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1. INTRODUCTION 

Based on the methodology described in the reference textbook (P.E. Nikravesh, Computer-Aided Analysis of 

Mechanical Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1988) a computer program designated by 

MUBODYNA (acronym for Dynamic Analysis of Multibody Systems) was conceived. The program is written in 

FORTRAN and is organized in a form that can be expanded to include other elements, such as other kinematic 

joints, etc. This program is based on the Nikravesh's DAP (acronym for Dynamic Analysis Program) with some 

important modifications. The MUBODYNA code was written by Pedro Moreira,  Margarida Machado, Fernando 

Meireles and Paulo Flores. 

The MUBODYNA performs dynamic analysis of two-dimensional mechanical models using multibody 

systems methodologies, that is, employs the body-coordinate formulation to generate the governing equations of 

motion for mechanisms. This program also performs dynamic analysis of planar mechanical systems, as original 

Nikravesh's DAP. The kinematic joints available in the program are revolute joint (ideal and clearance), translational 

joint and simple kinematic constraints. With these basic joints, a large class of systems can be analysed. It is also 

possible use in the program driving and guiding constraints.  

MUBODYNA is based on the Method of Appended Driving Constraints. Additional constraint equations, 

called the driving constraints, equal in number of degrees of freedom (DOF) of the system, are appended to the 

original kinematic constraints. The driving constraints are equations representing each independent coordinate as a 

function of time. Guiding constraints used in this program can be seen as special type of driving constraints, which 

impose bodies trajectories based on known center of mass linear and angular positions. MUBODYNA use cubic 

spline interpolation to compute the guiding constraints data introduced as discrete data. 

The Newton-Euler differential equations of motion for each body in the system are employed. For the entire 

system, the constraint forces are represented in terms of a number of Lagrange multipliers. By appending the 

kinematic acceleration equations (second time derivative of the kinematic constraints) to the differential equations, 

the linear system is obtained. LU-factorization is used to solve the linear system for accelerations and Lagrange 

multipliers. The Runge-Kutta numerical integration algorithm, for instance, then integrates velocities and 

accelerations to obtain the coordinates and velocities at an updated time.  

With this formulation, long time simulations are often subject to constraint violation. This violation, which is 

a result of accumulated numerical integration errors, becomes more apparent with stiff systems. In order to 

overcome this difficulty, the Baumgarte Stabilization Method is employed, mainly due to its simplicity and 

efficiency. The Baumgarte Stabilization Method is very easy to implement and straightforward. Thus, changes have 

been made to this program to accommodate for the stabilizing values α and β, accordingly to Baumgarte 

Stabilization Method. 

Revolute joints with clearance (with dry contact and lubrication effect) are also possible to include in the 

MUBODYNA program. If clearance is allowed in a revolute joint, the two kinematic constraints are removed and 

two degrees of freedom are introduced instead. Though a clearance joint does not constrain any degrees of freedom 

of the mechanical systems, it imposes some boundary conditions, limiting the journal to move within the bearing. 
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When contact between the journal and the bearing is detected, the contact forces are calculated, accordingly to a 

constitutive law, and included in the equations of motion for the multibody system. 

The program can model constant forces, gravity, translational elements consisting of a spring, a damper, 

and/or an actuator, and torsional elements consisting of a spring or a damper. MUBODYNA provides also the 

evaluation of the reaction external forces acting on the system by using a cubic spline interpolation to compute the 

reaction external forces data introduced as discrete data.  

If the forces acting on a mechanical system are known, then the equations of motion can be solved to obtain 

the motion of the system. This process is known as forward dynamic analysis and it’s what MUBODYNA program 

performs. In some problems, a specified motion for a mechanical system is sought and the objective is to determine 

the forces that must act on the system to produce such a motion. This process is usually referred to as inverse 

dynamic or kinetostatic analysis. 

The user is free to use any desired unit system. However, it is user’s responsibility to enter all the input data 
in a consistent system. 
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2. KINEMATIC ANALYSIS OF MULTIBODY SYSTEMS 

The kinematic analysis is the study of the motion of a system, independently of the forces that produce it. 

This type of analysis is performed by solving a set of equations that result from the kinematic, driving and guiding 

constraint setup.  

When the configuration of a multibody system is described by n Cartesian coordinates, then a set of m 

algebraic kinematic independent holonomic constraints Φ  can be written in a compact form as (Nikravesh, 1988), 

 0qΦ =)t,(                   (1) 

where q  is the vector of generalized coordinates and t is the time variable, in general associated with the driving 

and guiding elements.  

The velocities and accelerations of the system elements are evaluated using the velocity and acceleration 

constraint equations, 

 υΦqΦq ≡−= t                  (2) 

 γΦqΦqqΦqΦ qqqq ≡−−−= ttt2)(                 (3) 

where =qΦ ∂Φ /∂q is the Jacobian matrix of the constraint equations, q  is the vector of generalized velocities, 

=υ ∂Φ /∂t is the right hand side of velocity equations, q  is the acceleration vector and γ  is the right hand side of 

acceleration equations, i.e., the vector of quadratic velocity terms, which contains the terms that are exclusively 

function of velocity, position and time. 

It should be noticed that only rheonomic constraints, associated with driving and guiding equations, 

contribute with non-zero entries to the vector υ . Furthermore, it is assumed that this vector does not present any 

dependency on the vector of coordinates.  

The kinematic analysis of a multibody system can be carried out by solving the set of Equations (1), (2) and 

(3). The necessary steps to perform this analysis are summarized as sketched in Figure 1, and described as, 

i) Specify the initial conditions for positions 0q  and initialize the time counter t0. 

ii) Evaluate the position constraint equations (1) and solve them for positions, q. 

iii) Evaluate the velocity constraint equations (2) and solve them for velocities, q . 

iv) Evaluate the acceleration constraint equations (3) and solve them for accelerations, q . 

v) Increment the time. If the time is smaller than final time, go to step ii), otherwise stop the 

kinematic analysis. 
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Figure 1: Flowchart of computational procedure for kinematic analysis of a multibody system. 
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3. DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS 

The dynamic analysis of multibody systems aims to understanding the relationship between the motion of the 

system parts and the causes that produce the motion including external applied forces and moments. The motion of 

the system is, in general, not prescribed, being its calculation one of the principal objectives of the analysis. The 

dynamic analysis also provides a way to estimate external forces that depend on the relative position between the 

system’s components, such as the forces exerted by springs, dampers and actuators. Furthermore, it also possible to 

estimate the external forces that are developed as a consequence of the interaction between the system components 

and the surrounding environment, such as contact-impact forces, friction forces and external reaction forces. The 

internal reaction forces and moments generated at the kinematic joints are also provided by the dynamic analysis. 

These reaction forces and moments prevent the occurrence of the relative motions in the prescribed directions 

between the bodies connected via kinematic joints.  

 

3.1. Equations of Motions for a Constrained Multibody System 

The equations of motion for a constrained multibody system of rigid bodies are written as (Nikravesh, 1988), 

 )(cggqM +=                  (4)  

where M  is the system mass matrix, q  is the vector that contains the system accelerations, g  is the generalized 

force vector, which contains all external forces and moments, and )(cg  is the vector of constraint reaction equations. 

The joint reaction forces can be expressed in terms of the Jacobian matrix of the constraint equations and the vector 

of Lagrange multipliers as (Nikravesh, 1988), 

 λΦg q
c T)( −=                  (5)  

where λ  is the vector that contains m unknown Lagrange multipliers associated with m holonomic constraints. The 

Lagrange multipliers are physically related to the reaction forces and moments generated between the bodies 

interconnected by kinematic joints.  Thus, substitution of Equation (5) in Equation (4) yields, 

 gλΦqM q =+ T                  (6)  

In dynamic analysis, a unique solution is obtained when the constraint equations are considered 

simultaneously with the differential equations of motion, for a proper set of initial conditions. Therefore, Equation 

(3) is appended to Equation (6), yielding a system of differential algebraic equations. Thus, mathematically the 

simulation of constrained multibody system requires the solution of a set of nc differential equations coupled with a 

set of m algebraic equation, written as, 
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Then, in each integration time step, the accelerations vector, q , together with velocities vector, q , are 

integrated in order to obtain the system velocities and positions for the next time step. This procedure is repeated up 

to final time analysis time is reached.  

