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Abstract: The purpose of this study was to investigate the

relationship between the osteoblastic cells behavior and biotri-

bocorrosion phenomena on bioactive titanium (Ti). Ti sub-

strates submitted to bioactive anodic oxidation and etching

treatments were cultured up to 28 days with MG63 osteoblast-

like cells. Important parameters of in vitro bone-like tissue for-

mation were assessed. Although no major differences were

observed between the surfaces topography (both rough) and

wettability (both hydrophobic), a significant increase in cell

attachment and differentiation was detected on the anodized

substrates as product of favorable surface morphology and

chemical composition. Alkaline phosphatase production has

increased (�20 nmol/min/mg of protein) on the anodized

materials, while phosphate concentration has reached the dou-

ble of the etched material and calcium production increased

(over 20 mg/mL). The mechanical and biological stability of the

anodic surfaces were also put to test through biotribocorro-

sion sliding solicitations, putting in evidence the resistance of

the anodic layer and the cells capacity of regeneration after

implant degradation. The Ti osteointegration abilities were

also confirmed by the development of strong cell–biomaterial

bonds at the interface, on both substrates. By combining the

biological and mechanical results, the anodized Ti can be con-

sidered a viable option for dentistry. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

The technological progress and advances that characterize
our society have led to an outstanding improvement in the
dental field, particularly with the development of biomateri-
als.1 A successful implantation relies on their chemical, physi-
cal, and mechanical properties as well as on their ability to
influence and define the cells behavior. Biomaterials should
not induce an abnormal host response or suffer degradation
when exposed to body fluids.2–4 These requirements are of
extreme importance to a successful implantation.

Titanium (Ti) has been considered over the past few
years as the “gold standard” for orthopedic and dental
implants.1 Ti reacts with water and air to produce a thin
oxide layer on its surface that prevents corrosion and enables
the material to interact and establish a connection with the
surrounding tissue, without causing an undesirable
response.5–8 Still, this spontaneously formed oxide layer is
usually thin and heterogeneous, which hinders the implant
attachment.9,10 Furthermore, the passive film possesses poor
tribological properties, such as low wear rate or unstable
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friction coefficient.11 Hence, to overcome these limitations,
thermal and electrochemical surface treatments are applied.

Thicker oxide layers improving tribological and corro-
sion properties and enhancing cell attraction can be pro-
duced, by controlling the surface morphology, topography,
and composition.7 Although, different surface treatments are
capable of such task, sand-blasting, plasma spray, or acid
etching, to name a few, recent reports suggest anodization
to be a preferred method to form rough, porous, and thick
oxide films on Ti materials.12

As a simple and fast method, anodization has attracted
much attention. This technique allows the formation of bioac-
tive coatings through the incorporation of calcium and phos-
phorus onto the Ti surfaces,13,14 or to control the roughness
or wettability of the oxide layer increasing its osteointegration
and/or osteoconduction.15,16 The primary purpose for coating
calcium/phosphorus or hydroxyapatite onto implantable
materials is the rapid attraction of bone tissue/cells onto their
surface, at early stages of interaction. Fini et al.13 demon-
strated this property on Ti based materials. By studying the
effect of anodized bioactive coatings (calcium/phosphorus) on
the osteoblast-like cells early response, in vivo and in vitro,
they were able to confirm the materials good cytocompatibil-
ity and morphological characteristics as well as their osteoin-
tegration abilities. Franco et al.14 using primary osteoblastic
cells, derived from alveolar bone, tested a new anodized alkali
treatment (calcium/phosphorus) on Ti substrates and corro-
borated Fini et al results. They showed an increased cellular
activity from the proliferation phase to early differentiation of
the osteoblastic cells, associated with an enhanced collagen
production. Still, the mechanical stability of the anodic films
on Ti substrates as product of the human body biological,
chemical, and mechanical changes remains a challenge.

