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Summary 

Bypass surgery is a vascular surgeon’s fundamental tool in the treatment of some 

arterial and venous diseases, many of which are caused by atherosclerosis. The 

procedure uses a vascular graft to replace, bypass or maintain function of damaged, 

occluded or diseased blood vessels. The most common approach is to use a native 

vessel, such as the saphenous vein, from the patient as the bypass conduit. 

Alternatively, when an autologous vessel is not available due to progression of the 

disease or prior surgeries, synthetic alternatives are used. However, the current 

synthetic alternatives have been plagued with little success in small caliber vessels 

(<6mm).  

Bacterial cellulose (BC) has been presented as an alternative material for the 

production of a vascular graft. It presents good mechanical characteristics allied 

with non-thrombogenicity, hemo- and biocompatibility. Several methods have been 

suggested in the literature that allow the production of tubular BC grafts. The work 

developed and presented in this thesis had two aims: further development and 

performance enhancement of a current production method and also, the 

development of a new and effective method for graft production. 

A current, and common, method of graft production takes advantage of the way in 

which the Gluconacetobacter bacteria produces BC at air-culture medium interfaces. 

By providing an oxygen permeable tubular scaffold it is possible to produce tubular 

BC constructs. However, the tubular BC constructs produced in this method were 

found to be lacking in mechanical strength. Towards enhancing their performance a 

nanocomposite of BC and poly(vinyl alcohol) (PVA) was developed. 

Blood contacting materials have necessarily to be able to perform well in regards to 

their hemocompatibility and thrombogenicity and, as such, the BC/PVA 

nanocomposite was so tested, as well as BC. The standard characterization of the 

whole blood clotting time, plasma recalcification and hemolysis index were all 

determined. In addition, as a more in depth analysis, complement system and Factor 

XII activation along with a detailed characterization of platelet adhesion and 

activation was also assessed. Results suggested that both BC and BC/PVA induced 
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low levels of Factor XII and platelet activation and this is possibly the main cause for 

the good hemocompatibility presented by of both materials. The presence of PVA in 

the nanocomposite did not hinder the hemocompatibility of BC, in some cases 

adding to the performance of the material. 

Along with the, aforementioned, necessary characterization of the BC/PVA 

nanocomposite, the mechanical and morphological characteristics of the material 

were also tested and shown to be significantly different in terms of fiber structure 

and organization upon drying. The performance of the nanocomposite regarding 

mechanical characteristics was expected to outperform those of BC. However, the 

tensile tests performed suggested otherwise. A more detailed morphological 

analysis of BC/PVA showed that, once dried, the fiber structure changed 

dramatically; presenting two very distinct, dense and porous, regions. These 

structural characteristics were found to be associated with a heterogeneous 

distribution of PVA throughout the nanocomposite which affected the mechanical 

performance and permeability of the dried nanocomposite. 

Finally, through the course of several developmental stages of the graft, an 

alternative method of production that allied both technical facility and low cost was 

discovered. This method was able of outperforming the previous iteration of the BC 

grafts and was, later, shown to be a viable and cost effective method of graft 

production. The grafts produced by this novel method allowed for mechanically 

strong and yet compliant grafts to be produced, as was demonstrated by the 

mechanical characterization performed, in a reproducible way. Continued 

characterization showed a luminal topography similar to that of a native vessel, far 

exceeding ePTFE and Dacron in this regard. Additionally, an important mechanical 

characteristic; and frequent cause of graft failure, compliance was also determined 

and shown to be comparable on the luminal surface when compared to native 

arteries and again outperforming the current industry standards. The grafts were 

later shown to perform well in vivo in pigs. Surgical implantation was performed in 

a femoro-femoral arterial bypass bridge to study the in vivo viability of the graft. 

Results demonstrated patency after 1 month of implantation with the presence of 

an endothelial cell population on the luminal surface of the graft.
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Resumo 

Cirurgia de bypass é uma ferramenta fundamental no tratamento de algumas 

doenças arteriais e venosas, muitas destas doenças causadas por aterosclerose. Este 

procedimento utiliza uma prótese vascular para substituir, formar uma ponte ou 

manter o funcionamento de um vaso danificado, obstruído ou doente. O processo 

mais comum utiliza um vaso nativo, como a veia safena, como a prótese vascular. 

Quando um vaso autólogo não estiver disponível, devido à progressão natural da 

doença ou cirurgias anteriores, utilizam-se alternativas sintéticas. Contudo, as 

actuais alternativas sintéticas têm obtido pouco sucesso em vasos de pequeno 

calibre (<6mm). 

Celulose bacteriana (BC) apresenta-se como uma alternativa para a produção de 

próteses vasculares. Apresenta boas características mecânicas aliadas a não-

trombogenicidade, hemo- e biocompatibilidade. Vários métodos de produção de 

vasos de celulose bacteriana têm sido propostos na literatura. O trabalho 

desenvolvido e apresentado nesta tese teve dois objectivos: continuar o 

desenvolvimento e melhorar o desempenho dos actuais métodos de produção, bem 

como, o desenvolvimento de uma nova e eficaz maneira de produzir próteses. 

O actual e mais comum, método de produção aproveita a forma como as bactérias 

do género Gluconacetobacter produzem BC nos interfaces ar-meio de cultura. 

Utilizando um suporte tubular permeável a oxigénio é possível produzir estruturas 

tubulares de celulose. Contudo, as estruturas tubulares produzidas por estes 

métodos demonstraram fracas propriedades mecânicas. Com o objectivo de 

melhorar o desempenho mecânico desenvolveu-se um nanocompósito de BC e 

poli(vinil álcool) (PVA). 

Materiais que contactam com sangue têm que ser capazes de ter um bom 

desempenho em termos de hemocompatibilidade e trombogenicidade e como tal, o 

nanocompósito de BC/PVA, bem como a BC, foram testadas. Foi feita a 

caracterização do tempo de coagulação de sangue total, recalcificação do plasma e 

índice de hemólise. Para além destes, foi analisada a activação do sistema de 

complemento e Factor XII bem como uma caracterização detalhada da adesão e 
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activação de plaquetas. Os resultados sugerem que a BC e o BC/PVA, induzem baixos 

níveis de activação do Factor XII e plaquetas, o que poderá ser a principal razão pela 

boa hemocompatibilidade apresentada pelos materiais. A presença de PVA no 

nanocompósito não afecta a hemocompatibilidade da BC, em alguns casos até 

melhorando o seu desempenho. 

Para além desta caracterização do BC/PVA, o nanocompósito foi caracterizado a 

nível mecânico e morfológico e os resultados mostraram diferenças significativas 

em termos de estrutura e organização das fibras após secagem. Esperava-se que o 

desempenho do nanocompósito, em termos de características mecânicas, seria 

superior à BC, no entanto isto não se veio a verificar. Uma análise morfológica mais 

detalhada do BC/PVA mostrou que, após secagem, a estrutura das fibras sofre 

alterações profundas; apresentando duas regiões distintas, uma densa e outra 

porosa. Estas distintas regiões devem-se à distribuição heterogénea do PVA no 

nanocompósito, por seu turno, afecta o desempenho mecânico e permeabilidade do 

nanocompósito seco. 

Por fim, a longo do curso de várias fases de desenvolvimento das próteses, foi 

descoberto um método alternativo de produção que aliava facilidade técnica e baixo 

custo. Este método mostrou ser capaz de produzir próteses melhores que todas as 

versões anteriores e, mais tarde, mostrou ser um método de produção viável e de 

baixo-custo. As próteses produzidas por este método novo permitem obter forças 

mecânicas superiores sem perder a complacência do material, como foi 

demonstrado pela caracterização mecânica, de forma reprodutível. A continuada 

caracterização das próteses mostrou uma topografia luminal semelhante ao dos 

vasos nativos, superando o ePTFE e o Dacron. Adicionalmente, uma importante 

característica mecânica, e frequente causa de falha das próteses, a complacência foi 

também determinada e mostrou ser comparável à complacência da superfície 

luminal de artérias nativas, tendo portanto um melhor desempenho que as próteses 

industriais actuais. As próteses mostraram, mais tarde, ter também um bom 

desempenho in vivo em porcos. As próteses foram implantadas numa ponte femoral 

de forma a estudar a viabilidade in vivo. Os resultados obtidos demonstraram 

patência ao fim de 1 mês de implantação com a presença de células endoteliais na 

superfície luminal da prótese.
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Figure 4-3 - Cryo-SEM images of a portion of the cross-section of the graft wall. (A) and (B) 4000x 

magnification with noticeable dense regions layered between open-pore structures; (C) 10000x 

magnification of the dense BC regions; (D) 10000x magnification of the open-pore structures and (E) 

10000x magnification of the edge of the luminal surface of the graft. (F) is a schematic representation 

of the interface between the luminal surface and inner wall structure. 

Figure 4-4 - Endotoxin (LPS) concentration in EU/ml (Endotoxin Units/ml) as determined over 3, 24 

hour, washes in 5% SDS and water (negative control). 

Figure 4-5 - Representative photographs of the microscopy images of in vivo tests. (A) Femoral-

femoral artery BC graft placement, (B) luminal surface of the graft with cell adhesion on the surface 

of the graft along and some cell infiltration, (C) external surface of BC graft showing formation of neo-

vessels (arrow), (D) external surface of the BC grafts showing a smooth transition from surrounding 

tissues into the BC graft with cell infiltration, (E) immunohistochemistry staining of CD31 positive 

cells forming neo-vessels on the luminal surface of the graft, (F) CD31 positive cell clusters on the 

luminal surface of the grafts. 
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Figure A-1 - Schematic representation BC vascular graft formation process. From left to right: the BC 

perforated with a sharp metallic needle, dried by capillary action and shaped into a cylinder and 

finally freeze-dried. 

Figure A-2 - Surface profiles of Porcine Femoral Artery (A), BC graft (B), ePTFE graft (C) and a PET 

graft (D). The plots were obtained from 5 separate linear measurements (2000 points/mm) over 2 

cm (3cm for BC), spaced 1mm apart and plotted in a 3D graph. 

Figure A-3 - Cryo-SEM images of a portion of the cross-section of the graft wall. (A) and (B) 4000x 

magnification with noticeable dense regions layered between open-pore structures; (C) 10000x 

magnification of the dense BC regions; (D) 10000x magnification of the open-pore structures and (E) 

10000x magnification of the edge of the luminal surface of the graft. (F) is a schematic representation 

of the interface between the luminal surface and inner wall structure. 
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Figure A-4 - Endotoxin (LPS) concentration in EU/ml (Endotoxin Units/ml) as determined over 3, 24 

hour, washes in 5% SDS and water (negative control). 

Figure A-5 Representative photographs and Haematoxylin and Eosin histopathological microscopy 

images of in vivo tests. (A) Femoral-femoral artery BC graft placement, (B) Doppler Sonography 

screenshot showing blood flow through the BC graft after one month of implantation, (C) 100x 

magnification of the luminal surface of the graft with cell adhesion on the surface of the graft along 

and some cell infiltration, (D) 200x External surface of BC graft showing formation of neo-vessels 

(arrow), (E) External surface of the BC grafts showing a smooth transition from surrounding tissues 

into the BC graft with cell infiltration, (F) 200x magnification of a cell population in a transitional 

region from adventitia into the BC grafts. 
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Table 4-1 - Mechanical test results for Porcine Femoral Artery (PFA), ePTFE the BC Graft and 

unprocessed BC (n=5). Values marked with an asterisk (*) are not statistically different from each 

other in their respective columns (p>0.05). Data is presented as mean ± standard deviation. 

Table 4-2 - Suture Retention strength (N) of several autologous and synthetic grafts for Tissue 

Engineered Blood Vessels (TEBV), Internal Mammary Artery (IMA), Polytetrafluoroethylene 

(ePTFE), Fibrin and Fibrin/polylactic acid (PLA), Human Saphenous Vein (HSV), Collagen and 

Bacterial Cellulose (BC). Suture retention strength for the BC graft and untreated BC are not 

statistically different (p>0.05; n=4) 

Table 4-3 - Compliance (presented as value x10-2 %/mmHg) with standard deviation (SD) as 

collected from the literature for Internal Mammary Artery (IMA), Human Saphenous Vein (HSV), 

Human Iliac Artery (HIA), Tissue Engineered Blood Vessel (TEBV), Polyurethane (PU), Polyethylene 

terephthalate (PET), expanded Polytetrafluoroethylene (ePTFE), Bacterial Cellulose/Chitosan blend 

(BC/Chi) and measurements for the compliance of the BC grafts as measured externally and 

internally (n=5). 
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Table A-1 - Mechanical test results for Porcine Femoral Artery (PFA), ePTFE the BC Graft and 

unprocessed BC (n=5). Values marked with an asterisk (*) are not statistically different from each 

other in their respective columns (p>0.05). Data is presented as mean ± standard deviation. 

Table A-2 Suture Retention strength (N) of several autologous and synthetic grafts for Tissue 

Engineered Blood Vessels (TEBV), Internal Mammary Artery (IMA), Polytetrafluoroethylene 

(ePTFE), Fibrin and Fibrin/polylactic acid (PLA), Human Saphenous Vein (HSV), Collagen and 
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Bacterial Cellulose (BC). Suture retention strength for the BC graft and untreated BC are not 

statistically different (p>0.05; n=4) 

Table A-3 - Compliance (presented as value x10-2 %/mmHg) with standard deviation (SD) as 

collected from the literature for Internal Mammary Artery (IMA), Human Saphenous Vein (HSV), 

Human Iliac Artery (HIA), Tissue Engineered Blood Vessel (TEBV), Polyurethane (PU), Polyethylene 

terephthalate (PET), expanded Polytetrafluoroethylene (ePTFE), Bacterial Cellulose/Chitosan blend 

(BC/Chi) and measurements for the compliance of the BC grafts as measured externally and 

internally (n=5). 
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Aims and Thesis Outline 

Cellulose is the most common naturally occurring polymer on the planet. Bacterial 

cellulose (BC) is identical to plant cellulose but is excreted pure by bacteria of the 

Gluconacetobacter genus. It is a linear chain of glucose monomers linked by β (1→4) 

polysaccharide bonds that forms a hydrogel that has been widely studied for 

potential biomedical applications among which are vascular grafts. The aim of this 

thesis is precisely to address one of those potential applications: BC and BC/PVA as 

potential vascular bypass grafts. 

Chapter 1 starts by presenting the reasoning behind the need for a vascular graft 

and the requirements a functional graft must meet. It goes on to present a review on 

some of the current polymers being studied for their potential application with a 

short state of the art for each. 

The initial approach of the work presented here was to use a method described in 

the literature for graft production and develop it in order to produce a viable graft 

solution. The method adopted for this was the development of a BC/PVA 

nanocomposite material. The theory was that BC and PVA would produce an 

interpenetrated network of fibers. The resulting nanocomposite would take on 

properties of both polymers.  

Any blood contacting material, especially in the case of a vascular graft, must be well 

characterized in regards to hemocompatibility and thrombogenicity. The work 

pertaining to this characterization resided in Chapter 2. Three common 

hemocompatibility indicators were assessed along with a more in depth analysis 

that allowed a greater assessment of the mechanics behind the good 

hemocompatibility and non-thrombogenicity of both BC and BC/PVA. 

In Chapter 3 further characterization of the nanocomposite is presented; now on a 

mechanical and morphological level. The nanocomposite would necessarily need to 

perform well on a mechanical level in order to be viable. As such mechanical 

characterization was a necessary requirement. However, during the course of the 

study presented in this chapter, dramatic changes to the fibrilar structure of the 
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dried nanocomposite were revealed. The chapter focuses closely on those 

morphological changes and their significance to the performance of BC/PVA 

Through several different modifications performed to the production methods of 

the graft and formulations of the nanocomposite a novel method for production was 

found, studied and developed. The methodology allowed the production of a graft 

that outperformed all previous iterations in mechanical strength and compliance 

while retaining the hemocompatibility qualities of BC. The small differences found 

between the behaviors of BC/PVA and BC did not seem to justify the continued use 

of PVA and so, PVA was abandoned, at least for now, in favor of a more cost-efficient 

and logistically simpler methodology.  

This production method is described in Chapter 4 along with a mechanical and 

morphological characterization, of special note the study of the mechanical 

compliance. Furthermore, in chapter 4, the performance of the graft in a live animal 

model was also studied and is also presented The novel methodology outlined in 

this chapter proved effective and reproducible having ultimately led to an 

application for a provisionary patent (included as Annex A). 

In the final Chapter (5) a general conclusion of the work is presented and future 

perspectives, in regards to the further development of the graft, are outlined. 
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Chapter 1 

Polymers in Vascular Grafts 

 

Adapted from: Leitão, AF; Silva, I; Faria, M; Gama, M; Polymers in Vascular Grafts in Encyclopedia of 

Biomedical Polymers and Polymeric Biomaterials; Taylor & Francis; 2014 (in Press) (DOI: 10.1081/e-ebpp-
120050697) 

 

 

Cardiovascular disease (CVD) is one of the major leading causes of death in today's world. 

Among the most common is atherosclerosis, a thickening of the arterial wall to the 

buildup of plaque. When the disease causes complications, due to occlusion of the vessel 

or arterial wall lesions that ultimately lead to thrombosis, usually a bypass is required to 

redirect blood flow around the occluded vessel. The preferred vessels for the bypass 

procedure are autografts, veins and arteries culled from the patient. When these vessels 

are not available, due to the natural progression of the disease or prior procedures, 

synthetic alternatives must be used. These alternatives are created from polymeric 

materials that can substitute the autografts completely and remain in the patients for 

years and decades or serve as a temporary substitute that will allow tissue-engineering. 

In this chapter we intend to show some of the polymers that are currently being studied, 

and two in particular that have been in use for over 50 years; that can one day serve the 

purpose of substituting the autografts completely and provide a better future for patients 

worldwide. 
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Introduction 

 

Cardiovascular disease (CVD) is a broad term encompassing several different diseases 

among which atherosclerosis and hypertension are the most common. The causes, 

prevention, and/or treatment of all forms of CVD remain active fields of biomedical 

research, with hundreds of scientific studies being published on a weekly basis. The 

ongoing research in the various fields that are related to this topic all have one single 

objective: improving the quality of life of patients worldwide via prevention of the disease 

and by finding better courses of treatment.  

The leading cause of death associated with vascular disease is atherosclerosis, a 

syndrome that affects arterial blood vessels. Atherosclerosis is defined as a chronic 

inflammatory response in the walls of arteries, closely associated with high cholesterol 

levels in the blood, and can remain asymptomatic for decades. Eventually the blood flow 

through the affected arteries can be cut off completely and blood flow must be 

reestablished around the occluded vessel. In these extreme cases the most common 

procedures performed are bypass surgeries. 

Since the 1950s, when autologous vessels are not available to perform the bypass 

procedure, synthetic alternatives have to be used. The current, most common synthetic 

alternatives, are known simply as Dacron and expanded polytetrafluoroethylene 

(ePTFE). They have been used countless times in life saving procedures. While they 

perform well, as long as certain conditions are met, they are not perfect and do not 

provide a definitive solution.  