The system of the motion equations (7) does not use explicitly the position and velocity equations associated 

with the kinematic constraints, that is, Equations (1) and (2). Consequently, for moderate or long simulations, the 

original constraint equations start to be violated due to the integration process and/or to inaccurate initial conditions. 

Therefore, special procedures must be followed to avoid or minimize this phenomenon. Several methods to solve 

this problem have been suggested and tested, being the most common among them the Baumgarte Stabilization 

Method (Baumgarte, 1972), the Coordinate Partitioning Method (Wehage and Haug, 1982) and the Augmented 

Lagrangian Formulation (Bayo et al., 1988).  

 

3.2. Direct Integration Method of the Equations of Motion 

In order to advance the analysis in time, the equations of motion need to be integrated. Considering the high 

level of complexity of these equations, analytical solutions are impractical to obtain and, consequently, numerical 

integration algorithms must be applied. 

The standard integration of the equations of motion, here called Direct Integration Method, converts the nc 

second-order differential equations of motion into 2nc first-order differential equations. Then, a numerical scheme, 

such as the fourth-order Runge-Kutta method, is employed to solve the initial-value problem (Shampine and 

Gordon, 1975; Gear, 1981).  

The commonly used numerical integration algorithms are useful in solving first-order differential equations 

that take the form (Shampine and Gordon, 1975), 

 )t,(f yy =                   (8)  

Thus, if there are nc second-order differential equations, they are converted to 2nc first-order equations by 

defining the y and y  vectors, which contains, respectively, the system positions and velocities and the system 

velocities and accelerations, as follows, 
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The reason for introducing the new vectors y and y  is that most numerical integration algorithms deal with 

first-order differential equations (Shampine and Gordon, 1975). The following diagram can interpret the process of 

numerical integration at instant of time t, 

 )t(y  ⎯⎯⎯ →⎯ nIntegratio  )tt( Δ+y               (10)  

velocities and accelerations at instant t, after integration process, yield positions and velocities at next time step, 

t=t+Δt.  

Figure 2 presents a flowchart that shows the algorithm of Direct Integration Method of the equations of 

motion. At t=t0, the initial conditions on 0q  and 0q  are required to start the integration process. These values 

cannot be specified arbitrarily, but must satisfy the constraint equations defined by Equations (1) and (2). 
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Figure 2: Flowchart of computational procedure for dynamic analysis of multibody systems - Direct Integration Method. 

 
The direct integration algorithm presented in Figure 2 can be summarized by the following steps: 

i) Start at instant of time t0 with given initial conditions for positions 0q  and velocities 0q .  

ii) Assemble the global mass matrix M , evaluate the Jacobian matrix qΦ ,  construct the constraint 

equations Φ , determine the right hand side of the accelerations γ , and calculate the force vector g . 

iii) Solve the linear set of the equations of motion (7) for a constrained multibody system in order to 

obtain the accelerations q  at time t and the Lagrange multipliers λ . 
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iv) Assemble the vector ty  containing the generalized velocities q  and accelerations q  for instant of 

time t. 

v) Integrate numerically the q  and q  for time step t+Δt and obtain the new positions and velocities. 

vi) Update the time variable and go to step ii) and proceed with the process for the new time step. 

Perform these steps until the final time of analysis is reached. 

The Direct Integration Method of equations of motion is highly prone to integration errors, because the 

constraint equations (1) and (2) are only satisfied at the initial instant of time. In the first few time steps, the 

constraint violations are usually small and negligible. However, as time progresses, the error in computed values for 

kinematic parameters is accumulated and constraint violations increase. Hence, the results produced can be 

unacceptable; therefore, the Direct Integration Method requires constraint stabilization, especially for long 

simulations. It should be noted that the Direct Integration Method is quite sensitive to initial conditions, which can 

be an important source of errors in the integration process.  

 

3.3. Baumgarte Stabilization Method 

Due to its simplicity and easiness for computational implementation, the Baumgarte Stabilization Method is 

the most popular and attractive technique to overcome the drawbacks of the standard integration of the equations of 

motion. Baumgarte’s method can be looked upon as an extension of feedback control theory. The principle of this 

method is to damp out the acceleration constraint violations by feeding back the violations of the position and 

velocity constraints. The choice of the feedback parameters depends on several factors, namely, the integrator used 

and the model of the multibody system. This parameters’ choice is the major drawback of Baumgarte’s method.  

As shown before, for a multibody system of kinematically constrained rigid bodies, the equations of motion 

are given by, 
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               (11)  

with initial conditions for 0q  and 0q . The constraint violations result from accumulated numerical integration 

errors, and become more apparent with stiff systems, that is, when the natural frequencies of the system are widely 

spread. The stiffness can be produced by the physical characteristics of the multibody system, such as components 

with large differences in their masses, stiffness and/or damping (Garcia de Jalon and Bayo, 1994). Even though the 

initial conditions guarantee the non-violation of constraint equations on position (1) and velocity level (2), during 

the course of numerical integration the numerical errors do not satisfy the constraint equations, and the effect of 

these errors increases with time.  

 

 



MUBODYNA User’s Manual, v. 1.0   9 

When Equation (11) is solved, actually Equations (3) and (4) are not considered. In fact, only the second 

derivatives of constraint equations will be satisfied every integration step. However, it is known that Equation (3) 

represents an unstable system (Cochin and Cadwallender, 1997; Franklin et al., 2002). The Baumgarte Stabilization 

Method allows constraints to be slightly violated before corrective actions can take place, in order to force the 

violation to vanish.  

The goal of the Baumgarte Stabilization Method is to replace the differential Equation (3) by the following 

equation (Baumgarte, 1972), 

 0ΦΦΦ =++ 2βα2                (12) 

Equation (12) is the differential equation for a closed-loop system in terms of kinematic constraint equations. The 

terms Φα2  and Φ2β  in Equation (12) play the role of a control terms. The principle of the method is based on the 

damping of acceleration of constraint violation by feeding back the position and velocity of constraint violations, as 

seen in Figure 3, which shows open-loop and closed-loop control systems. In the open-loop systems Φ  and Φ  will 

not converge to zero if any deviation from zero occurs and, therefore, the system is unstable. 

0Φ =

INPUT OUTPUT 

Φ
∫

Φ
∫

Open-loop system (unstable) 

Closed-loop system (stable) 

INPUT OUTPUT 

0ΦΦΦ =++ 22 βα Φ Φ
∫ ∫

2β

α2

+ -- +

 

Figure 3: Open-loop (cascade) and closed-loop (feedback) control systems. 

 
Thus, utilizing the Baumgarte’s approach, the equations of motion for a dynamic system subjected to 

holonomic constraints are stated in the form, 
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In general, if α and β are chosen as positive constants, the stability of the general solution of Equation (2.18) 

is guaranteed. When α is equal to  β, critical damping is achieved, which usually stabilizes the system response more 

quickly. Baumgarte (1972) highlighted that the suitable choice of the parameters α and β is performed by numerical 

experiments. Consequently, the Baumgarte’s method still has some ambiguity in determining optimal feedback 

gains. Indeed, it seems that the value of the parameters is purely empiric, and there is no reliable method for 

selecting the coefficients α and β. The improper choice of these coefficients can lead to unacceptable results in the 

dynamic simulation of multibody mechanical systems.  

More recently, some works have suggested criteria that help in the selection of the parameters α and β. 

Chang and Nikravesh (1985) presented an adaptive numerical scheme for determini5ng these parameters. The 

stability requirement of the adaptation mechanism proposed by Chang and Nikravesh, is based on the critical 

damping, that is, α=β. The idea of this approach is based on the adaptive scheme in which the feedback parameters 

are adjusted according to the predicted error. However, this approach requires complex programming and increases 

computational time. Later, Kim et al. (1990) presented a method for determining the feedback parameters. This 

method is based on the stability analysis for the error propagation of the modified constrained equation containing 

the feedback parameters, which is discretized by the Runge-Kutta algorithm in a time domain. Lin and Hong (1998) 

showed that the parameters α and β can depend on the integration method. In their study, the stability analysis 

methods used in digital control theory are applied to solve the instability problem. 

