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1. INTRODUCTION 

Based on the methodology described in the reference textbook (P.E. Nikravesh, Computer-
Aided Analysis of Mechanical Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 
1988) a computer program designated by KABIOS (Acronym for Kinematic Analysis of 
Biomechanical Systems) was devised. This program is based on the Nikravesh's KAP with 
some important modifications. 

The KABIOS performs kinematic analysis of two-dimensional biomodels, using multibody 
systems methodologies. The kinematic joints available in the program are revolute joint 
and translational joint. It is also possible to include simple kinematic constraints. The main 
difference from KAP code is the inclusion of guide constraints. These type of constraints 
impose bodies trajectories based on known CM linear and angular positions. This program 
also performs kinematic analysis of planar mechanical systems, as original Nikravesh's 
KAP. 

This program is based on the Method of Appended Driving Constraints. Additional 
constraint equations, called the driving constraints, equal in number of degrees of freedom 
(DOF) of the system, are appended to the original kinematic constraints. The driving 
constraints are equations representing each independent coordinate as a function of time. 
Guide constraints used in this program can be seen as special type of driving constraints. 

The program is written in FORTRAN language and is organized in a form that can be 
expanded to include other elements, such as other kinematic joints.  

The user is free to use any desired unit system. It is user’s responsibility to enter all the 
input data in a consistent system.  
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2. CONSTRAINT EQUATIONS 

A kinematic joint imposes certain conditions on the relative motion between the adjacent 
bodies that it comprises. When these conditions are expressed in analytical form, they are 
called constraint equations. In a simple way, a constraint is any condition that reduces the 
number of degrees of freedom in a system. In what follows, the formulation for the planar 
revolute and translational joints is reviewed. For details on the formulation of other types 
of kinematic joints the interested reader is referred to the work of Nikravesh (1988). 

Revolute Joints 
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Planar revolute joint connecting bodies i and j. 

The revolute joint is a pin and bush type of joint that constrains the relative translation 
between the two bodies i and j, allowing only the relative rotations, as it is illustrated in 
figure above. The kinematic conditions for the revolute joint require that two and 
distinguish points, each one belonging to a different body, share the same position in space 
all the time. This means that the global position of a point P in body i is coincident with the 
global position of a point P in body j. Such condition is expressed by two algebraic 
equations1 that can be obtained from the following vector loop equation, 

 0srsr =−−+ P
jj

P
ii  (1)  

which is re-written as, 

 0sArsArΦ =′−−′+≡ P
jjj

P
iii

)2,(r  (2)  

Thus, there is only one relative DOF between two bodies that are connected by a planar 
revolute joint. 

                                                 
1  To distinguish among the different constraint equations, each elementary set of constraints is identified by 
a superscript containing two parameters. The first parameter denotes the type of constraint while the second 
one defines the number of independent equations that it involves. For example )2,(rΦ  denotes the planar 
revolute joint constraint, which contains two equations. 
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Guide Constraints 

In general, the motion of one or more bodies in a MBS is specified, i.e., the system is 
guided typically by rotational or translational actuators. Other type of guiding constraints 
are those associated with the known trajectories of the bodies CM, which can be obtained 
by experimental data acquisition, as it is illustrated in Figure below. The mathematical 
equation that represents the guiding constraint can be written as, 
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φφ

)3,(  (6)  

where, )(tt j
i  (j = x, y, φ) represents the trajectory described by the CM of body i. 

X

Y
 

)(tt j
i

(i) 

 

Body trajectory 

In general, the bodies’ trajectories are obtained through a digitization process in which the 
images collected by video cameras are used to reconstruct the two-dimensional coordinates 
of the anatomical points. From these anatomical points’ coordinates, the CM(x,y) position 
are calculated, as well as the body orientation, φ.  
 
The next step consists on the interpolation of the Cartesian coordinates’ variation along 
time in order to achieve bodies trajectory curves ( )(tt j

i ). Based on these curves, the 
analytical constraint equations, given by expression (6), can easily be obtained. This 
interpolation is performed employing cubic splines, since higher-order polynomials tend to 
swing through wild oscillations in the vicinity of an abrupt change, whereas cubic spline 
provides much more smooth transitions. Further, the use of cubic splines is useful to 
guarantee the continuity of the first and the second derivatives (velocity and acceleration 
respectively), property that is extremely important in the kinematic analysis.  
 