Much research has focused on improving the current grafts and/or discovering new 

better grafts and material combinations. Research has focused on polymeric materials; 

either non-degradable polymers that remain in vivo for undetermined periods of time or 

biodegradable polymers that serve as tissue-engineering scaffolds, ultimately allowing 

for native tissue to form a new blood vessel. Our objective in this entry is to outline the 

need for the prosthetics, the standardized methodologies to assess their viability, an 

unbiased review of the current state of research being performed on several polymers 

with the objective of developing new synthetic vascular grafts and finally what we 

consider to be the future perspectives of the research performed in this ongoing field. 
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CVD: the need for vascular grafts 

 

The World Health Organization (WHO) estimates that 17.3 million people died in 2008 of 

cardiovascular disease (CVD), of which 80% occurred in low- and middle-income 

countries. The American Heart Association (AHA) estimates that, from 1999 to 2009, the 

relative rate of death attributable to CVD declined by 32.7%. Yet, it is still responsible for 

1 of every 3 deaths in the United States (one every 40 seconds) [1]. On the basis of CVD is 

atherosclerosis, a complex disease involving the heart and blood vessels and is 

responsible for several disorders such as stroke, myocardial infarction and peripheral 

arterial disease (PAD). 

Atherosclerosis was described for the first time in 1904 by Marchand to define arterial 

stiffening in association with fatty degeneration. Atherosclerosis is a systemic disease 

affecting large and medium-sized arteries. Accumulation of lipids in both smooth muscle 

cells (SMCs) and macrophages leads to inflammatory response and arterial thickening, 

which plays a major role in atherogenesis [2]. 

Atherosclerotic plaques remain asymptomatic, below critical stenosis (>70%), due to 

compensatory vessel enlargement and to the development of collateral circulation in 

response to chronic hypoxia. Chronic injury leads to endothelium dysfunction, increased 

oxidative stress and reduction in bioactivity or synthesis of endothelium-derived nitric 

oxide (NO), which results in a reduced vascular tone and ischemia [3-5]. The 

atherosclerotic plaque may become unstable, ulcerate and rupture with subsequent 

distal embolization or vessel occlusion due to exposure of the highly thrombogenic sub-

intimal surface. The exposure of the sub-intimal surface promotes platelet adherence and 

activation – atherothrombosis [6] – leading to the acute clinical presentations or 

worsening of a chronic controlled disease, followed by a high morbidity and mortality. 

Despite significant improvement in medical and surgical management of CVD, 

atherosclerosis still remains a serious life-threatening disease [2]. 

Cardiovascular risk factors play a major role in atherosclerosis pathogenesis. They may 

be hereditary or acquired, related to behavioral or environmental factors. The 

INTERHEART study, spearheaded by Dr. Yusuf and colleagues over 52 countries, found 

that 90% of myocardial infarction risk factors were abnormal lipids, smoking, 

hypertension, diabetes, abdominal obesity, psychosocial factors, irregular diet and an 
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absence of a planned exercise program [7]. We now have overwhelming evidence that 

risk factor control is highly cost-effective and significantly reduces CVD morbidity and 

mortality. 

Clinical manifestations of CVD manifest mainly as cerebral vascular disease, coronary 

heart disease and PAD, and can cause severe disability with great limitations in patient 

habits and decreased quality of life or even death. PAD is a chronic disease with 

prevalence in several epidemiologic studies in the range of 3-10%, increasing to 15-20% 

in people over 70 years of age [5]. Initially asymptomatic, it can become progressively 

symptomatic presenting with pain in the calves due to exercise – intermittent 

claudication (IC) – and, when severe, evolves to critical ischemia (CI) with a high risk of 

limb loss. Patients with CI have high amputation rates: 25% will be amputated at time of 

diagnosis and another 30% over the following year [8]. In association with PAD, these 

patients have other co-morbidities as a consequence of diffuse atherosclerosis 

involvement with the heart, cerebral-vascular and kidney disease. In PAD´s treatment we 

have to recognize the disease, quantify the extent of local and systemic disease, identify 

and control risk factors, and establish a comprehensive treatment program [8]. 

In vascular surgery, surgical bypass is fundamental in the treatment of arterial and some 

venous diseases (Figure 1-1A). Vascular grafts are used to replace, bypass or maintain 

function of damaged, occluded or diseased blood vessels of small, medium and large 

diameter. The chosen conduit and its success depend on several factors such as 

availability, size, ease of handling and technical facility, thrombogenicity, resistance to 

infection and dilation, durability, long-term patency and price. 

Depending on the target vessel different options of autografts can be considered. In 

coronary surgery the best conduits are internal mammary artery, radial artery and long 

saphenous veins (LSV). Visceral arteries are also best substituted by LSV or by the iliac 

vessels, hypogastric and more uncommonly by the external iliac artery [9]. In PAD 

surgery the most common autograft in use is the long saphenous vein (using either the 

reversed or “in situ” techniques) and diameters of 3mm are required for good long term 

results [10]. Short saphenous vein or arm veins can be an alternative when no LSV is 

available. Autologous vein grafts remain the conduit of choice for infrainguinal 

revascularization, and long-term results are quite good when a good run-off is present 

[10]. Infrainguinal vein graft failure still occurs in 20- 50% of cases, and remains a major 
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problem for vascular surgeons and patients. Recovery of the thrombosed vein graft has a 

very low patency. Furthermore, replacement of a failed bypass graft with a new one 

requires that the surgeon finds an alternative graft for limb salvage. Thus, the results of 

repeat bypass surgery, after failed previous bypass, are inferior to those of primary 

bypass surgery. It is therefore imperative to maintain the patency of infrainguinal bypass 

grafts [11]. Autogenous arterial or venous conduits are not always available, due to 

venous insufficiency or inadequate LSV diameter/length, previous harvest of vein for 

cardiac surgery or previous varicose vein surgery. These factors raise the need for 

alternative grafts. At present, these include autologous or non-autologous biological 

grafts (obtained using different methods for harvesting and preservation), tissue 

engineering (using either synthetic- or biological-based scaffolds for cell seeding), 

endovascular methodologies [12], gene therapy [13] and non-degradable synthetic 

grafts. 

For large vessel replacement, graft size match, resistance to infection and durability are 

of great importance. Aorto-iliac reconstructions have blood flow properties that allow 

long patency due to minimal tissue ingrowth and endothelial repopulation [9]. Infra-renal 

aortic graft diameters range from 16 to 22 mm and, Poly(ethylene terephthalate) (PET) 

or ePTFE prosthesis—single tube or bifurcated—are the most commonly used (Figure 1-

1B and 1C). The size of the graft should be as close as possible to that of the native artery 

that is replaced. Ten-year primary patency is 89.2% for aorto-iliac bypass and 78% for 

aorto-bifemoral bypass [14]. The replacement of an aortic infected graft can be made with 

prosthetic grafts, arterial homografts or deep veins of the lower limb. The latter present 

a high grade of morbidity and increased operative time. Alternatively, arterial homografts 

are a solution with good early results but a high grade of late degeneration. A study 

comparing cryo-preserved arterial homograft with silver-coated Dacron grafts for the 

treatment of infected aortic grafts demonstrated comparable effectiveness with respect 

to early mortality and midterm survival. Graft-inherent complications, aneurismal 

homograft degeneration, and reinfection of the silver-coated grafts, have also been 

observed [15]. 

In peripheral lower limb bypass there are two types of arteries to be replaced: femoral 

and popliteal arteries, with a medium size (6-8mm), and distal popliteal, tibial, peroneal 
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and foot arteries with small size arteries (<6mm) [9]. With the expanding use and 

indications for endovascular surgery, the number of vessels needing replacement is 

decreasing, with a lower rate of preoperative morbidity. Treatment of the common 

femoral artery has limitations due to increased rate of infection in groin surgeries. 

Bypasses at and from common femoral artery should, when possible, be performed with 

an autologous graft. 

In small size arteries (< 6mm), intimal hyperplasia at the proximal or distal anastomosis 

site is of paramount importance. In these grafts, thromboresistance of the inner lining, 

shear stress and behavior of the conduits are important aspects in the choice of the graft. 

In these cases, autologous grafts are again the best choice. 

Figure 1-1 - Photographs of the surgical 
application of the three most common bypass 
grafts. A) a vein graft, B) Dacron graft and C) 
and ePTFE graft. 
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Femoro-popliteal bypass may be made with a synthetic graft when the distal anastomosis 

is above the knee and the patient has no ulcer that can increase the risk of graft infection. 

In the case of bellow knee bypass, LSV is the preferred choice. A meta-analysis of femoral-

popliteal bypass grafts for lower extremity arterial insufficiency refers that primary graft 

patency was 57.4% for above-knee ePTFE, 77.2% for above-knee vein, and 64.8% for 

below-knee vein at 5 years; there was a significant difference between above-knee grafts 

at 3, 4 and 5 years [14]. Another study reported a similar patency, to the aforementioned 

study, for infragenicular bypasses with ePTFE for limb salvage in above-knee (27%) and 

below-knee (25%) over 5 years [16]. 

When LSV is unavailable, alternative techniques have been applied to increase patency, 

such as the use of a cryopreserved allografts, composed synthetic-LSV graft, vein cuffs 

and ePTFE cuffs at the distal anastomosis in order to reduce the risk of intimal 

hyperplasia [10]. These technical maneuvers and the use of numerous pharmacological 

adjuvants, included at the time of production or implantation, are of paramount 

importance to increase artificial vascular grafts patency. In carotid surgery Dacron 

patches are used routinely in most centers for carotid endarterectomy and carotid 

bypasses are used in the treatment of aneurismal disease of the carotid artery. 

Autogenous LSV, again, is the first choice for carotid bypass, although high rate of 

restenosis has been described [17]. Alternative, PTFE prosthesis can be used due to the 

high flow and short length, with long term graft patency of 95-97% [18]. 

Arteriovenous grafts (AVG), used to connect an artery to a vein, are commonly used in 

hemodialysis patients. In these patients it is need a high flow graft that is also durable, 

resistant to infection and to continuous trauma (due to multiple puncture, two to three 

times a week) to guarantee an efficient hemodialysis for the patient. Autogenous veins 

are the conduct of choice, with an emerging of new techniques to recover the arm veins, 

and only in extreme cases, prosthetic grafts are considered. 

 

Vascular Graft Requirements 

 

As described above, by far, the preferred grafts are autogenous, i.e., the donor and the 

patient are the same individual and this vastly decreases the risk of rejection. However, 
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the progression of the disease in these patients many times limits the availability of viable 

vessels. When this occurs two alternatives are available: biological (which can be 

allografts or xenografts) or synthetic grafts (which consist of polymers that can be either 

synthetic or biological).  

The biological alternative to the autogenous vessels are allografts and xenografts. 

Theoretically, biografts meet all the conditions for the best vascular graft. They promise 

“off-the-shelf” availability, a wide variety of sizes, excellent handling characteristics, and 

patency rates similar to those of autogenous vessels [9]. Disappointingly, clinical 

applications of these grafts have not met the high expectancy awaited. This is in large part 

due to the lack of long-term patency associated with tissue degeneration. 

Therefore a large amount of study has gone into assessing and discovering a synthetic 

alternative graft vessel. A viable synthetic vascular graft should combine fundamental 

characteristics that are inherent to autografts: biocompatibility, namely 

hemocompatibility, and mechanical compliance. Hemocompatibility is linked with the 

blood-material interaction, the mechanisms of which are still not completely understood. 

However, it is well established that the material should provide a minimal risk of 

hemolysis, clotting and thrombosis, along with a minimal risk of infection or triggering of 

the immune response.  

Biocompatibility, particularly in the case of a tissue engineering approach, ultimately 

refers to the ability of the biomaterial to stimulate cell adhesion, invasion and 

proliferation. The grafts should allow for the migration of cells from the surrounding 

tissues in order to, at least, produce an endothelium on the luminal surface of the graft. 

In tissue engineered approaches, where cell-seeding might be adopted, this will allows 

for gradual cell migration, proliferation and production of an extra-cellular matrix while 

at the same time the material is slowly degraded.  This approach allows the synthetic graft 

to be completely substituted by newly formed native tissue, thus reducing the risk of 

long-term deterioration and improve the overall long-term patency. 

Finally, and of no less importance, is the matching of mechanical properties. The grafts 

should provide mechanical characteristics similar to those of the native vessels, 

especially in terms of compliance, in order to allow for a consistent and uninterrupted 

blood flow through the graft. This will ultimately avoid problems such as intimal 

hyperplasia, which is closely associated with mismatch of mechanical properties [19, 20]. 
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Methods for Analysis and Testing 

 

Over the years several assays and tests have been suggested in order to determine the 

viability of synthetic grafts before advancing to any clinical assays. The main guidelines 

for hemocompatibility testing are laid out in ISO 10993-4. Essentially, the ISO lays out 

that it is necessary to perform assays for immunology (complement system), hematology, 

platelets, thrombosis and coagulation. 

Complement activation- is the most relevant test for determining the immune response 

to a blood contacting material. It can be performed in vitro by exposing isolated 

complement proteins to the material surface and determining the decrease in total CH50 

levels, a classical approach, alternatively the determination of C3- and C5-convertase 

cleavage products formed over time. The amount of cleaved products can be easily 

determined by semi-quantitative Western blot and compared with baseline levels in 

order to determine activation of the complement system. Currently there are no clearly 

determined acceptable levels and data is generally presented as comparisons with other 

materials. The American Society for Testing and Materials (ASTM) F1984-99 and ASTM 

F2065-00 standards should be considered when assessing this particular parameter. 

Hematology– is generally assessed by determination of the hemolytic index and can be 

determined by the method suggested by the Standard Practice for Assessment of 

Hemolytic Properties of Materials from the ASTM F756-00, 2000. Additionally, leukocyte 

activation via microscopic analysis or flow cytometry, for determination of L-selectin and 

CD11b expression, are also indicators of hemolytic activity of a material. 

Pro-coagulant Activity– several tests can be explored in order to thoroughly evaluate the 

potential activation of the coagulation cascade by surface-material interaction, i.e., 

coagulation triggered by the intrinsic (or contact) activation pathway. The contact 

activation pathway is a result of direct activation of Factor XII, via conformational change 

induced by exposure to the material surface. Direct quantification of how much activated 

Factor XII is produced can be achieved by use of a chromogenic, or fluorogenic, substrate 

that is broken down by the activated form of Factor XII [21, 22]. Alternatively, indirect 

assessment of the activation of this pathway can be made by determination of the partial 

thromboplastin time or plasma recalcification profiles [23, 24].  
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Thrombogenicity- Platelet-material interactions can lead to both platelet activation 

and/or adhesion, depending on their state of activation and the presence of ligands [25, 

26]. Ultimately, the involvement of activated platelets along with the coagulation cascade 

results in the formation of a thrombus (Figure 1-2). The clearest in vitro measure of the 

thrombogenicity is the determination of whole blood clotting time through 

spectrophotometric analysis. Scanning Electron Microscopy, and to a lesser extent light 

microscopy, are also useful tools in determining platelet adhesion and activation, though 

the cues here are visual (formation of pseudopodia and platelet aggregates) rather than 

biochemical. Activation and subsequent adhesion of platelets can also be determined by 

fluorescence and confocal microscopy. Most assays suggested for determination of 

thrombogenicity must be tested in dynamic (preferably in vivo) conditions. Angiography, 

intravascular ultrasound, Doppler ultrasound, computer assisted tomography (CAT) and 

magnetic resonance imaging (MRIs) are useful tools for the determination of the in vivo 

performance in regard to percentage of occlusion and flow reduction. Also it is important 

to analyze, after in vivo placement, the gravimetric analysis of the thrombus mass and 

histological inspection of the prosthesis and surrounding tissues. 

Figure 1-2 -  - Schematic representation of activation and amplification pathways of coagulation by activator complexes 
(generating thrombin for platelet activation and fibrin formation) and thrombus formation on disrupted atherosclerotic 
plaques. 
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Platelet activation- It is paramount that platelet activation be minimized in blood 

contacting materials. The extent of free platelet activation can be easily determined by 

cytometric analysis. Platelets are exposed to the material surface and the presence of 

certain activation markers (like CD62P or CD63) determined with the use of fluorescent 

antibodies. Also, the formation of platelet aggregates due to material activation should be 

determined by means of an aggregometer. These tests can be performed both in vitro and 

in vivo. Other in vivo tests that are important for assessment of platelet activation are 

determination of platelet count, template bleeding time (as a measure of platelet 

function) or alternatively platelet function analysis with collagen filters. Additionally 

gamma labeling and platelet lifespan assays are good measures of platelet viability.  

Mechanical properties - The mechanical properties of the graft must assure adequate 

mechanical compliance. As discussed above the mechanical compliance is paramount in 

order to allow an uninterrupted pulsatile flow through the vessel matching the 

mechanical characteristics of the surrounding tissue. This parameter can be quantified 

by setting up a pulsatile flow into a graft and measuring the volume changes caused by 

the increase in pressure. The best possible graft will match the compliance of the native 

vessel it is intended to substitute. Assuring mechanical strength and compliance will 

minimize the risk of mechanical failure of the graft. 

In vivo tests - The final assays before potentially moving on to a clinical trial are in vivo 

tests. The in vivo tests can produce useful information to build on any of the 

aforementioned assays and also provide a realistic view of the behavior of the grafts in a 

complex and dynamic system that simply cannot be reproduced in vitro. These assays 

generally are performed simultaneously with some of the above tests in order to provide 

a back and forth feedback. Care should be taken into choosing an appropriate animal 

model. A rat or mouse model is an appropriate one in order to determine the feasibility 

of the graft over a significant portion of the animal´s life, since their life cycle is short 

(circa 24 months), rapidly providing insight into feasibility. However, the mechanics and 

body response of a small animal model are significantly different from those of a larger 

one and therefore other models such as dog (though today it is rarely used due to ethical 

and social issues), sheep and pig should also be considered. These larger animals provide 

many more surgical implantation options and a longer life cycle that can produce results 

that are more in line with what can be expected in humans. Another important parameter 
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is precisely the placement of the prosthetic graft. The placement in a high-flow vessel, 

such as the rat aorta or a sheep's carotid artery, will provide different results from a low-

flow vessel, such as the femoral artery of a dog or pig. Nevertheless, translation of in vivo 

results to humans is not always straightforward. 

 

Non-Degradable Polymers 

 

The current standard polymers for synthetic vascular grafts are PET (Dacron) and ePTFE 

grafts, synthetic non-degradable polymers that offer a conduit for life and limb saving 

surgeries when autografts are not available. However, as present in the market today, 

these materials have inherent problems that need to be overcome. One of the broad 

possibilities that are currently being researched is the development of novel graft that 

can be readily implanted. The solution may very well be the development of permanent 

grafts that can out-perform the current options in regards to long-term patency (Figure 

1-3). Towards that end the following are the current focus in research in this field. 

 

Poly(ethylene terephthalate) 

 

Poly(ethylene terephthalate) (PET) is a thermoplastic polymer resin of the polyester 

family. It can exist as both an amorphous and a semi-crystalline polymer depending on 

processing and thermal history. Since, its introduction in 1939 by DuPont, later patented 

in 1950 as Dacron®, it has found numerous applications namely as a synthetic fiber (over 

60% of its applications). Thermoforming applications make up the bulk of remaining uses 

found for this polymer with a small percentage being used as an engineering resin often 

in combination with glass fiber. 

It is a relatively inert, hydrophobic and bio-stable polymer that presents a high tensile 

strength (40-180MPa) and Young's modulus (3-14GPa), values varying widely based on 
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preparation and dimensions [27]. PET has been widely studied for biomedical 

applications in cardiovascular surgery, as ligaments, joint replacements, implantable 

sutures and surgical meshes [28-32]. Under the aforementioned name Dacron, it has been 

used as an aortic vascular graft as far back as 1957 when DeBakey performed a 

substitution of thoracic and abdominal aorta and of proximal peripheral vessels. To this 

day, PET is still one of the most commonly used synthetic grafts in large caliber (>8mm) 

bypass surgery performed above the waist [33] since it is a cheaper alternative to ePTFE. 