Baumgarte (1972) pointed out that the stabilizing values of α=β=5 is a good choice for a MBS made of rigid 

bodies, still, there is no clear-cut method for choosing the most correct values for feedback parameters for general 

cases.The choice of the α and β parameters usually involves a trial-and-error-procedure. Furthermore, the selection 

of the stabilization parameters depends on the type of application, namely, the integrator, the integration step size 

and the type of model of multibody system. However, the parameters α and β should be, in general, equal one 

another and typical values of the stabilization parameters range from 1 to 20 (Nikravesh, 1988; Garcia de Jalon and 

Bayo, 1994). 
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4. AVAILABLE ELEMENT TYPES 

A typical multibody system can be defined as a collection of rigid or flexible bodies interconnected by 

kinematic joints and possibly some force elements. The kinematic joints control the relative motion between the 

bodies, while the force elements represent the internal forces that develop between bodies due to their relative 

motion. The forces applied over the system components may be the result of springs, dampers, actuators or external 

forces. A generic description of a general multibody model is represented in Figure 4.  

Revolute joint

Spherical joint

Spring

Body 2

Body 1

Body i
Body n

Body 3

Ground body

Gravitational 
acceleration field

Revolute joint 
with clearance

Actuator

Lubricated joint

Flexible body

Contact bodies
Applied 
torque

Applied 
forces

Translational joint

 
 

Figure 4: Schematic representation of a general multibody system. The most significant elements are described as rigid bodies 

interconnected by kinematic joints. External applied forces of different levels of complexity act on the system in order to 

simulate the interactions among the elements and between these and the surrounding environment. Driving and guiding elements 

can also be represented under this definition of multibody system.  

 
MUBODYNA is based on a formulation that only rigid bodies are considered. This program has also a 

restricted type of kinematic and force elements available. 

The available element types in the MUBODYNA are the following: 

• Rigid bodies 

• Kinematic Constraints: 

- Ideal revolute joints  

- Ideal translational joints 

- Ground constraints 

- Simple constraints 
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- Driving constraints 

- Guiding constraints 

• Force elements: 

- Revolute joints with clearance (dry contact – with and without friction) 

- Revolute joints with clearance (hydrodynamic lubrication effect) 

- Translational spring-damper-actuator 

- Rotational spring-damper 

- Constant force and moment 

- Reaction External Forces 
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5. INPUT FILE 

A multibody must be provided to MUBODYNA as an input file. The input file is the file that contains the 

model description, and must be a text file. The elements of a multibody system are described in data lines.  

A list of all the prompts given by the program MUBODYNA is presented below. The prompts are labeled for 

easy reference, from (a) to through (q). The prompts given are as follows: 

  
 

 
(a) 

 
GENERIC INFORMATION – Number of multibody system elements: 
 

NB  Number of rigid bodies 
NIRJ  Number of ideal revolute joints 
NCRJ  Number of clearance revolute joints 
NTJ Number of translational joints 
NGB  Number of ground bodies 
NSC  Number of simple constraints 
NDC  Number of driving constraints 
NGC  Number of guiding constraints 
NGD  Number of guiding data or points associated with guiding constraints 
NTS  Number of translational spring-damper-actuators elements 
NRS  Number of rotational spring-damper elements 
NBEF  Number of bodies subjected to external forces 
NFD  Number of forces/data points for external applied forces 
NPI  Number of points of interest  

 
(b) 

 
INITIAL CONDITIONS – Global Cartesian coordinates on the positions and velocities: 
INITIAL CONDITIONS ON X, Y, PHI; INITIAL CONDITIONS ON XD, YD, PHID. 

 
(c) 

  
INERTIA PROPERTIES – Mass and moment of inertia of the bodies: 
MASS m and MOMENT OF INERTIA I. 

 
(d) 

 
CONSTANT APPLIED FORCES – Constant forces and moments acting on bodies: 
FORCE COMPONENT X Fx, FORCE COMPONENT Y Fy and MOMENT M. 

 
(e) 

 
IDEAL REVOLUTE JOINTS – Body numbers i and j and local coordinates of the points Pi and Pj: 
BODY NOS. I AND J; LOCAL COORDINATES XI-P-I; ETA-P-I; XI-P-J; ETA-P-J. 

(f) 
 

 
CLEARANCE REVOLUTE JOINTS – Body numbers i and j , local coordinates of the points and 
radius Ri and Rj: 
BODY NOS. I AND J; LOCAL COORDINATES XI-P-I; ETA-P-I; XI-P-J; ETA-P-J; RADIUS Ri and 
Rj. 

(g) 
 
 

 
MECHANICAL PROPERTIES – Physical characteristics of the clearance joints: 
FORCE LAW; BEARING FRICTION COEFFICIENT FRICi; BEARING RESTITUTION 
COEFFICIENT RESTi; BARING YOUNG’S MODULE Ei; BEARING POISSON’S RATIO NIUc; 
JOURNAL FRICTION COEFFICIENT FRICj; JOURNAL RESTITUTION COEFFICIENT RESTj; 
JOURNAL YOUNG’S MODULE Ej; JOURNAL POISSON’S RATIO NIUj; DYNAMIC FLUID 
VISCOSITY; 

 
(h) 

 
TRANSLATIONAL JOINTS  - Body numbers i and j and local coordinates of the points Pi , Qi and Pj: 
BODY NOS. I AND J; LOCAL COORDINATES XI-P-I; ETA-P-I; XI-Q-I; ETA-Q-I; XI-P-J; ETA-P-
J. 

 
(i) 

 
GROUND CONSTRAINTS – Body(ies) number(s) constrained to the ground: 
BODY NO. I. 
 

(j) SIMPLE CONSTRAINTS – Simple constraints:  
BODY NO. 1, 2, or 3 for X, Y OR PHI CONSTRAINT DIRECTION. 

 
(k) 

 
DRIVING CONSTRAINTS – Driving constraints: 
BODY NO. 1, 2, or 3 for X, Y OR PHI CONSTRAINT DIRECTION; INITIAL POSITION; 
INITIALVELOCITY; INITIAL ACCELERATION. 

 
 

(l) 
 
 
 

 
GUIDING CONSTRAINTS – Guiding constraints:  
BODY NO. 1, 2, or 3 for X, Y OR PHI CONSTRAINT DIRECTION; TIME AND GUIDING 
CONSTRAINTS DATA. 

(m)  
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 TRANSLATIONAL SPRINGS – Translational spring, damper and actuator: 
BODY NO. I; 1,2 OR 3 FOR X, Y OR PHI CONSTRAINT DIRECTION; XI-P-I; ETA-P-I;XI-P-
J;ETA-P-J; SPRING CONSTANT k; DAMPING COEFFICIENT d; UNDEFORMED SPRING 
LENGTH l. 
 

 
(n) 

 
ROTATIONAL SPRINGS – Rotational spring and damper:  
BODY NO. I; 1,2 OR 3 FOR X, Y OR PHI CONSTRAINT DIRECTION; SPRING CONSTANT k; 
DAMPING COEFFICIENT d. 

(o) 

 
EXTERNAL APPLIED FORCES – External applied forces: 
BODY NO I; COORDINATES OF POINT OF APPLICATION XI-P-I and ETA-P-I; APPLIED 
FORCES Fx and Fy. 

(p) 
 
POINTS OF INTEREST: 
BODY NO I; XI-P-I; ETA-P-I. 

(q) 

 
TIME PARAMETERS: 
TIME START; TIME END; TIME STEP; INTEGRATION METHOD; BAUMGARTE 
PARAMETERS ALPHA AND BETA. 

 

 

(a) General Information  

The first set of data the program requests is  

 NB Number of rigid bodies in the system, including ground 

 NIRJ Number of ideal revolute joints in the system 

 NCRJ Number of clearance revolute joints in the system 

 NTJ Number of ideal translational joints in the system 

 NGB Number of bodies that are attached to (or considered as) ground 

 NSC Number of simple constraints in the system 

 NDC Number of driving constraints (driver links) 

 NGC Number of guiding constraints 

 NGD Number of guiding data or points associated with guiding constraints 

 NTS Number of translational spring-damper-actuators elements 

 NRS Number of rotational spring-damper elements 

 NBEF Number of reference bodies, which have reaction external forces acting on  

 NFD Number of input data, associated to guiding constraints, used in the cubic spline interpolation 

 NPI Number of points of interest 

   

The program computes the number of coordinates N (N=3xNB) and the total number of constraint equations 

M (M=2xNR+2xNT+3xNG+NS+ND+NGUI). N must be equal to M. If M is greater than N, then an error message 

is given. Otherwise, the program continues. 

