendrogram of the HCA results (the last one coloring the leaves depending

on what groups they belong defined from the selected metadata variable). The first one uses the

ggdendro package. For k-means, the results can also be plotted using kmeans.plot function which
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shows in blue the median of the values of the samples in that cluster and in grey all the values of

those samples. Also, the members of each cluster can be seen in a data frame with kmeans.result.df

function. Figure 10 shows an example of a dendrogram and the result of k-means plot.

(a) Dendrogram

(b) k-means plot

Figure 10: (a) Dendrogram with colored leaves from dendrogram.plot.col function. (b) k-means plot showing
four clusters.
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3.7 M AC H I N E L E A R N I N G A N D F E AT U R E S E L E C T I O N

The package provides a number of functions to train, use and evaluate machine learning methods,

being mostly based in the R package caret. A simple process of training and prediction for new exam-

ples is implemented by function train.and.predict, while function train.models.performance allows to

estimate the error for a set of classifiers. Also, there are functions to evaluate the importance of each

variable in the prediction models.

To train a model, the train function of the package caret is used internally, allowing to choose

the parameters for the training process, namely the error estimation method, the number of folds or

resampling iterations, the number of repetitions (only for repeated cross validation). The options for

the estimation method can be seen in Table 4 (Kuhn et al., 2014).

Keyword Name
boot Bootstrap

boot632 632 Bootstrap

cv Cross validation

repeatedcv Repeated cross validation

LOO Leave one out

LGOCV Leave group out cross validation

none Fits the model to the entire training set

oob Out-of-bag

Table 4: Resampling methods

The train function executes an internal process of parameter optimization over the internal param-

eter(s) of the selected classifier. The values tested for each parameters can be given as a data frame

with the columns named with the same name as the tuning parameters. A list of possible models

and their tunable parameters can be seen in this URL: http://topepo.github.io/caret/

modelList.html. A number indicating just the number of levels for each tuning parameters can

also be given (tune length).

A set of some of the most common models are shown in Table 5 together with the internal parame-

ters that can be optimized by the function.
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Keyword Name Tuning parameters
pls Partial Least Squares Number of components (ncomp)

J48 C4.5-like Trees Pruning confidence (C)

JRip Rule-Based Classifier Number of optimizations (NumOpt)

svmLinear
Support Vector Machines

with Linear Kernel
Misclassifying influence (C)

rf Random Forest
Number of variables randomly

sampled as candidates at each split (mtry)

Table 5: Some models with their tuning parameters.

The two approaches for machine learning, classification and regression, are both implemented. The

metrics for each one are the accuracy and Kappa statistic for classification, and for regression there is

the Root Mean Square Error (RMSE) and the coefficient of determination (R2).

A grid of parameters is created for each model and the model is trained on slightly different data for

each combination of tuning parameters. With each subset, the performance of the held-out samples

is calculated and the mean and standard deviation are averaged over cross-validation iterations. The

combination with the optimal resampling statistic is chosen to be the final model and all training set

is used to fit that model (Kuhn et al., 2014).

The returning values for training a model include the performance result for the best model, the

variable’s importance for each model, the full results with all the combinations of the tuning param-

eters tested with the accuracy averaged over cross-validation results, the confusion matrices (in case

of classification) and the final models. These can be used later for predictions or visualization, as it

happens in the PLS example, where a 3D plot of the first three components can be shown, as it is the

case in Figure 11.

As mentioned above, the results include the variable’s importance for each model. This is calcu-

lated with the varImp function from the caret package. It returns for each category of the metadata

variable, the importance that the variable has in the model (in case of classification) or/and the over-

all importance. With the function summary.var.importance, we can summarize the most important

variables for each model.

For classification purposes, the confusion matrix is calculated for each model. The confusion matrix

allows to visualize the performance of a model, it shows how many samples were correctly classified,

as well the misclassified ones (allowing to see to which class the sample was incorrectly classified).

Each column of the matrix represents the instances in an actual class and the rows represent the

instances in a predicted class.

Also, the package provides a number of functions to do feature selection, i.e. determine which at-

tributes are more valuable when applying different machine learning methods. The high level function

feature.selection allows to perform this analysis. The methods of RFE and filtering are made available

also from the caret package.
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Figure 11: 3D scatter plot of the first 3 components from a PLS model.

The RFE method, that uses the caret function rfe, requires a vector with the number of the subset

sizes that are going to be tested, the resampling method and the set of functions for model fitting,

prediction and variable importance. The functions can be the helper functions for backwards feature

selection from caret package, which are the linear model’s functions (lmFuncs), random forest’s func-

tions (rfFuncs), linear discriminating analysis’ functions (ldaFuncs), naive bayes’ functions (nbFuncs)

and linear regression functions (lrFuncs). The resampling method can be one of the already mentioned

in Table 4 (Kuhn et al., 2014). The result from RFE includes the performance from each subset with

the metrics already mentioned above, with the best model selected and the variables that were selected.