Patency rates for PET have been continuously improved and have been shown to remain 

patent for up to 8 years after implantation [34]. A prior study actually showed that PET 

Figure 1-3 - Chemical structure of non-protein polymer monomers. The chemical structure for 
polyurethane is a representation of one possible polyurethane. 
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patency could go up to 25 years, though the follow-up rate was under 20% after 10 years 

[35]. 

However, when PET vascular grafts are implanted they trigger the activation of the 

intrinsic pathway of blood coagulation resulting in surface-induced thrombosis [36]. This 

is most prevalent when the diameter of PET vascular grafts is smaller than 6mm. There 

is a considerable reaction between PET and the native artery, as well as with blood, 

causing a rapid build-up of fibrin at the blood/graft interface [37]. This is due to both the 

hydrophobic nature of PET, which has been shown to induce protein adhesion [38], and 

also the low-flow of small caliber vessels. This ultimately results in graft failure and poor 

clinical results. Hence, the patency of small-diameter PET vascular grafts needs to be 

improved. The PET vascular grafts are produced by two different methods. Woven, in an 

over-and-under pattern in the lengthwise and circumferential directions, or the more 

commonly used knit grafts, by looping the fibers in an interlocking chain, into cylindrical 

and longitudinally crimped grafts [39]. The crimping of the graft increases flexibility, 

elasticity, and kink resistance. However, after implantation, these properties are lost as a 

consequence of tissue ingrowth on average after 7 years [40]. The grafts incorporate a 

velour finish which increases the surface area. This elevates the number of anchorage 

points for both fibrin and cells in order to promote tissue integration. The 

weaving/knitting method of producing the grafts allows them to be shaped and branched 

so as to fit any needed requirements and mechanical properties can be tailored so as to 

allow for better compliance with the native arterial wall at the site of anastomosis. 

The production method of the grafts has remained essentially the same over the years. 

The knit PET grafts have been impregnated with gelatin [41], albumin [42] or collagen 

[43] in order to improve their hemocompatibility. Another approach to ameliorate 

hemocompatibility is surface modification. The chief methods of surface modification of 

blood-contacting biomaterials involve coupling bio-agents or increasing hydrophilicity. 

Heparin has been bonded onto PET grafts showing positive results, namely increasing 

plasma recalcification times [44] and overall in-patient patency [45]. Silver particles have 

also been bound to the PET grafts to reduce infection and are currently used in cases 

where an infected graft has to be substitute [15, 46, 47]. Amination, may also lead to 

improved patency without any loss of mechanical properties [48, 49]. However, the 

chemically inert nature of PET impedes significant bonding of functional groups and so 
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surface modification, such as plasma treatments, have been explored in order to augment 

the number of e.g. heparin-PET bonds.  

 

Expanded polytetrafluoroethylene 

 

Polytetrafluoroethylene (PTFE) was discovered in 1938, patented in 1941 and its 

commercial name, Teflon, trademarked in 1945 by the DuPont Co. Roy Plunkett. 

Expanded polytetrafluoroethylene (ePTFE) is a processed version of PTFE. PTFE is 

heated and rapidly stretched, the end result is that a microporous structure with 70% air 

is obtained. The process was discovered in 1969 and patented, under the name Gore-Tex, 

in 1976. PTFE and ePTFE have found numerous applications such as high-performance 

fabrics, medical implants, filter media, wire and cable insulation, gaskets, lubricants and 

sealants. 

The PTFE molecule is chemically inert and biostable, due to the nature of the carbon-

fluorine bond, and has been found to be less prone to biological deterioration than PET 

[50]. It is also very hydrophobic, due to mitigated London dispersion forces associated 

with the high electronegativity of fluorine. The electronegativity of the graft surface 

minimizes its reaction with blood components [51]. Mechanically ePTFE is stiffer than 

both the native arterial walls and PET. This can be a cause of graft failure due to pseudo-

intimal hyperplasia. The Young's modulus for these grafts is around 3-6MPa [52, 53]. 

Comparatively in native arteries and veins (in a canine model) the Young's modulus is 

around 600 (circumferentially) and 900kPa (longitudinally), while PET registers 12MPa 

circumferentially and 0.7 MPa longitudinally.  

The ePTFE graft for vascular applications, produced by extrusion, is a non-textile porous 

tube composed of irregular-shaped solid membranes (“nodes”). Between these solid 

nodes are fibrous regions and so the overall porosity of the graft is defined by its inter-

nodal distance (IND) (available options vary between 30-90µm). The first ePTFE grafts 

were first introduced experimentally in 1972 and clinically in 1975 in a portal vein 

replacement [54, 55]. PET and ePTFE are the most widely used synthetic vascular 

replacements with little difference in performance between them [56].  
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Despite the aforementioned mechanical compliance issues, ePTFE grafts are commonly 

used for peripheral vessel bypass, particularly for femoral artery bypass. However, over 

30 years since their initial appearance, research has achieved little improvement in 

regards to patency rates of ePTFE grafts [57]. Over a 5-year time period approximately 

50% of implanted grafts have been shown to be blocked [58] and over a 10 year time 

period a maximum of 28% primary patency (in above-knee femoro-popliteal bypass 

grafts) [59]. The problem with patency is exacerbated in small caliber grafts. The main 

cause of graft failure is strongly associated with thrombosis, due to the lack of endothelial 

cell coverage which leads to protein adhesion that ultimately promotes thrombosis [60-

62].  

Animal studies have demonstrated rapid endothelization after relatively short periods of 

time however, this has not transitioned into humans. After 10 years of implantation in 

human patients, the same grafts that provided a complete endothelization in animals, are 

almost completely deprived of endothelium [63]. Clinically, when endothelization does 

occur it is generally limited to 1-2cm from the anastomosis site [64]. This is partially due 

to low porosity of the standard ePTFE grafts (IND of 30µm). The low porosity does not 

allow for adequate transanastomic or trans-mural endothelization [33]. Studies have 

shown that a higher IND (60 or 90µm) promoted a more rapid endothelization in animal 

models [65, 66]. However, none of these studies have been demonstrated and proven 

clinically.  

In order to resolve the patency issues, a two-stage endothelial cell seeding protocol has 

shown to greatly enhance clinical patency rates to 90%, up to 52 weeks after 

implantation, on 3mm diameter coronary grafts [67]. Additionally, surface modification 

by carbon coating/impregnation [68], heparin coating (with the commercial name 

Propaten) [69, 70] and growth factor coating, with fibrin glue [71], have been attempted, 

though the latter seems to have been abandoned in recent years. Both carbon-coating and 

impregnation have been tested clinically and demonstrated no significant improvement 

in patency after 36 months [72, 73].  Heparin coating has been tested as a means to 

improve non-thrombogenicity and has demonstrated that, a luminal coating with 

immobilized heparin, improves primary patency and reduces intimal hyperplasia 

development over standard ePTFE grafts up to one year after implantation [74, 75].  
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Polyurethane 

 

Polyurethanes (PUs) belong to a class of compounds called reaction polymers. They arise 

from the reaction of an isocyanate with a polyol, via carbamate links. PUs are 

thermosetting polymers that form a foam that does not melt when heated. They can also 

be manufactured into a harder thermoplastic form that is used in medical applications. 

The thermoplastic PU used in medical settings present a high tensile strength, elasticity 

and ease of manipulation [76]. These mechanical and physical properties are extremely 

important in providing good mechanical compliance that ultimately prevents problems 

such as intimal hyperplasia. Along with its physical/mechanical properties, PU also 

presents good hemocompatibility, biocompatibility and microbial resistance [77, 78].  

Hemocompatibility of PU is, at least, on par with ePTFE [79]. Yet another aspect that has 

encouraged further study of PU is porosity. Fibrilar PU grafts can be produced by 

weaving, knitting, electrospinning, or winding [76, 78] while foam PU grafts can be cast 

and porosity controlled by gas expansion and laser perforation [76]. Results have shown 

good in vivo biocompatibility and accelerated endothelization in small caliber grafts 

(4mm) associated with the improved porosity. Incorporation of carbon nanotubes have 

also been explored in order to improve endothelization, in vitro, showing promising 

results [80]. Rapid endothelization (12 weeks after implantation) has been shown critical 

in preventing hyperplasia and improving patency [81]. Another approach, recently 

studied, involves a PU graft capable of controlled release of rapamycin, which inhibits the 

migration and proliferation of smooth muscle cells, thus avoiding intimal hyperplasia 

[82].  However, pore interconnectivity, a mandatory requirement in order to provide 

better tissue ingrowth, remains an issue with no clear solution. Blends of PU with 

collagen/elastin and also polycaprolactone have shown improvements in both 

mechanical compliance and cell invasion [83, 84]. 

First-generation PU grafts suffered hydrolytic biodegradation which ultimately led to the 

abortion of clinical trials [85]. Second generation PU have shown a pressing disadvantage, 

the material’s tendency to oxidize and degrade in vivo, creating problems after 

implantation, which could be overcome by chemically coating the surface with an 

antioxidant aids in reducing oxidation [86]. Given the good mechanical compliance (a 

step up as compared to ePTFE), hemocompatibility and potential for controlled porosity 
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- and despite in vivo degradation - several PU grafts are or have been studied. Mitrathane, 

Pulse-Tec, Vectra and Vascugraft are all brand names for PU grafts. Of these only Vectra 

is FDA approved however, the only application is for vascular access during hemodialysis 

which is a short-term application [87]. Continued study is necessary in order to produce 

small caliber PU graft for clinical applications. 

 

Polyvinyl Alcohol 

 

Polyvinyl Alcohol (PVA) is a nontoxic water-soluble synthetic polymer that forms a 

hydrogel once polymerized. It has excellent film-forming, emulsifying and adhesive 

properties. PVA is not prepared by polymerization of the vinyl alcohol monomer but 

rather partial or complete hydrolysis of poly(vinyl acetate). The removal of the acetate 

group can be controlled and alters the physical characteristics of the resulting PVA. This 

polymer presents high tensile strength and its flexibility is dependent on humidity. The 

water acts as a plasticizer, reducing tensile strength, but increasing elongation and tear 

strength. 

PVA-based materials can be prepared by casting and then cross-linked by irradiation, 

physical (by thermal cycling) or chemical treatment [88, 89]. The resulting hydrogels can 

be fine-tuned to present varying mechanical and physical properties, depending on 

number of hydrogen bonds. The hydrogel is biocompatible and non-irritating to soft 

tissues and, therefore, it has been of great interest in pharmaceutical and biomedical 

applications [90-92]. The FDA approved the use of PVA microspheres as an embolization 

agent and further applications have been found as contact lenses, wound dressings, 

coating agent for pharmaceuticals and catheters [93, 94]. 

As a potential vascular graft, PVA has been studied both on its own [95] and composited 

with other materials [96-98]. Several combinations of PVA with other synthetic and 

natural polymers, such as gelatin, chitosan, starch and bacterial cellulose, have been 

proposed and studied. In general, these studies have all presented positive results in 

regards to hemocompatibility, biocompatibility and mechanical compliance. The intent 

behind the formulation of these composites is generally to enhance endothelial cell 

adhesion and proliferation. Gelatin and chitosan are probably the most well studied of 



Chapter 1 – Polymers in Vascular Grafts 

AF Leitão 
22 

these combinations and have demonstrated good hemocompatibility and endothelization 

[99-102]. The PVA/bacterial cellulose composite was conceived as a means to enhance 

the mechanical properties of the PVA hydrogel, while still maintaining elasticity and 

malleability [96-98]. One of the rare studies demonstrating the in vivo performance of 

PVA based tubular structures was produced by Chaouat and colleagues [95]. In this study, 

a PVA sheet was either stitched or glued into a tubular shape and showed good patency 

after 1 week in a rat model. Extensive in vivo studies of vascular grafts of this kind are still 

lacking and so further work is needed to demonstrate its potential.  

 

Bacterial Cellulose 

 

Cellulose is the most abundant organic compound on Earth, a linear polysaccharide with 

β (1→4)–linked D-glucose monomers. Chemically, bacterial and plant cellulose are 

identical; however, bacterial cellulose (BC) is obtained pure (free of lignin, pectin or 

hemicellulose). It is produced, mainly by the Gluconacetobacter genus, as a fibrous 

network hydrogel at air-medium interfaces [103, 104]. The bacteria that produce 

cellulose are obligatory aerobes and produce the hydrogel as a pellicle [104], which can 

be exploited to grow into three-dimensional structures given that a three-dimensional 

oxygen permeable support is provided [105-107]. 

The BC hydrogel has several beneficial properties for use in the biomedical field, namely: 

high purity, high water-holding capacity, morphology, tensile strength, malleability, 

hemocompatibility and biocompatibility [103, 108, 109]. These characteristics have led 

to BC being long studied for biomedical applications such as wound dressings [110-112], 

artificial skin [113], tissue engineering scaffold [23, 104, 109, 114], synthetic dura mater 

[115] and as a vascular graft [107, 108, 116-118].  

Several studies addressed the use of BC as a vascular graft and have shown its potential. 

Dieter Klemm and his group have looked at the in vivo behavior of small diameter BC 

tubes. These studies, carried out over 4weeks, and later over 3 months, in a rat model, 

showed that a small diameter BC tube can remain patent in vivo [108, 118]. These studies 

also showed that in the course of the 4 weeks the BC grafts were completely covered with 

connective tissue and, after 3 months, the formation of a neointima. Another study later 
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demonstrated that, under the registered name BASYC, BC tubes remained patent, in mice, 

for up to a year. However, in vitro studies have shown that, while minimal, BC does 

slightly trigger coagulation. Indeed, studies by both Andrade et al and Fink et al [23, 119, 

120] showed that BC minimally activates coagulation. However, another study from the 

same group demonstrate that, comparing to ePTFE, BC has superior hemocompatibility, 

as assessed by the analysis of the activation of platelets and of the intrinsic pathway of 

hemostasis [24]. Attempting to improve the BC hemocompatibility, these authors used 

engineered cell-adhesion peptides (such as RGD), linked to a carbohydrate binding 

module, allowing the number and proliferation of endothelial cells on BC to be further 

improved [104].  

Surface modification via plasma treatment and addition of aminoalkyl groups has been 

shown to alter the surface properties of BC. Cell adhesion and proliferation was improved 

with plasma treatment and addition of aminoalkyl groups demonstrated antimicrobial 

properties similar to chitosan, these approaches may ultimately prove useful for 

improving vascular grafts [121, 122]. 

A drawback to BC is that it is not biodegradable; furthermore, its porosity is insufficient 

for cell ingrowth to take place. This limits the potential in regards to producing a graft 

that could, eventually, be substituted integrally by newly formed tissue. Despite this, the 

potential of BC for in vitro and in vivo tissue regeneration continues to be explored and 

shows great promise [107, 109, 116, 117]. 

 

Degradable Polymers and Tissue Engineered vessels 

 

A large portion of recent research into the development of novel vascular grafts has been 

focused on tissue-engineering approaches, by prior cell-seeding or by providing a scaffold 

that can be colonized in vivo by native cells, through migration and adhesion. A 

permanent vascular graft must offer definitive solutions especially in regards to long-

term patency and structural integrity that, at the moment, have yet to be achieved. 

Therefore, a possible solution has focused on providing a biodegradable scaffold, which 

temporarily serves as a conduit for blood flow while allowing cells to grow and break-

down the grafts, simultaneously producing native tissue and ultimately a new vessel 
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(Figure 1-4). The following degradable polymers are the current focus of research in 

attempts to provide a tissue-engineered approach to the vascular graft development field. 

 

Polycaprolactone 

 

Polycaprolactone (PCL) is a hydrophobic synthetic biodegradable polyester that has 

received a great deal of attention for use as an implantable biomaterial. This is due to its 

good mechanical properties, good biocompatibility and also, in large part, due to its slow 

biodegradability. PCL sheets have good mechanical properties but are somewhat limited 

in terms of compliance, though it is at least comparable to ePTFE and PET. It is however 

generally accepted that, as it is degraded and substituted by native tissue, compliance 

should improve over time due to elastogenesis [19]. 

Under physiological condition, such as in the human body, PCL suffer hydrolysis of its 

ester linkages. Generally, biodegradable graft approaches are viewed with some reserve. 

If in vivo degradation occurs too rapidly, as compared to overall cell growth, mechanical 

failure may occur ultimately leading to subsequent aneurysms and ruptures, which in 

turn can lead to internal bleeding and death. Degradation of PCL occurs at slow enough a 

pace, taking over 24 months to be completely absorbed, such that mechanical strength is 

guaranteed during cell invasion [19].  

PCL grafts can be easily generated by electrospinning with varying pore sizes and 

prosthesis thicknesses. This has led to several studies focusing on determining the 

Figure 1-4 - ECM organization and quantification at 90 days. (a) Verhoeff's, Masson's trichrome, and safranin O staining 
show elastin (black), collagen (blue), and glycosaminoglycansin (red). Immunofluorescent staining shows distribution of 
elastin (red), collagen I (green), and collagen III (red). Top: day 90 explant, bottom: native aorta. (Adapted by permission 
from Macmillan Publishers Ltd: Nature Medicine (Wu et al. J Mater Sci Mater Med. 2010, 21(12)3207-3215), copyright 
2012) 
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feasibility of an electrospun PCL vascular graft over the last 6 years [19, 123-127]. Several 

studies, performed in rat, both showed rapid and stable endothelization which were 

responsible for good cell invasion and patency over the course of the studies, as 

compared to ePTFE [19, 127-129]. However, the poor mechanical compliance and loose 

cell attachment showed some development of intimal hyperplasia in all the studies [19]. 

The long term studies also revealed a propensity for calcification of the prosthesis over 

time (usually in the last months of the assays) although they did not affect the end-term 

patency of the graft. 

In order to improve the mechanical compliance, issues that PCL has exhibited in vivo, 

several studies have focused on either pre-seeding the grafts with vascular endothelium 

cells [130] or creating nanocomposite grafts, with collagen, elastin and polylactide 

(Figure 1-5), all showing improved in vivo patency [131-133]. Similar approaches involve 

surface functionalization or the creation of a polymeric system (inclusion of bioactive 

molecules in the polymer fibers during the electrospinning process) which have also 

shown promising results, improving endothelial cell adhesion and hemocompatibility 

[134, 135]. Hybrid approaches of both incorporating other polymers and bioactive 

molecules have shown positive results [136, 137]. 

 

Collagen 

 

Collagen is the most abundant group of proteins found in animals, the most common 

among which is Collagen I. Once irreversibly hydrolyzed, collagen originates gelatin. It is 

the main component of the body; making up 25 to 35% of the protein content. As 

elongated fibrils, collagen can be found in many fibrous tissues of the body, such as 

tendons, ligaments and skin, and is also abundant in cartilage, bone, gut, inter-vertebral 

discs and blood vessels [138].  

As one of the major body components, it is biocompatible, biodegradable and has the 

advantage of being easily synthesized. This has led to it being abundantly researched for 

application in fields such as skin, cartilage, bone and vascular engineering and, 

additionally, as a drug delivery system [139-141]. The most common method of 

producing vascular collagen grafts is by electrospinning; however, the chemical nature of 



Chapter 1 – Polymers in Vascular Grafts 

AF Leitão 
26 

collagen makes it sensible to deterioration during the process. The alternate option is to 

use a cross-linking agent to create the tubular prosthesis. Glutaraldehyde is used for this 

purpose, and while increasing strength it often carries the risk of increased toxicity and 

calcification. Also, without the aided mechanical support provided by seeded cells or 

other stabilizing polymers, collagen tubes are mechanically weak [142]. On top of all this, 

it is difficult to precisely control the mechanical behavior of the grafts due to a lack of 

means to do so. Other than the mechanical compliance issues, and most importantly, 

Figure 1-5 - Macroscale characterization of a tissue engineering approach using a 
polycaprolactone/poly(l-lactic acid) grafts. (A) A graft before implantation. (B) A graft 
right after implantation. (C) A heparin-SDF-1α-treated graft at 4 weeks after implantation. 
Arrow indicates microvessels in the wall of the graft. (D–F) H&E staining of an untreated 
graft (D), a heparin-treated graft (E) and a heparin-SDF-1α-treated graft (F) at 4 weeks 
after implantation. Arrows in D indicate thrombus formation. (Adapted from Biomaterials, 
33(32), Yu et al, The effect of stromal cell-derived factor-1alpha/heparin coating of 
biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle 
progenitor cells for accelerated regeneration, 8062-74, Copyright 2012, with permission 
from Elsevier) 
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collagen is also well documented as thrombogenic and a pro-coagulant [143-146]. 