This Program reads the input values of the Cartesian coordinates and performs the 
necessary calculations with the aid of specific routines for cubic spline interpolation (cubic 
spline smoothing) and cubic spline derivative evaluation available in the ISML Fortran 
Numerical Libraries. 
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3. KINEMATIC ANALYSIS 

The kinematic analysis consists of study of the motion of a system independently of the 
forces that produce it. Since in the kinematic analysis the forces are not considered, the 
motion of the system is specified by driving elements that govern the system motion during 
the analysis, while the position, velocity and acceleration of the remaining elements are 
defined by kinematic constraint equations that describe the system topology.  

It is clear that in the kinematic analysis, the number of driver constraints must be equal to 
the number of degrees of freedom of the multibody mechanical system. In short, the 
kinematic analysis is performed by solving a set of equations that result from the kinematic 
and driver constraints. 

When the configuration of a MBS is described by N Cartesian coordinates q , then a set of 
M algebraic kinematic independent holonomic constraints Φ  can be written in a compact 
form as (Nikravesh, 1988), 

 0qΦ =)t,(  (6)  

where q  is the vector of generalized coordinates and t is the time variable, in general 
associated with the driving elements. 

The velocities and accelerations of the system elements are evaluated using the velocity 
and acceleration constraint equations. Thus, the first time derivative with respect to time of 
equation (6) provides the velocity constraint equations, 

 υΦqΦq ≡−= t  (7)  

where qΦ  is the Jacobian matrix of the constraint equations, that is, the matrix of the 
partial derivates, ∂Φ /∂q, q  is the vector of generalized velocities and υ  is the right hand 
side of velocity equations, which contains the partial derivates of Φ  with respect to time, 
∂Φ /∂t. It should be noticed that only rheonomic constraints, associated with driver 
equations, contribute with non-zero entries to the vector υ . Further, it is assumed that this 
vector does not present any dependency on the vector of coordinates. 

A second differentiation of equation (6) with respect to time leads to the acceleration 
constraint equations, obtained as, 

 γΦqΦqqΦqΦ qqqq ≡−−−= ttt2)(  (8)  

where q  is the acceleration vector and γ  is the right hand side of acceleration equations, 
i.e., the vector of quadratic velocity terms, which contains the terms that are exclusively 
function of velocity, position and time. In the case of holonomic scleronomic constraints, 
that is, Φ  is not explicitly dependent on the time, the term tΦ  in equation (7) and the tqΦ  
and ttΦ  terms in equation (8) vanish. 

The constraint equations represented by equation (6) are, in general, non-linear in terms of 
q and are usually solved by employing the Newton-Raphson method. Equations (7) and (8) 
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are linear in terms of q  and q , respectively, and are solved by any solver of systems of 
linear equations. 

The kinematic analysis of a multibody system can be carried out by solving the set of 
equations (6), (7) and (8). The necessary steps to perform this analysis are summarized as 
sketched in figure below, and described as, 

i) Specify the initial conditions for positions 0q  and initialize the time counter t0. 

ii) Evaluate the position constraint equations (6) and solve them for positions, q. 

iii) Evaluate the velocity constraint equations (7) and solve them for velocities, q . 

iv) Evaluate the acceleration constraint equations (8) and solve them for 

accelerations, q . 

v) Increment the time. If the time is smaller than final time, go to step ii), otherwise 

stop the kinematic analysis. 

START

EvaluateSpecify

Is t>tend?

STOP

ttt Δ+=

Yes

No

0

0

qq =
=

t

tt 0qΦ =)t,(

and solve for q

υqΦq =

Evaluate

and solve for q

Evaluate

and solve for q

γqΦq =

 

Flowchart of computational procedure for kinematic analysis of a MBS. 
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4. AVAILABLE ELEMENT TYPES 

The available element types in the KABIOS are the following 

 Rigid bodies 

 Kinematic joints 

  Revolute  

  Translational 

 Ground constraints 

 Simple constraints 

 Driving constraints 

 Guide constraints 
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5. INPUT FILE 

A multibody system model must be provided to KABIOS as an input file. The input file is 
the file that contains the model description, and must be a text file. The elements of a 
multibody model are described in data lines.  