The number of each element tells the program how many data lines should exist. A data line describes the 

characteristics of each element. The data on a data line can be separated by one or several spaces. 
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(b) Initial Conditions  

The rigid bodies’ data line must provide the initial conditions on the positions and velocities for every rigid 

body in the system.  

The initial conditions on the coordinates and velocities must be correct, that is, must be satisfy the position 

and velocity constraints at the initial time.  

The data lines for rigid bodies are repeated NB times, and are as follows: 

 X Y PHI XD YD PHID 

here, 

 X X-coordinate of the body 

 Y Y-coordinate of the body 

 PHI φ - coordinate of the body 

 XD Velocity of the body in the X-direction 

 YD Velocity of the body in the Y-direction 

 PHID Rotational velocity of the body 

 

(c) Inertia Properties  

The rigid bodies’ data line must provide the mass and moment of inertia for every rigid body in the system.  

The data lines for revolute joints are repeated NB times, and are as follows: 

 M INERTIA 

where, 

 M Mass of body 

 INERTIA Moment of inertia of the body 

 

(d) Constant Applied Forces  

The rigid bodies’ data line must provide the constant external applied forces and/or moments acting  at the 

center of mass for every rigid body in the system.  

The data lines for revolute joints are repeated NB times, and are as follows: 

 FX FY N 
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where, 

 FX Applied force in the X-direction 

 FY Applied force in the Y-direction 

 N Applied Moment on body 

 

(e) Ideal Revolute Joints   

Refer to section 4.2.1 of the textbook (P.E. Nikravesh, Computer-Aided Analysis of Mechanical Systems, 

Prentice-Hall, Englewood, New Jersey, 1988), for the detailed description of this ideal kinematic joint. 

The data lines for ideal revolute joints are represented NIRJ times, and are as follows: 

 I J XI-P-I ETA-P-I XI-P-J ETA-P-J 

where, 

 

 

 

     

 I Index number of body i (body i have to be the bearing) 

 J Index number of body j (body j have to be the journal) 

 XI-P-I ξ -coordinate of point P on body i 

 ETA-P-I η -coordinate of point P on body i 

 XI-P-J ξ -coordinate of point P on body j 

 ETA-P-J η -coordinate of point P on body j 

 

(f) Clearance Revolute Joints  

Though a clearance joint does not constrain any degrees of freedom of the mechanical systems, it imposes 

some boundary conditions, limiting the journal to move within the bearing. When contact between the journal and 

the bearing is detected, the contact forces are calculated, accordingly to a constitutive law, and included in the 

equations of motion for the multibody system. A revolute joint with clearance is shown, schematically, in figure 5. 
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Figure 5: Generic revolute joint with clearance in a multibody system. Clearance is exaggerated for clarity 

Body i – bearing 

Body j – journal 

Pi – bearing center 
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The data lines for revolute joints with clearance are repeated NCRJ times, and are as follows: 

 I J XI-P-I ETA-P-I XI-P-J ETA-P-J Ri Rj 

         

where, 

 I Index number of body i (body i have to be the bearing) 

 J Index number of body j (body j have to be the journal) 

 XI-P-I ξ -coordinate of point P on body i 

 ETA-P-I η -coordinate of point P on body i 

 XI-P-J ξ -coordinate of point P on body j 

 ETA-P-J η -coordinate of point P on body j 

 Ri Bearing radius 

 Rj Journal radius 

 

(g) Mechanical Properties 

This is not a typical data line like a joint or a force element.  In this data line the program reads material 

properties of the colliding bodies, that is, the impact between the bearing and the journal in the revolute clearance 

joints. 

The data lines for mechanical properties of clearance joints are repeated NCRJ times, and are as follows: 

 FORCE LAW  FRICi RESTi Ei NIUi FRICj RESTj Ej NIUj VISCOSITY 

where, 

 FORCE LAW A flag indicating what type of force model is used 

 FRICi cf - Friction coefficient of body i (bearing) 

 RESTi ce - Restitution coefficient of body i (bearing) 

 Ei E - Young modulus of body i (bearing) 

 NIUi ν - Poisson coefficient of body i (bearing) 

 FRICj cf - Friction coefficient of body j (journal) 

 RESTj ce - Restitution coefficient of body j (journal) 

 Ej E - Young moludus of body j (journal) 

 NIUj ν - Poisson coefficient of body j (journal) 

 VISCOSITY μ – Dynamic viscosity of the fluid used in the lubricated joint 
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Flag FORCE LAW indicates the force model according to the following rule: 

EQ.1 : Pinkus and Sternlicht hydrodynamic force model 

EQ.2 : Hertz’s dry contact force model 

EQ.3 : Lankarani & Nikravesh dry contact force model 

EQ.4 : Hunt & Crossley dry contact force model 

 

(h) Ideal Translational Joints  

Refer to section 4.2.1 of the textbook (P.E. Nikravesh, Computer-Aided Analysis of Mechanical Systems, 

Prentice-Hall, Englewood Cliffs, New Jersey, 1988), for detailed description of this ideal kinematic joint. 

 

The data lines for translational joints are repeated NTJ times, and are as follows: 

 I J XI-P-I ETA-P-I XI-Q-I ETA-Q-I XI-P-J ETA-P-J 

where, 

 I Index number of body i 

 J Index number of body j 

 XI-P-I ξ -coordinate of point P on body i 

 ETA-P-I η -coordinate of point P on body i 

 XI-Q-I ξ -coordinate of point Q on body i 

 ETA-Q-I η -coordinate of point Q on body i 

 XI-P-J ξ -coordinate of point P on body j 

 ETA-P-J η -coordinate of point P on body j 

 

(i) Ground Constraints 

Refer to section 4.2.7 of the textbook (P.E. Nikravesh, Computer-Aided Analysis of Mechanical Systems, 

Prentice-Hall, Englewood Cliffs, New Jersey, 1988), for detailed description of this kinematic constraint. 

The data lines for ground constraints are repeated NGB times, and are as follows: 

 I 

where, 

 I Index number of body i constrained to the ground 
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(j) Simple Constraints 

Refer to section 4.2.7 of the textbook (P.E. Nikravesh, Computer-Aided Analysis of Mechanical Systems, 

Prentice-Hall, Englewood Cliffs, New Jersey, 1988), for detailed description of this kinematic constraint. 

The data lines for simple constraints are repeated NSC times, and are as follows: 

 I CONSTRAINT DIRECTION 

   

where, 

 I Index number of body i 

 CONSTRAINT DIRECTION Index of the coordinate to be constrained: 

       1:  constrain X-coordinate 

       2:  constrain Y-coordinate 

       3:  constrain φ -coordinate 

 

(k) Driving Constraints 

Refer to section 4.2.8 of the textbook (P.E. Nikravesh, Computer-Aided Analysis of Mechanical Systems, 

Prentice-Hall, Englewood Cliffs, New Jersey, 1988), for detailed description of this kinematic constraint. 

MUBODYNA can provide a driver expression on one of the three coordinates of a body: 

 1 2
2
10

i
0
ii attvxx ++=  

 2 2
2
10

i
0
ii attvyy ++=  

 3 2
2
10

i
0
ii tt α+ω+φ=φ  

The data lines for driving constraints are repeated NDC times, and are as follows: 

 I CONSTRAINT DIRECTION POSITION VELOCITY ACCELERATION 

where, 

 I Index number of body i 

 CONSTRAINT DIRECTION Index of the coordinate to be constrained: 

       1:  constrain X-coordinate 

       2:  constrain Y-coordinate 

       3:  constrain φ -coordinate 

 POSITION Initial linear/angular position 

 VELOCITY Initial linear/angular velocity 

 ACCELERATION Initial linear/angular acceleration 
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(l) Guiding Constraints 

In general the number of guiding constraints must be equal to number of bodies plus 2 (NGC = NB+2). This 

mean that in pure biomechanical systems, the CM (x,y) need to be constrained only for the main body, and φ must 

be constrained for all bodies. A guiding constraint is shown, schematically, in figure 6. 

