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Abstract

For a general Cohen-Grossberg neural network model with potentially unbounded time-varying
coefficients and infinite distributed delays, we give sufficient conditions for its global asymptotic
stability. The model studied is general enough to include, as subclass, the most of famous
neural network models such as Cohen-Grossberg, Hopfield, and bidirectional associative memory.
Contrary to usual in the literature, in the proofs we do not use Lyapunov functionals. As
illustrated, the results are applied to several concrete models studied in the literature and a
comparison of results shows that our results give new global stability criteria for several neural
network models and improve some earlier publications.

Keywords: Cohen-Grossberg neural networks, unbounded time-varying coefficients, unbounded dis-
tributed delays, global asymptotic stability.
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1 Introduction

The Cohen-Grossberg neural network models, first proposed and studied by Cohen and Grossberg
[6] in 1983, have been the subject of an active research due to their extensive applications in various
engineering and scientific areas such as neural-biology, population biology, and computing technology.
The neural network model in [6] can be described by the following system of ordinary differential
equations

x′i(t) = −ρi(xi(t))

bi(xi(t))− n∑
j=1

cijfj(xj(t)) + Ii

 , t ≥ 0, i = 1, . . . , n, (1.1)

which includes, as a special case, the Hopfield neural network model

x′i(t) = −bi(xi(t)) +

n∑
j=1

cijfj(xj(t)) + Ii, t ≥ 0, i = 1, . . . , n, (1.2)

studied by Hopfield [12] in 1984. In 1988, Kosko [15] presented a kind of neural network models,
known as bidirectional associative memory (BAM), described by

x′i(t) = −xi(t) +

n∑
j=1

aijfj(yj(t)) + Ii

y′i(t) = −yi(t) +

n∑
j=1

bijgj(xj(t)) + Ji

t ≥ 0, i = 1, . . . , n. (1.3)
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The following generalization of the Cohen-Grossberg model (1.1),

x′i(t) = −ρi(xi(t))

bi(xi(t)) +

n∑
j=1

fij(xj(t))

 , t ≥ 0, i = 1, . . . , n, (1.4)

introduced in [19], includes most of neural network models as special cases, namely (1.1), (1.2), and
(1.3).

In order to be more realistic, differential equations describing neural networks should incorporate
time delays to take into account the synaptic transmission time among neurons, or, in artificial neural
networks, the communication time among amplifiers. In 1989, Marcus and Westervelt [18] introduced
for the first time a discrete delay in the Hopfield model (1.2), and they observed that the delay can
destabilize the system. In fact, the delays can affect the dynamic behavior of neural network models
[1] and, for this reason, stability of delayed neural networks has been investigated extensively ([2], [3],
[7], [8], [13], [14], [16], [19], [20], [23], [25], and the references therein). Another relevant fact to take
into account is that the neuron charging time, the interconnection weights, and the external inputs
often change as time proceeds. Thus, the neural network models with temporal structure of neural
activities should be introduced and investigated (see [5], [23]).

For neural network models with time-varying coefficients, many authors assume the existence of an
equilibrium point and study its global exponential stability (see [17], [21], [26]). Other authors study
the global exponential stability of the models but, in these cases, they assume that the coefficients are
bounded functions (see [4], [23], [24], and the references therein). Studies about global asymptotic
stability of nonautonomous neural network models are few and the authors always assume bounded
time-varying coefficients (see [14], [16], [22], [25]). This paper aims at the global asymptotic stability
of a general nonautonomous Cohen-Grossberg neural network model without assuming the existence
of an equilibrium point or bounded time-varying coefficients.

Moreover, the models studied here have infinite delays and, when we are dealing with functional
differential equations with infinite delays, the choice of an admissible Banach phase space requires
special attention in order to have well-posedness of the initial value problem and standard results on
existence, uniqueness, and continuation of solutions (see [9], [10], [11]). We note that many papers,
dealing with neural networks with unbounded delays, do not provide an explicit phase space, much
less the problem of such a suitable choice, and it is known that the choice of the phase space is not the
same when we are studying the global exponential stability or we are studying the global asymptotic
stability [8].

After the introduction, the present paper is divided into three sections. Section 2 is a preliminary
section, where some notation and definition are introduced and the phase space for the models is pre-
sented. In Section 3, we present the results on global asymptotic stability of a general nonautonomous
Cohen-Grossberg neural network model with infinite delays, which includes most of neural network
models. It is important to note that most studies use a type of Lyapunov functional to obtain results
on global attractivity (see [4], [5], [14], [16], [24], [25]). Instead, here we use the techniques described
in the work of Oliveira [20], rather than a Lyapunov functional approach. In fact, we consider a
Cohen-Grossberg model in general setting for which, assuming the existence of instantaneous nega-
tive feedbacks which dominate the delay effect, we prove that all solutions are defined on R and then
we prove the global asymptotic stability of the model. Finally, in Section 4, we illustrate the results
with well-known neural network examples and we compare our results with the literature, presenting
new stability criteria.

2 Notations and definitions

We denote by BC = BC((−∞, 0];Rn) the space of bounded and continuous functions, φ : (−∞, 0]→
Rn, equipped with the norm ||φ|| = sup

s≤0
|φ(s)|, where | · | is the maximum norm in Rn, i.e. |x| =

max{|xi| : i = 1, . . . , n} for x = (x1, . . . , xn) ∈ Rn. For a ∈ Rn, we also use a to denote the constant
function ϕ(s) = a in BC. A vector c = (c1, . . . , cn) ∈ Rn is said to be positive if ci > 0 for all
i ∈ {1, . . . , n} and in this case we write c > 0.
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For an open set D ⊆ BC and f : [0,+∞)×D → Rn a continuous function, consider the functional
differential equation (FDE) given in general setting by

ẋ(t) = f(t, xt), t ≥ 0, (2.1)

where, as usual, xt denotes the function xt : (−∞, 0]→ Rn defined by xt(s) = x(t+ s) for s ≤ 0.
It is well-known that the Banach space BC is not an admissible phase space for (2.1), in the sense

of [9], thus the standard existence, uniqueness, continuous dependence type results are not available.
Instead of BC, we consider the admissible Banach space

UCg =

{
φ ∈ C((−∞, 0];Rn) : sup

s≤0

|φ(s)|
g(s)

<∞, φ(s)

g(s)
is uniformly continuous on (−∞, 0]

}
,

equipped with the norm ||φ||g = sup
s≤0

|φ(s)|
g(s)

, where g : (−∞, 0]→ [1,∞) is a function satisfying:

(g1) g is a non-increasing continuous function and g(0) = 1;

(g2) lim
u→0−

g(s+ u)

g(s)
= 1 uniformly on (−∞, 0];

(g3) g(s)→ +∞ as s→ −∞.