With the feature selection done with filtering, also from the caret package, the function sbf is used

internally to do feature selection using univariate filters. Also the method of resampling and a set of

functions for model fitting, prediction and variable filtering can be defined. The helper functions for

selection by filtering can be the linear model’s functions (lmSBF), random forest’s functions (rfSBF),

tree bag’s functions (treebagSBF), linear discriminant analysis’ functions (ldaSBF) and naive bayes’

functions (nbSBF). (Kuhn et al., 2014)

The returning results include the resampling performance with the metrics mentioned earlier, the

variables selected and the percentage of the variables selected during the resample.
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C A S E S T U D I E S

In this chapter, three case studies using real data will be presented to put to the test the package

developed and provide meaningful data analysis pipelines. The first case study is the discrimination

of propolis samples from southern Brazil (using NMR and UV-vis data), the next case study is the

analysis of metabolite’s concentrations of urine samples from control and cachexic cancer patients

and the last one is the analysis of the effect of PPD of cassava samples.

4.1 P RO P O L I S

4.1.1 Introduction

Propolis or bee glue is a sticky dark-colored substance produced from the collected buds or exudates

of plants (resin) by bees (Apis mellifera L.). The resin is masticated, salivary enzymes are added, and

the partially digested material is mixed with beewax and used in the hive to seal the walls, strengthen

the borders of combs, and embalm dead invaders (Wollenweber et al., 1990). Humans have used

propolis as a remedy since ancient times (Marcucci, 1995). In the last years, this product has been

the subject of intensive studies highlighting its biological and pharmacological properties, such as the

antimicrobial (Burdock, 1998; Banskota et al., 2001; Yildirim et al., 2004; G. Vardar-Ünlü and Ünlü,

2008), anti-oxidative (Kumazawa et al., 2007), anti-viral (Gekker et al., 2005), anti-tumoral (Sforcin,

2007; Tan-No et al., 2006; Awale et al., 2008), anti-inflammatory (Burdock, 1998; Banskota et al.,

2001), and anti-neurodegenerative (Chen et al., 2008). Propolis was also tested as a food preserver,

due to its bactericidal and bacteriostatic properties and, as its components are natural constituents of

food, are recognized as safe substances (Tosi et al., 2007).

The successful medical applications of propolis led to an increased interest in its chemical com-

position. In general, resin comprising flavonoids and related phenolic acids represent approximately

half of the propolis constituents, while beewax, volatiles, and pollen represent approximately 30%,

10%, and 5%, respectively (Bankova et al., 2000). Still, the chemical composition of the bee glue is

extremely dependent on the plants found around the hive, as well as on the geographic and climatic

characteristics of the site. Buds from Populus species are the main source of resins in Europe and

North America propolis (“poplar type” propolis) (Marcucci, 1995). Alternatively, in regions where

41



Chapter 4. C A S E S T U D I E S

these plants are not native, other species from the genera Clusia in Cuba and Baccharis in Brazil are

used as resin sources, increasing its diversity and complexity (Salatino et al., 2005). Less commonly,

species from genera such as Betula, Ulmus, Pinus, Quercus, Salix and Acacia are also used (König,

1985).

It has long been known that propolis’ chemical composition might be strongly influenced by envi-

ronmental factors peculiar to the sites of collection of a given geographic region of production, as well

as by seasoning. Together with chemometrics techniques, the aim of this case study is to gain insights

of important features associated to chemical composition, harvest season, and geographic origin of

propolis produced in the Santa Catarina state, southern Brazil.

4.1.2 NMR data

The propolis samples used in this study for NMR data analysis were collected in the autumn (AU),

winter (WI), spring (SP), and summer (SM) of 2010 from Apis mellifera hives located in southern

Brazil (Santa Catarina State). A total of 59 samples were collected, and the distribution of samples by

seasons being: SM – 16 samples, AU and SP – 15 samples, WI – 13 samples.

Also, three agroecological regions were defined for the different apiaries, and one distributed as

follows: Highlands – 12 samples, Plain – 11 samples, Plateau – 36 samples.

After a few steps to acquire the data from the samples through NMR, the data was stored for

further analysis. Each sample is represented by a .csv file which contains the chemical shifts (ppm)

and its corresponding value, and the name of the file contains the apiary and the season separated

by underscore (’_’). For example, “SJ_wi.csv”, means that the apiary is ’SJ’ and the season is ’wi’

(winter). Then, to assign a agroecological region from a apiary, a function was used to make that

conversion (in the example, ’SJ’, was converted to ’Highlands’). The files were then read to a peaks

list in R.