The friction, wear, abrasion, and corrosion sensed by
dental implants as a result of cyclic micro-movements by
way of mastication loads, sliding-wear bite forces, and cor-
rosive body fluids (oral cavity constant changes in pH) may
lead to the implant deterioration.17,18 Moreover, whether Ti
is used in crowns or implants, a relative displacement
between it and the adjacent material (gum, bone. . .) might
occur. In consequence, organic and inorganic specimens can
migrate to the available space and in combination with the
synergistic effect of corrosion and wear develop a tribocor-
rosion system that may accelerate implant failure.19 As deg-
radation of the outermost layer of the implant is a probable
event, the capacity of cell regeneration in response to it and
the resistance of the interface bone–biomaterial, a clear
marker of the surface mechanical and biological stability
and osteointegration abilities, are therefore of particular
interest. Biotribocorrosion tests are a recent tool in this
research field that takes into consideration these phenom-
ena.17 Their ability to reproduce simultaneously the corro-
sion and wear conditions associated with the biological
environment has become essential to mimic the cellular
response during or after implantation.20

The aim of this work was to evaluate the MG63
osteoblast-like cells interaction with Ti surfaces submitted
to a bioactive anodic treatment. To assure the anodic layer

stability in contact with the biological surroundings, the
osteoblastic cells early attachment and subsequent matura-
tion were followed up to 28 days. The MG63 regenerative
ability was observed through the effect of tribocorroded Ti
surfaces on the early cell development, and the resistance
of the biomaterial–cell bond (osteointegration) put to the
test by means of extreme mechanical stimulation.

MATERIALS AND METHODS

Material preparation
Samples, 20 3 20 mm2 in area and 2 mm in thickness,
were cut from a Ti grade 2 plate (Goodfellow Cambridge
Limited, England). The substrates were cleaned first in an
ultrasonic bath with acetone for 3 min and second in a
Kroll’s reagent solution (2% HF, Sigma, and 10% HNO3,
Acros, in 88% H2O) for 10 min. The resulting samples, iden-
tified as etched, were used as controls.

Anodic treatment with a calcium acetate (0.35 mol/L,
Sigma) and b-glycerophosphate (0.04 mol/L, Sigma) electro-
lyte was applied to half of the etched samples for 1 min, at
RT (bioactive coating). 300 V DC power source and a plati-
num leaf cathode were used. The resulting samples are iden-
tified as anodized and cleaned ultrasonically in propanol for
10 min followed by distilled water (d.H2O) for 5 min.

Prior to cell culture, both anodized and etched sub-
strates were sterilized in two steps: first to achieve the
physiologic pH (pH57.4) and to eliminate surface impur-
ities and second to adsorb proteins from the culture
medium. The materials were washed with 1.5M sodium
chloride (NaCl, Fisher), 0.15M NaCl, ultra pure water and
phosphate buffered saline (PBS, Gibco), three times each.
Finally, each Ti face was sterilized with UV light at 30 W for
15 min. They were left in a non-complete medium of Dulbe-
co’s Modified Eagle Medium (DMEM, Gibco) for 24 h at
37�C and 5% of CO2, and overnight in a complete medium
of DMEM supplemented with 10% of fetal bovine serum
(FBS, PAMTM) under equal conditions.

Surface characterization
Morphology, chemical composition, and topography.
Scanning electron microscopy (SEM, JEOL JSM—T220A Scan-
ning Microscope) operating at 20 kV was used in the surfa-
ces morphology studies. The materials were sonicated in a
pure water bath (60�C) for 10 min and dried in a vacuum
oven overnight, before observation. Their elemental compo-
sition was assessed with an energy dispersive x-ray spec-
trometer (EDS, INCA model 5785, Oxford System)
incorporated into the SEM.

A white light interferometer (New-View 6300, Zygo, Mid-
dlefield, CT) was used to establish the surface topography.
Both profile delineation (2D evaluation—2D graphics) and
surface area (3D evaluation—3D models) evaluations were
conducted. This is a non-contact optical profiling system
that measures step heights (up to 0.1 nm) and surface
roughness. The lateral resolution applied was 2.72 mm and
the objective working distance was 9.3 mm. Four equally
separated areas were analyzed and treated with a micro-
rugosity filter with a cut-off of 0.08 mm. A thin gold layer

662 FELGUEIRAS ET AL. BIOTRIBOCORROSION CHARACTERIZATION OF ANODIZED TITANIUM BIOMATERIAL



was sputtered to increase the reflection of the anodic sam-
ples. The average results are reported as average roughness
(Ra) and single roughness depth (Rz) for 2D and the corre-
sponding values Sa and Sz for 3D.