X

Y
 

)(tt j
i

(i) 

 
Figure 6: Body trajectory guiding a free body 

 

The data lines for guiding constraints are repeated NGD times, and are as follows: 

 I CONSTRAINT DIRECTION 

where, 

 I Index number of body i 

 CONSTRAINT DIRECTION Index of the coordinate to be constrained: 

       1:  constrain X-coordinate 

       2:  constrain Y-coordinate 

       3:  constrain φ -coordinate 

MUBODYNA provide a guiding expression on one of the three coordinates of a body: 

 1 0)( =− ttx x
ii  

 2 0)( =− tty y
ii  

 3 0)( =− ttii
φφ  

where )(tti is introduced as a set of points as (NGC+1 columns, NGD rows), 

  Time Guid_1 Guid_2 Guid_3 Guid_4… Guid_5 Guid_6 

 0.0000 0.4727 1.0800 1.4853 1.4434… 0.6946 1.4990 

 … … … … … … … 

 0.9570 1.8356 1.0776 1.4476 1.3619 0.7533 1.5803 
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(m) Translational Spring-Damper-Actuator 

Refer to section 9.2.3 to 9.2.5 of the textbook (P.E. Nikravesh, Computer-Aided Analysis of Mechanical 

Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1988), for detailed description of this force element. 

The data lines for translational spring-damper-actuator are repeated NTS times, and are as follows: 

 I J XI-P-I ETA-P-I XI-P-J ETA-P-J K D FA L0 

where, 

 I Index number of body i 

 J Index number of body j 

 XI-P-I ξ-coordinate of point P on body i 

 ETA-P-I η-coordinate of point P on body i 

 XI-P-J ξ-coordinate of point P on body j 

 ETA-P-J η-coordinate of point P on body j 

 K Spring stiffness 

 D Damping coefficient 

 Fa Actuator force (- for push, + for pull) 

 L0 Undeformed length of the spring 

 

(n) Rotational Spring-Damper 

Refer to section 9.2.6 to 9.2.7 of the textbook (P.E. Nikravesh, Computer-Aided Analysis of Mechanical 

Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1988), for detailed description of this force element. 

The data lines for rotational spring-damper are repeated NRS times, and are as follows: 

 I J K D 

where, 

 I Index number of body i 

 J Index number of body j 

 K Spring stiffness 

 D Damping coefficient 
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 (o) Reaction External Forces 

In this data line the program reads the index number of the reference bodies, which have reaction external 

acting on. For example, considering a biomechanical system of a human body, during the gait cycle there are ground 

reaction forces acting on foot segment, so this segment is a reference body.  

The data lines for reference bodies are repeated NBEF times, and are as follows: 

 I 

where, 

 I Index number of reference body i, which has reaction external forces acting on 

 

The program also reads the time and reaction external forces data, which are introduced by user as discrete 

data and then interpolated by MUBODYNA. This data line includes NBEFx4+1 columns, which correspond to time 

and four parameters for each reference body, and  NFD rows. The four parameters are, respectively, FXi, FYi, 

XI_P_I, ETA_P_I, and are defined as follow: 

 FXi X-reaction external force acting on the CM of body i  

 FYi Y-reaction external force acting on the CM of body i 

 XI_P_I ξ-coordinate of the reaction external force application point P on body i 

 ETA_P_I η-coordinate of the reaction external force application point P on body i 

 

(p) Point of Interest 

In this data line the program is instructed to output the coordinates, velocities, and accelerations of one or 

more points of interest attached to one or more rigid bodies. It should be noted that MUBODYNA automatically 

outputs the coordinates, velocities, and accelerations of the origins of the bodies.  

The data lines for points of interest are repeated NP times, and are as follows: 

 I XI-P-I ETA-P-I 

where, 

 I Index number of body i 

 XI-P-I ξ-coordinate of point P on body i 

 ETA-P-I η-coordinate of point P on body i 
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(q) Time Parameters 

It is important to select the time step adequately. A very small time step yields a more accurate result and, of 

course, it requires more computation time. A large time step is computationally more efficient but it may cause the 

numerical integration algorithm to yield erroneous results. The selection of the time step must be based on the 

highest frequency of the system response. However, since we deal with nonlinear differential equations, the system 

frequencies vary as the system orientation changes. Therefore, time step selection is not an easy task. 

In rotating bodies, such as the slider crank mechanism, a reasonable choose for time step is a value that 

allows the crank not rotate more than 10 degrees in one time step. 

In MUBODYNA the time parameters for dynamic analysis of a biomechanical system is given as follows: 

 TIME START TIME END TIME STEP INTEGRATION METHOD ALPHA BETA 

where, 

 TIME START Starting time 

 TIME END Final time 

 TIME STEP Time increment 

 INTEGRATION METHOD A flag indicating what type of integrator method is used 

 ALPHA α Baumgarte parameters 

 BETA β Baumgarte parameters 

Flag INTEGRATION METHOD controls what type of integration subroutine is used accordingly to: 

 EQ.1: Fourth-order Runge-Kutta method 

 EQ.2: Fourth-order Kutta-Merson method 

 EQ.3: Fifth/sixth-order Runge-Kutta-Verner method 

 EQ.4: Adams-Moulton’s or Gear´s BDF methods 

 EQ.5: Adams predictor-corrector or Gear’s methods 

 EQ.6: Adams predictor-corrector formulas (ODE/DE) 
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6. OUTPUT FILE 

The output results are written on a text file specified by the user. The results are reported with specified 

format and divided in two sections. 

NUBODYNA report’ first section compiles all the input data and is entitled “Multibody System 

Description”.  

The second section is entitled “Forward Dynamic Analysis” and reports the values of coordinates, velocities, 

and accelerations for all bodies in the system at the end of each time step. In addition, at this section, the global 

coordinates, velocities, and accelerations of the special points of interest are reported.  

Moreover, if there is any translational spring-damper-actuator element in the system, the dynamic response of 

these elements, like the deformed length of the spring l, the time rate of change in length l' (dl/dt), the spring force 

fs, and the damper force fa, is also potted. 

The total forces and torques on bodies’ CM are calculated and reported, as well as the reaction external 

forces at the kinematic joints (including the driving constraints). 
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7. APPLICATION EXAMPLE 2: ½ HAT-LEG GUIDANCE MODEL 

In this section, a biomechanical model of the human body is used in dynamic analysis corresponding to the 

stride period (Winter, 2005). The model is defined using 4 rigid bodies, corresponding to: (1) ½ Right HAT (acronym 

for Head-Arms-Trunk), (2) Right Thigh, (3) Right Leg and (4) Right Foot. 

The bodies are connected by 3 ideal revolute joints, which correspond to hip, knee and ankle joints. Figure 7 

illustrates schematically the configuration of the system, within the representation of a complete biomechanical model 

to perform gait analysis.  

 

Figure 7: Configuration of the ½ HAT-Leg Guidance Model. 

 

In general the number of guiding constraints must be equal to number of bodies plus 2 (NGC = NB+2). So, in 

this example are 6 guiding constraints: 2 guiding constraints for the CM (x,y) of the ½ HAT segment (main body) and 4 

guiding constraints for φ of all bodies. 

For this dynamic analysis, it is also considered the existence of reaction external forces acting on the right foot 

segment, which are the result of the interaction between the foot and the ground along stance period. The force value 

and application point vary with time.  

For one complete gait cycle, 0.957 seconds of simulation time is required. In the dynamic simulation performed 

a time increment of 0.0145s is used, which represents the double of the input frequency data. 