For example, the function g(s) = e−βs with β > 0 satisfies (g1)-(g3).
As BC ⊆ UCg, then BC is a subspace of UCg, and we denote by BCg the space BC with the

norm || · ||g. When n = 1, we denote the spaces UCg and BC by UC1
g and BC1 respectively.

As UCg is an admissible Banach space, we consider the FDE (2.1) in the phase space UCg, for a
convenient function g, and we assume that f has enough smooth properties to ensure the existence
and uniqueness of solution for the initial value problem (see [10]). The solution of (2.1) with initial
condition xt0 = ϕ, for t0 ≥ 0 and ϕ ∈ UCg, is denoted by x(t, t0, ϕ). In view of our applications to
neural network systems, we restrict our attention to initial bounded conditions, i.e.,

xt0 = ϕ, with ϕ ∈ BC, (2.2)

for some t0 ≥ 0. From [10], if f maps closed bounded subsets of its domain into bounded sets of Rn,
then the solution of (2.1) and (2.2) is extensible to (−∞, a], with a > t0, whenever it is bounded.

Definition 2.1. The system (2.1) is said to be

(i) stable if for any t0 > 0, ε > 0, there is δ > 0 such that, for all ϕ, ϕ̃ ∈ BC,

‖ϕ− ϕ̃‖ < δ ⇒ |x(t, t0, ϕ)− x(t, t0, ϕ̃)| < ε, for all t ≥ t0;

(ii) globally asymptotically stable if it is stable and

lim
t→+∞

(
x(t, t0, ϕ)− x(t, t0, ϕ̃)

)
= 0,

for any t0 ≥ 0 and ϕ, ϕ̃ ∈ BC.

It should be mentioned that the above definition of stability is the usual one in the literature on
neural networks with unbounded delay, but it does not even imply the stability in the phase space
UCg, i.e., relative to the norm ‖ · ‖g.

Finally, a function γ : [a,+∞) → R, a ∈ R, is said to be eventually monotone if there is
t∗ > a such that γ is non-decreasing (or non-increasing) on [t∗,+∞). For a bounded real function
h : U ⊆ R → R, we denote h := sup

s∈U
h(s) and h := inf

s∈U
h(s). An increasing sequence (an)n∈N which

converges to a ∈ R ∪ {+∞} as n→ +∞ is denoted by an ↗ a.
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3 Asymptotic stability

In the phase space UCg, with g : (−∞, 0] → [1,+∞) being a function satisfying (g1)-(g3), consider
the following general nonautonomous Cohen-Grossberg neural network model with distributed delays

x′i(t) = −ρi(xi(t))

bi(t, xi(t)) +

n∑
j=1

fij(t, xj,t)

 , t ≥ 0, i = 1, . . . , n, (3.1)

where ρi : R → (0,+∞), fij : [0,+∞) × UC1
g → R, and bi : [0,+∞) × R → R are continuous

functions. This model is a generalization of a model introduced in [19] and it is particularly relevant
in terms of applications, since it includes different types of neural network models with delays, such
as Hopfield, Cohen-Grossberg, and BAM.

For (3.1) the following hypotheses will be considered:

(A1) for each i ∈ {1, . . . , n}, there exist ρi, ρi > 0 such that

ρ
i
≤ ρi(u) ≤ ρi, ∀u ∈ R;

(A2) for each i ∈ {1, . . . , n}, there exists a function βi : [0,+∞)→ (0,+∞) such that

bi(t, u)− bi(t, v)

u− v
≥ βi(t), ∀t ≥ 0, ∀u, v ∈ R, u 6= v;

(A3) for each i, j ∈ {1, . . . , n}, there exists a function lij : [0,+∞)→ [0,+∞) such that

|fij(t, ϕ)− fij(t, ψ)| ≤ lij(t)‖ϕ− ψ‖g, ∀t ≥ 0, ∀ϕ,ψ ∈ BC1;

(A4) there exists α > 0 such that, for each i ∈ {1, . . . , n},

ρ
i
βi(t)−

n∑
j=1

ρj lij(t) > α, ∀t ≥ 0. (3.2)

We remark that the hypothesis (A2) says that, for each t ≥ 0 and i ∈ {1, . . . , n}, the function
u 7→ bi(t, u) is increasing with a growth rate at least βi(t). For example, (A2) is trivially satisfied if
bi(t, u) = βi(t)u for all t ≥ 0 and u ∈ R.

In the following Lemma, we show that the solutions of (3.1), with bounded initial condition, are
defined on R.

Lemma 3.1. For (3.1) assume (A1)-(A4). Then, each solution x(t) = x(t, t0, ϕ) (with t0 ≥ 0 and
ϕ ∈ BC) of (3.1) is defined on R.

Proof. Let x(t) = (x1(t), . . . , xn(t)) be a noncontinuable solution of (3.1) on (−∞, a), for some t0 ≥ 0
and a ∈ (t0,+∞], such that xt0 = ϕ with ϕ ∈ BC.

Assume that a ∈ (t0,+∞). Then, from the Continuation Theorem (see [10]), ‖x(t)‖ → +∞ as t→
a− and, defining z(t) = (z1(t), . . . , zn(t)) := (ρ−11 |x1(t)|, . . . , ρ−1n |xn(t)|), there exist i ∈ {1, . . . , n}
and a sequence (tk)k∈N such that tk ↗ a, zi(tk)↗ +∞, and

zi(tk) = ‖ztk‖ ≥ ‖ztk‖g > 0 and z′i(tk) ≥ 0, ∀k ∈ N. (3.3)
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From the hypotheses and (3.3) we conclude that, for each k ∈ N,

z′i(tk) = ρ−1i sign(xi(tk))x′i(tk)

= ρ−1i sign(xi(tk))

−ρi(xi(tk))

(
bi(tk, xi(tk)) +

n∑
j=1

fij(tk, xj,tk)

)
= −ρ−1i ρi(xi(tk))sign(xi(tk))

[(
bi(tk, xi(tk))− bi(tk, 0)

)
+

n∑
j=1

(
fij(tk, xj,tk)− fij(tk, 0)

)
+

(
bi(tk, 0) +

n∑
j=1

fij(tk, 0)

)]

≤ −ρi(xi(tk))