Indeed, while a constituent of the extra cellular matrix, collagen is normally not exposed 

to circulating blood. Once exposed, it triggers the activation of the Hageman factor and 

promote clotting and healing of an injured site [146]. 

Studies have, therefore, mainly focused on combinations of collagen and other polymers 

[125, 142, 147, 148], bioactive molecules [145] or cell seeding [149]. Cells easily adhere 

to collagen matrices and so many studies have focused on cell seeding (as mentioned 

above) with the dual intention of enhancing mechanical compliance and especially 

hemocompatibility. These approaches have provided a scaffold with adequate 

characteristics for small diameter vessels. A cell seeded collagen substrate with 

immobilized heparin demonstrated enhanced hemocompatibility and endothelial cell 

adhesion [145]. Some studies have researched the possibility of pure collagen prosthesis. 

A 2 mm (outer diameter) collagen vessel, seeded with both endothelial and smooth 

muscle cells, remained patent, in vivo, after 12 weeks [149].  

Ultimately, collagen I and its blends outperform many synthetic polymers by providing 

an extracellular matrix that is beneficial to cell differentiation and proliferation, with 

adequate mechanical behavior, given certain conditions are met [150]. The greatest 

application of collagen seems to be associated with enhancing other polymer grafts in a 

"supporting" role. Collagen shows therefore great potential; a construct consisting solely 

of collagen with no harmful crosslinking agent and adequate mechanical compliance and 

hemocompatibility would be a serious competitor in vascular tissue engineering. 

 

Elastin 

 

Elastin is a hydrophobic connective tissue protein polymer consisting of post-

translational modified and cross-linked tropoelastin monomers. As its name suggests it 

is elastic and allows tissues to retain shape memory, dictating tissue mechanics at low 

strains and preventing tissue creep [151]. At higher mechanical strains collagen then 

assumes the role of providing mechanical resistance, due to the low maximum tensile 

strength of elastin.  Elastin is the dominant extracellular matrix protein in arterial walls; 

organized as concentric rings around the medial layer of arteries and making up roughly 
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50% of their dry weight [152]. Elastin exhibits low thrombogenicity and several vascular 

devices, coated with elastin-based polypeptides, demonstrated reduced platelet adhesion 

and activation, overall improving in vivo patency [153, 154]. Additionally, elastin is an 

autocrine regulator of smooth muscle cell (SMC) activity that has an essential role in 

preventing fibrocellular pathology and regulating proliferation [155].  

The importance of the elastic properties and SMC regulatory activity has led to many 

studies aimed at inducing elastin biosynthesis in tissue-engineered vascular grafts. 

Several studies, using static collagen scaffolds seeded with SMC, did not show adequate 

elastin production [156-158]. However, further studies have shown that elastogenesis 

can be significantly improved by changing the scaffold substrate [151, 159], providing a 

mechanical stimuli [160-163] and also by the use of growth factors [151]. These cell 

seeding approaches have shown some success in promoting elastin deposition, the end 

result being the intended improvement in mechanical behavior, biocompatibility and 

hemocompatibility.  

Besides cell seeding, several methods of producing vascular grafts that incorporate 

elastin have been studied [164, 165]. Collagen [166], polyurethane [167], 

polydioxanone[168], PCL [169], gelatin and recently polyethylene glycol [170], and also 

combinations of these polymers [125], have all been electrospun into hybrid tubular 

grafts, with elastin, to produce viable vascular grafts. These approaches all have similar 

objectives, to limit the degradation rate and provide high mechanical resistance while 

allowing for the beneficial mechanical and chemotactic performance of elastin. As such, 

they have all shown potential in regards to mechanical, bio- and hemocompatibility.  

Attempts of incorporating elastin in tissue-engineered products and designing 

biocompatible synthetic elastic polymers are, however, still insufficient. A major 

drawback of a viable elastin graft is cost related. Tropoelastin is hydrophilic and easily 

susceptible to proteolysis, it is hard to isolate and readily reacts with other monomers. 

The main source of elastin - extraction from animal tissues - provides small amounts of 

the polymer at relatively high cost due to its insolubility in water, which prevents the use 

of conventional wet-chemistry techniques [171]. Further studies are needed to 

understand elastin biosynthesis in order to produce adequate elastin-incorporating 

and/or elastin-based grafts at cost-efficient methods. 

 



Chapter 1 – Polymers in Vascular Grafts 

AF Leitão 
29 

Fibrin 

 

Fibrin is the end-product of the coagulation cascade, produced by the conversion of 

fibrinogen to fibrin monomers, which polymerizes into an insoluble fibrin hydrogel 

network [172]. Fibrin seems an ideal scaffold for tissue regeneration since, in vivo, it acts 

as a "physiological scaffold" and plays a role in hemostasis, inflammation, wound healing 

and angiogenesis [173-175]. It has also been shown to promote cell migration into tissue-

engineered constructs, the cells then gradually replace the fibrin scaffold with native 

extra cellular matrix [176, 177].  

Fibrinogen can be isolated from the same patient that would receive the graft, thus 

lowering the risks of body reaction and infection [172, 178]. Conventionally fibrinogen is 

isolated from platelet poor plasma after freezing and thawing. However, this method of 

isolation has disadvantages: the quantity yield is relatively low (20-25%) and the 

production process is time consuming (2 days) [179]. The low yields would require large 

amounts of donor blood which is not a viable option. Alternative precipitation methods 

have been studied and, among them; ethanol precipitation, was found to be the most 

efficient with ~80% of fibrinogen precipitated [180].  

Fibrin has been used as a coating in vascular prosthetics in order to enhance the hemo- 

and biocompatibility of synthetic grafts [181]. Fibrin based vascular grafts have been 

studied towards applications in coronary and peripheral artery bypass, arterio-venous 

access grafts or for congenital pulmonary artery reconstruction in children [179]. 

However, the fibrin gel lacks suitable mechanical properties. The grafts generally contain 

a supporting, bioresorbable, macroporous mesh. The meshes provide the required 

mechanical support while prior cell seeding remodels the fibrin matrix. Polylactide [182] 

and polyglactin [183] have been used as support structures. The tubular prosthesis is 

then generally seeded with different combinations of EC, SMC and myofibroblasts and 

incubated before implantation [182] and have been shown to remain patent for up to 6 

months [184]. The major drawback with these approaches is the extremely long 

production time for the graft (circa 22 days) which prevents its application as an 

immediate alternative to current synthetic alternatives ePTFE and PET. 
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Silk 

 

Silk is a natural protein polymer composed of two proteins: fibroin, the insoluble protein 

that is the main structural center of the silk fiber; and sericin, a water soluble protein that 

forms a gum coating the fibers and allowing them to stick to each other. Most of the silk 

produced and used worldwide is obtained from the pupating larvae of the mulberry 

silkworm Bombyx mori. The cocoons are then soaked in boiling water, to soften the 

sericin, and the fibers unwound to produce a continuous silk thread.  Fibroin and sericin 

are separated in a degumming process. The resulting silk fibroin forms protein fibers 

with high tensile strength and high toughness, which have long found a home in medicine 

as a suture. From aqueous or organic solutions of silk fibroin it's also possible to form 

films, sponges, powder, gels and the regenerated fibers.  

Silk fibroin has many of the requirements of a good biomaterial: it has good mechanical 

properties, biocompatibility, hemocompatibility, low immunogenicity and is 

biodegradable [185-187]. This has led to it being extensively studied for biomedical 

applications [186, 188-195]. For vascular grafts, in particular, the biocompatibility of silk 

is extremely important. Cell adhesion and growth on silk scaffolds has been shown to be 

very good [196-199] and, with the aid of recent biotechnology developments, 

improvements can be made further enhancing cell adhesion [200]. The inclusion of cell-

adhesive sequences into the fibroin amino-acid sequence has been shown to enhance cell 

adhesion [195, 199, 201]. This cytocompatibility of silk fibroin has even led it to be 

studied as a coating for other polymeric materials in order to enhance cell adhesion [202]. 

As vascular grafts, silk fibroin can be woven [203], knitted [204], braided [205] or 

electrospun (using polyethylene oxide as an additive) [199] in order to produce tubular 

grafts with an open porous structure, this can easily be controlled through control of the 

flow rate [206]. Knitting and braiding require coating with an aqueous solution of silk 

fibroin, and usually another polymer such as poly(propylene glycol) dimethyl ether, in 

order to seal the graft and control permeability, mechanical behavior and pore size [204]. 

Some studies have already shown that vascular grafts of silk fibroin can be successful in 

small diameter applications [199, 204, 205]. A 1.5mm (inner diameter) by 10mm (length) 

graft was sutured, end-to-end, to a rat abdominal aorta and was shown to remain patent 

for 12 weeks in 85% of the cases [205]. The patency of the silk graft was largely due to 
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the almost complete cell coverage of the luminal surface, which was achieved after 9 

weeks [205]. A similar study was also performed on the carotid artery of a canine model 

using 3mm diameter tubes and showing of up to one year in one of the implanted grafts 

[204]. 

 

Next Steps for Polymeric Grafts 

 

The future of synthetic vascular graft development seems very promising. The field is 

every growing and the lack of a clear optimal polymer has led, and continues to lead, to 

many potential options. Either by further development and research into the already 

existing grafts (PET and ePTFE), the further development of new non-degradable grafts 

(PU, PVA and BC) or researching and developing temporary grafts that ultimately allow 

for a tissue engineered solution, either by prior cell-seeding or allowing for native cell 

migration, attachment and ingrowth, ultimately producing a new vessel out of native 

tissue (collagen, fibrin, elastin, silk and PCL). 

In further years research seems like it will focus on the end development and fine tuning 

of either a nanocomposite or surface modified solution, with bioactive molecules, through 

in vivo testing. The nanocomposites approach seems to be the most common trend in the 

development of a tissue-engineered vessel. This method offers the possibility of 

combining the favorable properties of one polymer with the favorable properties of 

another, usually providing positive results with little or none of the drawbacks. 

Those that have been mentioned here are the basis of the research that is currently 

ongoing and each has a beneficial aspect to contribute to the field. Alternatively, the 

surface modification of some of the above mentioned polymers may provide a viable 

alternative for a ready and off-the-shelf solution. The efforts of all the researchers in these 

fields will almost certainly provide a new graft that can out-perform the current 

standards and vastly improve the quality of life for millions. 
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Chapter 2 

Hemocompatibility study of a bacterial 

cellulose/polyvinyl alcohol nanocomposite 

 

Adapted from: Leitão, A.F.; Gupta, S.; Silva, J.P.; Reviakine, I.; Gama, M.; Hemocompatibility study of a 

bacterial cellulose/polyvinyl alcohol nanocomposite; Colloids and Surfaces B: Biointerphases; Vol. 111, 
C:493-502; 2013 (DOI: 10.1016/j.colsurfb.2013.06.031) 

 

 

 

Bacterial cellulose (BC) has been suggested to be a suitable biomaterial for the 

development of cardiovascular grafts. The combination of BC with polyvinyl alcohol 

(PVA) results in nanocomposites with improved properties. Surprisingly, there are very 

few studies on the BC-blood interaction. This is the focus of this paper. We present the 

first thorough assessment of the hemocompatibility of the BC/PVA nanocomposite. 

Whole blood clotting time, plasma recalcification, Factor XII activation, platelet adhesion 

and activation, hemolytic index and complement activation are all determined. The 

platelet activation profiles on BC and BC/PVA surfaces are comprehensively 

characterized. BC and BC/PVA outperformed ePTFE - used as a point of comparison - thus 

evidencing their suitability for cardiovascular applications. 
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Introduction 

 

With the increase in the prevalence of cardiovascular diseases in the adult population, 

cardiovascular surgeries are becoming more and more common in operating rooms 

across the world. Among the most prevalent cardiovascular diseases is atherosclerosis 

which is generally treated by performing a bypass surgery. The procedure requires the 

application of a biological or a synthetic graft that will allow the blood flow to be 

redirected around an occluded portion of the vessel. Biological grafts deteriorate over 

time due to the natural progression of the patients’ disease or may be unavailable [1]. 

Therefore, synthetic grafts are used. These are commonly made of polyethylene 

terephthalate (PET, commercially known as Dacron) or expanded 

polytetrafluoroethylene (ePTFE). However, they do not perform well in medium or small-

caliber vessels such as coronary arteries [1]. In larger-caliber vessels characterized by 

high shear rates these materials do provide good mechanical compliance. However, they 

have a strong affinity for proteins, which adsorb on the surface of the material. This 

results in a layer, the pseudo-intima, which promotes platelet adhesion and activation 

and consequent clot formation [2, 3]. In low caliber vessels the protein build-up on the 

luminal surface and platelet activity ultimately lead to thrombosis.  There is therefore a 

strong need for new materials for the construction of vascular grafts for small-caliber 

vessel applications, and a large amount of work has been aimed at finding natural 

alternatives to the synthetic polymer materials for making grafts.  

In order to be suitable for this application, the material has to be hemocompatible, i.e., it 

must be able to remain in contact with blood without inducing toxicity or activating the 

intrinsic and extrinsic coagulation cascades or the complement system [4]. By triggering 

these blood reactions, foreign materials cause thrombosis and inflammation at the graft 

site or embolism. Emboli that occur due to the detachment of thrombi from the graft site 

or their formation downstream of the implant are the main cause of synthetic grafts 

failure [2].  

One promising candidate is bacterial cellulose (BC). This polymer is a highly pure linear 

polysaccharide, consisting of β (1→4)–linked D-glucose monomers. It is secreted by 

bacteria of the Gluconacetobacter genus. Once secreted, it forms a fibrous network 

hydrogel. BC has been extensively studied for biomedical applications due to its 
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morphology, high purity, water-holding capacity, tensile strength, malleability and 

biocompatibility [5-7] and has been proposed for applications such as wound dressings 

[8], artificial skin [9] or blood vessels [6, 10-12] and as a scaffold for tissue engineering 

[7, 13-15]. 

Polyvinyl alcohol (PVA) has also been studied for potential biomedical applications. Its 

uncomplicated structure allows crosslinking of the polymer chains by either chemical 

agents or by physical crosslinking through thermal cycling [16]. The hydrogels formed by 

PVA generally present good tensile strength, flexibility and elasticity [17], allied with high 

water retention capability, non-toxicity and non-carcinogenicity. PVA has been studied 

for applications in tissue reconstruction and replacements, drug delivery, cardiovascular 

stents and wound covering bandages, among others [16, 18].  

BC has high tensile strength but somewhat limited elasticity. On the other hand, PVA is 

highly elastic but its tensile strength is limited. A compromise would be ideal for potential 

applications in cardiovascular surgery: sufficient tensile strength allied with enough 

elasticity to allow for greater mechanical compliance. The BC/PVA nanocomposites 

indeed meet these criteria, as we and others reported [16, 19, 20]. We described 

previously one such nanocomposite, consisting of an interpenetrated polymer network 

of PVA fibers entangled inside the BC matrix, bridging gaps and linking individual BC 

fibers. The mechanical properties of the BC/PVA nanocomposites can be adjusted by 

thermal cycling. This allows tailoring of the nanocomposite mechanical properties to 

better mimic those of the arterial vessel walls.  

While the potential of BC as a biomaterial for cardiovascular applications has been 

reported [6, 10-12] its interactions with blood have not been carefully characterized [10, 

11]. Therefore, in this study, we assess the hemocompatibility of BC and of a BC/PVA 

nanocomposite.  

 

Experimental Section 

Bacterial Cellulose and Bacterial Cellulose/Polyvinyl Alcohol 

 

Gluconacetobacter xylinus (ATCC 700178) was grown in a modified Hestrin-Schramm 

medium, supplemented with 2% Corn Steep Liquor (Sigma Aldrich, Germany) and 0.6% 
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ethanol, at pH 5.0. The medium was inoculated and then added to 24-well polystyrene 

microtitter plates. The plates were then incubated at 30oC for 7 days.  

The resulting BC membranes were then washed thoroughly with distilled water and 

further purified with 4% NaOH at 60oC for 90min. The membranes were then, again, 

thoroughly washed until neutral pH was achieved. 

For BC/PVA production, purified BC membranes were immersed in a 10% PVA (Mw= 

31,000-50,000 g/mol) (Sigma Aldrich, Germany) solution for 24hr at 80oC. The 

membranes were then frozen at -20oC for 24hr, after which they were thawed at room 

temperature in distilled water and washed to remove any polymerized PVA particles on 

the surface of the membranes.  

All membranes were sterilized by washing in 70% (v/v) ethanol for 24hr and then with 

ultrapure autoclaved water in a vertical laminar air flow hood chamber until ethanol was 

fully removed. 

 

Preparation of Blood Samples 

 

Whole blood was collected from healthy donors at Hospital São João (Oporto, Portugal) 

with citrated (3.2%) 1.8ml vacuum blood-collection tubes and transported on ice. The 

blood samples were then, unless mentioned otherwise, centrifuged at 2000g for 10min 

at 4oC to obtain Platelet Poor Plasma (PPP), which was then used in the plasma 

recalcification and Factor XII activation assays.  

 

Whole Blood Clotting Times 

 

Whole blood kinetic clotting times of wet and dried BC and BC/PVA membranes were 

determined as previously described by Motlagh [21]. Clotting was induced by addition of 

360µl of 0.1M CaCl2 to 3.6ml of whole blood. The BC and BC/PVA membranes along with 

glass microspheres (positive control) and empty wells of a 24-well polystyrene 

microtitter plate (negative control) were incubated for 0, 5, 10, 15, 25 and 35min at room 

temperature (16-18oC) with 150µl of the activated whole blood for each time point. At 
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the end of each time point 3ml of distilled water was added to the well and incubated for 

5min, in order to lyse the red blood cells which were not trapped in the thrombus, and 

release hemoglobin.  

The concentration of released hemoglobin was measured by transferring 200µl of the 

supernatant to a 96-well microtitter plate followed by spectrophotometric analysis at 

λ=540nm. The clot formation is followed by a reduction in the absorbance value. All 

samples, including ePTFE as a control, were analyzed in triplicate. 

 

Plasma Recalcification Profiles 

 

Plasma recalcification times for BC and BC/PVA membranes, along with empty 

polystyrene plate wells with (positive control) and without CaCl2 (negative control) were 

determined by the method described by Mortagh [21]. Samples containing 500µl of 

Platelet Poor Plasma (PPP) were incubated for 1hr, at 37oC, on an orbital shaker. After 

the incubation period, 100µl of the PPP from each sample well was transferred to a 96-

well plate and 100ml of CaCl2 was added to each well (except the previously mentioned 

negative control). The 96-well microtitter plate was then immediately placed in a plate 

reader, and the kinetics of the clotting measured and monitored by changes in the 

absorption at λ=405nm, every 30sec for 45min (curves generally stabilized after 30min). 

The measure of thrombogenicity was given by the time it took to achieve half maximum 

absorbance (EC50). Each sample was measured in triplicate (3 donors per sample) and 

averaged; ePTFE was also analyzed in the same way. 