A list of all the prompts given by the program KABIOS is presented below. The prompts 
are labeled for easy reference, from (a) to through (i). The prompts given are as follows: 

LABEL PROMPT 

(a) ENTER NB, NR, NT, NG, NS, ND, NP,NGUI,NDATA 
 

(b) FOR BODY k ENTER INITIAL EST. ON X, Y, PHI 
 

(c) FOR REVOLUTE JOINT NO. k ENTER BODY NOS. I AND J 
         XI-P-I, ETA-P-I, XI-P-J, ETA-P-J 
 

(d) FOR TRAN. JOINTS NO. k ENTER BODY NOS. I AND J 
         XI-P-I, ETA-P-I, XI-Q-I, ETA-Q-I, XI-P-J, ETA-P-J 
 

(e) ENTER BODY NO. FOR NO. k GROUND BODY 
 

(f) FOR SIMPLE CONSTRAINT NO. k ENTER BODY NO. 
         AND 1, 2, OR 3 FOR X, Y, OR PHI CONSTRAINT DIRECTION 
 

(g) FOR DRIVER NO. k ENTER BODY NO. I  
         1, 2, OR 3 FOR X, Y, OR PHI 
         INITIAL POSITION, VELOCITY, AND ACCELERATION 
 

(h) POINT OF INTEREST NO. k ENTER BODY NO. 
         XI-P-I, ETA-P-I COORDINATES 
 

(i) FOR GUIDE NO. k ENTER BODY NO. I  
         1, 2, OR 3 FOR X, Y, OR PHI 
         

(j) ENTER STARTING TIME, FINAL TIME, AND TIME INCREMENT 
 

Number of Elements 

The first set of data the program requests is  

 ENTER NB, NR, NT, NG, NS, ND, NP, NGUI, NDATA 

These data are defined as follows: 

NB Number of bodies in the system, including ground 

NR Number of revolute joints in the system 

NT Number of translational joints in the system 

NG Number of bodies that are attached to (or considered as) ground 

NS Number of simple constraints in the system 
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ND Number of driving constraints (driving links) 

NP Number of points of interest 

NGUI Number of guide constraints 

NDATA Number of input data, associated to guide constraints, used in the cubic 
spline interpolation 

The program computes the number of coordinates N and the total number of constraint 
equations M from the above information. N is equal to 3*NB, and M is equal 
to2*(NR+NT)+3*NG+NS+ND+NGUI. N must be equal to M. If M is greater than N, then 
an error message is given. Otherwise, the program continues. 

The number of each element tells the program how many data lines should exist. A data 
line describes the characteristics of each element. The information on a data line can be 
separated by a comma or by one or several spaces. 

Rigid Bodies 

The rigid bodies data line must be provide the initial conditions on the positions. The initial 
conditions on the coordinates do not need to be correct. 

The data lines for rigid bodies are repeated NB times, and are as follows: 

i X Y PHI   

where, 

i Body number 

X X-coordinate of the body 

Y Y-coordinate of the body 

PHI φ- coordinate of the body 

Revolute Joints 

Refer to section 4.2.1 of the textbook, "Computer-Aided Analysis of Mechanical Systems,” 
by Nikravesh 1988, for detailed description of this joint. 

The data lines for revolute joints are repeated NR times, and are as follows: 

i j XI-P-I ETA-P-I XI-P-J ETA-P-J 

where, 

i Index number of body i 

j Index number of body j 

XI-P-I ξ-coordinate of point P on body i 

ETA-P-I η-coordinate of point P on body i 
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XI-P-J ξ-coordinate of point P on body j 

ETA-P-J η-coordinate of point P on body j 

Translational Joints 

Refer to section 4.2.1 of the textbook, "Computer-Aided Analysis of Mechanical Systems,” 
by Nikravesh 1988, for detailed description of this joint. 

The data lines for translational joints are repeated NT times, and are as follows: 

i j XI-P-I ETA-P-I XI-Q-I ETA-Q-I XI-P-J ETA-P-J 

where, 

i Index number of body i 

j Index number of body j 

XI-P-I ξ-coordinate of point P on body i 

ETA-P-I η-coordinate of point P on body i 

XI-Q-I ξ-coordinate of point Q on body i 

ETA-Q-I η-coordinate of point Q on body i 

XI-P-J ξ-coordinate of point P on body j 

ETA-P-J η-coordinate of point P on body j 

Ground Constraints 

Refer to section 4.2.7 of the textbook, "Computer-Aided Analysis of Mechanical Systems,” 
by Nikravesh 1988, for detailed description of this kinematic constraint. 