βi(tk)ρ−1i |xi(tk)| − ρ−1i
n∑
j=1

lij(tk)‖xj,tk‖g − ρ
−1
i

∣∣∣∣bi(tk, 0) +

n∑
j=1

fij(tk, 0)

∣∣∣∣


≤ −ρi(xi(tk))

βi(tk)zi(tk)− ρ−1i
n∑
j=1

lij(tk)ρj‖zj,tk‖ − ρ
−1
i

∣∣∣∣bi(tk, 0) +
n∑
j=1

fij(tk, 0)

∣∣∣∣


≤ −ρi(xi(tk))

βi(tk)zi(tk)−
( n∑
j=1

ρj
ρi
lij(tk)

)
‖ztk‖ −Mi



= −ρi(xi(tk))

(βi(tk)−
n∑
j=1

ρj
ρi
lij(tk)

)
zi(tk)−Mi

 ≤ −ρi(xi(tk))

(
α

ρ
i

zi(tk)−Mi

)
,

where Mi := max
t∈[t0,a]

ρ−1i

∣∣∣∣bi(t, 0) +

n∑
j=1

fij(t, 0)

∣∣∣∣. As α > 0, ρi(u) ≥ ρ
i
> 0 for all u ∈ R, and

zi(tk) ↗ +∞ as k → +∞, then, for large k, we have z′i(tk) < 0 which is a contradiction. Thus
a = +∞.

For t0 > 0 and ϕ,ψ ∈ BC, consider the solutions x(t) = x(t, t0, ϕ) and y(t) = x(t, t0, ψ) of (3.1).
As x(t) and y(t) are defined on R, we define, for all t ≥ t0, V (t) = V (t, t0, ϕ, ψ) = (V1(t), . . . , Vn(t))
by

Vi(t) := sign(xi(t)− yi(t))
∫ xi(t)

yi(t)

1

ρi(s)
ds, i = 1, . . . , n. (3.4)

Thus, we have V (t) ≥ 0 for all t ≥ t0 and, from (A1), we conclude that lim
t→+∞

V (t) = 0 if and only if

lim
t→+∞

(x(t)− y(t)) = 0.

For each i ∈ {1, . . . , n} and t ≥ t0 such that Vi(t) 6= 0, we have

V ′i (t) =

(
1

ρi(xi(t))
x′i(t)−

1

ρi(yi(t))
y′i(t)

)
sign(xi(t)− yi(t))

=

(
− bi(t, xi(t))−

n∑
j=1

fij(t, xj,t) + bi(t, yi(t)) +

n∑
j=1

fij(t, yj,t)

)
sign(xi(t)− yi(t))

= hi(t, xt, yt)sign(xi(t)− yi(t)), (3.5)
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where hi(t, ϕ, ψ) := −bi(t, ϕi(0))−
n∑
j=1

fij(t, ϕj)+bi(t, ψi(0))+

n∑
j=1

fij(t, ψj) for t ≥ 0 and ϕ,ψ ∈ UCg.

Lemma 3.2. Assume (A1)-(A4).
Then, for each t0 ≥ 0 and ϕ,ψ ∈ BC, we have

|V (t)| = |V (t, t0, ϕ, ψ)| ≤ max
j

{
1

ρ
j

}
‖ϕ− ψ‖, ∀t ≥ t0. (3.6)

for V (t) defined by (3.4).

Proof. Let t0 ≥ 0, ϕ,ψ ∈ BC, x(t) and y(t) be the solutions of (3.1) such that xt0 = ϕ and yt0 = ψ
respectively, and V (t) defined by (3.4).

Suppose that the inequality (3.6) does not hold. As V (t) is a positive continuous vector function

and, for each i ∈ {1, . . . , n}, Vi(t0) ≤ 1
ρ
i

|xi(t0) − yi(t0)| ≤ max
j

{
1

ρ
j

}
‖ϕ − ψ‖, then there is t1 > t0

such that |V (t1)| > max
j

{
1

ρ
j

}
‖ϕ− ψ‖. Defining

T := min

{
t ∈ [t0, t1] : |V (t)| = max

s∈[t0,t1]
|V (s)|

}
and choosing i ∈ {1, . . . , n} such that Vi(T ) = |V (T )|, we have Vi(T ) > 0, V ′i (T ) ≥ 0 and Vi(T ) >
|V (t)| for all t < T .

On the other hand, by hypotheses (A1)-(A4) and (3.5), we have

V ′i (T ) = hi(T, xT , yT )sign(xi(T )− yi(T ))

≤
(
bi(T, yi(T ))− bi(T, xi(T ))

)
sign(xi(T )− yi(T )) +

n∑
j=1

∣∣fij(T, xj,T )− fij(T, yj,T )
∣∣

≤ −βi(T )|xi(T )− yi(T )|+
n∑
j=1

lij(T )‖xj,T − yj,T ‖

≤ −ρ
i
βi(T )Vi(T ) +

n∑
j=1

lij(T ) max

{
‖ϕ− ψ‖, ρj sup

t0−T<s≤0
Vj(T + s)

}

= −ρ
i
βi(T )Vi(T ) +

n∑
j=1

lij(T )ρj max

{
‖ϕ− ψ‖

ρj
, sup
t0−T<s≤0

Vj(T + s)

}

and, since Vi(T ) ≥ maxj

{
‖ϕ−ψ‖
ρ
j

, Vj(t)

}
for all t ∈ [t0, T ], we conclude that

V ′i (T ) ≤

−ρ
i
βi(T ) +

n∑
j=1

ρj lij(T )

Vi(T ) < 0,

which is a contradiction.

Proposition 3.3. Assume (A1)-(A4).
Then the system (3.1) is stable.
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Proof. Let t0 > 0 and ε > 0. Choosing δ = ε

(
max
i
{ρi}max

j

{
1

ρ
j

})−1
> 0, from Lemma 3.2 we

have, for any ϕ,ψ ∈ BC such that ‖ϕ− ψ‖ < δ,

|x(t, t0, ϕ)− x(t, t0, ψ)| = max
i

{
ρi

1

ρi
|xi(t, t0, ϕ)− xi(t, t0, ψ)|

}

≤ max
i

{
ρi

∣∣∣∣∣
∫ xi(t,t0,ϕ)

xi(t,t0,ψ)

1

ρi(s)
ds

∣∣∣∣∣
}

= max
i
{ρiVi(t, t0, ϕ, ψ)}

≤ max
i
{ρi} |V (t, t0, ϕ, ψ)| ≤ max

i
{ρi}max

j

{
1

ρ
j

}
‖ϕ− ψ‖

< ε,

for all t ≥ t0.