 

Hemolysis Index 

 

Hemolysis studies were conducted in accordance with the procedures described by the 

American Society for Testing and Materials (ASTM F756-00, 2000). BC samples were 

equilibrated in phosphate buffer saline (PBS) and then transferred to a tube containing 

7ml of PBS. 1ml of diluted blood (hemoglobin concentration of 10 mg/ml) was added and 

incubated at 37oC for 3hr in a water bath. The tubes were gently inverted every 30min to 

promote contact between blood and samples. The membranes were then removed with 
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sterile tweezers and the diluted blood centrifuged at 750g for 15min. Then, 1ml of 

Drabkin’s reagent (Sigma-Aldrich, Germany) was added to 1ml of supernatant and 

incubated for 15 min at room temperature, and finally the absorbance was read at 

λ=540nm. 

Hemoglobin concentration was calculated using a calibration curve previously prepared 

with human hemoglobin (Sigma-Aldrich, Germany) and calculated using the formula: 

HC=A×m×d (A, Absorbance; m Slope of the hemoglobin curve; d, Dilution) and presented 

as percentage. Ultrapure water and PBS served as the positive and negative controls, 

respectively. ePTFE was analyzed in the same manner as control materials. 

 

Complement System Activation 

 

To determine whether the biomaterials activate the complement cascade, we performed 

the protocol described by the NCL (Nanotechnology Characterization Laboratory) for 

qualitative determination of total complement activation by Western blot analysis 

(http://ncl.cancer.gov/working_assay-cascade.asp) with slight modifications. Human 

plasma, from healthy donors, was incubated with BC and BC/PVA membranes in the 

presence of veronal buffer. Equal volumes (100μL) of plasma, buffer and sample were 

mixed together and incubated at 37°C for 60 min. Cobra venom factor (CVF) from Quidel 

Corporation (San Diego, CA, USA), and PBS were used as positive and negative controls, 

respectively.  

In order to determine if complement proteins could have unspecific adsorption on the BC 

and BC/PVA membranes, several pre-incubations were performed: 

1. Preincubation for 2 hr at 37oC with a pool of active plasma followed by a 1 hr 

incubation with plasma and veronal buffer at 37oC. 

2. Preincubation for 2 hr at 37oC with a pool of inactive plasma and then 1 hr 

incubation with plasma and veronal buffer at 37oC. 

3. Incubation for 1 hr with a pool of plasma and veronal buffer for 1 hr at 37oC. 

4. Incubation of 3 hr with a pool of plasma at 37oC. 

5. Incubation of 3 hr with a pool of plasma and veronal buffer at 37oC. 
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Proteins were resolved using 10% SDS-PAGE, and then transferred to a membrane 

(Immun-Blot PVDF Membrane, Biorad, Hercules, USA) using the transblot semidry 

apparatus BioRad transfer equipment (Trans blot SD, BioRad, Hercules, USA). The 

membranes were incubated for 90 min with a mouse monoclonal antibody against 

human C3, diluted to 1:1000 (Abcam, Cambridge, UK). The membranes were then washed 

and incubated with secondary polyclonal goat anti-mouse IgG antibodies conjugated with 

alkaline phosphatase, diluted to 1:2000 (Dako, Glostrup, Denmark). The membranes 

were finally revealed with 5-Bromo-4-Chloro-3-Indolyl Phosphate (BCIP) (Sigma Aldrich, 

Germany). 

 

Factor XII Activation 

 

Both free and adhered Factor XII (FXII) activation was determined by a method adapted 

from Sperling et al [22]. For the determination of free Factor XII activation BC and 

BC/PVA membranes were incubated with 300µl of PPP for 1, 5, 10 and 20 min at room 

temperature (16-18oC). Then, 30µl of the plasma was added to 200µl of 0.3M 

chromogenic substrate S-2302 (Chromogenix, Italy) in 50mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid buffer (HEPES) and 120mM NaCl at pH 7.4; the absorbance 

was immediately measured at λ=405nm for 30min (every 30sec). An empty polystyrene 

well and glass microspheres were used as the negative and positive controls. The slope 

of the resulting curves was calculated and used to compare Factor XII activation. All 

samples were analyzed in triplicate along with ePTFE. 

Additionally, to determine the activation of Factor XII adhered to the surface of BC and 

BC/PVA, samples incubated with PPP for the same time periods as above (1, 5, 10 and 20 

min) were immersed in 300µl of 0.3M chromogenic substrate S-2302 (Chromogenix) in 

50mM HEPES and 120mM NaCl at pH 7.4 for 30 min, the reaction was then stopped with 

75µl of 20% (v/v) acetic acid and 200µl of the reaction volume and the absorbance 

measured on a 96-well microtitter plate at λ=405nm.  
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Platelet Isolation, Characterization and Surface Activation Studies 

 

Platelet rich plasma (PRP) and purified platelets were obtained by centrifugation of 

sodium citrate-anticoagulated human blood [23]. Blood collection was organized by the 

Biobanco Vasco para la Investigación (Basque Biobank for Research, Galdakao, Spain) 

and performed with informed consent according to the appropriate legal and ethical 

guidelines. Donors were healthy volunteers without any history of exposure to 

medication (such as aspirin) or to alcohol in the two weeks prior to blood collection. 

Purified platelets were suspended in the buffer (145mM NaCl, 5mM Glucose, 1mM MgCl2, 

10mM HEPES, 5mM KCl, pH 7.4), with (Plt+Ca2+) or without (Plt-Ca2+) 2mM calcium. 

Platelet concentration was adjusted to ≈ 1 × 108 cells per ml.  

Flow cytometry was used to test platelets for their purity, state of activation in platelet 

rich plasma (PRP)/purified platelet suspensions and their ability to respond to agonists 

such as TRAP (thrombin receptor-activating peptide, Sigma-Aldrich, Madrid, Spain) or 

PMA (phorbol 12-myristate 13-acetate, Sigma-Aldrich, Madrid, Spain). Fluorescently 

labelled monoclonal antibodies specific for well-known platelet activation markers 

(CD62P, CD63, active form of GPIIb/IIIa) and fluorescent-annexin 5 (A5) that binds to 

phosphatidylserine (PS) were used in the flow cytometry experiments. Platelets were 

identified by staining with anti-CD41a (platelet specific marker). All antibodies and 

fluorescent markers were purchased from BD Biosciences (Madrid, Spain). Light scatter 

and fluorescence data from 10,000 events were collected with all the detectors in the 

logarithmic mode. Flow Jo software (Tree Star Inc, Oregon, USA) was used to determine 

the percentage of platelets positive for antibody binding for different platelet activation 

markers. Mean fluorescence intensity for the positive and negative events was 

determined to obtain the level of expression of various platelet activation markers. 

Once platelets were confirmed to be in a quiescent state, as well as responsive to agonists, 

purified platelets, with and without extracellular Ca2+ (Plt+Ca2+; Plt-Ca2+) or PRP were 

incubated with clean and sterile BC, BC/PVA and ePTFE membranes. For these 

experiments, the membranes were cut and deposited into autoclaved eppendorf tube 

caps. Purified platelets or PRP preparations were incubated with these materials for 

various time periods (10, 30, 50 and 180min) at 37oC. The entire set up was put inside a 

clean and covered Petri dish, which was then placed inside a 37oC incubator to avoid any 
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contamination. After incubation, the supernatants were removed and collected in an 

eppendorf tube for immediate analysis by flow cytometry. The non-adherent platelets in 

the supernatant from each sample were stained for the same markers (CD62P, CD63, PS 

and activated GPIIb/IIIa) to check for their activation state. The surface adhered platelets 

were fixed with 2.5% glutaraldehyde and stained with the antibodies specific for CD41a, 

CD62P and CD63, for their analysis by confocal microscopy to assess platelet adhesion 

and activation. 

 

Results and Discussion 

Whole Blood Clotting Time 

 

Whole blood was used to determine clotting times and provide information on the 

thrombogenicity and pro-coagulative activity of each biomaterial. In this assay, whole 

blood is allowed to clot in contact with a biomaterial. As clotting occurs, more red blood 

cells are retained in the clot, and therefore less hemoglobin is released by lysis upon 

addition of distilled water. A hemocompatible material will therefore maintain a higher 

absorbance value over time. Results show (Figure 2-1) that ePTFE and polystyrene 

(negative control) are the least thrombogenic; conversely, the glass microspheres 

present the quickest clotting time. BC appears more thrombogenic than either ePTFE or 

polystyrene, consistent with the results of Andrade et al [24]. The results for BC/PVA 

show no statistical difference (p≥0.05) compared to those of BC alone. Andrade and 

colleagues [24] observed, in agreement with others [25], that whole blood clotting time 

is related - to some extent - to the surface area of the material. The surface area of the 

bottom of the microtitter plate well is 1.21cm2. The ePTFE samples were cut and 

stretched in order to sit flush and cover the well bottom and so surface of contact was 

similar to that of the negative control. In the case of both BC and BC/PVA, these hydrogels 

are porous and present a dome shaped structure that does not sit flush to the bottom of 

the microtitter wells. This increases the surface of biomaterial-blood contact which may 

adversely affect the comparative analysis of the results. Once dried, BC and BC/PVA 

membranes lose most of their original thickness (from 3mm down to 0,068mm in the 

case of BC), hence they are less porous. The resulting dried membranes present a similar 

surface of contact to that of ePTFE and the negative control. As expected, the clotting time 
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observed on the dried membranes was closer to that of both the negative control and 

ePTFE. Once again, no significant difference was observed between BC and BC/PVA.  

 

Plasma Recalcification Profile  

 

The plasma recalcification profile obtained in response to PPP contact to a material is 

often used as a measure of activation of the intrinsic pathway [21, 26]. As plasma becomes 

more turbid due to the accumulation of clotting by-products, absorbance increases. The 

measure of pro-coagulative activity in this test is given by the time it takes to achieve half 

the maximum absorbance; the higher this value, the less thrombogenic the material.  For 

this assay (Figure 2-2) glass microspheres serve as a positive control. The glass 

microspheres are generally accepted as positive controls in this respect due to their 

negatively charged surface that triggers protein adsorption and activates coagulation 

factors.  

Figure 2-1 - Whole Blood Clotting Time for wet and dry bacterial cellulose (BC), bacterial cellulose/polyvinyl alcohol 
(BC/PVA) and expanded polytetrafluoroethylene (ePTFE). The positive (+) Control used were glass microspheres and the 
negative (-) control the polystyrene microtitter plate. 
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The positive control was found to be significantly different (p<0.05), with no statistical 

differences found among the other tested samples. Similarly to what was reported by 

Andrade [24], ePTFE presents a lower pro-coagulating activity than BC (higher half 

maximum absorbance time - 6.5 versus 5.5min, respectively). Of particular note is the 

result for BC/PVA, which outperforms ePTFE. This suggests that the incorporation of PVA 

improves the performance of BC, as may be inferred from the higher half maximum 

absorbance time (7min). 

 

Factor XII Activation 

In order to further characterize the activation of the intrinsic pathway, direct 

quantification of the catalytic activity of both free (Figure 2-3) and adhered (Figure 2-4) 

activated Factor XII was performed using a chromogenic substrate. The chromogenic 

substrate (S-2302) is broken down, specifically, by the activated form of Factor XII 

(Factor XIIa). The results are expressed as the Factor XII activation upon exposure to the 

Materials, normalized to the value obtained using the positive control (glass 

microspheres).  

Figure 2-2 - Plasma Recalcification Profile of Platelet Poor Plasma (PPP) in the presence of bacterial cellulose (BC), 
bacterial cellulose/polyvinyl alcohol (BC/PVA) and expanded polytetrafluoroethylene (ePTFE) along with glass 
micoshperes. The positive control was obtained by addition CaCl2 to PPP in a polystyrene plate. 
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The results obtained with BC and BC/PVA present no statistical differences (p≥0.05). The 

thrombogenicity of both materials is however different from that of ePTFE: they induce 

less free Factor XII activation; the differences are statistically significant (Figure 2-3).  

All of the materials showed some adhered Factor XIIa (Figure 2-4). Similar amounts are 

detected on BC and ePTFE, with no statistical difference between them (p≥0.05). On the 

other hand, BC/PVA presents significantly (p<0.05) lower values for adhered Factor XIIa 

than the other two materials. Overall, BC/PVA seems to be triggering the lowest response 

of the intrinsic coagulation cascade. Thus, again, PVA seems to a have a beneficial impact 

on the BC hemocompatibility. 

It is generally accepted that synthetic materials with a negatively charged surfaces trigger 

the activation of Factor XII via conformational change to a Factor XIIa-similar molecule 

[4, 27-29]. We expect that the surface charges on BC, BC/PVA, and ePTFE are similar and 

small compared to the highly charged glass spheres. Therefore the differences we 

observe in the propensity of these materials to activate FXII are not related to differences 

in their surface charge but to their hydrophilicity/hydrophobicity. Indeed, while some 

authors suggest that there is little difference in terms of FXII activation between 

Figure 2-3 - Percentage of Factor XII Activation, as compared to glass microspheres (+ Control), over time of bacterial 
cellulose (BC), bacterial cellulose/polyvinyl alcohol (BC/PVA), expanded polytetrafluoroethylene (ePTFE) and 
polystyrene plate (- control). Measurements were obtained from absorbance of chromogenic substrate S-2302 
(chromogenix). 
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hydrophobic and hydrophilic surfaces [27], others assert that hydrophilic surfaces are 

more prone to induce Factor XII activation [22]. This is thought to happen due to the so-

called adsorption-dilution that occurs on the hydrophobic surfaces, where more proteins 

adsorb in general and FXII is diluted [27]. We observe the opposite: the more hydrophilic 

BC and BC/PVA hydrogels are less effective in activating FXII than the hydrophobic 

ePTFE.  

It must be realized, however, that activation of Factor XII does not suffice for the 

activation of the intrinsic pathway, the complex interactions between several proteins on 

the surface of the materials may result in more or less effective amplification [30]. 

 

Platelet Adhesion and Activation Studies 

 

While platelet adhesion to BC [31] and PVA grafts [32] has already been described in the 

literature, the detailed characterization of platelet response on these surfaces, especially 

the newly developed PVA-modified BC surface, has not been done. Here we studied the 

Figure 2-4 - Absorbance of Adhered Factor XII on the surface of bacterial cellulose (BC), bacterial cellulose/polyvinyl 
alcohol (BC/PVA) and expanded polytetrafluoroethylene (ePTFE) over time. The activity of Factor XII was measures by 
use of chromogenic substrate S-2302 (chromogenix). 
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adhesion and activation of platelets upon interaction with the BC-based materials. To do 

so, we exposed BC and BC/PVA membranes to PRP for different time periods—10, 30, 50 

and 180min—at 37oC and assayed for the expression of the activation markers on the 

surface-adhered platelets and on the platelets in the bulk solution above the surfaces by 

immunostaining.  

We studied four classical markers of platelet activation: transmembrane proteins CD62P 

(P-selectin) and CD63 (present in the membranes of the granules stored inside the resting 

platelets and brought to the surface upon activation), active conformation of the integrin 

complex GPIIb-IIIa, (constitutively expressed on platelet surfaces but undergoes 

conformation changes upon activation), and phospholipid phosphatidyl serine (located 

in the cytoplasmic leaflet of the cell membrane in the resting platelets but is brought to 

the outer leaflet upon activation) [33]. Surface-adhering platelets were studied using 

confocal laser scanning microscopy (CLSM). The results of these experiments, performed 

with BC, BC/PVA and ePTFE are shown in Figure 2-5. After 10min, very few platelets 

adhered on either BC or BC/PVA as compared to ePTFE, which showed a higher level of 

platelet adhesion (c.f. the number of platelets on the various surfaces in Figure 2-5A). 

More platelets were found on BC and BC/PVA surfaces after 50min of incubation, while 

no significant difference in the number of platelets between 10 and 50min was observed 

on ePTFE (Figure 2-5B); larger patches/clusters could sometimes be observed after 50 

min (arrowhead in Figure 2-5B). Surface-adhered platelets were found to be activated 

(expressed CD62P and CD63) on BC and ePTFE surfaces both after 10 and 50min (Figure 

2-5-A, B). Judging from the level of fluorescence intensity, the level of expression of 

CD62P and CD63 was higher on ePTFE than on BC. BC/PVA-adhered platelets were 

activated only after 50min (Figure 2-5B). The level of activation in this case was also 

lower than that observed on ePTFE. Similar results were obtained for purified platelets 

incubated with surfaces in the absence of calcium (data not shown). Platelet response 

observed on ePTFE is consistent with the literature where it has been stated that protein 

adsorption on the ePTFE surface leads to adhesion and activation of platelets [34].  

In order to have a better understanding of the interactions between platelets and these 

materials, we further studied the behavior of platelets in the bulk solution, above the 

biomaterial surface. Previous studies have shown that in addition to platelets adhering 

to the material surface, the non-adherent platelets may get activated upon blood-

biomaterial interaction [34, 35]. These fluid-phase activated platelets contribute to 
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thrombotic and inflammatory reactions at a distance from the original implantation site 

[36-38]. The activation of non-adherent platelets was investigated using flow cytometry 

[39]. The results for these experiments are shown in Figure 2-6 and 2-7. We determined 

the percentage of cells positive for a particular surface marker (Figure 2-6) and also the 

level of expression of that marker (calculated from mean fluorescence intensity) on the 

positive cells (Figure 2-7). The degree of non-adhered platelet activation upon contact 

with the surface is here presented as an increase in the expression of a particular marker 

as compared to the freshly isolated resting platelets (Figure 2-7, Mean fluorescence 

intensities ratio, MFIR). Both PRP and purified platelets were used in the experiments. 

For PRP, CD62P and CD63 expression were used to monitor activation, while for purified 

platelets all four activation markers (CD62P, CD63, PS and activated GPIIb/IIIa) were 

used. This is because detection of PS and activated GPIIb/IIIa expression requires 

extracellular Ca [40, 41], which would induce clotting when using PRP.  

Figure 2-5 - Images obtained by confocal laser scanning microscopy of the surfaces of bacterial cellulose (BC), bacterial 
cellulose/polyvinyl alcohol nanocomposite (BC/PVA) and ePTFE after incubation with platelet rich plasma (PRP) for 10 
and 50 minutes. The platelets were marked with antibodies for CD41a (a platelet marker) and the activated platelet 
markers CD63 and CD62P. 
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Freshly isolated platelets were in their quiescent state (Figure 2-7) and showed negligible 

expression of the activation markers until stimulation with TRAP or PMA (positive 

controls). Following incubation with PRP, no discernible difference in the expression of 

the activation markers CD62P and CD63 was observed for all 3 biomaterials at time 

points of 10, 30 and 50min (Figure 2-7A, B). However, a significant difference in the 

CD62P and CD63 expression was observed after 180 min: ePTFE showed a 13 fold 

increase in CD62P expression level as compared to BC and BC/PVA, which showed a 

modest 2-3 fold increase relative to the quiescent platelets (Figure 2-7A). Similarly, the 

increase in CD63 expression was 9 fold for ePTFE and 2 fold for BC and BC/PVA (Figure 

2-7B). Additionally, the results for percentage of cells (Figure 2-6) positive for these 2 

markers were also in accordance with the trends obtained for their expression levels. For 

BC and BC/PVA, only 16% and 18% of cells, respectively, showed CD62P expression 

whereas for ePTFE it was almost much higher (67%) of BC and BC/PVA (Figure 2-6A). 

Again, for CD63, ePTFE presented much more CD63 positive cells (Figure 2-6B) as 

compared to BC materials (80% and 40%, respectively). These results support our claim 

that, in the presence of plasma proteins, BC and BC/PVA prove to be more 

hemocompatible as compared to ePTFE in terms of plasma recalcification profiles, Factor 

XII activation, platelet adhesion and activation (both in bulk and on surface of the 

biomaterials). 