The data lines for ground constraints are repeated NG times, and are as follows: 

i        

where, 

i Index number of body i constrained to the ground 

Simple Constraints 

Refer to section 4.2.7 of the textbook, "Computer-Aided Analysis of Mechanical Systems,” 
by Nikravesh, for detailed description of this kinematic constraint. 

The data lines for simple constraints are repeated NS times, and are as follows: 

i k       
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where, 

i Index number of body i 

k Index of the coordinate to be constrained: 

 k=1:  constrains X-coordinate (Eq. 4.31) 

 k=2:  constrains Y-coordinate (Eq. 4.32) 

 k=3:  constrains φ-coordinate (Eq. 4.33) 

Driving Constraints 

Refer to section 4.2.8 of the textbook, "Computer-Aided Analysis of Mechanical Systems,” 
by Nikravesh, for detailed description of this kinematic constraint.  

In most problems there is only one driver. KABIOS can provide a driver expression on one 
of the three coordinates of a body: 

1 2
2
10

i
0
ii attvxx ++=  

2 2
2
10

i
0
ii attvyy ++=  

3 2
2
10

i
0
ii tt α+ω+φ=φ  

The data lines for diving constraints are repeated ND times, and are as follows: 

i k [X, Y,or PHI] [XD, YD, or PHID][XDD, YDD, or PHIDD] 

where, 

i Index number of body i 

k Index of the coordinate to be constrained: 

 k=1:  constrains X-coordinate 

 k=2:  constrains Y-coordinate 

 k=3:  constrains φ-coordinate) 

[X, Y,or PHI] Initial linear/angular position 

[XD, YD, or PHID] Initial linear/angular velocity 

[XDD, YDD, or PHIDD] Initial linear/angular acceleration 

Points of Interest 

This is not a typical data line like a joint.  In this data line the program is instructed to 
output the coordinates, velocities, and accelerations of one or more points of interest 
attached to one or more rigid bodies. It should be noted that KABIOS automatically 
outputs the coordinates, velocities, and accelerations of the origins of the bodies.  

The data lines for points of interest are repeated NP times, and are as follows: 
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i XI-P-I ETA-P-I      

where, 

i Index number of body i 

XI-P-I ξ-coordinate of point P on body i 

ETA-P-I η-coordinate of point P on body i 

Guide Constraints 

In General the number of guide constraints must be equal to number of bodies plus 2 
(NGUI=NB+2). This means that in pure biomechanical systems, the CM(x,y) need to be 
constrained only for the main body, and φ must be constrained for all bodies. 

The data lines for diving constraints are repeated NGUI times, and are as follows: 

i k  

where, 

i Index number of body i 

k Index of the coordinate to be constrained: 

 k=1:  constrains X-coordinate 

 k=2:  constrains Y-coordinate 

 k=3:  constrains φ-coordinate 

 

KABIOS provide a guide expression on one of the three coordinates of a body: 

1 ( )ttx x
ii − =0 

2 ( )tty y
ii − =0 

3 ( )ttii
φφ − =0 

where ( )tti  is introduced as a set of points as (NGUI+1 columns, NDATA rows),  

Ti Xi Yi PHIi … … … 

T0 … … … … … … 

… … … … … … … 

TE … … … … … … 
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Time Parameters 

It is important to select the time step adequately. A very small time step yields a more 
accurate result and, of course, it requires more computation time. A large time step is 
computationally more efficient but it may cause the numerical problems. The selection of 
the time step must be based on the highest frequency of the system response. Therefore, 
time step selection is not an easy task. 

In rotating bodies, such as the slider crank mechanism, a reasonable choose for time step is 
a value that allows the crank not rotate more than 10 degrees in one time step. 

In KABIOS the time parameters for kinematic analysis of a multibody system is given as 
follows: 

T0 TE DT      

where, 

T0 Starting time 

TE Final time 

DT Time increment 
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6. OUTPUT FILE 

The output results are written on the screen or on a file specified by the user. The results 
are reported with specified format. 