Remark 3.1. We note that the Lemmas 3.1 and 3.2, and Proposition 3.3 are also true if we assume

|fij(t, ϕ)− fij(t, ψ)| ≤ lij(t)‖ϕ− ψ‖, ∀t ≥ 0, ∀ϕ,ψ ∈ BC1

instead of (A3).

Now, we state our main result on the global asymptotic stability of system (3.1).

Theorem 3.4. Assume (A1)-(A4). If

lim sup
t→+∞

n∑
j=1

ρj
ρ
i

lij(t)

βi(t)
< 1, (3.7)

then the system (3.1) is globally asymptotically stable.

Proof. From Proposition 3.3, we know that (3.1) is stable. It remains to prove the asymptotic
stability.

Let t0 > 0 and x(t) = x(t, t0, ϕ), y(t) = x(t, t0, ψ) be solutions of (3.1) with ϕ,ψ ∈ BC. Defining
V : [t0,+∞)→ Rn by (3.4), we know that

lim
t→+∞

(
x(t)− y(t)

)
= 0 ⇔ lim

t→+∞
V (t) = 0. (3.8)

From Lemma 3.2, we know that t 7→ V (t) is a bounded function and it is possible to define the limits

ui := lim sup
t→+∞

Vi(t), i = 1, . . . , n,

and
u := max

i
{ui}.

Since V (t) ≥ 0 for all t ≥ t0, then we have u ∈ [0,+∞). From (3.8), it remains to prove that u = 0.
Let i ∈ {1, . . . , n} be such that ui = u. Now we prove that there is a sequence (tk)k∈N such that

tk ↗ +∞, Vi(tk)→ u, and V ′i (tk)→ 0, as k → +∞. (3.9)

Case 1. Assume that Vi(t) is eventually monotone. In this case, lim
t→+∞

Vi(t) = u and, for large t,

Vi(t) is a differentiable, monotone and bounded real function. Hence there is a sequence (tk)k∈N
such that tk ↗ +∞ and V ′i (tk)→ 0.
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Case 2. Assume that Vi(t) is not eventually monotone. In this case there is a sequence (tk)k∈N such
that tk ↗ +∞, V ′i (tk) = 0, and Vi(tk)→ u, as k → +∞ and (3.9) holds.

For the sake of contradiction, assume that u > 0.

Fix ε > 0 and let T = T (ε) > t0 be such that ε < u,
‖ϕ− ψ‖

ρjg(t0 − T )
< u + ε for all j ∈ {1, . . . , n},

and |V (t)| < u + ε for all t ≥ T . Defining V := max
s∈[t0,T ]

|V (s)|, from (g3) we conclude that there is

s0 < 0 such that
V
g(s)

< u+ ε for all s < s0. Thus, for t > T − s0, we have

sup
s∈[t0−t,0]

|V (t+ s)|
g(s)

≤ max

{
sup

s∈[t0−t,T−t]

|V (t+ s)|
g(s)

, sup
s∈[T−t,0]

|V (t+ s)|
g(s)

}

≤ max

{
sup

s∈[t0−t,T−t]

V
g(s)

, sup
s∈[T−t,0]

u+ ε

g(s)

}
≤ u+ ε.

Now, from the hypotheses (A1)-(A3), the definition (3.4), and (3.5), we have, for tk > T − s0,

V ′i (tk) = hi(tk, xtk , ytk)sign(xi(tk)− yi(tk))

≤
(
bi(tk, yi(tk))− bi(tk, xi(tk))

)
sign(xi(tk)− yi(tk)) +

n∑
j=1

∣∣fij(tk, xj,tk)− fij(tk, yj,tk)
∣∣

≤ −βi(tk)|xi(tk)− yi(tk)|+
n∑
j=1

lij(tk)‖xj,tk − yj,tk‖g

≤ −ρ
i
βi(tk)Vi(tk) +

n∑
j=1

ρj lij(tk) max

{
‖ϕ− ψ‖

ρjg(t0 − tk)
, sup
s∈[t0−tk,0]

Vj(tk + s)

g(s)

}

≤ −ρ
i
βi(tk)Vi(tk) +

n∑
j=1

ρj lij(tk)(u+ ε),

which implies that

Vi(tk) ≤ − V ′i (tk)

ρ
i
βi(tk)

+

n∑
j=1

ρj
ρ
i

lij(tk)

βi(tk)
(u+ ε). (3.10)

From (3.9) we have Vi(tk) → u and V ′i (tk) → 0 as k → +∞ and, letting ε → 0 and k → +∞, from
(3.10) and (A4), we get

u ≤

lim sup
t→+∞

n∑
j=1

ρj
ρ
i

lij(t)

βi(t)

u < u,

which is a contradiction.

The next result shows that the same conclusion can be obtained if we assume

(A4’) there exist α > 0 and d = (d1, . . . , dn) > 0 such that, for each i ∈ {1, . . . , n},

ρ
i
diβi(t)−

n∑
j=1

ρjdj lij(t) > α, ∀t ≥ 0 and lim sup
t→+∞

n∑
j=1

ρj
ρ
i

dj lij(t)

diβi(t)
< 1, (3.11)
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instead of (A4) and (3.7) respectively.

Corollary 3.5. Assume (A1)-(A3) and (A4’). Then the system (3.1) is globally asymptotically
stable.

Proof. The change of variables yi(t) = d−1i xi(t) transforms (3.1) into

y′i(t) = −ρi(diyi(t))d−1i

bi(t, diyi(t)) +

n∑
j=1

fij(t, djyj,t)

 , t ≥ 0, i = 1, . . . , n. (3.12)

Defining, for each i, j ∈ {1, . . . , n}, ρ̃i(u) := ρi(diu), b̃i(t, u) := d−1i bi(t, diu), and f̃ij(t, ϕ) :=
d−1i fij(t, djϕ), for all t ≥ 0, u ∈ R, ϕ ∈ BC1, the system (3.12) has the form

y′i(t) = −ρ̃i(yi(t))

[
b̃i(t, yi(t)) +

n∑
i=1

f̃ij(t, yj,t)

]
, t ≥ 0, i = 1, . . . , n, (3.13)

where ρ̃i satisfies (A1), with ρ̃
i

= ρ
i

and ρ̃i = ρi, and b̃i satisfies (A2) with β̃i(t) = βi(t). Moreover,

from (A3), for ϕ,ψ ∈ BC1 we have

|f̃ij(t, ϕ)− f̃ij(t, ψ)| = d−1i |fij(t, djϕ)− fij(t, djψ)| ≤ dj
di
lij(t)||ϕ− ψ||g,

which implies that f̃ij satisfies (A3) with the function l̃ij(t) := d−1i dj lij(t), for all i, j ∈ {1, . . . , n}.
Thus, from (A4’) conditions (A4) and (3.7) hold and the conclusion follows from Theorem 3.4.