An internal standard, Trimethylsilyl Propionate Sodium salt (TSP, 0.024 g%) at peak 0.00 ppm and

resonances regions at 3.29-3.31 ppm and 4.85-5.00 ppm containing methanol-d4 and water signals

were removed from the dataset for further analysis. After the resonances removal, the peaks list is

transformed into a dataset using peak alignment for further analysis.

The next step of preprocessing was to remove variables that contained more than 75% of miss-

ing values, replacing the missing values with a low value (5e-05) and then applying a logarithmic

transformation and data autoscaling. In this step, the options of no logarithmic transformation and

no auto scaling; only logarithmic transformation; only auto scaling; and both logarithmic transforma-

tion and posterior auto scaling were tested to evaluate different results. Both metadata variables,

seasons and agroecological regions, were used in the analysis. The full results can be found in

the reports generated by Markdown RStudio plugin that are provided as supplementary material in

darwin.di.uminho.pt/chris-msc. The analysis that will be referenced here will be the one

with logarithmic transformation and auto scaling.
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4.1.2.1 Univariate Analysis

One-way ANOVA and Tukey’s HSD post-hoc tests were used to detect significant statistical differences

(p-value below 0.05) derived from the effects of propolis harvest seasons or agro-regions on the propo-

lis spectral profiles. These were done for all peaks and the top 20 were ordered by increasing p-value

as can be seen in Table 6.

More information about these methods is available in section 2.2.

ppm pvalues logs fdr tukey

4.66 9.585e-26 25.018 2.319e-23 sm-au; sp-sm; wi-sm

4.58 3.385e-17 16.470 4.096e-15 sm-au; sp-sm; wi-sm

4.55 6.092e-14 13.215 4.915e-12 sm-au; sp-au; wi-au; sp-sm; wi-sm

4.63 1.044e-13 12.981 6.316e-12 sm-au; sp-sm; wi-sm

4.71 2.083e-13 12.681 1.008e-11 sm-au; sp-sm; wi-sm

4.5 2.643e-13 12.578 1.066e-11 sp-au; wi-au; sp-sm; wi-sm

4.08 1.216e-12 11.915 4.204e-11 sp-au; wi-au; sp-sm; wi-sm

4.45 2.447e-12 11.611 7.026e-11 sp-au; wi-au; sp-sm; wi-sm

4.17 2.613e-12 11.583 7.026e-11 sp-au; wi-au; sp-sm; wi-sm

4.31 4.227e-12 11.374 1.023e-10 sp-au; wi-au; sp-sm; wi-sm

4.53 1.044e-11 10.981 2.297e-10 sm-au; sp-au; wi-au; sp-sm; wi-sm

4.02 6.610e-11 10.180 1.333e-09 sp-au; wi-au; sp-sm; wi-sm

4.38 8.033e-11 10.095 1.495e-09 sp-au; wi-au; sp-sm; wi-sm

4.05 1.505e-10 9.823 2.601e-09 sp-au; wi-au; sp-sm; wi-sm

4.28 2.623e-10 9.581 4.231e-09 sp-au; wi-au; sp-sm; wi-sm

4.25 3.869e-10 9.412 5.637e-09 sp-au; wi-au; sp-sm; wi-sm

4.34 3.960e-10 9.402 5.637e-09 sp-au; wi-au; sp-sm; wi-sm

4.2 1.338e-09 8.873 1.800e-08 sp-au; wi-au; sp-sm; wi-sm

4.13 4.539e-09 8.343 5.781e-08 sp-au; wi-au; sp-sm; wi-sm

4.74 2.695e-08 7.569 3.261e-07 sm-au; sp-sm; wi-sm

Table 6: ANOVA results with seasons metadata.

The features from the Table 6 indicate that compounds with anomeric structural moieties appear to

have a significant effect on the discrimination of propolis samples over the seasons, because all the

main resonances selected in the univariate analysis occur at the anomeric region of the spectra (3.00

ppm - 5.50 ppm).

4.1.2.2 Clustering

Clustering was also used, more exactly hierarchical clustering and k-means. Figure 12 shows a den-

drogram resulting from hierarchical clustering, while Figure 13 shows a plot of k-means clustering,
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showing in blue the median of the values of the samples in that cluster and in grey all the values of

that samples. Table 7 shows the members of each cluster.

Figure 12: Dendrogram with season color labels.

Figure 13: k-means plot with four clusters.
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Cluster Samples

1 AC_sp AC_wi DC_wi FP_wi JB_wi

2
AN_au PU_au AC_sm AN_sm BR_sm CE_sm CN_sm FP_sm IT_sm JB_sm SJ_sm

SJC_sm UR_sm VR_sm AN_sp

3
BR_au CE_au CN_au IT_au SJC_au XX_au PU_sm XX_sm BR_sp CE_sp CN_sp

IT_sp PU_sp SJC_sp BR_wi CE_wi CN_wi PU_wi SA_wi XX_wi

4
AC_au DC_au JB_au SA_au SJ_au UR_au VR_au DC_sm SA_sm DC_sp FP_sp

JB_sp SA_sp SJ_sp UR_sp VR_sp AN_wi SJ_wi UR_wi

Table 7: Members of the clusters of k-means.