KABIOS reports the values of coordinates, velocities, and accelerations for all bodies in 
the system at the end of each time step. In addition, the global coordinates, velocities, and 
accelerations of the special points of interest are computed and reported. 
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7. EXAMPLE APPLICATION: FOUR-BAR LINKAGE 

A four-bar mechanism is considered for kinematic analysis (Nikravesh, 1988, pp.135-137). 
Figure below illustrates schematically the configuration of the four-bar linkage, which 
consists of four bodies, including ground, and four revolute joints.  

It should be noticed that the kinematic constraints considered here are assumed to be 
holonomic and time invariant. 

The body numbers and their corresponding coordinate systems are shown in the figure 
below.  

Point P on body 3 is considered as point of interest. 
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Kinematic configuration of the four bar linkage. 

The initial estimates for the coordinates are as follows: 

º0.608.15.3
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The local coordinates for the revolute joints are: 

0.05.20.00.2
0.00.20.00.2
0.00.20.00.1
0.00.10.00.0

1144

4433

3322
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===−=
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AAAA

ηξηξ
ηξηξ
ηξηξ
ηξηξ

 

Body 2 is the driver link, and its corresponding driving variable is 2φ , with 047.10
2 =φ  rad 

(60.0º) and a constant angular velocity of ω=2πrad/s.  
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For one complete revolution of the crank, one second of simulation time is required. A 
time increment of 0.025s results in increments of 9º in 2φ . 

The point of interest (point P) is located on body 3. The local coordinates of this point are: 

5.15.0 33 == PP ηξ  

In short, the KABIOS input file that describes the four-bar model is as follows: 

    4  4  0  1  0  1  1  O  O                                     (a) 
    0.0000    0.0000    0.0000                                    (b) 
    0.5000    0.8000    1.0470                                    (b) 
    2.6000    2.6000    0.5000                                    (b) 
    3.5000    1.8000    1.0000                                    (b) 
    1  2    0.0000    0.0000   -1.0000    0.0000                  (c) 
    2  3    1.0000    0.0000   -2.0000    0.0000                  (c) 
    3  4    2.0000    0.0000    2.0000    0.0000                  (c) 
    4  1   -2.0000    0.0000    2.5000    0.0000                  (c) 
    1                                                             (e) 
    2  3    1.0472    6.2832    0.0000                            (g) 
    3    0.5000    1.5000                                         (h) 
    0.0000    1.0000    0.0250                                    (i) 

 

The output results for the two first time steps are presented below. 

 

TIME =    0.0000 
---------------- 
BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD     PHIDD 
  1   0.000   0.000   0.000   0.000   0.000   0.000    0.000    0.000    0.000 
  2   0.500   0.866   1.047  -5.441   3.142   6.283  -19.739  -34.190    0.000 
  3   2.824   2.553   0.423 -11.085   6.732   0.246  -52.441  -39.898   15.646 
  4   3.574   1.687   1.004  -5.644   3.590   3.344  -32.702   -5.709   12.264 
POINTS OF INTEREST 
NO.     X       Y      XD      YD      XDD      YDD 
  1   2.663   4.126 -11.472   6.692  -77.042  -42.500 
 
TIME =    0.0250 
---------------- 
BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD     PHIDD 
  1   0.000   0.000   0.000   0.000   0.000   0.000    0.000    0.000    0.000 
  2   0.358   0.934   1.204  -5.866   2.252   6.283  -14.148  -36.856    0.000 
  3   2.531   2.708   0.434 -12.220   5.558   0.581  -38.613  -53.046   11.545 
  4   3.423   1.774   1.091  -6.354   3.306   3.581  -24.465  -16.189    7.116 
POINTS OF INTEREST 
NO.     X       Y      XD      YD      XDD      YDD 
  1   2.355   4.279 -13.133   5.455  -56.693  -55.617 

 

It can be observed that at t=0, the KABIOS program corrects the initial estimates on the 
coordinates. The values of 2φ  is kept constant according to the value given with the 
driving constraint.  

Also, the coordinates of body 1 remain unchanged, since body 1 is the ground. At each 
time step, the body numbers and the corresponding coordinates, velocities and 
accelerations of their points of interest are reported.  
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Figure below shows how the Newton-Raphson method works in order to keep the 
constraint violations under the value defined by FEPS variable. FEPS is the variable in the 
KABIOS program that the maximum error for the constraint violation. 