Finally, it is easy to see that, if lij(t) are bounded functions then the hypothesis (A4) implies the
condition (3.7) and the following result holds:

Corollary 3.6. Assume (A1)-(A4) where lij(t) are bounded functions. Then the system (3.1) is
globally asymptotically stable.

Now, in the phase space UCg, we consider the following nonautonomous Cohen-Grossberg neural
network model with both time-varying delays and distributed delays

x′i(t) = −ρi(xi(t))

bi(t, xi(t)) +

n∑
j=1

hij
(
t, xj(t− τij1(t)), . . . , xj(t− τijP (t))

)
+

n∑
j=1

fij(t, xj,t)

 , t ≥ 0,(3.14)

i = 1, . . . , n, P ∈ N, where the functions ρi, bi, and fij are as in the model (3.1) and hij : [0,+∞)×
RP → R, τijp : [0,+∞) → [0,+∞) are continuous functions such that, for each i, j ∈ {1, . . . , n},
p ∈ {1, . . . , P},

t− τijp(t)→ +∞ as t→ +∞, (3.15)

|hij(t, u)− hij(t, v)| ≤ Hij(t)|u− v|, ∀t ≥ 0, ∀u, v ∈ RP , (3.16)

for some function Hij : [0,+∞)→ [0,+∞).
Using the same techniques presented in the proof of Theorem 3.4 we obtain the following stability

result.

Theorem 3.7. Assume (A1), (A2), (A3), (3.15), and (3.16).
If there exist α > 0 and d = (d1, . . . , dn) > 0 such that, for each i ∈ {1, . . . , n},

ρ
i
diβi(t)−

n∑
j=1

ρjdj
(
Hij(t) + lij(t)

)
> α, ∀t ≥ 0, (3.17)

lim sup
t→+∞

n∑
j=1

ρj
ρ
i

dj
(
Hij(t) + lij(t)

)
diβi(t)

< 1, (3.18)

then the system (3.14) is globally asymptotically stable.
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Proof. As we saw in the proof of Corollary 3.5, we do not lose generality if we assume (3.17) and
(3.18) with dj = 1 for all j ∈ {1, . . . , n}.

Let t0 > 0 and x(t) = x(t, t0, ϕ), y(t) = x(t, t0, ψ) be solutions of (3.14) with ϕ,ψ ∈ BC. From
Remark 3.1, we conclude that x(t) and y(t) are defined on R and the function t 7→ V (t), defined
by (3.4), is bounded. Following the same ideas in the proof of Theorem 3.4, we conclude that, for

u = max
j

(
lim sup
t→+∞

Vj(t)

)
, there is a sequence (tk)k satisfying (3.9) and, for ε > 0, T = T (ε) > 0 in

the same conditions, we have, for tk > T − s0 (see the notation in the proof of Theorem 3.4),

V ′i (tk) ≤
(
bi(tk, yi(tk))− bi(tk, xi(tk))

)
sign(xi(tk)− yi(tk)) +

n∑
j=1

∣∣fij(tk, xj,tk)− fij(tk, yj,tk)
∣∣

+

n∑
j=1

∣∣∣∣hij(tk, xj(tk − τij1(tk)), . . . , xj(tk − τijP (tk)))− hij(tk, yj(tk − τij1(tk)), . . . , yj(tk − τijP (tk)))

∣∣∣∣
≤ −ρ

i
βi(tk)Vi(tk) +

n∑
j=1

ρj lij(tk)(u+ ε) +

n∑
j=1

Hij(tk) max
p

∣∣xj(tk − τijp(tk))− yj(tk − τijp(tk))
∣∣.

As lim
t→+∞

(
t − τijp(t)

)
= +∞ and, for the sake of contradiction, we assume that u > 0, then there

is S > t0 such that, for tk > S, we have tk − τijp(tk) > t0 and Vj(tk − τijp(tk)) < u + ε for all
i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}. Thus, for tk > max{T − s0, S}, we have

V ′i (tk) ≤ −ρ
i
βi(tk)Vi(tk) +

n∑
j=1

ρj lij(tk)(u+ ε) +

n∑
j=1

Hij(tk)ρj max
p

Vj(tk − τijp(tk))

≤ −ρ
i
βi(tk)Vi(tk) +

n∑
j=1

ρj
(
Hij(tk) + lij(tk)

)
(u+ ε),

which implies that

Vi(tk) ≤ − V ′i (tk)

ρ
i
βi(tk)

+

n∑
j=1

ρj
ρ
i

Hij(tk) + lij(tk)

βi(tk)
(u+ ε). (3.19)

Since Vi(tk) → u and V ′i (tk) → 0 as k → +∞, then letting ε → 0 and k → +∞, from (3.19) and
(3.18), we get

u ≤

lim sup
t→+∞

n∑
j=1

ρj
ρ
i

Hij(t) + lij(t)

βi(t)

u < u,

which is a contradiction.

4 Applications

Here, we apply the previous results to the following nonautonomous Cohen-Grossberg neural network
model with both time-varying delays and distributed delays:

x′i(t) = −ρi(xi(t))
[
bi(t, xi(t)) +

n∑
j=1

P∑
p=1

(
aijp(t)hijp(xj(t− τijp(t)))

+cijp(t)fijp

(∫ 0

−∞
gijp(xj(t+ s))dηijp(s)

))
+ Ii(t)

]
, t ≥ 0, i = 1, . . . , n,(4.1)
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where ρi : R → (0,+∞), bi : [0,+∞) × R → R, aijp, cijp, Ii : [0,+∞) → R, hijp, fijp, gijp : R → R,
and τijp : [0,+∞) → [0,+∞) are continuous functions, with t − τijp(t) → +∞ as t → +∞ and
ηijp : (−∞, 0] → R are non-decreasing, bounded, and normalized, i.e. ηijp(0) − ηijp(−∞) = 1, for
all i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}. For (4.1), in the sequel we further assume that the functions ρi
satisfy (A1), bi satisfy (A2), and hijp, fijp, gijp are Lipschitzian with Lipschitz constants ξijp, µijp,
σijp respectively.