Contact angle and surface free energy. The wettability of
the etched and anodized to pure water (polar liquid); form-
amide (polar liquid, Sigma); and bromonaphthalene (apolar
liquid, Sigma) was determined using a contact angle meter
apparatus (OCA 15 Plus, Dataphysics). Two microliters drops
were placed on the samples surface at RT. Eight seconds after
contact, the angles measured. Four points per sample and liq-
uid were retrieved. The surface free energy was determined
using a set of equations previously described.21

Biological tests: cellular culture and expansion
MG63 osteoblast-like cells derived from human osteosar-
coma (ATCC) were cultured in DMEM supplemented with
10% FBS, 1% penicillin-streptomycin (Gibco), and 1% fungi-
zone (Gibco) at 37�C in an atmosphere of 5% CO2. The cul-
ture was monitored every 24 h and the medium exchanged
every 48 h. Cellular passages were conducted whenever the
confluence was equal to 80%, using trypsin-EDTA (Gibco).
For the totality of the biological test, 2 3 104 cells/mL were
added to each substrate.

For the alkaline phosphatase and mineralization experi-
ments, 0.05 mM L-ascorbic acid (Sigma) and 10 mM b-
glycerophosphate (Sigma) were added to the complete culture
medium, and applied to the cultures from day 1. This was
done so the osteoblastic cells differentiation was possible.

Cell attachment, spreading, and morphology. After 0.5, 2,
and 4 h of culture, the number, organization, shape, and size
of the osteoblasts attached to the Ti surfaces were studied.

The number of cells was determined using a cell counter
(Multisizer III—Coulter Counter Z2 Beckman). MG63 cells
were detached with trypsin-EDTA and the suspension mixed
with isoton (Beckman CoulterVR ) in a 0.1% (v/v) ratio. Their
viability was assessed using the trypan blue exclusion test
in a malassez counting chamber (PolyLab).

The cells structure and morphology were evaluated by
fluorescent microscopy (ZEISS Axiolab, Germany). The
medium was removed; the samples were washed three
times with PBS; and fixated with 4% formaldehyde (Sigma)
in medium for 45 min at 4�C. After, the materials were
rinsed with a PBS/BSA 0.4% (v/w) (bovine serum albumin,
SAFC) solution, permeabilized in 0.1% (v/v) triton X100
(Labosi) in PBS for 15 min, immersed in a new PBS/BSA
3% (v/w) solution for 30 min, and finally rinsed one more
time with PBS/BSA 0.4% (v/w). The actin fibers of the
MG63 cells were stained with phalloidin (FluoProbesTM) at
a 1/40 (v/v) in PBS, for 4 h, providing a general observa-
tion of the cells cytoskeleton. Before observation, all surfa-
ces were washed twice with PBS. Pictures were taken using
a digital camera (Olympus Camedia C-5050).

The cells area/size was analyzed using the Quantity
One: 1D Analysis Software. Six images were used per cul-
ture time and sample type.

Early differentiation: alkaline phosphatase activity. The
alkaline phosphatase (ALP) activity was evaluated from 7 to
28 days by following the transformation of p-nitrophenyl-
phosphate into p-nitrophenol at 37�C. The ALP was sepa-
rated from the cellular membrane using triton X100 for 1 h,
under agitation. Five hundred microliters of the resultant
cellular suspension were mixed with 500 mL of p-nitrophe-
nylphosphate substrate (Acros) at a concentration of 20 mM
in 2-amino-2-methyl-propanol buffer and left for 30 min at
37�C. The enzymatic activity was measured with a spec-
trometer (Safas Xenius) and expressed in nmol of p-nitro-
phenol produced per min and per mg of protein.