1st iteration 2nd iteration

3rd iteration 4th iteration  

The chart below shows the variation of number of iteration with the FEPS. NRMAX is the 
KABIOS variable that defines the maximum number of iterations allowed for the Newton-
Raphson algorithm at each time step. NRMAX is specified as 20. 
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Figure below shows the path taken by point P for one revolution of the crank. 

 

Path covered by point of interest P. 
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8. EXAMPLE APPLICATION: UPPER LEG (THIGH) GUIDANCE 

A simple body that is a representation of the Upper Right Leg is considered for kinematic 
analysis. The used data is from a publication report by Winter(2005). The output of 
KABIOS is compared with Winter’s results. Figure below illustrates schematically the 
configuration of the body, within the representation of a complete biomechanical model to 
perform gait analysis.  

 
Kinematic configuration of the Upper Leg (Thigh). 

 

The initial estimates for the coordinates are as follows: 

.4300.01 =x 6520.01 =y 4434.11 =φ  

For one complete gait cycle, 0.972 seconds of simulation time is required. A time 
increment of 0.0145s is used, which represents the double of the input frequency data. 

In short, the KABIOS input file that describes the four-bar model is as follows: 

1  0  0  0  0  0  0  3  35                                 (a)    
0.4300    0.6520    1.4434                                 (b)    
1  1              (i)   
1  2           (i)  
1  3           (i)                                 
0.0000   0.430123 0.652077 1.443387       
0.0290   0.489423 0.652808 1.546362       
0.0570   0.545594 0.659141 1.659808       
0.0860   0.598219 0.670233 1.769764       
0.1140   0.648436 0.683091 1.865757       
0.1430   0.696805 0.694952 1.940806       
0.1720   0.743154 0.703639 1.989675       
0.2000   0.787385 0.707748 2.017601       
0.2290   0.829305 0.706757 2.022837       
0.2570   0.869559 0.700867 2.010619       
0.2860   0.909368 0.691555 1.984439       
0.3150   0.950274 0.681953 1.956514       
0.3430   0.993673 0.674714 1.933825       
0.3720   1.039768 0.670524 1.919862       
0.4000   1.086796 0.669464 1.907645       
0.4290   1.132480 0.672231 1.895428       
0.4580   1.175514 0.678265 1.888446       
0.4860   1.214432 0.684909 1.877974       

X

Y  

q(t) 
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0.5150   1.248995 0.689604 1.848304       
0.5430   1.279970 0.692636 1.795944       
0.5720   1.307300 0.694514 1.733112       
0.6010   1.331829 0.695975 1.673771       
0.6290   1.355112 0.696672 1.619666       
0.6580   1.378287 0.694929 1.570796       
0.6860   1.401978 0.691245 1.525418       
0.7150   1.427097 0.686995 1.476549       
0.7440   1.453355 0.683180 1.425934       
0.7720   1.480774 0.679986 1.375319       
0.8010   1.510731 0.677247 1.331686       
0.8290   1.544018 0.674333 1.300270       
0.8580   1.582550 0.670896 1.281072       
0.8870   1.628757 0.666206 1.275836       
0.9150   1.683475 0.660464 1.293289       
0.9440   1.743471 0.654759 1.333432       
0.9720   1.803705 0.650697 1.399754      
0.0000   0.9720   0.0145                                  (j)   
       
        
    

The output results for the two first time steps are presented below. 
 
TIME =    0.0000 
---------------- 
BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD     PHIDD 
  1   0.430   0.652   1.443   2.055  -0.020   3.400    0.000    0.000    0.000 
 
TIME =    0.0145 
---------------- 
BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD     PHIDD 
  1   0.460   0.652   1.493   2.048   0.014   3.513   -0.987    4.665   15.627 
 
TIME =    0.0290 
---------------- 
BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD     PHIDD 
  1   0.490   0.653   1.546   2.026   0.115   3.853   -1.973    9.330   31.255 

… 

TIME =    0.9570 
---------------- 
BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD     PHIDD 
  1   1.771   0.653   1.362   2.148  -0.143   2.399    1.205    1.425   25.075 
 
TIME =    0.9715 
---------------- 
BODY     X       Y     PHI      XD      YD    PHID      XDD      YDD     PHIDD 

  1   1.802   0.651   1.398   2.157  -0.133   2.587    0.040    0.048    0.836 

At each time step, the body numbers and the corresponding coordinates, velocities and 
accelerations of their points of interest are reported.  