Model (4.1) is a generalization of a model introduced in [20] and it is particularly relevant in
terms of applications, since it includes different types of neural network models as subclasses, as we
shall illustrate with several examples.

Before to give a global stability criterion for system (4.1), we need an auxiliary lemma, established
in [8], to define a function g satisfying (g1)-(g3) required to build the convenient phase space of (4.1).
For convenience of the reader, we put the proof here.

Lemma 4.1. [8] Consider ηi : (−∞, 0] → R, i = 1, . . . ,m non-decreasing and bounded functions,
and α > 0 such that ∫ 0

−∞
dηi(s) < α, i = 1, . . . ,m.

Then, there is a continuous function g : (−∞, 0]→ [1,+∞) satisfying (g1)-(g3), and such that∫ 0

−∞
g(s)dηi(s) < α, i = 1, . . . ,m.

Proof. First, define

αi := ηi(0)− ηi(−∞) =

∫ 0

−∞
dηi(s) < α, i = 1, . . . ,m. (4.2)

For each n ∈ N and i ∈ {1, . . . ,m}, let εi,n = (α − αi)/[2n+1(n + 1)]. Since ηi is non-decreasing
and bounded, there is a sequence (rn)n∈N of positive real numbers (independent of i) such that
rn+1 ≥ rn + 1 and ∫ −rn

−∞
dηi(s) < εi,n, i = 1, . . . ,m, n ∈ N.

Now, define g : (−∞, 0]→ [1,+∞) as follows:

(i) g(s) = 1 on [−r1, 0];

(ii) g(−rn) = n, n ∈ N;

(iii) g is continuous and piecewise linear (linear on intervals [−rn+1,−rn]).

From (i) and (4.2), we have ∫ 0

−r1
g(s)dηi(s) <

α+ αi
2

.

Hence, for each i = 1, . . . ,m, we have∫ 0

−∞
g(s)dηi(s) =

∫ 0

−r1
g(s)dηi(s) +

∞∑
n=1

∫ −rn
−rn+1

g(s)dηi(s) <
α+ αi

2
+

∞∑
n=1

g(−rn+1)

∫ −rn
−rn+1

dηi(s)

≤ α+ αi
2

+

∞∑
n=1

(n+ 1)εi,n =
α+ αi

2
+

∞∑
n=1

α− αi
2n+1

= α.
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Theorem 4.2. Consider (4.1) under the hypotheses assumed above.

If (3.17) and (3.18) hold with Hij(t) :=

P∑
p=1

|aijp(t)|ξijp and lij(t) :=

P∑
p=1

|cijp(t)|µijpσijp, then

the system (4.1) is globally asymptotically stable.

Proof. As in the proof of Corollary 3.5, after a change of variable, we may assume that di = 1 for all
i ∈ {1, . . . , n}.

On the one hand, from (3.18), with Hij(t) =

P∑
p=1

|aijp(t)|ξijp and lij(t) =

P∑
p=1

|cijp(t)|µijpσijp, it

is easy to verify that there exists δ1 > 0 such that

lim sup
t→+∞

n∑
j=1

ρj
ρ
i

P∑
p=1

|aijp(t)|ξijp +

P∑
p=1

|cijp(t)|µijpσijp(1 + δ1)

βi(t)
< 1. (4.3)

On the other hand, the condition (3.17), withHij(t) =

P∑
p=1

|aijp(t)|ξijp and lij(t) =

P∑
p=1

|cijp(t)|µijpσijp,

is equivalent to

ρ
i
βi(t)−

n∑
j=1

ρj(Hij(t) + lij(t)) > 0 ∀t ≥ 0 and lim inf
t→+∞

ρ
i
βi(t)−

n∑
j=1

ρj(Hij(t) + lij(t))

 > 0,

from which, together with (3.18), we obtain that there exists δ2 > 0 such that

ρ
i
βi(t)−

n∑
j=1

ρj(Hij(t) + lij(t)(1 + δ2)) > 0∀t ≥ 0 and lim inf
t→+∞

ρ
i
βi(t)−

n∑
j=1

ρj(Hij(t) + lij(t)(1 + δ2))

 > 0.(4.4)

Considering δ := min{δ1, δ2}, from (4.3) and (4.4) we conclude that there is γ > 0 such that, for each
i ∈ {1, . . . , n},

ρ
i
βi(t)−

n∑
j=1

ρj

( P∑
p=1

|aijp(t)|ξijp +

P∑
p=1

|cijp(t)|µijpσijp(1 + δ)

)
> γ, ∀t ≥ 0, (4.5)

and

lim sup
t→+∞

n∑
j=1

ρj
ρ
i

P∑
p=1

|aijp(t)|ξijp +

P∑
p=1

|cijp(t)|µijpσijp(1 + δ)

βi(t)
< 1. (4.6)

Since
∫ 0

−∞ dηijp(s) < 1 + δ for i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}, from Lemma 4.1, there is
g : (−∞, 0]→ [1,∞) satisfying (g1)-(g3) such that∫ 0

−∞
g(s) dηijp(s) < 1 + δ, ∀i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P},

and we consider UCg as the phase space of (4.1). Defining, for each i, j ∈ {1, . . . , n},

hij(t, u1, . . . , uP ) :=

P∑
p=1

aijp(t)hijp(up)
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and

fij(t, φj) :=

P∑
p=1

cijp(t)fijp

(∫ 0

−∞
gijp(φj(s)) dηijp(s)

)
+ Ii(t),

with (u1, . . . , uP ) ∈ RP , φ = (φ1, . . . , φn) ∈ UCg, and t ≥ 0, the system (4.1) has the form (3.14).
As hijp are Lipschitz functions with Lipschitz constant ξijp, then (3.16) holds with Hij(t) =

P∑
p=1

|aijp(t)|ξijp.

For φ, ϕ ∈ BC1 and t ≥ 0, since fijp, gijp are Lipschitz functions and ηijp are non-decreasing, we
have, for each i, j ∈ {1, . . . , n},

∣∣fij(t, φ)− fij(t, ϕ)
∣∣ ≤ P∑

p=1

|cijp(t)|µijp
∫ 0

−∞
|gijp(φ(s))− gijp(ϕ(s))| dηijp(s)

≤
P∑
p=1

|cijp(t)|µijpσijp
∫ 0

−∞
g(s)
|(φ− ϕ)(s)|

g(s)
dηijp(s)

≤
( P∑
p=1

|cijp(t)|µijpσijp
∫ 0

−∞
g(s) dηijp(s)

)
‖φ− ϕ‖g.