In the dendrogram, there was a reasonable separation for the seasons of propolis as we can see by

the colors in the figure. In k-means four clusters were used and there was some separation between

the seasons, mostly the summer samples and as we can see from the plot of k-means, the median of

each cluster’s values of the samples was not too different from each other.

To see more information about these methods see subsection 2.2.4.

4.1.2.3 PCA

In order to reduce the dimensionality of the dataset, a PCA analysis was run on the propolis data.

Some plots were produced, including the 2D scores plot shown in Figure 14 and the scree plot in

Figure 15.

Figure 14: PCA scores plot (PC1 and PC2) grouped by seasons.
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Figure 15: PCA scree plot.

The variance explained by the first two principal components was 30.66% and as we can see the

separation from the PCA 2D scores plot was not so good, with some overlapping. In comparison

to Figure 16, which shows the separation between the four clusters of k-means, we can see that the

separation of the second one was much better.

Figure 16: PCA scores plot (PC1 and PC2) grouped by the clusters from k-means.

4.1.2.4 Machine Learning

Classification models were built to try to discriminate samples by season and by agroecological region.

Five models were tested with repeated cross-validation with 10 folds, 10 repeats, and a tune length
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of 20 levels, to see how well they performed in samples discrimination. The results for seasons and

agroecological regions are shown in Table 8 and 9.

Model Accuracy Kappa AccuracySD KappaSD

pls 0.8678 0.8210 0.1264 0.1709

J48 0.7346 0.6433 0.1446 0.1891

JRip 0.5541 0.4013 0.2097 0.2719

svmLinear 0.8263 0.7620 0.1626 0.2247

rf 0.8456 0.7908 0.1364 0.1841

Table 8: Classification models result with seasons metadata.

Model Accuracy Kappa AccuracySD KappaSD

pls 0.7905 0.5647 0.16019 0.3383

J48 0.5931 0.2579 0.18273 0.3119

JRip 0.6115 0.0000 0.06031 0.0000

svmLinear 0.6728 0.3844 0.18719 0.3493

rf 0.7463 0.4548 0.14261 0.3173

Table 9: Classification models result with agroregions metadata.

As we can see from the Tables 8 and 9, the pls model gave the best results and the seasons metadata

gave the best discrimination, with 86.78% accuracy with the Kappa statistic value of 0.82. In Tables 10

and 11, we can see how many components were tested with pls and their results, with 20 and 4 being

the number of components that gave the best result with seasons and agroregions, respectively. The

standard deviation on both accuracy and Kappa statistic were low, with the Kappa statistic’s standard

deviation from agro-regions metadata being slightly higher.
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Number of components Accuracy Kappa AccuracySD KappaSD

1 0.4392 0.2455 0.1401 0.1691

2 0.6157 0.4853 0.1963 0.2619

3 0.7372 0.6445 0.1820 0.2439

4 0.7925 0.7206 0.1635 0.2162

5 0.8349 0.7775 0.1587 0.2111

6 0.8209 0.7570 0.1476 0.1990

7 0.8212 0.7588 0.1440 0.1933

8 0.8308 0.7716 0.1370 0.1837

9 0.8418 0.7858 0.1355 0.1824

10 0.8534 0.8021 0.1338 0.1786

11 0.8551 0.8040 0.1282 0.1718

12 0.8602 0.8109 0.1296 0.1737

13 0.8585 0.8082 0.1272 0.1722

14 0.8565 0.8054 0.1266 0.1713

15 0.8575 0.8071 0.1304 0.1760

16 0.8628 0.8141 0.1303 0.1762

17 0.8614 0.8122 0.1296 0.1752

18 0.8630 0.8144 0.1281 0.1733

19 0.8630 0.8145 0.1281 0.1733

20 0.8678 0.8210 0.1264 0.1709

Table 10: Full results using pls with different number of components with seasons metadata.
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Number of components Accuracy Kappa AccuracySD KappaSD

1 0.6520 0.1846 0.1319 0.2962

2 0.7158 0.4151 0.1819 0.3609

3 0.7582 0.4876 0.1694 0.3629

4 0.7905 0.5647 0.1602 0.3383

5 0.7864 0.5587 0.1648 0.3456

6 0.7698 0.5383 0.1650 0.3291

7 0.7371 0.4703 0.1745 0.3549

8 0.7103 0.4313 0.1870 0.3650

9 0.6792 0.3769 0.1798 0.3520

10 0.6751 0.3707 0.1869 0.3641

11 0.6629 0.3487 0.1983 0.3741

12 0.6768 0.3747 0.1867 0.3615

13 0.6714 0.3618 0.1902 0.3701

14 0.6769 0.3725 0.1876 0.3649

15 0.6711 0.3656 0.1831 0.3597

16 0.6736 0.3722 0.1777 0.3474

17 0.6700 0.3671 0.1774 0.3446

18 0.6629 0.3553 0.1771 0.3417

19 0.6623 0.3552 0.1777 0.3429

20 0.6614 0.3544 0.1807 0.3469

Table 11: Full results using pls with different number of components with agroregions metadata.