The three figures below illustrate respectively, the variation of position, velocity and 
acceleration for the Cartesian Coordinate Y along the time analysis. 
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9. FLOWCHART OF THE KABIOS PROGRAM 

 

 
 
 

Flowchart for the KABIOS FORTRAN code. 

INCLUDE ‘KAP-ARRAYS’ 
CALL KAP_UNITS 
CALL GENERAL_INFO 
CALL SPECIFIC_INFO 
CALL TIME_PARAMETERS 
NRMAX=20 
FEPS=0.001 
EPSLU=0.001 
CALL KINEM 

IS T<TE 
or 

DT<>0? 

START 

STOP 

ISTEP=0 
T=T0 
CALL TRIG 

TIME = …………. 
BODY NO.   X,   Y,  PHI, … 
      1           0.0  0.0  0.0 
      2           1.2  2.5  0.6 

JACOB=1 
IFNCT=1 
CALL NUTON2 
          DO I=1 TO NRMAX 
                    CALL FUNCT 
                              CALL RVLT 
                              CALL TRAN 
                              CALL GRND 
                              CALL SMPL 
                              CALL DRVR 
                              CALL GUID 
                    CALL LINEAR 
                              CALL LU 
                    ICONVR=0 
                    DO J=1 TO N 
                              IF ABS(F(J))>FEPS  ICONVR=1 
                              QAUX(J)=QAUX(J)-F(J) 
                    END DO  
                   CALL TRIG 
          END DO 
          IF ICONVR=1  ‘CONVERGENCE FAILED’ 
IFNCT=2 
CALL FUNCT 
          CALL RVLT 
          CALL TRAN 
          CALL GRND 
          CALL SMPL 
          CALL DRVR 
          CALL GUID 
CALL LINEAR 
          CALL LU 
CALL TRANSF 
JACOB=0 
IFNCT=3 
CALL FUNCT 
          CALL RVLT 
          CALL TRAN 
          CALL GRND 
          CALL SMPL 
          CALL DRVR 
          CALL GUID 
CALL LINEAR 
          CALL LU 
CALL TRANSF 
 
CALL REPORT 

ISTEP=ISTEP+1 
T=T0+DT*FLOAT(ISTEP) 

NO 

YES 
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10. ARRAYS USED IN THE KABIOS PROGRAM 

)3(21

21

21

...

...

...

NBNB

NB

NB

yyy
xxx

Q

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

φφφ
     

)3(1

1

1

...

...

...

NB

y
x

QD

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

φ
     

)3(1

1

1

...

...

...

NB

y
x

QDD

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

φ
 

)4(
...
...
...
...

NR
P
j

P
j

P
i

P
i

RJ

×⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

η
ξ
η
ξ

          
)2(...

...

NRj
i

IRJ
×

⎥
⎦

⎤
⎢
⎣

⎡
=  

)7(
00 ...

...

...

...

...

...

...

NTji

P
j

P
j

i

i

P
i

P
i

RT

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

φφ
η
ξ
β
α
η
ξ

          
)2(...

...

NTj
i

IRT
×

⎥
⎦

⎤
⎢
⎣

⎡
=  

[ ] )3(... NGiii yxGR ×= φ           
)2(...'1'

...

NG

i
IGR

×
⎥
⎦

⎤
⎢
⎣

⎡
=  

[ ] )(............ NSSM =           
)2(...

...

NS

ISM
×

⎥
⎦

⎤
⎢
⎣

⎡
=  

)3(
...
...
...

NDi

i

i

DR

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

α
ω
φ

          
)2(...'1'

...

ND

i
IDR

×
⎥
⎦

⎤
⎢
⎣

⎡
=  

)1(...............
...............
...............
...

+×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NGUINDATA

iiii yxt

GUI

φ

)2(...'1'
...

NGUI

i
IGUI

×
⎥
⎦

⎤
⎢
⎣

⎡
=  

)2(
...
...

NP
P
i

P
iPI

×

⎥
⎦

⎤
⎢
⎣

⎡
=
η
ξ

          [ ] )(... NPiIPI =  

)2(1

1

...cos

...sin

NB

RB
×

⎥
⎦

⎤
⎢
⎣

⎡
=

φ
φ

 