This means that

|fij(t, φ)− fij(t, ϕ)| ≤

(
P∑
p=1

|cijp(t)|µijpσijp(1 + δ)

)
‖φ− ϕ‖g,

and, together with (4.5) and (4.6), the hypotheses (A3), (3.16), (3.17), and (3.18) hold. Now, the
conclusion follows from Theorem 3.7.

To the best of our knowledge, the global asymptotic stability of the Cohen-Grossberg neural
network model (4.1), without assuming the existence of an equilibrium point and with potentially
unbounded coefficients, was never studied before and Theorem 4.2 establishes a new stability criterion.

Example 4.1. A particular example of (4.1) is the following Cohen-Grossberg neural network model

x′i(t) = −ρi(xi(t))
[
bi(t, xi(t))−

n∑
j=1

(
cij(t)

∫ 0

−τij
fj(xj(t+ s))dςij(s)

+dij(t)

∫ 0

−∞
gj(xj(t+ s))dηij(s)

)
+ Ii(t)

]
, t ≥ 0, i = 1, . . . , n, (4.7)

which its global asymptotic stability was studied in [16] under a different set of hypotheses, including
bounded coefficients cij(t) and dij(t). From Theorem 4.2 we have

Corollary 4.3. Assume that ηij : (−∞, 0] → R, ςij : [−τij , 0] → R are non-decreasing, bounded,
and normalized functions, fj , gj : R → R are Lipschitz functions with Lipschitz constants µj, σj
respectively, and ρi : R → (0,+∞), bi : [0,+∞) × R → R, cij , dij , Ii : [0,+∞) → R are continuous
functions such that ρi and bi satisfy (A1) and (A2) respectively.

If there exist α > 0 and d = (d1, . . . , dn) > 0 such that, for each i ∈ {1, . . . , n},

ρ
i
diβi(t)−

n∑
j=1

ρjdj
(
|cij(t)|µj + |dij(t)|σj

)
> α, ∀t ≥ 0,

lim sup
t→+∞

n∑
j=1

ρj
ρ
i

dj
(
|cij(t)|µj + |dij(t)|σj

)
diβi(t)

< 1,
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then the system (4.7) is globally asymptotically stable.

Example 4.2. As we refereed above, the model (4.1) includes other types of neural network models.
For example, if ρi(t) = 1, bi(t, u) = ci(t)u, P = 2, τij1(t) = 0, aij1(t) = aij(t), aij2(t) = bij(t),
hij1(u) = hij2(u) = −fj(u), and cij1(t) = cij2(t) = 0 for all t ≥ 0 and u ∈ R, then system (4.1)
reduces to the following Hopfield neural network model

x′i(t) = −ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t)) +

n∑
j=1

bij(t)fj(xj(t− τij(t))) + Ii(t), t ≥ 0, i = 1, . . . , n.(4.8)

Consequently, Theorem 4.2 applied to system (4.8) gives the following result.

Corollary 4.4. Assume that aij , bij , ci, Ii : [0,+∞) → R, τij : [0,+∞) → [0,+∞), and fj : R → R
are continuous functions such that

(i) t− τij(t)→ +∞ as t→ +∞;

(ii) fj : R→ R are µj-Lipschitz functions;

(iii) there exist d = (d1, . . . , dn) > 0 and α > 0 such that, for each i ∈ {1, . . . , n},

dici(t)−
n∑
j=1

djµj(|aij(t)|+ |bij(t)|) > α, ∀t ≥ 0; (4.9)

lim sup
t→+∞

n∑
j=1

djµj(|aij(t)|+ |bij(t)|)
dici(t)

< 1. (4.10)

Then the system (4.8) is globally asymptotically stable.

Remark 4.1. For system (4.8), Z. Yuan et al. [22] obtained the global asymptotic stability assuming
the following hypotheses:

(a) t− τij(t)→ +∞ as t→ +∞;

(b) fj : R→ R are µj-Lipschitz functions;

(c) ci(t), aij(t), bij(t), and Ii(t) are bounded continuous functions;

(d) there exists d = (d1, . . . , dn) > 0 such that, for each j ∈ {1, . . . , n},

lim sup
t→+∞

n∑
i=1

diµj(|aij(t)|+ |bij(t)|)
djci(t)

< 1.

We remark that conditions (d) and (4.10) are different and, in [22], they did not consider a similar
condition to (4.9) because they assumed that all solutions of (4.8) are defined on R. Thus it is
relevant to observe that Corollary 4.4 gives a different stability criterion where it is possible to have
unbounded coefficients.

Example 4.3. In [14], the authors studied the global asymptotic stability of the following recurrent
neural network model

x′i(t) = −ci(t)xi(t) +

n∑
j=1

P∑
p=1

aijp(t)fijp

(∫ 0

−∞
kijp(−s)xj(t+ s)ds

)
+ Ii(t), t ≥ 0, i = 1, . . . , n,(4.11)

where ci, aijp : [0,+∞)→ R are continuous functions, fijp : R→ R are Lipschitz functions, and the
delay kernel functions kijp : [0,+∞)→ [0,+∞) are piecewise continuous such that∫ ∞

0

kijp(s)ds = 1. (4.12)
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System (4.11) arises as another special case of model (4.1), when we consider ρi(u) = 1, bi(t, u) =
ci(t)u, hijp(u) = 0, gijp(u) = u for all t ≥ 0 and u ∈ R, and the functions ηijp defined by

ηijp(s) =

∫ s

−∞
kijp(−u)du, s ∈ (−∞, 0], i, j = 1, . . . , n, p = 1, . . . , P.

Consequently, from Theorem 4.2, we obtain the following result.

Corollary 4.5. Assume that fijp : R→ R are µijp-Lipschitz functions.
If there exist d = (d1, . . . , dn) > 0 and α > 0 such that, for each i ∈ {1, . . . , n},

dici(t)−
n∑
j=1

P∑
p=1

dj |aijp(t)|µijp > α ∀t ≥ 0, and lim sup
t→+∞

n∑
j=1

P∑
p=1

dj |aijp(t)|µijp
dici(t)

< 1, (4.13)

then the system (4.11) is globally asymptotically stable.

In [14], the authors assumed a different set of hypotheses, also including that ci(t), aijp(t), and
Ii(t) are bounded functions, to get the global asymptotic stability of (4.11), since a different norm
in Rn was considered.