To complement the results obtained with PRP, we also studied the activation of purified 

platelets in the presence, as well as in the absence, of calcium. Direct effects of bare 

surfaces on platelets have previously been reported [24, 42-46]. The results obtained 

with surface adhered platelets were already discussed above (Figure 2-5), while the 

results of platelet activation in solution are shown in Figure 2-6 and 2-7 together with 

those of PRP. The non-adherent platelets incubated with ePTFE showed almost no 

CD62P/CD63 expression, both in the presence and absence of calcium, for all time points 

(Figure 2-7-A,B). After 180min, in the absence of calcium, platelets incubated with BC and 

BC/PVA showed roughly a 2 fold increases in CD62P and CD63 expression, further 

increased by about 8 and 2 fold, in the presence of calcium, for the same markers. 

Similarly, BC and BC/PVA presented higher percentage of cells positive for CD62P and 

CD63 as compared to ePTFE (Figure 2-6-A,B).  

In the case of purified platelets, we could also study the effect of surface interaction on 

the expression of PS and the active form of GPIIb/IIIa. No increase in the expression of  
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activated form of GPIIb/IIIa relative to that in quiescent platelets was observed for any 

of the three surfaces (Figure 2-6D and 7D). PS expression was found to fluctuate (Figure  

Figure 2-6 - Percentage of platelets (Plt) with a positive marking for CD62P (A), CD63 (B), PS (C) and GPIIB/IIIa (D), as 
counted using a flow cytometer, on platelet surfaces exposed to bacterial cellulose (BC), of a bacterial cellulose/polyvinyl 
alcohol nanocomposite (BC/PVA) and ePTFE. The samples were incubated for 10, 30, 50 and 180 minutes with platelet 
rich plasma (PRP) and also a platelet solution with (Plt+Ca) and without (Plt-Ca) 2mM Ca added to the solution. 
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2-7C). After 180min, the PS expression is lower (25 fold increase) for BC/PVA as 

compared to BC (60 fold increase) and ePTFE (50 fold).  

Figure 2-7 - Mean fluorescence intensities (MFIR) , as obtained by flow cytometry, for the expression of CD62P (A), CD63 
(B), PS (C) and GPIIB/IIIa (D) on platelet surface after exposure to BC, PC/PVA and ePTFE for 10, 30, 50 and 180 
minutes. The surface were incubated with platelet rich plasma (PRP) and also a platelet solution with (Plt+Ca) and 
without (Plt-Ca) 2mM Ca added to the solution. 
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The observed PS fluctuations are interesting, but their significance is not altogether clear. 

They may be related to platelet activation or reflect the loss of PS in the microparticles 

generated upon activation. The consensus is that PS exposure on the platelet surface is 

necessary for thrombin generation, but whether it is sufficient for the pro-coagulant 

function of platelets is still debated [47]. Moreover, there are inconsistencies in literature 

regarding PS detection, because annexin A5 binding may be interfered with by other PS 

binding proteins, including the factors of the clotting cascade. Some authors suggest that 

activation leads to different platelet subpopulations, only some of which expressing PS 

[48].  

In summary, it appears that in the absence of plasma proteins (that is, when using 

purified platelets), BC and BC/PVA surfaces activate platelets in the bulk more efficiently 

than ePTFE. Therefore, their superior performance noted in PRP (which better mimic the 

in vivo conditions) is most likely due to a passivating layer of plasma proteins.  

As noted above, the hydrophilic surface of BC and BC/PVA does not favor protein 

unfolding/conformational changes, hence not leading to Factor XII activation and not 

causing as much platelet activation as protein layers on other surfaces. These results are 

also in accordance with the findings of Sperling and colleagues [22] who showed that 

platelet adhesion and activation was favored by highly hydrophobic surfaces. 

 

Hemolytic Index  

 

The hemolytic index is a direct measure of free hemoglobin present in plasma after 

exposure to a given material or stressor. An isotonic solution (PBS) served as the negative 

control and distilled water as the corresponding positive control, inducing osmotic stress 

that ruptures red blood cells. The assay was performed as according to the Standard 

Practice for Assessment of Hemolytic Properties of Materials from the American Society 

for Testing and Materials (ASTM F756-00, 2000); the standard classifies the material as 

non-hemolytic (0-2% of hemolysis), slightly hemolytic (2-5% of hemolysis) and 

hemolytic (>5% of hemolysis). Our results (Table 1) show that both BC and BC/PVA are 

classified, as according to the standard, as non-hemolytic while, ePTFE is classified as 

slightly hemolytic. 
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Table 2-1 - Hemoglobin index blood after contact with of bacterial cellulose (BC), bacterial cellulose/polyvinyl alcohol 
(BC/PVA) and expanded polytetrafluoroethylene (ePTFE). 

Sample % 

PBS 1.84 

mQ H20 (C+) 95.34 

BC 1.85 

BC/PVA 1.94 

ePTFE 2.42 

 

Complement System Activation 

 

In order to further study the blood/material interaction, we also looked at the activation 

of the complement system by BC and BC/PVA. Among the three possible mechanisms the 

alternative activation pathway is of particular importance. In blood/biomaterial 

interactions the alternative activation pathway is triggered directly by foreign surfaces 

that do not provide adequate down-regulation of the protease C3-convertase.  

We determined the overall percentage of C3 cleavage products, by semi-quantitative 

Western blot analysis, in order to determine the degree of activation of the complement 

system. The results are presented as the percentage of cleaved products as compared to 

the positive control, obtained by addition of cobra venom factor to the plasma. Our results 

show that both BC and BC/PVA significantly activate complement (Figure 2-8). 

Complement activation of the BC samples presents an average of 64.5±4.2%. The effect is 

slightly mitigated in the case of BC/PVA with an average of 55.6±5.0% activation. 

Considering the negative control presents an average 39.6±4.0% this means an increase 

of 24.9% for BC and 16.0% for BC/PVA. Additionally, dry BC was also tested (results not 

shown) and was found not to activate the complement system, the values obtained were 

lower than those of the negative control. 

The mechanisms by which complement is activated are still not fully understood but it is 

well established that different biomaterial surfaces have different complement-activating 

properties. Physical properties such as hydrophobicity affect the activating ability. 

Hydrophobic surfaces are more potent activators than hydrophilic ones, and 

incorporation of chemical groups such as –NH2, -OH or -COOH influences the activation 
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of complement [49]. Both BC and BC/PVA have many surface -OH groups which would in 

turn activate the complement system to some extent. However, the total increase of C3 

cleavage products is relatively low, as compared to the negative control.  

Interestingly, in both the presence of PVA and in the dry BC membranes, complement 

system activation is mitigated or canceled out. This may be due to a probable reduction 

of the total number of free surface -OH groups, resulting in reduced biomaterial derived 

C3 cleavage [49]. 

 

Conclusions 

 

BC and PVA have been extensively studied by various research groups for biomedical 

applications in blood contacting materials. This is the first study, to our knowledge, to 

present extensive results on the hemocompatibility of a nanocomposite of BC 

impregnated with PVA, namely in regards to platelet activation profiles on BC and the 

Figure 2-8 - Representative images of Western Blot and Percentage of C3 Cleavage for BC and BC/PVA. Both BC and 
BC/PVA were tested under 5 conditons: (1) 2 hour preincubation at 37oC with active plasma and then 1 hour incubation 
with plasma and Veronal buffer at 37oC; (2) ) 2 hour preincubation at 37oC with inactive plasma and then 1 hour 
incubation with plasma and Veronal buffer at 37oC, (3) 1 hour incubation with plasma and Veronal buffer for 1hour at 
37oC, (4) 3 hour incubation with plasma at 37oC and (5) 3 hour incubation with plasma and Veronal buffer at 37oC. 
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BC/PVA nanocomposite. The results consistently show that these materials have a good 

hemocompatibility, probably due to both low activation of platelets and Factor XII. 

The results for platelet adhesion and activation profiles demonstrate that both BC and 

BC/PVA exhibit superior performance as compared to ePTFE. Platelet activation on 

ePTFE seems to be mediated by plasma proteins. It appears that, on ePTFE, activation of 

the intrinsic pathway (higher Factor XII activation, Figure 2-3) leads to higher thrombin 

generation and this could explain the high level of platelet activation observed on this 

surface. The indication that platelets can be activated by BC and BC/PVA is relevant; 

however, it seems to be mitigated by the presence of other plasma constituents. BC 

appears thus as a suitable material for the development of cardiovascular grafts. 
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Chapter 3 

Production and Characterization of a New 

Bacterial Cellulose/Poly(Vinyl Alcohol) 

Nanocomposite 
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Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite; Materials; Volume 6, pp 1956-1966; 2013 
(DOI:10.3390/ma6051956) 

 

 

 

Bacterial cellulose (BC) is characterized for its high water holding capacity, high 

crystallinity, an ultrafine fiber network and high tensile strength. This work 

demonstrates the production of a new interpenetrated polymer network nanocomposite 

obtained through the incorporation of poly(vinyl alcohol) (PVA) on the BC matrix and 

evaluates the effect of oven drying on the morphological, mechanical and mass transfer 

properties of the composite membranes. Both the addition of PVA and oven drying induce 

the appearance of larger pores (circa 1–3µm in average diameter) in dried BC/PVA 

membranes. Both types of treatments also affect the permeability of the composite, as 

assessed by the diffusion coefficients of polyethylene glycol (PEG) molecules (900, 8,000, 

35,000 and 100,000Da) across the membranes. Finally, the Young’s modulus of dry 

pristine BC decreases following PVA incorporation, resulting in a change from 3.5GPa to 

1GPa and a five-fold loss in tensile strength. 
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Introduction 

 

Bacterial cellulose (BC) is produced mainly by Gluconacetobacter strains as a hydrated 

membrane or pellicle at the air-medium interface and represents a promising biomaterial 

that has been the subject of intensive research and development. It is formed by repeated 

dimers of β-1,4 linked D-glucose units and reveals unique properties, including high 

water holding capacity, high crystallinity, an ultrafine fiber network, high tensile strength 

and a relatively simple, cost-efficient production [1, 2]. Moreover, its membrane 

morphology, along with its physicochemical properties, may be easily manipulated by 

controlling growth conditions (in situ modifications) and/or by chemical modifications 

(ex situ modifications) that allow the desired functionality [3].  

For the past years, BC has gained interest in the field of tissue engineering, being studied 

by several research groups as a scaffold for cartilage [4, 5], wound dressing [6, 7], dental 

implants [8, 9], nerve regeneration [10] and vascular grafts [11-13]. The incorporation of 

living cells into the material is highly desirable; however, the limited porosity precludes 

proper tissue ingrowth.  

Mass transfer limitations may have a major impact on cell growth and differentiation and 

even compromise the utility of the scaffold or its usage as a drug delivery device [14, 15]. 

Thus, it is important that a material, once implanted, allows the permeation of water, 

metabolic products and chemical signals in the aqueous physiological environment [16]. 

Mass transfer experiments previously conducted by Sokolnicki and colleagues [3], who 

aimed at determining the transport and interaction parameters of selected molecules 

through a hydrated BC system, indicated the presence of dual transport mechanisms, for 

solute transport through the continuous water phase and cellulose matrix, with some 

hindrance of molecular diffusion via fiber obstruction. 

In addition to suitable mass transfer properties, the geometry of the material at the nano- 

and micro-scales has already been shown to affect cell behavior [17]. For example, the 

geometry of the microenvironment around osteoprogenitor cells has been shown to 

regulate the progress of osteoinduction in bone grafts and scaffolds [18]. Thus, the 

control of BC structure and porosity at the nano and microscales assumes great relevance 

for applications in which BC is used as a cell scaffold and has been a focus of research 

[17]. 
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Poly(vinyl alcohol) (PVA) is a synthetic hydrophilic biocompatible homopolymer with 

desirable characteristics for biomedical applications, such as hemocompatibility and 

non-linear mechanical properties, both in tension and compression and viscoelastic 

behavior [19-21]. Additionally, it can be physically cross-linked by a low temperature 

thermal cycling process. This physical cross-linking has the advantage of not leaving 

residual amounts of any chemical cross-linking agent [22]. Moreover, its mechanical 

properties can be modified by regulating parameters, like the PVA concentration, the 

number of freeze/thaw cycles, thawing rate, the freezing holding time and freezing 

temperature [23]. The combination of PVA and BC has been previously proposed by 

Millon and Wan [23]; however, these authors used PVA as the matrix for their 

nanocomposite, adding BC fibers homogenates to the PVA solution. The PVA/BC 

suspension is then cast to a desired shape. It can then be fine-tuned to exhibit varying 

mechanical properties via the thermal cycle process [23].  

Herein, we describe the PVA cross-linking on an intact BC membrane originating a double 

network where the PVA fibers fill the porous BC matrix. The composite obtained is 

therefore an interpenetrating polymer network. This composite has been reported before 

[24], but has remained relatively unstudied. The preparation method we adopted, in 

regards to impregnation of a BC hydrogel with a PVA solution, is similar to that one 

presented by Gea and colleagues [24]. However, our nanocomposite differs in terms of 

PVA concentration, impregnation time and the molecular size of the PVA used. In order 

to better understand the nanocomposite we are using, we have characterized the surface 

morphology, permeability, mass transfer and mechanical properties of the composite in 

this work. To our knowledge, this is the first study to present an interrelation between 

the morphology, mechanical properties and the permeability of a BC/PVA composite. 

 

Experimental Section 

Bacterial Cellulose and Bacterial Cellulose/Poly(Vinyl Alcohol) 

 

Gluconacetobacter xylinus (ATCC 700178) was grown in a modified Hestrin-Schramm 

medium, supplemented with 2% Corn Steep Liquor and 0.6% ethanol, at pH 5.0. 

Inoculated Erlenmeyer flasks were then placed in an incubator, and the culture was 
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allowed to grow for 7 days, at 30°C, under static conditions. The resulting BC membranes 

were washed thoroughly with distilled water and further purified with 4% NaOH at 60°C 

for 90 min, after which they were again washed thoroughly with distilled water until the 

pH of the membranes was the same as that of distilled water. The membranes where then 

cut thinly into 2–3 mm thick membranes. 

In order to produce the BC/PVA nanocomposite, the purified BC membranes were 

immersed in a 10% PVA solution (Mw = 30–50,000g/mol) for 24h at 80°C. The 

membranes were then frozen at −20 °C for 24 h, after which they were thawed at room 

temperature in distilled water and washed to remove any excess PVA from the 

membranes. 

Dry BC and BC/PVA samples were obtained by thoroughly drying the samples in an 

incubator oven at 50°C for a minimum of 12h. The membranes obtained through this 

drying process suffer a significant loss in thickness as compared to the never dried 

membranes, while only slight variation in thickness was registered in the freeze-dried 

samples. 

 

SEM Imaging 

 

BC and BC/PVA samples were prepared in 2 ways: “dried” (d) at 50°C overnight, so as to 

remove all residual water, and then rehydrated before freeze-drying; or “never-dried” 

(nd), which were freeze-dried directly after production and then sputter-coated with a 

gold/palladium mixture. Each sample, whether dried first or maintained wet until freeze-

drying, was initially 3mm thick. The sample’s morphology was then observed with a Nova 

NanoSEM 200 Scanning Electron Microscope operating at 5kV (FEI Europe, Eindhoven, 

The Netherlands). 

 

Stress-Strain Analysis 

 

Dry BC and BC/PVA strips, with 5 × 1cm, were cut from a single sheet of each material 

and then analyzed using on a Shimadzu AG-X 50 kN at a traction speed of 5mm/min and 
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a load cell of 1kN. Each sheet was initially 1.5cm thick and then dried at 50°C overnight, 

so as to remove all the water. BC strips were on average 0.065 ± 0.005mm thick, whereas 

BC/PVA strips were on average 0.480 ± 0.050mm thick. Six replicates per sample 

material were tested in order to obtain a significant set of data. Special care was taken in 

order to attempt to prevent sample slipping from the hydraulic grips by using both fine 

grain sandpaper and construction paper.  

 

Diffusion Assays  

 

Diffusion assays were carried out using custom-built diffusion cells. Each cell consisted 

of a donor chamber and a receptor chamber separated by a membrane of either never-

dried (nd) or dry (d) BC or BC/PVA with 9.61cm2. Four different molecular mass 

polyethylene glycol (PEG) solutions were used in these assays: 900, 8000, 35,000 and 

100,000Da at a concentration of 50mg/mL. 

Each donor chamber was filled with 3.5mL of PEG solution and the receptor chamber 

with 3.5mL of distilled water. 100µL samples were taken at specific intervals to 

determine the retention time for each of the solutions. The refraction index of the samples 

was measured on a Knauer RI Detector K-2300 (Knauer) connected to Pharmacia LKB 

LCC-500 Plus FPLC (GE Healthcare Life Sciences) in order to obtain the diffusion profiles 

for each molecular weight PEG through ndBC, dBC, ndBC/PVA and dBC/PVA. 

Membrane thickness (L) was determined with a standard outside micrometer at three 

different locations on each membrane and then averaged. The diffusion coefficients (D) 

were calculated by testing the retention time, estimated from the slope of the linear 

regressions in the diffusion curves (θ), before running into the balance state, according 

to the following equation: 

D ＝ L2/6θ 

Reagents 

 

All reagents used were acquired from Sigma-Aldrich Quimica, S.L. (Sintra, Portugal). 
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Results and Discussion 

Morphology and Characterization of BC and BC/PVA Membranes 

 

SEM imaging was used to reveal the morphological features of the BC and BC/PVA 

membranes. The three-dimensional structure of the BC hydrogel is well documented as a 

fibrous, porous network of un-oriented nanofibers [5, 25, 26]. The membranes were 

freeze-dried so that the three-dimensional morphology would be preserved as in a 

hydrated state, before and after an initial drying step. The scanning electron micrographs 

obtained (Figure 3-1) show the fibrous morphology of the network. All samples 

presented similar morphological characteristics in terms of the fiber thickness, 

randomness of fiber distribution and three-dimensional orientation.  

The main and most noticeable differences have to do with the relative dimension and 

overall number of pores, which is associated with the preparation method and 

composition of the membrane. The incorporation of PVA (Figure 3-1B) is clearly 

noticeable in the composite membranes, although, other than some fibers that project 

from the membrane surface, the BC and PVA fibers where rather similar, slightly varying 

in thickness. It was possible to distinguish, to some degree, the PVA from BC fibers in two 

ways: BC fibers degraded slightly quicker under the electron beam of the SEM than PVA 

and, also, some from PVA fibers that project and loop from the surface of the BC 

membrane. These are PVA fibers that formed on top of the BC surface. 

Previous work had shown that the BC/PVA nanocomposite was made up of 

interpenetrated fibers [24]. The molecular size and concentration of PVA used does not 

allow for a PVA hydrogel to form; therefore, rather than a PVA matrix embedding the BC 

fibers, we have found, as expected, PVA fiber wells integrated into the original BC 

hydrogel forming an interpenetrated network. The PVA fibers inside the BC membrane 

randomly bridge individual BC fibers, rising the overall density of the hydrogels. 

Comparison between the morphology of never-dried (nd) (Figure 3-1A, B) and dried (d) 

(Figure 3-1C, D) membranes showed clear and marked structural differences. Once BC 

membranes are dried, the overall thickness of the membranes greatly decreases, 

resulting in a higher fiber density and, consequently, a much less porous membrane, as 
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can be observed in Figure 3-1C, when compared to the ndBC membrane (Figure 3-1A). 