The fourth-order Runge-Kutta algorithm is employed to carry out the integration of the equations of motion. The 

explicit Runge-Kutta method is easy to implement, because it only require function evaluations, and is self-starting, 

meaning that it does not need any other algorithm or technique to start the integration process. However, the error 

control is a very difficult task. Stabilizing values α and β are equal to zero. 
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In short, the MUBODYNA input file that describes this biomechanical model is as follows: 

GENERIC_INFORMATION - Number of elements of the Mubtibody System  
   4   Rigid bodies 
   3   Ideal revolute joints 
   0   Clearance revolute joints 
   0   Translational joints 
   0   Ground constraints 
   0   Simple constraints 
   0   Driving constraints 
   6   Guiding constraints 
  34   Guiding data for the guiding constraints 
   0   Translational spring-damper-actuator elements 
   0   Rotational spring-damper elements 
   1   Bodies subjected to external applied forces 
  34   Force data of the external applied forces 
   0   Points of interest 
 
 INITIAL_CONDITIONS - Global cartesian coordinates on the positions and velocities   
   0.47266   1.07997   1.48527   1.38137   0.05727   0.73275         
    
   0.43026   0.65208   1.44339   2.05470  -0.01989   3.39980         
      
   0.27187   0.36231   0.69464   2.42049   0.18498  -2.07573         
      
   0.08941   0.15333   1.49400   1.87062   0.57264  -3.98255   
 
 INERTIA_PROPERTIES - Mass and moment of inertia of the bodies 
  19.2213   1.03923     
   5.6700   0.05836     
   2.6365   0.04005       
   0.8222   0.00273    
 
 CONSTANT_APPLIED_FORCES - Constant forces and moments acting on the bodies 
   0.0000   0.0000   0.0000                        
   0.0000   0.0000   0.0000                        
   0.0000   0.0000   0.0000                        
   0.0000   0.0000   0.0000   
 
 IDEAL_REVOLUTE_JOINTS - Body numbers i and j and local coordinates of the points Pi and Pj 
   1  2   -0.294065   0.000000   0.136005    0.000000 
   2  3   -0.178095   0.000000   0.176707    0.000000 
   3  4   -0.231393   0.000000   0.061050    0.000000 
 
 
 GUIDING_CONSTRAINTS - Guiding constraints 
   1   1 
   1   2 
   1   3 
   2   3 
   3   3 
   4   3  
   0.0000 0.4726600 1.0799700 1.4852700 1.4433900 0.694640  1.49400  
   0.0290 0.5123842 1.0821876 1.5044679 1.5463198 0.645770  1.40499  
   0.0580 0.5506321 1.0884829 1.5152255 1.6637434 0.652280  1.43580  
   0.0870 0.5868407 1.0976317 1.5240338 1.7733127 0.718770  1.56062  
   0.1160 0.6212848 1.1077698 1.5368431 1.8717503 0.832720  1.74493  
   0.1450 0.6556406 1.1162812 1.5529222 1.9448318 0.973740  1.94411  
   0.1740 0.6894261 1.1222490 1.5760323 1.9921971 1.134060  2.14509  
   0.2030 0.7236148 1.1243847 1.6011326 2.0191265 1.309260  2.34672  
   0.2320 0.7596122 1.1224025 1.6215625 2.0221472 1.476670  2.53878  
   0.2610 0.7978007 1.1163604 1.6371329 2.0075002 1.645450  2.73484  
   0.2900 0.8383816 1.1081384 1.6469929 1.9803837 1.789340  2.90434  
   0.3190 0.8808620 1.0999430 1.6560229 1.9527588 1.892510  3.02513  
   0.3480 0.9245450 1.0936675 1.6694034 1.9307442 1.933960  3.06950  
   0.3770 0.9686276 1.0901530 1.6850842 1.9176810 1.908400  3.02512  
   0.4060 1.0147672 1.0899441 1.6962949 1.9047969 1.846320  2.91199  
   0.4350 1.0613119 1.0939473 1.6976352 1.8935726 1.773470  2.77586  
   0.4640 1.1074226 1.1010326 1.6884156 1.8869193 1.695610  2.67052  
   0.4930 1.1530574 1.1086842 1.6710754 1.8729858 1.620690  2.62145  
   0.5220 1.1968395 1.1147232 1.6545755 1.8369813 1.563330  2.61238  
   0.5510 1.2384416 1.1196232 1.6428564 1.7786852 1.517370  2.61237  
   0.5800 1.2774853 1.1230728 1.6288571 1.7162699 1.481200  2.60750  
   0.6090 1.3166557 1.1256955 1.6053272 1.6577946 1.447950  2.59658  
   0.6380 1.3565860 1.1264192 1.5747573 1.6037786 1.413850  2.57540  
   0.6670 1.3966385 1.1238106 1.5409875 1.5562531 1.380390  2.54895  
   0.6960 1.4377919 1.1189573 1.5065475 1.5087366 1.346480  2.52779  
   0.7250 1.4791342 1.1135043 1.4753477 1.4593800 1.312460  2.51075  
   0.7540 1.5212305 1.1079904 1.4473382 1.4075729 1.274960  2.48927  
   0.7830 1.5648419 1.1025457 1.4195580 1.3574251 1.232080  2.45817  
   0.8120 1.6082932 1.0974443 1.3966583 1.3179277 1.176170  2.40567  
   0.8410 1.6522911 1.0924644 1.3805681 1.2907600 1.109620  2.31587  
   0.8700 1.6968829 1.0878817 1.3773982 1.2766018 1.032720  2.18580  
   0.8990 1.7436797 1.0833713 1.3890785 1.2806636 0.941990  2.01053  
   0.9280 1.7911596 1.0795297 1.4136488 1.3078647 0.844440  1.79696  
   0.9570 1.8355846 1.0776201 1.4475594 1.3618779 0.753260  1.58027  
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 EXTERNAL_APPLIED_FORCES 
   4 
   0.000 0.0000 0.0000 0.0000 0.0000         
   0.029 0.0000 0.0000 0.0000 0.0000          
   0.058 0.0000 0.0000 0.0000 0.0000          
   0.087 0.0000 0.0000 0.0000 0.0000          
   0.116 0.0000 0.0000 0.0000 0.0000          
   0.145 0.0000 0.0000 0.0000 0.0000          
   0.174 0.0000 0.0000 0.0000 0.0000          
   0.203 0.0000 0.0000 0.0000 0.0000          
   0.232 0.0000 0.0000 0.0000 0.0000          
   0.261 0.0000 0.0000 0.0000 0.0000          
   0.290 0.0000 0.0000 0.0000 0.0000          
   0.319 0.0000 0.0000 0.0000 0.0000          
   0.348 0.0000 0.0000 0.0000 0.0000          
   0.377 0.0000 0.0000 0.0000 0.0000          
   0.406 -4.200 87.100 1.2440 0.0000          
   0.435 -74.00 192.60 1.2910 0.0000          
   0.464 -102.7 404.20 1.3010 0.0000          
   0.493 -114.2 521.70 1.3110 0.0000          
   0.522 -98.10 604.50 1.3160 0.0000          
   0.551 -62.00 558.10 1.3220 0.0000          
   0.580 -39.80 473.40 1.3330 0.0000          
   0.609 -27.00 400.30 1.3450 0.0000          
   0.638 -18.10 364.00 1.3690 0.0000          
   0.667 -16.80 366.50 1.3840 0.0000          
   0.696 -14.50 386.10 1.3960 0.0000          
   0.725 -3.800 418.80 1.4170 0.0000          
   0.754 8.7000 465.80 1.4240 0.0000          
   0.783 26.800 523.90 1.4320 0.0000          
   0.812 54.800 576.80 1.4400 0.0000          
   0.841 79.600 608.60 1.4470 0.0000          
   0.870 101.50 602.30 1.4550 0.0000          
   0.899 115.60 530.30 1.4630 0.0000          
   0.928 105.20 377.30 1.4700 0.0000          
   0.957 65.700 190.10 1.4780 0.0000         
  
           
 
 TIME_PARAMETERS 
   0.0000   0.9570   0.00145   1   0   0 
 
 
 

The output results for the two first time and the two final steps are presented below. 