In Tables 12 and 13 the confusion matrices of the pls model are shown (the entries are percentages

of table totals), while Figures 17 and 18 display the 3D plots of the first 3 components of the pls model

with seasons and agroregions metadata, respectively.

Reference

Prediction au sm sp wi

au 17.9 0.0 1.7 1.9

sm 0.8 25.4 0.1 0.0

sp 3.0 1.8 23.5 0.3

wi 3.5 0.0 0.0 19.9

Table 12: Confusion matrix of the pls model with seasons metadata
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Reference

Prediction Highlands Plain Plateau

Highlands 9.8 0.8 2.5

Plain 0.3 12.5 1.9

Plateau 10.1 5.3 56.7

Table 13: Confusion matrix of the pls model with agroregions metadata

A quick look over the confusion matrices shows that the summer season has a low percentage of

incorrect predictions, while the Highlands agroregion has the highest number of incorrect predictions.

Figure 17: 3D plot of the first 3 components of the pls model with seasons metadata
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Figure 18: 3D plot of the first 3 components of the pls model with agroregions metadata

With the 3D plots of the first 3 components of the pls model we can see a clear separation of the

classes, forming 4 different clusters with the seasons metadata, and 3 in agroregions metadata.

Also, in Table 14 we can see the top 10 variables ordered by its importance. It is easy to check that

the compounds with anomeric structural moieties have a significant effect on the discrimination of

propolis samples over the seasons in the pls model, because all the top resonances are in the anomeric

region of the spectra locates between 3.00 ppm and 5.50 ppm (except for the 7th resonance - 5.62).

These results are quite consistent with the results given by one-way ANOVA and Tukey’s HSD post-hoc

test that were mentioned before.

ppm au sm sp wi mean

4.66 48.10 100.00 72.37 46.51 66.75

4.58 37.27 91.23 51.67 33.38 53.39

4.71 33.47 85.05 46.91 32.92 49.59

4.84 44.30 56.08 68.76 25.77 48.73

4.63 32.72 83.80 46.17 32.10 48.70

3.93 52.65 30.79 61.17 45.38 47.50

5.62 51.43 21.89 63.70 48.43 46.36

3.9 56.94 18.46 54.90 44.24 43.64

4.28 39.66 57.48 37.40 35.47 42.50

4.17 39.97 58.44 39.33 32.06 42.45

Table 14: Variable importance of the pls model with seasons metadata
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4.1.3 UV-Vis data

The propolis samples used in UV-vis analysis were collected on the final of every season of the years

2010 and 2011, with the collection starting in the autumn of 2010 and finishing in the summer of

2012. A total of 133 samples were collected, and the distribution of samples by seasons being: inv –

31 samples (winter), out – 35 samples (autumn), pri – 34 samples (spring), ver – 33 samples (summer).

Also, three different regions were sampled from the agroecological regions and distributed as fol-

lows: Planalto – 70 samples, Planicie – 29 samples, Serra – 29 samples.

From the year of 2010, there were 72 samples, while 61 samples were available for 2011, having

three metadata variables that can be used in the analysis, the seasons, agroregions and the years.

The same principle from NMR was applied to UV data for getting the metadata from the samples

names. Depending on which metadata variable was used, samples with no information on that variable

were removed. Also an absorbance value which was an outlier from wavelength 529 was corrected.

Two preprocessing strategies were used, using the data as it is with no preprocessing and the data

corrected with background correction, offset correction and baseline correction. The results from the

pipeline with no preprocessing will be shown here. The results from each one with all 3 metadata’s

variables used are provided as supplementary material in darwin.di.uminho.pt/chris-msc.

4.1.3.1 Univariate Analysis

The one-way ANOVA and Tukey’s HSD post-hoc test results can be seen in Table 15.

wavelength pvalues logs fdr tukey

293 1.831e-07 6.737 4.707e-05 out-inv; pri-inv; ver-pri

292 1.879e-07 6.726 4.707e-05 out-inv; pri-inv; ver-pri

288 6.836e-07 6.165 1.142e-04 out-inv; pri-inv; ver-pri

295 1.130e-06 5.947 1.402e-04 out-inv; pri-inv; ver-pri

291 1.420e-06 5.848 1.402e-04 out-inv; pri-inv; ver-pri

294 1.679e-06 5.775 1.402e-04 out-inv; pri-inv; ver-pri

290 2.380e-06 5.624 1.703e-04 out-inv; pri-inv; ver-pri

296 3.312e-06 5.480 2.074e-04 out-inv; pri-inv; ver-pri

289 5.519e-06 5.258 3.072e-04 out-inv; pri-inv; ver-pri

297 1.084e-05 4.965 5.430e-04 out-inv; pri-inv; ver-pri

Table 15: ANOVA results with seasons metadata.