Late differentiation: mineralization. The MG63 cells min-
eralization was studied after 28 days of culture. Two millili-
ters of trichloroacetic acid (TCA/d.H2O 15% [w/v], Sigma)
was added to each well and left for 1 h, under agitation.
After that time, calcium detection was initialized: 10 mL of
the solution was recovered and combined with 1 mL of
Arsenazo III (Sigma) (15 min). The calcium produced was
measured by its absorbance at 650 nm and compared to a
calcium chloride (CaCl2) and TCA (15%, w/v) calibration
curve from 50 to 1000 mg/mL.

The remaining suspension was left for another 48 h
under agitation for phosphate detection. One hundred
microliters of the suspension was recovered and combined
with 800 mL of a solution containing 50% of acetone (Carlo-
Erbra), 25% of sulfuric acid (Acros), 25% of 10 mM ammo-
nium molybdate in d.H2O, and with 80 mL of citric acid (1M,
Sigma). After 30 min at RT, the phosphate produced was
measured by its absorbance at 355 nm using a spectrome-
ter and compared to a di-sodium hydrogenophosphate
(Na2HPO4) and TCA (15%, w/v) calibration curve from 10
to 200 mg/mL.

Biotribological tests
Surface modification. To mimic possible tribological con-
tacts that may occur on biomaterials during implantation or
manipulation processes as mean of mastication loads, uni-
directional sliding tests were performed in a “pin-on-disc”
tribometer (Multispecimen-tester, FALEX-TETRA). This pro-
cedure consists in a frictional rotating movement of a pin
(alumina sphere) against a stationary substrate, immersed
in an electrolyte. The rotating speed applied was 100 rpm
(7200 cycles) with a normal load of 0.8 N (258 MPa) and
the electrolyte used was culture medium to approximate the
test scenario to the biological environment. The rotation
and load values were selected to generate a maximum
Hertzian contact pressure on the surface. To avoid plastic
deformation, the applied load was kept smaller than the
yield strength of Ti (275 MPa).22 These repetitive cycles of
concentrated load were performed to simulate degradation
by way of intense mastication or strong sliding-wear bite
forces, in vitro.
Cell culture after biotribocorrosion assays. Prior to cell
culture, the tribocorroded Ti materials (etched and ano-
dized) were sonicated in a pure water bath at 60�C
and sterilized in an autoclave (SANO Clay, Wolf) at 120�C.
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2 3 104 cells/mL in complete medium were cultured onto
these altered Ti substrates for 4 h, 3 and 7 days and the
results were analyzed by SEM. In most cases, these periods
correspond to cell attachment, early and advanced prolifera-
tion, respectively.

Tribocorrosion assays after cell mineralization. To test
the bond strength at the interface MG63 osteoblastic cells—
Ti materials and, simultaneously, validate the results from
cell mineralization, unidirectional sliding tests were con-
ducted after 28 days of culture (same conditions described
in Surface Modification section). A complete medium sup-
plemented with ascorbic acid and b-glycerophosphate was
used. The results were observed by SEM.

Statistical analysis
Surface characterization tests were repeated three times
while biological experiments were done six times, using
two samples per group. Numerical data were reported as
mean6 standard deviation (SD). Statistical significance was
determined by on-way analysis of variance (ANOVA) fol-
lowed by the post hoc Bonferroni test, using the GraphPad
Prism 5.0 software. Significance was defined as having
p< 0.05.

RESULTS AND DISCUSSION

Surface characterization
The etched and anodized surfaces morphologies are shown
in Figure 1. Although a rough and crimped structure is dis-
played by the etched substrates, in the anodized surfaces a

porous morphology prevails. This porosity resulted from the
electrical discharges characteristics of the anodic treatment,
a phenomenon also known as dielectric breakdown,1,6,12

and followed the original surface topography (etched wavi-
ness), as expected.6

Incorporation of calcium and phosphorus into the anodic
oxide film was confirmed by EDS (Figure 1). As a result of
consecutive oxidation and reduction reactions occurring
during dielectric breakdown,1 the compounds dissolved in
the electrolyte, namely calcium acetate and b-
glycerophosphate, were attracted to the anodic film confer-
ring bioactive properties to the surface.23,24

Despite a clear difference in morphologies, data
retrieved from roughness measurements (Table I) turned
out to be quite similar between the two substrates. Both
displayed important levels of roughness consistent with pre-
vious work.25 These similarities can be explained by the
heterogeneity of the surface treatments. Although the anodic
process was used to alter the surface composition but not
the pore size and dispersion (these parameters were not
controlled), the etching step was only applied to remove
surface impurities. Therefore, irregular patterns on both
surfaces can be assumed, which by consequence approxi-
mated their topographic results.