*** MULTIBODY SYSTEM DESCRIPTION *** 
 
 
 GENERIC_INFORMATION 
   4   Rigid bodies 
   3   Ideal revolute joints 
   0   Clearance revolute joint 
   0   Translational joints 
   0   Ground constraints 
   0   Simple constraints 
   0   Driving constraints 
   6   Guiding constraints 
  34   Guiding data for the guiding constraints 
   0   Translational spring-damper-actuators elements 
   0   Rotational spring-damper elements 
   1   Bodies subjected to external applied forces 
  34   Force data of the external applied forces 
   0   Points of interest 
 
 INITIAL_CONDITIONS 
     X        Y        PHI      XD       YD      PHID 
   0.4727   1.0800   1.4853   1.3814   0.0573   0.7328 
   0.4303   0.6521   1.4434   2.0547  -0.0199   3.3998 
   0.2719   0.3623   0.6946   2.4205   0.1850  -2.0757 
   0.0894   0.1533   1.4940   1.8706   0.5726  -3.9825 
 
 INERTIA_PROPERTIES 
      m        I 
   19.2213   1.0392 
    5.6700   0.0584 
    2.6365   0.0401 
    0.8222   0.0027 
 
 CONSTANT_APPLIED_FORCES 
      FX       FY        M 
   0.0000  -188.5610   0.0000 
   0.0000   -55.6227   0.0000 
   0.0000   -25.8641   0.0000 
   0.0000    -8.0658   0.0000 
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 IDEAL_REVOLUTE_JOINTS 
   i   j   XI-P-I   ETA-P-I   XI-P-J   ETA-P-J 
   1   2   -0.2941   0.0000   0.1360   0.0000 
   2   3   -0.1781   0.0000   0.1767   0.0000 
   3   4   -0.2314   0.0000   0.0611   0.0000 
 
 GUIDING_CONSTRAINTS 
   i   Direction (1=X, 2=Y, 3=PHI) 
   1   1 
   1   2 
   1   3 
   2   3 
   3   3 
   4   3 
   Time     Guid_1   Guid_2   Guid_3  ... 
   0.0000   0.4727   1.0800   1.4853   1.4434   0.6946   1.4940 
   0.0290   0.5124   1.0822   1.5045   1.5463   0.6458   1.4050 
   0.0580   0.5506   1.0885   1.5152   1.6637   0.6523   1.4358 
   0.0870   0.5868   1.0976   1.5240   1.7733   0.7188   1.5606 
   0.1160   0.6213   1.1078   1.5368   1.8718   0.8327   1.7449 
   0.1450   0.6556   1.1163   1.5529   1.9448   0.9737   1.9441 
   0.1740   0.6894   1.1222   1.5760   1.9922   1.1341   2.1451 
   0.2030   0.7236   1.1244   1.6011   2.0191   1.3093   2.3467 
   0.2320   0.7596   1.1224   1.6216   2.0221   1.4767   2.5388 
   0.2610   0.7978   1.1164   1.6371   2.0075   1.6455   2.7348 
   0.2900   0.8384   1.1081   1.6470   1.9804   1.7893   2.9043 
   0.3190   0.8809   1.0999   1.6560   1.9528   1.8925   3.0251 
   0.3480   0.9245   1.0937   1.6694   1.9307   1.9340   3.0695 
   0.3770   0.9686   1.0902   1.6851   1.9177   1.9084   3.0251 
   0.4060   1.0148   1.0899   1.6963   1.9048   1.8463   2.9120 
   0.4350   1.0613   1.0939   1.6976   1.8936   1.7735   2.7759 
   0.4640   1.1074   1.1010   1.6884   1.8869   1.6956   2.6705 
   0.4930   1.1531   1.1087   1.6711   1.8730   1.6207   2.6214 
   0.5220   1.1968   1.1147   1.6546   1.8370   1.5633   2.6124 
   0.5510   1.2384   1.1196   1.6429   1.7787   1.5174   2.6124 
   0.5800   1.2775   1.1231   1.6289   1.7163   1.4812   2.6075 
   0.6090   1.3167   1.1257   1.6053   1.6578   1.4480   2.5966 
   0.6380   1.3566   1.1264   1.5748   1.6038   1.4139   2.5754 
   0.6670   1.3966   1.1238   1.5410   1.5563   1.3804   2.5490 
   0.6960   1.4378   1.1190   1.5065   1.5087   1.3465   2.5278 
   0.7250   1.4791   1.1135   1.4753   1.4594   1.3125   2.5107 
   0.7540   1.5212   1.1080   1.4473   1.4076   1.2750   2.4893 
   0.7830   1.5648   1.1025   1.4196   1.3574   1.2321   2.4582 
   0.8120   1.6083   1.0974   1.3967   1.3179   1.1762   2.4057 
   0.8410   1.6523   1.0925   1.3806   1.2908   1.1096   2.3159 
   0.8700   1.6969   1.0879   1.3774   1.2766   1.0327   2.1858 
   0.8990   1.7437   1.0834   1.3891   1.2807   0.9420   2.0105 
   0.9280   1.7912   1.0795   1.4136   1.3079   0.8444   1.7970 
   0.9570   1.8356   1.0776   1.4476   1.3619   0.7533   1.5803 
 
 APPLIED_FORCES 
   i 
   4 
   Time      FX_1     FY_1    X_P_1    Y_P_1    ... 
   0.0000   0.0000   0.0000   0.0000   0.0000 
   0.0290   0.0000   0.0000   0.0000   0.0000 
   0.0580   0.0000   0.0000   0.0000   0.0000 
   0.0870   0.0000   0.0000   0.0000   0.0000 
   0.1160   0.0000   0.0000   0.0000   0.0000 
   0.1450   0.0000   0.0000   0.0000   0.0000 
   0.1740   0.0000   0.0000   0.0000   0.0000 
   0.2030   0.0000   0.0000   0.0000   0.0000 
   0.2320   0.0000   0.0000   0.0000   0.0000 
   0.2610   0.0000   0.0000   0.0000   0.0000 
   0.2900   0.0000   0.0000   0.0000   0.0000 
   0.3190   0.0000   0.0000   0.0000   0.0000 
   0.3480   0.0000   0.0000   0.0000   0.0000 
   0.3770   0.0000   0.0000   0.0000   0.0000 
   0.4060  -4.2000  87.1000   1.2440   0.0000 
   0.4350 -74.0000 192.6000   1.2910   0.0000 
   0.4640-102.7000 404.2000   1.3010   0.0000 
   0.4930-114.2000 521.7000   1.3110   0.0000 
   0.5220 -98.1000 604.5000   1.3160   0.0000 
   0.5510 -62.0000 558.1000   1.3220   0.0000 
   0.5800 -39.8000 473.4000   1.3330   0.0000 
   0.6090 -27.0000 400.3000   1.3450   0.0000 
   0.6380 -18.1000 364.0000   1.3690   0.0000 
   0.6670 -16.8000 366.5000   1.3840   0.0000 
   0.6960 -14.5000 386.1000   1.3960   0.0000 
   0.7250  -3.8000 418.8000   1.4170   0.0000 
   0.7540   8.7000 465.8000   1.4240   0.0000 
   0.7830  26.8000 523.9000   1.4320   0.0000 
   0.8120  54.8000 576.8000   1.4400   0.0000 
   0.8410  79.6000 608.6000   1.4470   0.0000 
   0.8700 101.5000 602.3000   1.4550   0.0000 
   0.8990 115.6000 530.3000   1.4630   0.0000 
   0.9280 105.2000 377.3000   1.4700   0.0000 
   0.9570  65.7000 190.1000   1.4780   0.0000 
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 TIME_PARAMETERS 
   TIME_START   TIME_END    TIME_STEP  INTEGRATION_METHOD   ALPHA   BETA 
   0.0000       0.9570      0.0014     1                    5       5 
 
 *** FORWARD DYNAMIC ANALYSIS *** 
 
 TIME =     0.00000 
 ------------------ 
 BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD    PHIDD 
  1   0.473   1.080   1.485   1.381   0.057   0.733   -0.018   -0.123    0.000 
  2   0.430   0.652   1.443   2.055  -0.020   3.400    0.195    1.594    0.001 
  3   0.272   0.362   0.695   2.420   0.185  -2.076    1.042    4.123    0.000 
  4   0.089   0.153   1.494   1.871   0.573  -3.983    1.884    5.727    0.020 
 REACTION FORCES 
  JOINT NO. i      FX-i      FY-i       M-i   j      FX-j      FY-j       M-j 
  REV.  1   1    -5.404  -114.168     1.285   2     5.404   114.168     1.244 
  REV.  2   2    -4.296   -49.509     0.361   3     4.296    49.509     6.235 
  REV.  3   3    -1.549   -12.774     2.042   4     1.549    12.774    -0.034 
 CONSTRAINT VIOLATIONS 
 CONSTRAINT   Position violations   Velocity violations 
  1             -0.7058E-06              0.5628E-06 
  2             -0.2800E-05              0.1441E-05 
  3             -0.2875E-06              0.3795E-06 
  4              0.6775E-05             -0.8061E-06 
  5              0.6076E-06              0.1619E-05 
  6             -0.6780E-05              0.7615E-05 
  7              0.0000E+00              0.1796E-02 
  8              0.0000E+00              0.1228E-01 
  9              0.0000E+00             -0.3617E-04 
 10              0.0000E+00             -0.5083E-04 
 11              0.0000E+00              0.6715E-05 
 12              0.0000E+00             -0.2035E-02 
 