Example 4.4. Finally, consider the following nonautonomous BAM neural network model with
both discrete time-varying delays and distributed delays

x′i(t) = −b̃i(t, xi(t)) +

m∑
j=1

aij(t)fij(λjyj(t− τij(t))) +

m∑
j=1

cij(t)gij

(∫ 0

−∞
yj(t+ s)dηij(s)

)
+ Ĩi(t),

i = 1, . . . , n,

y′j(t) = −bj(t, yj(t)) +

n∑
i=1

ãji(t)f̃ji(λ̃ixi(t− τ̃ji(t))) +

n∑
i=1

c̃ji(t)g̃ji

(∫ 0

−∞
xi(t+ s)dη̃ji(s)

)
+ Ij(t),

j = 1, . . . ,m

,(4.14)

where λj , λ̃i are positive constants. As in the above examples, it is also easy to see that (4.14) is a
special case of model (4.1) and, from Theorem 4.2, we obtain the following result.

Corollary 4.6. Assume that fij , gij , f̃ji, g̃ji : R→ R are Lipschitz functions with Lipschitz constants

µij , σij , µ̃ji, σ̃ji respectively, bj , b̃i : [0 +∞) × R → R, aij , cij , Ĩi, ãji, c̃ji, Ij : [0,+∞) → R, τij , τ̃ji :

[0,+∞) → [0,+∞) are continuous functions such that bj and b̃i satisfy (A2), t − τij(t) → +∞,
t− τ̃ji(t)→ +∞ as t→ +∞, and ηij , η̃ji : (−∞, 0]→ R are non-decreasing, bounded, and normalized
functions.

If there exist d = (d1, . . . , dm) > 0, d̃ = (d̃1, . . . , d̃n) > 0, and α > 0 such that

d̃iβ̃i(t)−
m∑
j=1

dj
(
|aij(t)|λjµij + |cij(t)|σij

)
> α, ∀t ≥ 0, i = 1, . . . , n, (4.15)

djβj(t)−
n∑
i=1

d̃i
(
|ãji(t)|λ̃iµ̃ji + |c̃ji(t)|σ̃ji

)
> α, ∀t ≥ 0, j = 1, . . . ,m, (4.16)

lim sup
t→+∞

m∑
j=1

dj
(
|aij(t)|λjµij + |cij(t)|σij

)
d̃iβ̃i(t)

< 1, i = 1, . . . , n, (4.17)

lim sup
t→+∞

n∑
i=1

d̃i
(
|ãji(t)|λ̃iµ̃ji + |c̃ji(t)|σ̃ji

)
djβj(t)

< 1, j = 1, . . . ,m, (4.18)

then the system (4.14) is globally asymptotically stable.
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Now considering (4.14) with b̃i(t, u) = c̃i(t)u, bj(t, u) = cj(t)u, fij(u) = fj(u), f̃ji(u) = f̃i(u), and
cij(t) = c̃ji(t) = 0, then we obtain the following BAM neural network

x′i(t) = −c̃i(t)xi(t) +

m∑
j=1

aij(t)fj(λjyj(t− τij(t))) + Ĩi(t), i = 1, . . . , n,

y′j(t) = −cj(t)yj(t) +

n∑
i=1

ãji(t)f̃i(λ̃ixi(t− τ̃ji(t))) + Ij(t), j = 1, . . . ,m

. (4.19)

In [25], the authors studied the model (4.19), with periodic coefficients, and they obtained sufficient
conditions for the existence of a periodic solution and its global asymptotic stability. In fact they
established the following result.

Theorem 4.7. [25] Assume that

(i) the functions c̃i, cj , aij , ãji, Ĩi, Ij : [0,+∞) → R are continuously periodic with common period
ω > 0 and τij , τ̃ji : [0,+∞)→ [0,+∞) are differentiable periodic with the same period ω;

(ii) the functions fj , f̃i are Lipschitz functions with Lipschitz constants µj , µ̃i respectively;

(iii) there exist two constants lk > 1 (k = 1, 2), with 0 < 1
1−τ ′ij(t)

< l1 and 0 < 1
1−τ̃ ′ji(t)

< l2, for all

t ≥ 0, such that

c̃i −
m∑
j=1

aijµjλj l1 > 0, i = 1, . . . , n, (4.20)

cj −
n∑
i=1

ãjiµ̃iλ̃il2 > 0, j = 1, . . . ,m, (4.21)

where, for a ω-periodic real function g, we denote g := sup
t∈[0,ω]

g(t) and g := inf
t∈[0,ω]

g(t).

Then the system (4.19) has a unique ω-periodic solution.

If we consider the model (4.19) with ω-periodic coefficients, then the functions c̃i(t), cj(t), aij(t),
and ãji(t) are bounded, which implies that conditions (4.15) and (4.17) are equivalent to

d̃ic̃i(t)−
m∑
j=1

dj |aij(t)|λjµj > 0, ∀t ≥ 0, i = 1, . . . , n, (4.22)

and conditions (4.16) and (4.18) are equivalent to

djcj(t)−
n∑
i=1

d̃i|ãji(t)|λ̃iµ̃i > 0, ∀t ≥ 0, j = 1, . . . ,m, (4.23)

for some d = (d1, . . . , dm) > 0 and d̃ = (d̃1, . . . , d̃n) > 0. As lk > 1, the hypothesis (iii) of Theorem
4.7 implies (4.22) and (4.23), thus the following stability criterion is a trivial consequence of Corollary
4.6 and Theorem 4.7.

Theorem 4.8. Assume conditions (i)-(iii) in Theorem 4.7.
Then the system (4.19) is globally asymptotically stable and it has a unique ω-periodic solution.

Remark 4.2. For the ω-periodic BAM neural network model (4.19), Zhang and Zhou [25] proved
the existence of a ω-periodic solution and the global asymptotic stability of the model assuming (i),
(ii) in Theorem 4.7 and

c̃i −max


m∑
j=1

aijµjλj l1,

m∑
j=1

ãjiµ̃iλ̃il2

 > 0, i = 1, . . . , n, (4.24)

cj −max

{
n∑
i=1

ãjiµ̃iλ̃il2,

n∑
i=1

aijµjλj l1

}
> 0, j = 1, . . . ,m, (4.25)

16



with lk (k = 1, 2) as in Theorem 4.7.
Since (4.24) implies (4.20), (4.25) implies (4.21), and the conditions are not equivalent, then the

Theorem 4.8 improves the main stability result in [25].
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