The results from Table 15 indicate that the wavelength region between 288 and 297 nm have signif-

icant effect in discriminating the propolis samples over the season.
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4.1.3.2 Clustering

Figure 19 shows the dendrogram resulting from hierarchical clustering with the regions as label colors.

Figure 19: Dendrogram with regions as label colors.

As we can see from the dendrogram above, the samples are reasonably grouped by the 3 regions.

4.1.3.3 PCA

The 2D plot scores (Principal Component (PC)1 and PC2) from PCA analysis, using the seasons

metadata to color the points, is shown in Figure 20 and as we can see, there is too much overlapping

between the 4 clusters, thus not making a good discrimination technique for the seasons.

Figure 20: PCA 2D scores plot (PC1 and PC2) grouped with seasons metadata.

4.1.3.4 Machine learning

The results from the classification models for seasons, regions and years with repeated cross-validation

with 10 folds and 10 repeats are shown in Tables 16, 17 and 18.
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Model Accuracy Kappa AccuracySD KappaSD

pls 0.4208 0.2297 0.1347 0.1775

J48 0.4173 0.2225 0.1291 0.1700

JRip 0.3317 0.1122 0.1174 0.1547

svmLinear 0.4192 0.2245 0.1180 0.1584

rf 0.4586 0.2791 0.1392 0.1843

Table 16: Classification models result with seasons metadata.

Model Accuracy Kappa AccuracySD KappaSD

pls 0.7368 0.5380 0.1214 0.2150

J48 0.5900 0.3036 0.1300 0.2125

JRip 0.6361 0.3441 0.1252 0.2273

svmLinear 0.6467 0.3823 0.1221 0.2244

rf 0.6856 0.4554 0.1158 0.2022

Table 17: Classification models result with regions metadata.

Model Accuracy Kappa AccuracySD KappaSD

pls 0.6280 0.2456 0.1173 0.2367

J48 0.5662 0.1225 0.1255 0.2548

JRip 0.6473 0.2790 0.1255 0.2605

svmLinear 0.5581 0.1060 0.1191 0.2404

rf 0.6584 0.3075 0.1342 0.2702

Table 18: Classification models result with years metadata.

As we can see from the tables above, the regions had the best results as a way of discriminating

the samples, with 73,68% being the maximum accuracy by the pls model. The years had intermediate

results, being 64,75% the best accuracy result from the JRip model. On the other hand, the seasons

had the worst results with 44,20% accuracy result from rf model being the best result, and so it was not

possible to create a reliable predictive model to predict the seasons from the UV-vis propolis samples.
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4.2 C AC H E X I A

4.2.1 Introduction

Cachexia is a complex metabolic syndrome associated with an underlying illness (such as cancer) and

characterized by loss of muscle with or without loss of fat mass (Evans et al., 2008).

Improved approaches for detecting the onset and evolution of muscle wasting would help to manage

wasting syndromes and facilitate early intervention. Dual energy X-ray Absortiometry (DXA), Com-

puted Tomography (CT) and Magnetic Resonance Imaging (MRI) are considered the most precise

measures of adipose and muscle tissues currently available, but there are several limitations like the

access and cost, the time consumed, and CT expose patients to radiation. So, clinicians want to find

new approaches for identifying and monitoring muscle loss that are faster, cheaper, safer and more

accessible (Eisner et al., 2010).

4.2.2 Concentrations data

To try a different approach, as metabolites produced from tissue breakdown are likely to be a sensi-

tive indicator of muscle wasting, urine samples were collected since several end products of muscle

catabolism are specifically excreted in urine (Eisner et al., 2010). A total of 77 urine samples were

collected being 47 of them patients with cachexia, and 30 control patients. All one-dimensional NMR

spectra of urine samples were acquired and then the metabolites were detected and quantified, i.e. for

each metabolite its concentration was measured.

Two different pipelines were tested to check the results, the first with no preprocessing whatsoever

on the data and the second one with log transformation and auto scaling. The one with preprocessing

will be used here, except for the fold change analysis (due to preprocessing changing the absolute

values). The results from the pipeline with no preprocessing, as well as the full results from the other

are provided in the supplementary material in darwin.di.uminho.pt/chris-msc.

To see more information about the methods used in preprocessing and data analysis, please refer to

see section 2.2.