The surface hydrophobicity was assessed by contact
angle measurements (Table II). The results show the ano-
dized substrates to be the more hydrophobic from the
group, although without statistical significance on the water
contact angles. This is to be expected as increased rough-
ness leads to higher contact angles.26

FIGURE 1. SEM micrographies of the (A) etched and (B) anodized surfaces morphology (3500 resolution) and respective chemical composition,

expressed in mass percentage (Ti, titanium; O, oxygen; Ca, calcium; P, phosphorus).

TABLE I. 2D and 3D Topographic (Roughness) Evaluations of Etched and Anodized Titanium Surfaces Using White Light

Interferometry

Method Surface

2D Analyses 3D Analyses

Ra (mm) Rz (mm) Sa (mm) Sz (mm)

Interferometry Etched 0.98 6 0.04 6.01 6 0.41 0.98 6 0.00 10.71 6 0.42
Anodized 1.00 6 0.02 6.63 6 0.32 1.02 6 0.03 10.52 6 0.74
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Biological tests
Cell attachment, spreading, and morphology. The number
of MG63 cells attached to the surfaces as function of time is
shown by Figure 2(A). The cells spreading and morphology
for the same periods are given by Figure 2(B) and Figure
2(C), respectively. From the results, the anodic treatment
enhances cell attachment from the very first moments of
interaction,27 while the etched surfaces are responsible for a
superior cytoplasmatic cell spreading. Multiple researchers
have reported that the surface roughness, morphology, and
chemical composition affect the cellular behavior at early
stages of development.14–16 It is well known, the presence of
calcium and phosphorus ions on the oxide to favor greatly
cell attachment. These free ions promote a physical and
chemical bond with cells and, consequently, an environment
compatible with osteogenesis.4,23 Besides, the probable pres-
ence of nanoporosity on the anodized substrates can strength
the connection between cells and material and increase their
adhesion rates.24,28 Regrettably, this irregular porosity can
also be a challenge to cell spreading, hindering their cytoplas-

matic expansion,29,30 which explains the smaller sized MG63
cells observed on the anodized surfaces.

The osteoblastic cells morphology pattern [Figure 2(C)]
was found equal for both Ti materials, with cells evolving
from round to more elongated and polygonal shapes. After 30
min of contact, the majority of cells still displayed a spherical
profile. Feng et al.23 have shown that, at this point, cell adhe-
sion is mainly based on chemical rather than physical interac-
tions. After 2 h, a predominant heterogeneity in cells’ shapes
and sizes is obvious: while some are still round others exhibit
a polygonal shape with small cytoplasmatic extensions. These
cytoplasm projections are representative of the beginning of
the physical contact and support the cells posterior evolution.
At 4 h, almost 80% of the cells on both surfaces are well
elongated (increased size), displaying the typical osteoblastic
morphology. Because of the increased roughness and wavi-
ness of the surfaces, the orientation of the osteoblasts is not
yet well defined. To the contrary, the cells cytoskeleton orga-
nization defined by the amount and extension of the actin
fibers becomes more and more evident.