The most remarkable structural difference is observed in the morphology of the dBC/PVA 

membranes (Figures 3-1D and 3-2). In this case, there are two very clearly distinct 

regions comprised of different fiber structures. A large portion of the membrane 

contained large pores ranging from 500nm to 2µm in diameter (in ndBC, the largest 

measurable pores were 120nm in diameter) that are separated by very densely 

compacted regions with no discernible pore structures (Figure 3-2). PVA was largely 

present in the porous regions, with BC making up much of the denser regions. It should 

be noted, however, that both BC and PVA fibers could be observed across the entirety of 

the membrane. 

Figure 3-1 - SEM micrographs of (A) never-dried bacterial cellulose (BC); (B) never-dried BC/poly(vinyl alcohol) (PVA); 
(C) dried BC; and (D) BC/PVA at 100,000× magnification. 
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The porous and densely compacted regions of the dried BC/PVA membranes (Figure 3-

2) are due to the presence of PVA. When BC dries, the fibers collapse onto each other and, 

due to the lack of elasticity, should maintain their overall relative position. When PVA 

fibers dry or are heated, they contract [27]. As the PVA fibers contract inside the BC 

network and due to a non-uniform integration of PVA that is associated with the 

heterogeneity of the BC network, regions with a higher BC fiber density bundle together. 

The remaining spaces, where the overall number of BC fibers was lower, are bridged by 

PVA and a few random BC fibers originating in the porous regions.  

 

Mechanical Characterization of Dry BC and Dry BC/PVA Membranes 

 

BC is known for its high tensile strength, with a Young’s modulus’ ranging from 1MPa to 

114GPa [24, 28-31], varying according to the membrane’s density, dimensions, treatment 

and preparation methods. Generally, BC is regarded as lacking elastic properties, since 

hydrogen bonds formed between individual BC strands contribute to the stiffness of the 

hydrogel. PVA, on the other hand, is known for its elasticity and relatively low tensile 

strength [24]. As found by Gea and colleagues [24], the impregnation of PVA into the BC 

network affects the tensile strength of the nanocomposite. This occurs by steric 

hindrance, where the overall number of hydrogen bonds formed between individual BC 

fibers during the drying process lowers, due to the presence of PVA [31, 32].  

Our findings are in accordance with this theory. dBC resisted better to tensile stress 

deforming, slightly before abruptly rupturing along the midriff of the strips, with no 

Figure 3-2 - Three SEM micrographs of the same dry BC/PVA membrane at 15,000× magnification with two very distinct 
regions of densely compacted fibers and regions with large pores. 
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discernible tearing prior rupture, at a tensile strength of 1.306 ± 0.297GPa. Whereas, 

dBC/PVA under lower tensile stress started to gradually rip, and so, consequently, tensile 

strength was nearly five-times lower, 0.271 ± 0.036GPa. The effect of PVA addition on the 

Young’s modulus is also noticeable. The Young’s modulus for dBC and dBC/PVA was, 

respectively, 3.5 ± 0.5GPa and 1 ± 0.3GPa (Figure 3-3).  

SEM micrographs also present a supporting explanation for the loss in tensile strength. 

The uneven distribution of PVA across the nanocomposite contributes to the reduction in 

overall mechanical performance, due to the heterogeneity of the dBC/PVA membrane. 

The dBC/PVA membrane presents regions with large pores, which, as mentioned 

previously, have a lower fiber density, a large portion of which is PVA. The end results of 

the combination of large pores and high PVA content is that, ultimately, these are 

mechanically weaker than the surrounding, denser, regions. Therefore the membranes 

would rupture more easily across these areas. This also explains why the dBC/PVA rather 

than rupturing abruptly, as with dBC, tended to rip. The force applied would cause stress 

failure on the weaker regions, and the uneven impregnation of the BC hydrogel with PVA 

negatively affected the tensile strength and the Young’s modulus of the nanocomposite. 

The same did not occur with the dBC membranes. In this case, the drying process does 

not result in higher surface heterogeneity and/or pore distribution. The dBC membranes 

Figure 3-3 Stress-strain curves of dry strips of BC and BC/PVA. Each strip of 5 × 1 cm (length × width) was 
cut from a single sheet of material and measured multiple times (n = 6). The results here are the averaged 
curves obtained up to the rupture point. 
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present a uniform and non-oriented distribution of fibers (Figure 3-1C), which has the 

end-result of a greater tensile strength and Young’s modulus. 

 

Diffusion Assays 

 

Solute transport has been classified according to two mechanisms: the pore and the 

partition (or sorption) mechanisms [33, 34]. The former states that solutes diffuse 

through micro-channels in the membrane; as for the partition mechanism, the solute 

dissolves or is adsorbed onto the membrane itself and diffuses through or along fibers. 

As described above, the BC and BC/PVA hydrogels are more porous in nature, forming a 

series of channels that would allow for solute diffusion across the membrane via the pore 

mechanism.  

As to test the effect of the structural and morphological changes incurred by the drying 

process on the mass transfer properties, the diffusion across the never-dried (nd) and dry 

(d) states of the materials was tested using PEG probes and the diffusion coefficients 

determined using the time-retention method. It would be expected that the denser the 

membrane (as is the case with the dry membranes), the harder it would be for solutes to 

diffuse across the membrane, since the overall interconnection of pores and channels in 

the membrane would be much lower [35]. Additionally, molecule size would also effect 

diffusion across the membranes, given the low diffusion coefficient in the liquid phase 

and also because molecule collision with the fibers would increase with molecule size. 

The higher the value for the diffusion coefficient, the more permeable the membrane is 

and the easier solutes pass through the membrane matrix. Our results show that in both 

the case of BC and BC/PVA, solute diffusion across the never-dried membranes is easier 

than in the dried membranes (Table 3 - 1). The ndBC membranes presented the highest 

diffusion coefficient values and, so, were the most permeable of the membranes with 

ndBC/PVA second, followed by dBC/PVA and, finally, dBC. 

These results can mostly be explained due to the fiber density of the materials. A less 

dense material will have less fibers in the transport path [3]. ndBC was therefore expected 

to be the most permeable of the membranes. Similarly, the second least dense  



Chapter 3 – Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite 

AF Leitão 
86 

Table 3-1 - Diffusion coefficients of four different Mw polyethylene glycol (PEG) in BC and BC/PVA samples. 

PEG Mw Diffusion Coefficient (cm2/sec) 

(Da) ndBC dBC ndBC/PVA dBC/PVA 

900 7.40 × 10−5 1.12 × 10−7 4.48 × 10−5 1.16 × 10−5 

8000 2.71 × 10−5 1.79 × 10−8 1.28 × 10−5 1.88 × 10−6 

35000 2.27 × 10−5 1.53 × 10−8 1.10 × 10−5 1.68 × 10−6 

100000 1.95 × 10−5 1.41 × 10−8 9.82 × 10−6 1.50 × 10−6 

 

hydrogel was the ndBC/PVA nanocomposite that, despite the formation and 

entanglement of PVA nanofibers in the BC network (thus, adding to the overall number 

of fibers), still allows for a porous structure similar to that of ndBC. The two denser 

materials would be the dry membranes, due to the aforementioned collapse of fibers onto 

each other, thus blocking and reducing in number the pathways available for solute 

diffusion. However, in the case of the theoretically densest sample, dBC/PVA, the 

diffusion coefficient values present as the third least permeable material. As revealed by 

the SEM imaging (Figure 3-2), the two very distinct regions observed are the reason for 

this occurrence. While, in all the other cases, the pores, regardless of their number, 

distribution and size, are distributed randomly across the entirety of the 3D-structure of 

the membrane. Contrarily, on the dBC/PVA, there are very compact regions and others 

with very large pores. Solute diffusion is facilitated across these extremely porous 

regions, but hindered in the densely compacted regions. Apparently, the balance between 

densely compacted and porous regions must slightly tend towards the latter, due to the 

delay in retention time and, consequently, reduction of the diffusion coefficient.  

Our results are similar to the findings of Sokolnicki [3], which tested the diffusion of 

dextran molecules and showed that molecular size has little effect on diffusion. Higher 

molecule size dictates collisions with the hydrogel fibers, temporary immobilization 

and/or possible rerouting around narrowed passages, according to each. The larger the 

molecule, the likelier it is for these interactions to occur, resulting in a delay in diffusion 

times. The overall number of pores and pathways across the materials, due to overall 

fiber number and density, seems to be the main factor responsible for a slower diffusion. 

This means that diffusion in these membranes is mainly governed by the pore 

mechanism. 
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Conclusions 

 

Previous researchers had shown that a BC hydrogel impregnated with PVA had some 

potential in biomedicine, namely in cardiovascular applications. The work we present 

here shows the mechanical, permeability and morphology changes incurred by both 

incorporation of PVA, in a different concentration and molecular size than previously 

proposed, and the effect of drying the materials.  

Both ndBC and ndBC/PVA are similar in terms of morphology of the hydrogels and fiber 

distribution, with an increase in overall fiber number in BC/PVA. When dried, the 

morphology of both materials change, BC fibers collapse, forming a denser membrane, 

which leads to a decrease in the permeability. Dry BC/PVA membranes suffer dramatic 

changes in terms of morphology, creating two distinct regions: densely compacted 

regions leaving other regions mostly consisting of PVA fibers with large pores. The dual 

nature of the dried BC/PVA membrane affects both the permeability and mechanical 

behavior of the material. The tensile strength of BC decreases, due to the presence of PVA 

impeding the interactions of BC fibers and creating large porous regions that are easier 

to rupture. Potentially, these large pores could serve in aiding cell migration into the 

material and nutrient diffusion across the membrane. Therefore, we here show that by 

promoting physical changes and/or altering the composition of a BC hydrogel, it is 

possible to alter its morphology, mechanical characteristics and permeability. 
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Vascular grafts are used to replace, bypass or maintain function of damaged, occluded or 

diseased blood vessels. Towards   that end several polymers, of both synthetic and natural 

origin, have been studied as small caliber vascular graft alternatives. Bacterial cellulose (BC) 

is among one of those polymers, being studied as an off-the-shelf and ready to use vascular 

graft. Herein, we present a novel, facile and cost-effective method for the production of small 

caliber BC grafts with minimal processing or the requirement for complex bioreactor 

systems. The unique morphology of the graft wall translated into tensile strength above that 

of a native vessel while providing similar values of compliance, out-performing commercial 

alternatives in this regard. As an additional result of the production method the luminal 

surface of the graft presents similar topography to that of native vessels. We have also 

studied the in vivo behavior of these BC graft in a pig model in order to further demonstrate 

their viability. In these preliminary studies, 1 month patency was achieved, with the 

presence of neo-vessels and endothelial cells on the luminal surface of the graft; with no 

evident signs of a foreign body response or fibrosis.   
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Introduction 

 

Data from the World Health Organization (WHO) suggests that the number of people that 

suffer from cardiovascular diseases (CVDs) will increase from 17.3, in 2008, to 23.3 million 

by 2030. In vascular surgery, surgical bypass is fundamental in the treatment of some 

diseases. Vascular grafts replace, bypass or maintain function of damaged, occluded or 

diseased blood vessels. The chosen conduit and its success depend on several factors such 

as availability, size, ease of handling and technical facility, thrombogenicity, resistance to 

infection and dilation, durability, long-term patency and price. 

The most common, and generally considered ideal grafts, are autografts, i.e., vessels collected 

from the patient. There are generally two major downsides to the use of autografts. The first 

is the need for prior surgical interventions, before the actual bypass surgeries, in order to 

collect the autologous vessel. Along with this, the actual availability of these vessels may be 

limited, due to prior interventions. Secondly, these grafts are subject to the natural 

progression of the patient’s disease which can lead to deterioration, over time, of the 

biological grafts [1] and so synthetic grafts have been used for potential application as 

cardiovascular grafts.  

Polyethylene terephthalate (PET or Dacron) and expanded polytetrafluoroethylene (ePTFE) 

grafts are the gold standard, at the moment, for synthetic grafts in large and medium 

diameter (>6 mm) vessels. However, these synthetic alternatives are not yet the ideal 

solution. While demonstrating acceptable results in larger diameter grafts, as internal 

diameter decreases so does its long-term patency [2, 3]. These grafts ultimately fail under 

6mm in diameter, due to surface adsorption of proteins to the luminal and consequent 

activation of platelet activity resulting in clot formation and subsequent thrombosis [4, 5]. 

A large amount of work has therefore been aimed at finding alternative solutions to these 

materials through either natural or synthetic polymer materials [6-8]. The field is ever 

growing and the lack of a clear optimal polymer has led, and continues to lead, to many 

potential options. By either, further development and research into the already existing 

grafts (PET and ePTFE) or the creation of new non-degradable grafts of polyurethane, 

polyvinyl alcohol or bacterial cellulose (BC). Another option is researching and developing 

temporary grafts that ultimately allow for a tissue engineered solution, either by prior cell-

seeding or allowing for native cell migration, attachment and ingrowth. Ultimately these 
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tissue engineered grafts would end up producing a new vessel out of native tissue from a 

scaffold of collagen, fibrin, elastin, silk and polycaprolactone [9-12]. 

One promising candidate is BC. This polymer is a highly pure linear polysaccharide, 

consisting of β (1→4)–linked D-glucose monomers. It is secreted by bacteria of the 

Gluconacetobacter genus. Once secreted, it forms a fibrous network hydrogel that has been 

extensively studied for biomedical applications due to its morphology, high purity, water-

holding capacity, tensile strength, malleability and biocompatibility [13-15] and has been 

proposed for applications such as wound dressings [16], artificial skin[17] or blood vessels 

[18-20] and as a scaffold for tissue engineering [15, 21, 22]. The hemocompatibility of BC has 

been comprehensively studied in our group, with rather promising results (19). 

Many methods have been proposed and patented [23-30] for the production of BC tubular 

grafts. Generally, the methods employed take advantage of the way the BC hydrogel is 

produced at air-medium interfaces [14, 31]. However, these production methods require 

dedicated bioreactors specifically designed for graft production. By using an oxygen 

permeable scaffold upon which BC is produced there are limits to the thickness and density 

of the BC structures because the oxygen rich environment produced by the likes of silicone 

tubing is limited to the immediate vicinity of that tube. Additionally, the oxygen permeable 

scaffold must allow oxygen to permeate consistently and homogenously throughout its 

surface. Otherwise the BC on the material surface will not be produced in a homogenously. 

Also, some cases develop interconnected sheets or layers of BC in the wall of the graft. These 

sheets can potentially delaminate under arterial pressure resulting in pockets of pooled 

blood and pressure build-up which results in the graft ballooning and bursting. This 

heterogeneity in the BC structure translates to varying mechanical properties along and 

across a single BC tube. Meeting these conditions for heterogeneity, along with the logistic 

costs of producing and maintaining a series of graft producing bioreactors, oxygen to inflate 

the permeable scaffold, the oxygen permeable scaffold per se with appropriate 

characteristics and the inevitable optimization processes involved have yet to produce a 

viable model for large scale BC graft production. 

As mentioned, BC has several properties that make it a good prospect as a biomaterial for 

biomedical applications and has shown potential as an in vivo vascular grafts [14, 18, 20, 23]. 

It is already widely produced commercially in membranes or sheets with varying 

thicknesses and scale depending on the producer and method adopted for production. We 
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believe these methods for graft production, as presented to date, have an inherent inability 

to assure an economically viable and reproducible approach to the graft production. In this 

paper we present a novel approach to small caliber BC graft (<6mm) production that is both 

easily reproducible and provides a graft with adequate mechanical and biocompatible 

properties and, through in vivo experimentation, has already demonstrated promising 

patency. 

 

Material and Methods 

Graft Fabrication 

 

Bacterial cellulose was produced by Gluconacetobacter xylinus (ATCC 53582) in a modified 

Hestrin-Schramm medium, supplemented with 2% Corn Steep Liquor (Sigma Aldrich, 

Germany) and 0.6 % ethanol, at pH 5.0. The resulting BC membranes were then washed in 

4% (w/v) NaOH. The membranes were then thoroughly washed with distilled water until 

pH was neutral. Finally, endotoxin removal was accomplished by further washing in 5% SDS 

(w/v). The water and detergent solutions were changed after 24 hours over the course of 2 

days.  

Endotoxin removal was performed as follows: quadruplicate BC samples (1.5 x 2.5 x 4cm 

(height x width x length) were placed in 200ml of distilled water (control) and 5% SDS (w/v). 

The water and detergent solutions were changed after every 24 hours over the course of 3 

days. At each exchange, duplicate BC samples were taken and washed abundantly with 

distilled water and freeze-dried.  The samples were subsequently cut into samples of the 

same weight 20 ± 4mg and rehydrated with 500µl of apyrogenic water. The concentration of 

endotoxin in each sample determined using the Pierce LAL Chromogenic Endotoxin 

Quantitation Kit and the standard protocol included (Thermo Scientific, Rockford, IL USA). 

Additionally, a non-washed BC graft was implanted in a single in vivo assay (as described 

ahead) and compared to the subsequent in vivo assays performed with the SDS washed BC 

grafts. 

BC grafts were prepared by cutting large BC sheets (1.5x25x30cm) into 1.5 x 2.5 x 7cm 

(height x width x length) blocks. These were perforated along the center of the sample with 

a sharp 4mm (outer diameter) metallic needle and then dried by mass transfer of water from 
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the hydrogel to blotting paper until a final wall thickness of roughly 2mm was achieved. The 

resulting tubular structures were then freeze-dried and stored at room temperature until 

needed (see Figure 4-1). All grafts tested herein have a luminal caliber of 4mm and 

independently of the final length used in the varying assays were initially 7cm long. The BC 

grafts used for in vivo experimentation were rehydrated in sterile 0.9% (w/v) saline solution 

and autoclaved at 121oC for 20 min 72 hours before surgery. 

 

Surface Profilometry 

 

BC grafts, created as previously described, were split open longitudinally and fixed with 

double-sided tape to glass slides. PFA, commercial ePTFE and Dacron grafts were also split 

longitudinally and affixed the same way (Dacron grafts were stretched as much as possible 

in order to remove the kinking inherent to the graft). The sample surface profiles were then 

measured 5 times along the same surface (each measurement roughly 1mm apart) with a 

KLC TENCOR D-100 profilometer along 20mm (for Porcine Femoral Artery, ePTFE and PET) 

and 30mm for BC at set speed of 0.2mm/second and a resolution of 2000 points per mm. The 

results were then plotted on a 3D graph so to convey an idea of the 3 dimensional surface of 

the each sample. Roughness was calculated as the amplitude between maximum peak height 

and minimum valley depth. 

 

Cryo-SEM Imaging 

 

Cross sections of the BC grafts were imaged via Cryo-SEM on a JEOL JSM 6301F/ Oxford INCA 

Energy 350/ Gatan Alto 2500. The graft samples were prepared as described above and then 

cut into 1mm wide sections and placed upright in a metallic support. The samples were then 

rapidly cooled by plunging them into sub-cooled nitrogen (slush nitrogen) and transferred 

under vacuum to the cold stage of the preparation chamber. The samples were then 

fractured, sublimated for 180 seconds at -90°C, and coated with Au/Pd by sputtering for 40 

seconds. The samples were finally transferred into the SEM chamber and imaged at -150°C. 

Pore size was estimated from the micrographs using Image J software. 
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Mechanical Tests 

Tensile Strength Determination 

 

BC grafts along with untreated BC (these are grafts that were not freeze-dried and as such 

did not finish the graft processing), ePTFE and porcine femoral artery (PFA) were tested for 

their tensile strength in quintuplicate (n=5) on a Shimadzu AG-X 50 kN at a traction speed of 

5mm/min and a load cell of 1kN. Each sample tested was split open longitudinally and the 

materials thickness and width was measured with digital calipers and accounted for in the 

calculations of the strength parameters. Special care was taken in order to prevent sample 

slipping from the hydraulic grips by using both fine grain sandpaper and construction paper. 