4.2.2.1 Univariate Analysis

T-tests were performed on the dataset for all variables (compounds) and the top 10 results, ordered by

increasing p-value, are shown in Table 19.
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Compound p.value -log10 fdr

Quinolinate 3.452e-06 5.462 0.0002175

Glucose 1.644e-05 4.784 0.0002758

3-Hydroxyisovalerate 1.884e-05 4.725 0.0002758

Leucine 1.955e-05 4.709 0.0002758

Succinate 2.861e-05 4.544 0.0002758

Valine 3.050e-05 4.516 0.0002758

N.N-Dimethylglycine 3.373e-05 4.472 0.0002758

Adipate 3.502e-05 4.456 0.0002758

myo-Inositol 3.982e-05 4.400 0.0002787

Acetate 6.945e-05 4.158 0.0004149

Table 19: t-Tests results ordered by p-value.

In Figure 21 compounds that have a p-value < 0.0001 are shown in blue, and the compounds with

p-value >= 0.0001 appear in grey.

Figure 21: t-tests plot from the pipeline.

The results from the Table 19 show which compounds have a significant differential value in dis-

criminating between the cachexic and control patients.

FC analysis was also done with this dataset, and the top 10 results, i.e. the ones with the highest

fold changes, are shown in Table 20, by decreasing value of FC (absolute value).
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Compound Fold Change log2(FC)

Glucose 5.869 2.553

Adipate 3.872 1.953

Creatine 3.396 1.764

Lactate 3.310 1.727

cis-Aconitate 3.009 1.589

3-Hydroxybutyrate 2.956 1.564

myo-Inositol 2.903 1.537

Trigonelline 2.752 1.460

Sucrose 2.699 1.433

Succinate 2.669 1.416

Table 20: Fold change results ordered by log2 of fold change values from the data.

The plot in Figure 22 shows the compounds where the fold change value is above the defined

threshold of 3 (points in blue) and the compounds below the threshold (points in grey).

Figure 22: Fold change plot from the cachexia dataset.

Table 20 shows the compounds with highest absolute value change between the cachexic and con-

trol means.

Also, a volcano plot in Figure 23 shows the combination of fold change and t-tests with a threshold

of 3 and 0.0001, respectively.
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Figure 23: Volcano plot from the t-tests and fold change.

The volcano plot shows that 3 compounds (Creatine, Adipate and Glucose) obey to both thresholds

defined.

4.2.2.2 Clustering

Although not perfect, the resulting dendrogram from hierarchical clustering is shown in Figure 24

with distinct colors for the different classes in the leaves, we can observe some sort of separation

between the cachexic and control samples.

Figure 24: Resulting dendrogram from hierarchical clustering.
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4.2.2.3 PCA

A PCA analysis was performed on the dataset and the Figure 25 shows the scree plot, showing the

percentage of variance that each component explains, as well the cumulative percentage. Also in

Figure 26, there is a 2D scores plot with principal components 1 and 2.

Figure 25: Scree plot.

Figure 26: 2D PCA plot score (PC1 and PC2).

As can be seen on the figures, almost 60% of the variance is explained in the first principal compo-

nent although there is not a clear separation in the 2D scores for the two groups.
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4.2.2.4 Machine Learning

The results from machine learning experiments, testing 5 different models can be seen in Table 21.

The resampling method was repeated cross-validation with 10 folds and 10 repetitions.

Model Accuracy Kappa AccuracySD KappaSD

pls 0.7475 0.4462 0.1352 0.3010

J48 0.6209 0.1928 0.1371 0.2972

JRip 0.6771 0.3203 0.1569 0.3237

svmLinear 0.6509 0.2784 0.1693 0.3375

rf 0.7218 0.3978 0.1464 0.3222

Table 21: Classification results.

The best model from the accuracy point of view was pls with 74,75%. The paper where this dataset

came from (Eisner et al., 2010), uses more samples, 93 urine samples exactly, and the best model

found was a SVM model using cross-validation with 10 folds that gave 82.2% of accuracy. Because

of the use of more samples, the results can not be directly compared.
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4.3 C A S S AVA

4.3.1 Introduction

Cassava is a root well known and widely cultivated in tropical and subtropical regions for its starchy

tuberous root, which is a great source of carbohydrates. It also has a great variety of applications, like

animal feeding, culinary or alcoholic beverages. In some countries, cassava has also been tested as an

ethanol biofuel feedstock.

As cassava is a tropical root, it undergoes PPD, which is characterized by streaks of blue/black in

the root vascular tissue, which with time spread more and cause a more brown discoloration. PPD

begins quickly within 24h postharvest and because of that, the roots need to be rapidly consumed.

Some studies revealed that the deterioration is caused mostly from wound-healing responses (Uarrota

et al., 2014).