TABLE II. Contact Angles of Water (hw), Formamide (hf), and Bromonaphthalene (hb) of the Etched and the Anodized Surfaces

and Values of the Total Surface Energy (DG)

Surface hw (�) hf (�) hb (�) DG (mJ/m2)

Etched 92.20 6 2.98 93.34 6 1.26 28.87 6 4.21 226.81
Anodized 98.74 6 3.19 94.08 6 2.08 53.27 6 1.10 244.58

FIGURE 2. (A) Osteoblastic cells attachment on etched and anodized surfaces after 0.5, 2, and 4 h (significant differences are indicated by *,

p< 0.05). (B) Fluorescent microscopy images (Phalloidin) of the MG63 cells morphology and geometry cultured on the etched and anodized sub-

strates, from 0.5 to 4 h (340 resolution), and respective (C) dimension (significant differences are indicated by ***, p<0.001). [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Cell differentiation. The ALP activity was followed for 28
days of culture, with the highest ALP production being reg-
istered at the 14th day, on both substrates (Figure 3). This
maximum represents the highest cell metabolic activity and
therefore the initial phase of the extracellular matrix (ECM)
formation.30 The ALP production was significantly enhanced
by the anodized surfaces, which might suggest that the
incorporated calcium and phosphorus accelerated the osteo-
blasts differentiation sequence most likely through a surface
mediated mechanism.14 As expected, the ALP concentrations
at 7 days were the lowest. This occurs because at the begin-
ning of the MG63 cells development, proliferation is the

FIGURE 3. ALP produced by MG63 cells cultured from 7 to 28 days

(significant differences are indicated by *, p< 0.05).

FIGURE 4. MG63 cells production of (A) calcium and (B) phosphate

after 28 days of culture on etched and anodized surfaces.

FIGURE 5. Real and 3D (microtopographies) aspect of the (A) etched and (B) anodized substrates after biotribocorrosion assays (load 5 0.8 N).

SEM micrographies of the MG63 cells dispersion after 4 h of culture (32000 resolution) on the (C) etched and (D) anodized wear track (center of

the samples). Yellow arrows represent the osteoblastic cells tendency to extend protrusions to interact with rougher regions. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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dominant phase.31 It may be noted that, in this study,
anodic treatment has no effect on cell proliferation (data
not shown). After day 14, the ALP concentration decreases.
This phenomenon is the outcome of the beginning of the
second phase of osteoblastic cells differentiation, the ECM
mineralization. ALP is an enzyme present in the cellular
membrane capable of releasing phosphate ions to the ECM
that interact with the pre-existing calcium ions, leading to
the matrix mineralization.30

The mineralization evaluations reported in terms of cal-
cium and phosphate production were conducted for 28 days
[Figure 4(A) and Figure 4(B), respectively]. Before that
period, the expressions of calcium and phosphate ions were
too insignificant to be considered (near to zero, data not
shown). The results clearly point the ability of the anodized
treatment to induce osteoblastic differentiation on titanium
surfaces (p< 0.05), particularly the phosphate production
(p< 0.0001). According to many authors,16,30,32,33 implant-
able surfaces enriched with calcium and phosphorus favor
significantly the cells affinity to it and instigate their poste-
rior maturation, especially in the presence of a supple-
mented culture medium (ascorbic acid and b-
gycerophosphate). These additives display similar composi-
tion to the inorganic phase of bone (60%) and adopt a par-

ticular osteoblastic phenotype expression when in the
medium, triggering a series of molecular events that culmi-
nate in the cells differentiation.33–35 It has been also docu-
mented that rougher surfaces associated to these chemical
elements can favor the ECM maturation.15,16

Biotribological tests
Cellular culture after biotribocorrosion assays. The “pin-
on-disc” biotribocorrosion tests applied to regular surfaces
induced the formation of a wear track in the center of the
etched and anodized materials [Figure 5(A,B)]. This experi-
ment was conducted to assess the cells regenerative
capacity after implant degradation, by means of implant
screwing (during implantation) or mastication loads (after
implantation). In simultaneous, the surfaces resistance to
abrasion and corrosion was compared.