TIME =     0.47995 
 ------------------ 
 BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD    PHIDD 
  1   1.133   1.106   1.679   1.575   0.265  -0.622   -1.513   -1.243   -4.083 
  2   1.206   0.684   1.881   1.330   0.225  -0.483   -5.287   -2.051  -19.758 
  3   1.275   0.338   1.653   0.791   0.161  -2.597   -5.956   -1.669   15.851 
  4   1.347   0.078   2.637   0.146   0.028  -1.569   -0.716    3.598   62.479 
 REACTION FORCES 
  JOINT NO. i      FX-i      FY-i       M-i   j      FX-j      FY-j       M-j 
  REV.  1   1   -64.648   401.668    -6.102   2    64.648  -401.668     8.316 
  REV.  2   2   -94.625   445.662     8.199   3    94.625  -445.662   -10.210 
  REV.  3   3  -110.329   467.127   -16.584   4   110.329  -467.127    21.705 
 CONSTRAINT VIOLATIONS 
 CONSTRAINT   Position violations   Velocity violations 
  1             -0.1932E-06              0.6971E-06 
  2             -0.8011E-06              0.2865E-05 
  3             -0.7226E-07              0.2657E-06 
  4              0.2054E-05             -0.7274E-05 
  5              0.2579E-06             -0.8647E-06 
  6             -0.1761E-05              0.6416E-05 
  7              0.7821E-04             -0.2281E-03 
  8              0.5346E-03             -0.1559E-02 
  9             -0.1575E-05              0.4594E-05 
 10             -0.2214E-05              0.6456E-05 
 11              0.2924E-06             -0.8523E-06 
 12             -0.8863E-04              0.2585E-03 
 
TIME =     0.95700 
 ------------------ 
 BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD    PHIDD 
  1   1.836   1.078   1.448   1.503  -0.050   1.232    0.000    0.001    0.000 
  2   1.771   0.653   1.362   2.137  -0.153   2.063    0.175    1.010    0.000 
  3   1.605   0.358   0.753   2.125   0.168  -3.076    1.552    2.896    0.000 
  4   1.437   0.138   1.580   1.184   0.682  -7.430    3.117    7.764    0.000 
 REACTION FORCES 
  JOINT NO. i      FX-i      FY-i       M-i   j      FX-j      FY-j       M-j 
  REV.  1   1    58.052    80.800    14.021   2   -58.052   -80.800     5.445 
  REV.  2   2    59.045   142.152     5.036   3   -59.045  -142.152   -11.187 
  REV.  3   3    63.137   175.651   -19.655   4   -63.137  -175.651     3.956 
 CONSTRAINT VIOLATIONS 
 CONSTRAINT   Position violations   Velocity violations 
  1             -0.2960E-07              0.1230E-06 
  2             -0.1239E-06              0.5134E-06 
  3             -0.1086E-07              0.4491E-07 
  4              0.3206E-06             -0.1329E-05 
  5              0.4241E-07             -0.1729E-06 
  6             -0.2673E-06              0.1115E-05 
  7              0.1436E-04             -0.5679E-04 
  8              0.9814E-04             -0.3881E-03 
  9             -0.2892E-06              0.1144E-05 
 10             -0.4063E-06              0.1607E-05 
 11              0.5367E-07             -0.2123E-06 
 12             -0.1627E-04              0.6435E-04 
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9. FLOWCHART OF THE MUBODYNA PROGRAM 
START 
   USE MUBODYNA_ARRAYS 
   CALL MUBODYNA_UNITS 
   CALL GENERAL_INFORMATION 
   CALL MUBODYNA_ALLOCATE 
   CALL SPECIFIC_INFORMATION 
      CALL INPUT_INITIAL_CONDITIONS 
      CALL INPUT_INERTIA_PROPERTIES 
      CALL INPUT_CONSTANT_APPLIED_FORCES 
      CALL INPUT_IDEAL_REVOLUTE_JOINTS 
      CALL INPUT_CLEARANCE_REVOLUTE_JOINTS 
      CALL INPUT_MECHANICAL_PROPERTIES 
      CALL INPUT_TRANSLATIONAL_JOINTS 
      CALL INPUT_GROUND_CONSTRAINTS 
      CALL INPUT_SIMPLE_CONSTRAINTS 
      CALL INPUT_DRIVING_CONSTRAINTS 
      CALL INPUT_GUIDING_CONSTRAINTS 
      CALL INPUT_TRANSLATIONAL_SPRINGS 
      CALL INPUT_ROTATIONAL_SPRINGS 
      CALL INPUT_EXTERNAL_APPLIED_FORCES 
      CALL INPUT_POINTS_OF_INTEREST 
      CALL INPUT_TIME_PARAMETERS 
   CALL DYNAMIC_ANALYSIS 
      CALL TRANSFER_POSITIONS_VELOCITIES 
      INTEGRATION_METHOD=1   CALL INTEGRATOR_RUNGE_KUTTA 
      INTEGRATION_METHOD=2   CALL INTEGRATOR_KUTTA_MERSON 
      INTEGRATION_METHOD=3   CALL INTEGRATOR_RUNGE_KUTTA_VERNER 
      INTEGRATION_METHOD=4   CALL INTEGRATOR_DIVPAG 
      INTEGRATION_METHOD=5   CALL INTEGRATOR_DGEAR 
      INTEGRATION_METHOD=6   CALL INTEGRATOR_ODE_PREDICTOR_CORRECTOR 
         CALL EQUATIONS_OF_MOTION 
            CALL TRANSFER_Y 
            CALL SOLVE_EQUATIONS_OF_MOTION 
               CALL TRIGONOMETRIC_FUNCTIONS 
               CALL EVALUATE_FUNCTIONS 
                  CALL FUNCTIONS_REVOLUTE_JOINTS 
                  CALL FUNCTIONS_TRANSLATIONAL_JOINTS 
                  CALL FUNCTIONS_GROUND_CONSTRAINTS 
                  CALL FUNCTIONS_SIMPLE_CONSTRAINTS 
                  CALL FUNCTIONS_DRIVING_CONSTRAINTS 
                  CALL FUNCTIONS_GUIDING_CONSTRAINTS 
               CALL CONSTRAINT_VIOLATIONS 
               CALL BODIES_APPLIED_FORCES 
                  CALL BODIES_CONSTANT_FORCES 
                  CALL TRANSLATIONAL_SPRING_FORCES 
                  CALL ROTATIONAL_SPRING_MOMENTS 
                  CALL EXTERNAL REACTION FORCES 
                  CALL REVOLUTE_CLEARANCE_JOINTS_FORCES 
                     FORCE_MODEL=0   CALL LUBRICATION_FORCES 
                     FORCE_MODEL=1   CALL DRY_CONTACT_FORCES 
                        CALL ECCENTRICITY 
                        CALL PENETRATION 
                        DELTA>0    
                           CALL NORMAL_VECTOR 
                           CALL TANGENTIAL_VECTOR 
                           CALL CONTACT_POINTS 
                           CALL NORMAL_FORCE 
                              FORCE_MODEL=1   CALL HERTZ 
                              FORCE_MODEL=2   CALL LANKARANI_NIKRAVESH 
                              FORCE_MODEL=3   CALL HUNT_CROSSLEY 
                           CALL TANGENTIAL_FORCE 
               CALL JOIN_G_FORCES_VECTOR_GAMMA_VECTOR 
               CALL COEFFICIENTS_MATRIX_A 
               CALL SOLVE_LINEAR_EQUATIONS_SYSTEM 
                  CALL LU_FACTORIZATION 
               CALL TRANSFER_ACCELERATIONS_LAGRANGE_MULTIPLIERS 
            CALL TRANSFER_VELOCITIES_ACCELERATIONS 
         CALL REPORT_RESULTS 
            CALL REPORT_KINEMATIC_OF_BODIES_DATA 
            CALL REPORT_POINTS_OF_INTEREST_DATA 
            CALL REPORT_TRANSLATIONAL_SPRINGS_DATA 
            CALL REPORT_REACTION_FORCES_DATA 
            CALL REPORT_CONSTRAINT_VIOLATIONS_DATA 
   CALL MUBODYNA_DEALLOCATE 
STOP 