This study was conducted in order to identify changes and discriminate cassava samples during

post-harvest physiological deterioration and from different regions with the aid of supervised and

unsupervised methods of data analysis.

4.3.2 IR data

Samples with different days of deterioration were collected, more specifically fresh samples (0 days),

3 days, 5 days, 8 days and 11 days of deterioration (PPD). Also the samples were collected from

different varieties: SCS 253 Sangão (SAN); Branco (BRA); IAC576-70 - "Instituto Agronômico de

Campinas" (IAC); and Oriental (ORI). Each combination of variety with PPD has 5 replicates, which

we can aggregate. A total of 80 samples were collected and aggregating the replicates we stay with

16 samples.

Two different analysis were tested, one with the replicates and another without the replicates. For

more information about the methods used below see section 2.2.

4.3.2.1 Univariate Analysis

An one-way ANOVA and Tukey’s HSD post-hoc test was performed on the dataset with no replicates

and the results are shown in Tables 22 and 23, with varieties and PPD metadata respectively.
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wavelength pvalues logs fdr tukey

3388.44 0.01469 1.833 0.1183 SAN-BRA

3398.08 0.01472 1.832 0.1183 SAN-BRA

3407.73 0.01473 1.832 0.1183 SAN-BRA

3417.37 0.01486 1.828 0.1183 SAN-BRA

3378.80 0.01489 1.827 0.1183 SAN-BRA

3427.02 0.01513 1.820 0.1183 SAN-BRA

3369.15 0.01521 1.818 0.1183 SAN-BRA

3359.51 0.01566 1.805 0.1183 SAN-BRA

3436.66 0.01568 1.805 0.1183 SAN-BRA

3349.86 0.01616 1.792 0.1183 SAN-BRA

Table 22: ANOVA results using the cassava dataset with no replicates with varieties metadata.

wavelength pvalues logs fdr tukey

2356.54 0.1929 0.7147 0.8992

2366.18 0.2031 0.6922 0.8992

2337.25 0.2656 0.5757 0.8992

2327.60 0.3256 0.4873 0.8992

2346.89 0.3286 0.4833 0.8992

2317.96 0.4691 0.3287 0.8992

2375.82 0.5033 0.2982 0.8992

967.81 0.5375 0.2696 0.8992

977.45 0.5470 0.2620 0.8992

2308.32 0.5805 0.2362 0.8992

Table 23: ANOVA results using the cassava dataset with no replicates with PPD metadata.

From the tables above, it is easy to observe that only for the varieties metadata variable, it was

possible to detect statistical differences (p-value < 0.05), namely considering the comparison SAN-

BRA.

4.3.2.2 Clustering

The dendrogram from hierarchical clustering shows that the replicates stay together in the clusters but

the varieties and PPDs are spread by the clusters, which is shown in Figure 27.
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Figure 27: Resulting dendrogram from hierarchical clustering of cassava dataset with replicates.

4.3.2.3 PCA

The 2D PCA score plot from the PCA analysis is shown in Figure 28.

Figure 28: 2D plot score (PC1 and PC2) from cassava data without the replicates and PPDs metadata.

As can be seen in Figure 28, there is much overlap between the clusters formed by the ellipses on

PPD days.
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C O N C L U S I O N S A N D F U T U R E W O R K

To face the numerous challenges that metabolomics data arises, an R package was developed during

the course of this dissertation. The package includes features and methods for a variety of impor-

tant aspects of metabolomics data analysis, starting with reading of the data into a defined structure

for further manipulation. In this work, various methods of preprocessing and visual exploration of

the data, as well methods for data analysis and data mining have been presented, implemented and

demonstrated in distinct real-world case studies.

With the possibility of quickly creating and visualizing the results of one or more pipelines of anal-

ysis, the package can be used by anyone with or without an informatics background. The package is

quite flexible, with functions that are easy to use having default configurations, but with the possibility

of configuring the more specific details as users get acquainted with the potential of the functions.

Therefore, we believe that the package put forward during this work will be a valuable tool for

researchers in a growing field of research, as it is the case with metabolomics.

For future work, there is still much room to improve the package, which includes improving the

already implemented features and implementing new ones. The future work includes:

• Support to more types of metabolomics data (e.g. MS will be integrated in a very near future

given its importance);

• Add more visualization methods for data exploration;

• Implement additonal preprocessing methods for existing and newly supported data types;

• Add more features to machine learning section (e.g. create interfaces with other available pack-

ages);

• Implement additional methods for feature selection (e.g. GA wrappers);

• Identification and quantification of metabolites from NMR and MS spectra;

• Implement data integration (or fusion) methods to support the integration of multiple sources

of data;

• Add methods for the interpretations of the results (e.g. metabolic pathways analysis).
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Also, in the near future the package will be made available through CRAN and published in a

reference journal. Results from two of the case studies have already been submitted for publication

and made use of this tool.
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