MG63 cells were culture for 4 h, 3 and 7 days on the tri-
bologically altered surfaces. After 4 h, it was evident the
cells cytoplasmatic protrusions (yellow arrows) tendency to
be connected with rougher regions present along the wear
track [Figure 5(C,D)]. It is plausible that MG63 cells devel-
oped those contact points to sustain the interfacial bond
and support posterior cell development.12,36 On both surfa-
ces, the osteoblasts exhibited two physical morphologies:

FIGURE 6. SEM micrographies representative of the biotribocorrosion (0.8 N) assays effect on (A) (C) etched and (B) (D) anodized surfaces cul-

tured with MG63 cells for 28 days (375 and 3750 resolution, 1. Cellular Layer, 2. Wear Track).
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spherical on smooth regions, and flatted and well spread in
the rougher areas.

With this assay, the ability of osteoblastic cells to inter-
act with tribologically altered surfaces was confirmed. Initial
attachment results (4 h) point to a slower interaction
between cells and altered material than on regular sub-
strates but a possible one. Proliferation rates from regular
and altered substrates up to 7 days confirmed this fact
(data not shown). At 7 days, the anodized Ti wear tracks
were almost totally covered with cells, oriented from the
regular to the tribocorroded surface areas (preference for
the bioactive anodic film). The same orientation was seen
on the etched materials. Still, the confluence was a lot
smaller. This is consequence of the weaker abrasion resist-
ance demonstrated by the etched Ti that led to the forma-
tion of a bigger and well defined sliding track with a
smooth surface, undesirable for cellular establishment.12,37

Tribocorrosion assays after cell culture onto
biomaterial. To follow the resistance of the cell–biomaterial
bond at the interface (osteointegration) and acquire infor-
mation about the mechanical and biological stability of the
anodic film, biotribocorrosion tests were conducted after
cell culture. Complete medium was used as electrolyte to
approach the experiment to possible real phenomena. By
mimicking the biological environment, a probable scenario
of strong mastication loads was created (extreme condi-
tions), to compare the resistance of the osteoblastic cells
connection with the etched and the anodized Ti after near a
month of implantation (28 days).

At the 28th day of culture, the Ti samples were com-
pletely covered by a cellular layer. Based on the mineraliza-
tion results, this layer should be strong and resistant to
mechanical solicitation in the same way as the inorganic
phase of bone.38–40 That conception was confirmed by the
SEM images recovered. Figure 6(A,B) revealed the presence
of biological material in the sliding track of both etched and
anodized substrates, respectively, after the “pin-on-disc” tri-
bological tests. These experiments were conducted under
severe conditions where the bone–biomaterial system was
submitted to strong and repetitive mechanical solicitations
for a short period of time (analogy to extreme real phenom-
ena, such as strong sliding-wear bites). Therefore, it can be
concluded that the MG63 cells mineralization, for both
cases, was in fact efficient and that a reliable interface was
created.

Observations at larger scale of the sliding tracks [Fig-
ure 6(C,D)] provided new proof of the anodized surfaces
wear resistance. Very little deformation was detected on
the anodized materials after repetitive loading [Figure
6(D)], with a clear prevalence of its original porous mor-
phology. In contrast, extended traces of sliding were found
in the etched substrates [Figure 6(C)] reflecting their frag-
ile condition.12,37 By combining this information with the
biological results, it is suggested that at reduced load (nor-
mal real life conditions of mastication) the bond resistance
between cells and biomaterial would be superior for the
anodized Ti.

CONCLUSION

In this study, Ti materials were submitted to anodic treat-
ment and their performance in contact with osteoblastic
cells tested, in vitro.

It was found that anodic surfaces enriched with calcium
and phosphorus enhance cell attachment and differentiation
(ALP production and mineralization). To the contrary, it was
the etched Ti that provided the most suitable conditions for
cell spreading. Biotribocorrosion tests provided insightful
information about the mechanical and biological stability of
the anodic film, during and after implantation, demonstrat-
ing its superior resistance to repetitive sliding solicitation
and its ability to induce cell attachment even after degrada-
tion. The strength of the bond biomaterials–cells was also
verified, confirming a viable osteointegration, which may be
enhanced by the anodized substrates under normal load
conditions (real life mastication loads).

Considering the dentistry as one of the most useful
applications of Ti and the oral cavity as one of the most
hardest biological environments to implants, the anodic
coating of Ti could be technically and economically viable
alternative to obtain wear and corrosion resistant dental
implants.
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