 

Suture Retention Assay 

 

BC grafts with 6 cm length (4mm internal diameter and 7mm external diameter) were fixed 

the top clamp of a Z2.5 Zwick/Roell (Zwick GmbH & Co. KG; Ulm; Germany). A 4-0 Prolene® 

suture (0.15mm diameter; Ethicon) was placed approximately 7mm from the edge of the 

prosthesis (measured with a digital micrometer) and looped around the bottom clamp 

before clamping. The assay was then carried out in quintuplicate, on both freeze-dried and 

non-freeze-dried bacterial cellulose prosthetics, at a set speed of 10mm/min and a 1N pre-

load. 

 

Compliance Characterization 

 

Compliance characterization of BC grafts (n=5) was performed using the system and method 

described previously by Diamantouros and colleagues [32]. Briefly, the grafts were fixed into 

a chamber and initially exposed to a steady flow of purified water.  A pulse (1Hz) was added 

by a linear magnetic actuator. The pressures were stabilized at 80-120mmHg. Variations in 

the outer diameter were measured by an optical micrometer sensor (LS-7030(M); Keyence 

Deutschland GmbH, Neu-Isenburg, Germany) placed perpendicularly to the graft. Pressures 

were recorded by pressure transducers (CODAN pvd Critical Care GmbH; Forstinning, 
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Germany). The measurements were realized for 30 seconds once the pressures were stable. 

Variations in the outer diameter and pressures were recorded by a LabVIEW™ application 

(National Instruments; Texas, USA). The circumferential compliance was then calculated 

with the following equation: 
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Where C is compliance (%/mmHg), D is diameter (µm) and P is pressure (mmHg). “Syst” and 

“Diast” stand for the systolic and diastolic phase respectively. 

A slight addition to the method presented by Diamantouros, consisting of the use of 

ultrasound imaging equipment (Vivid I, GE Healthcare; Freiburg, Germany), allowed for the 

acquisition of video of the changes in internal diameter in response to pressure variation. 

The videos were then converted to still frames and the diameter of the lumen determined 

with Image J software on three points per image. Care was taken so that the measurements 

from each video would be performed at the same coordinates in each individual frame so as 

to account, as much as possible, for human error. 

 

In vivo Experimentation and Histological Analysis 

Surgical procedure 

 

Four female domestic pigs (Sus scrofa domesticus) with weight ranging from 30-40kgs were 

restrained from food (24 hours) and water (6 hours) before each surgical procedure. All 

experiments were conducted according to the European Union Directive no.86/609/CEE for 

the use of animals in research and approved by the board for the ethical treatment of animals 

of the Faculty of Medicine of the University of Porto (ORBEA, FMUP, Oporto, Portugal). All 

procedures were performed under general anesthesia, with endotracheal intubation and 

spontaneous ventilation. A pre-anesthesia intramuscular injection of 32mg/ml azaperone 

(Stressnil®, Esteve Veterinaria) at a dose of 4 mg/kg reconstituted with 1mg/ml midazolam 

(Dormicum®, Roche) at a dose of 0.15–0.2ml/kg was administered. Venous access was 

obtained through an IV line placed in the marginal ear vein. Anesthesia was induced with 

3μg/kg fentanyl (Fentanest®, Janssen-Cilag), and sodium thiopental (12.5 mg/kg IV initially 
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and then to effect Tiopental 0,5 B Braun®, B. Braun). After orotracheal intubation, the 7- to 

7.5-mm tube was connected to the anesthetic equipment (Ohmeda, Boc Health Care), and 

anesthesia was maintained with a mixture of isoflurane (1.5% to 2.5%; Isoflo®, Esteve 

Veterinaria) in 100% oxygen and fentanyl at constant-rate infusion of 30-50 μg/kg/h. 

Afterwards an epidural analgesia protocol was implemented with application of 1 mg/kg 

morphine (Morfina 1% Braun®, B. Braunl). To address infection prophylaxis, all animals 

received intramuscular injection of 1g ceftriaxone (Rocephin®, Roche) before surgery.  End-

tidal CO2, oxygen saturation, electrocardiography and temperature were monitored 

continuously (Cygnus 1000C Vet® Monitor, Servive Portugal). Pigs were placed in supine 

position and shaved, and electrocardiographic electrodes were attached to the chest for 

continuous evaluation of cardiac electrical function. Normal saline (2 to 4 mL/kg hourly) was 

infused through the venous cannula in the auricular vein during surgery, to maintain 

adequate preload stability. 

Open surgery was then performed with isolation of the common femoral artery, the 

profunda femoris artery and the superficial artery. The BC grafts were anastomosed in the 

left hind limb in a homolateral -femoral artery bypass. Papaverine was administered 

topically to the artery to avoid arterial spasm. The animals were heparinized systemically 

with an intravenous bolus injection of 200units/kg of heparin (Heparina Sódica B.Braun®, 

B.Braun), five minutes before clamping of the target arteries. BC grafts were then 

anastomosed with continuous suturewith 6/0 monofilament polypropylene sutures 

(Prolene®, Ethicon). The femoral artery from the right hind limb was sham-operated with 

all the surgical procedures being equally performed, excluding the implantation of the graft.  

After the surgery, the pigs were transported back to their quarters, only when arterial 

oxygen tension stabilized above 95%. Pigs were monitored until their body temperature 

normalized (with digital thermometers) and they were able to ambulate. They then were 

observed at least 2 or 3 times daily for locomotor activity, respiratory changes, body 

temperature, and food and water intake. Analgesia was maintained during the first 24 h after 

surgery by using meloxicam (0.5 mg/kg IM; Metacam, Boehringer Ingelheim). Acetylsalicylic 

acid (150mg/animal per os daily; Ácido Acetilsalicílico ratiopharm 100 mg, Ratiopharm) was 

given once daily until euthanasia, to prevent platelet aggregation. 

After the designated times, the animals were sacrificed by IV KCl injection after sedation with 

azaperone reconstituted with midazolam administered IM prior to induction with sodium 
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thiopental (12.5 mg/kg IV initially and then to effect) and the grafts and sham-operated 

arteries were harvested and histologically evaluated for signs of chronic inflammation, 

infection, foreign body responses, clot formation, cell ingrowth, and diameter via electron 

microscopy. 

Histology 

 

Tissues were preserved in formalin for a minimum of 4 days and were embedded in paraffin 

in an automated tissue processor (Microm STP 120). Tissues were then transferred to 

embedding workstation to obtain paraffin blocks. From these, sections (2µm) were cut on a 

rotary microtome (Leica RM 2035) and stained with Hematoxylin and Eosin (H&E) for light 

microscopic examination. Observations and photographs were made using an Olympus 

BX51 microscope with an Olympus camera attached. 

 

Immunohistochemistry 

 

Immunostaining of endothelial cells was performed using the primary antibody – Mouse Anti 

Pig CD31 (AbD Serotec; Oxford, England). This is a mouse monoclonal antibody designed to 

detect porcine CD31. The slides were immersed in 10mM sodium citrate (pH 6.0) buffer, and 

and heated in a water bath (95-99oC) for antigen retrieval. Antigen visualization was done 

with the Novocastra Novolink Polymer Detection System (Leica Microsystems GmbH, 

Wetzlar, Germany) and involved the following steps: Sections were incubated with H2O2 

(3%) for 10min to eliminate endogenous peroxidase activity followed by a 5min incubation 

with a protein blocking agent. Sections were subsequently incubated overnight at 4oC with 

the primary antibody diluted at 1:100 with BSA (5%), and on the following day, washed in 

TBS-buffered saline solution before incubation for 30min with the secondary antibody 

system using diaminobenzidine (DAB) as a chromogen. 

Statistical Data Analysis 

All data and statistical analysis was performed using both GraphPad Prism and Origin Pro 9 

software. Statistical significances were determined via One-way and Two-Way ANOVA tests 

after verifying the Normal distribution (p<0.05) of the data. 
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Results 

Graft Fabrication 

 

The novel methodology presented herein for production of the BC graft is schematically 

outlined in Figure 4-1. The BC grafts were produced with needles that were purposely built, 

regularly sharpened and exchanged in order to assure consistent perforation. Special care 

was taken during perforation in order assure a smooth luminal channel. An unsharpened 

needle resulted in tears during the perforation with the appearance of “flaps” that could 

occlude or restrict flow through the graft. Also, while all grafts produced and presented in 

this work were 4mm in diameter we found that by using different diameter needles allows 

the production of grafts with different diameters. 

The drying and shaping was performed with the needle in place with special care to avoid 

changes to the luminal diameter of the graft and an irregular topography of the external 

surface. Also, the grafts were found to dry quickly during the freeze-drying process (a 

maximum of 2 days is required for complete drying) and the least irregular grafts were 

obtained the quicker this process was performed. 

 

Figure 4-1 - Schematic representation BC vascular graft formation process. From left to right: the BC perforated with a sharp 
metallic needle, dried by capillary action and shaped into a cylinder and finally freeze-dried. 

 

Surface Profilometry 

 

The surface profiles we present here were obtained by 5 consecutive measurements that 

were 1 mm spaced (side-by-side) and plotted together in a three-dimensional topological 

graph so as to convey an idea of the topography of the materials (see Figure 4-2). Our results 
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show that the surface roughness of BC is in the same range of that of porcine femoral artery, 

ranging roughly 300nm in both cases from highest peaks to lowest valley, with no 

statistically significant difference between them (p>0.05). On the other hand, both ePTFE 

and, to a greater extent, PET show a much greater surface roughness with a distance of 

approximately 600 and 1600 nm between peaks and valleys respectively. 

 

Figure 4-2 - Surface profiles of Porcine Femoral Artery (A), BC graft (B), ePTFE graft (C) and a PET graft (D). The plots were 
obtained from 5 separate linear measurements (2000 points/mm) over 2 cm (3cm for BC), spaced 1mm apart and plotted in a 
3D graph. 

 

Cryo-SEM Imaging 

 

Several BC grafts samples, and several different regions of each graft, were observed via 

Cryo-SEM so as to maintain the hydrated three-dimensional structure of the grafts; the 

images presented here are representative of those observations (Figure 4-3). The fibril 

distribution inside of our grafts showed markedly different structures throughout the graft 

wall that are well distributed throughout. In lower magnifications dense sheets of BC fibers 

intersecting each other are visible and appear in wave-like patterns, parallel to the luminal 

surface of the graft (Figure 4-3A, B and C). Dense sheets are surrounded by low density open 
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porous regions (Figure 4-3D) with pore sizes ranging from 1 to 5 µm in diameter. 

Additionally, there seems to be a consistent and dense single layer of BC fibers over the entire 

luminal surface of the graft that is immediately followed by open porous regions (Figure 4-

3E).  

 

Figure 4-3 - Cryo-SEM images of a portion of the cross-section of the graft wall. (A) and (B) 4000x magnification with noticeable 
dense regions layered between open-pore structures; (C) 10000x magnification of the dense BC regions; (D) 10000x 
magnification of the open-pore structures and (E) 10000x magnification of the edge of the luminal surface of the graft. (F) is a 
schematic representation of the interface between the luminal surface and inner wall structure. 

 

Endotoxin Removal Study 

 

Endotoxin (Lipopolysaccharide; LPS) concentration on non-washed and SDS washed BC was 

determined with the Pierce LAL Chromogenic Endotoxin Quantitation Kit. Total LPS 

concentration on non-washed BC over the course of the study was 2.65 ± 0.27EU/ml 

(Endotoxin Units/ml) and dropped to 0.43 ± 0.15, 0.06 ± 0.04 and 0.003 ± 0.02EU/ml over 

the following 3 days (Figure 4-4). Total LPS concentration was shown to be significantly 

different between washed and non-washed BC (p<0.05). Results also show a significant 

difference between a single and twice washed (p<0.05) and no significant difference 

between the second and third washes. 



Chapter 4 – A Novel Small-Caliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization and 

Preliminary In vivo Testing 

AF Leitão 
104 

 

Figure 4-4 - Endotoxin (LPS) concentration in EU/ml (Endotoxin Units/ml) as determined over 3, 24 hour, washes in 5% SDS 
and water (negative control). 

 

Mechanical Tests 

Tensile Strength Determination 

 

Mechanical testing demonstrated marked differences between porcine femoral artery (PFA), 

ePTFE and BC (both as a graft and untreated) - see Table 4–1. The BC graft and untreated BC 

show no statistically significant difference between them (p>0.05) in regards to any of the 

parameters though. However, the BC graft did show higher values for maximum tensile 

strength (Max Force), maximum stress and strain. PFA, while mechanically weak as 

compared to the other materials in regards to strength, was by far the most elastic, 

deforming 133% before rupture. Also noteworthy, ePTFE was shown to be most rigid of the 

tested materials, with the highest values in all the parameters. The BC grafts thus better 

resembles the biological vessels than ePTFE, in the sense that it presents higher elasticity, 

translated in a Young modulus in the same order of magnitude as PFA´s. 

Table 4-1 - Mechanical test results for Porcine Femoral Artery (PFA), ePTFE the BC Graft and unprocessed BC (n=5). Values 
marked with an asterisk (*) are not statistically different from each other in their respective columns (p>0.05). Data is 
presented as mean ± standard deviation. 

Material Young's Modulus (N/mm2) Max Force (N) Max Stress (N/mm2) Max Strain (%) 

PFA 2.58 ± 0.95 10.05 ± 3.39 1.15 ± 0.39* 133.46 ± 11.25 

ePTFE 125.40 ± 24.33 198.54 ± 13.33 23.57 ± 1.00 40.62 ± 9.92* 

BC Graft 10.56 ± 1.53* 95.92 ± 5.62* 2.75 ± 0.38* 41.08 ± 8.65* 

BC 10.70 ± 2.23* 91.47 ± 16.33* 2.10 ± 0.26* 34.5 ± 4.27* 
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Suture Retention Strength 

 

Results show that untreated BC and our BC grafts demonstrate suture retention strength of 

3.94 ± 0.38 and 4.20 ± 0.99N respectively, with no statistically significant difference between 

them (p>0.05). The results demonstrate a superior performance of the BC grafts, as 

compared to most materials, presenting a suture retention strength comparable to that of 

ePTFE. 

Table 4-2 - Suture Retention strength (N) of several autologous and synthetic grafts for Tissue Engineered Blood Vessels 
(TEBV), Internal Mammary Artery (IMA), Polytetrafluoroethylene (ePTFE), Fibrin and Fibrin/polylactic acid (PLA), Human 
Saphenous Vein (HSV), Collagen and Bacterial Cellulose (BC). Suture retention strength for the BC graft and untreated BC are 
not statistically different (p>0.05; n=4) 

Graft Material Retention Strength (N) SD References 

IMA 1.35 ± 0.49 29 

HSV 2.60  30 

TEBV 1.49 ± 0.49 29 

Fibrin 0.19 ± 0.05 31 

Fibrin/PLA 1.32 ± 0.58 31 

Collagen 0.82-2.87 ± 0.12-0.09 32 

ePTFE 4.70 ± 0.50 33 

BC graft 4.20 ± 0.99 -- 

BC 3.94 ± 0.38 -- 

 

Compliance Characterization Assay 

 

We measured the compliance for our BC grafts externally via laser detector and estimated 

compliance internally by sonography imaging. Results show a significant difference between 

the compliance of the BC graft in regards to the internal and external measurements (see 

Table 4–3). Externally compliance was measured as being 0.4x10-2 %/mmHg while 

internally graft compliance was determined to be 9.5x10-2 %/mmHg. While the external 

compliance falls far from the results for the most of the other materials found in the literature 

internally compliance seems to be much better matching, in most regards, the compliance 

values found for autografts. 
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Table 4-3 - Compliance (presented as value x10-2 %/mmHg) with standard deviation (SD) as collected from the literature for 
Internal Mammary Artery (IMA), Human Saphenous Vein (HSV), Human Iliac Artery (HIA), Tissue Engineered Blood Vessel 
(TEBV), Polyurethane (PU), Polyethylene terephthalate (PET), expanded Polytetrafluoroethylene (ePTFE), Bacterial 
Cellulose/Chitosan blend (BC/Chi) and measurements for the compliance of the BC grafts as measured externally and 
internally (n=5). 

Graft Material Compliance (%/mmHg; x10-2) SD References 

IMA 11.5 ± 3.9 29 

HSV 3.7-12.8 ± 1.3-1.9 34 

HIA 8 ± 5.9 35 

TEBV 1.5-3.4 ± 0.3 29; 30 

PU 8.1 ± 0.4 35 

PET 1.8 ± 1.2 35 

ePTFE 1.2-1.6 ± 0.3 35; 36 

BC/Chi 5.9 ± 2.7 36 

BC graft External 0.4 ± 0.1 -- 

BC graft Internal 9.5 ± 2.8 -- 

 

In vivo Experimentation and Histological Analysis 

 

As a preliminary in vivo assay, 4 surgical procedures have been performed to date, with 

implantation of the BC graft in a femoral-femoral artery bridge on the left hind limb of female 

domestic pigs (see Figure 4-5A). The right femoral artery was also isolated in a sham-

operated procedure and served as a control for the implanted graft. No significant changes 

to the arterial wall of the control vessel were detected. 

During the first surgical intervention severe arterial spasm and contraction was noted 

during, and after, the procedure. There was noticeably reduced pulse immediately after graft 

implantation and the limb was found to be slightly cold to the touch 24 hours post-

operatively both situations indirectly attributed to arterial contraction and restricted blood 

flow. All further procedures were performed with papaverine administration, via topical 

wash to the artery in order to facilitate anastomosis and avoid the transitory arterial spasms 

in the immediate moments post-op. The following three procedures resulted in 1 month 

patency that were all confirmed via Doppler ultrasound imaging (results not shown) being 

terminated at that point for explantation of the BC graft and subsequent histological analysis. 

Histological analysis and Immunohistochemistry staining were performed on the grafts 

harvested after the experiments were terminated. The BC grafts that were recovered one 
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month after surgical intervention were intact and well integrated into the surrounding tissue 

with no significant fibrosis or macroscopic evidence of inflammation. Later histological 

analysis showed a distinct, three-layered, structure with cellular adhesion and infiltration on 

both the luminal and adventitial surfaces of the graft and an unpopulated and larger BC 

central region. CD31 positive cells were detected on the luminal surface and are believed to 

be endothelial or progenitor endothelial cells that migrated from the adjoining femoral 

artery (Figure 4-5B and F). The presence of neo-vessel formation was detected in the cell 

population on both the adventitial and luminal surfaces (see Figure 4-5C and E). It should be 

Figure 4-5 - Representative photographs of the microscopy images of in vivo tests. (A) Femoral-femoral artery BC 
graft placement, (B) luminal surface of the graft with cell adhesion on the surface of the graft along and some cell 
infiltration, (C) external surface of BC graft showing formation of neo-vessels (arrow), (D) Close-up detail of 
external surface of the graft with giant cells (red arrow) and macrophages (green arrow) among fibroblasts, (E) 
immunohistochemistry staining of CD31 positive cells forming neo-vessels on the luminal surface of the graft, (F) 
CD31 positive cell clusters on the luminal surface of the grafts. 
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noted that a significant amount of background staining occurred due the unspecific staining 

of BC in the immunohistochemistry staining and so the exact extent of the CD31 positive cells 

cannot be accurately assessed. Figure 4-5D is representative of the cellular infiltration and 

population found on the adventitial surface of all the recovered grafts. The cell populations 

in the adventitial regions were determined to be composed, mostly, of fibroblasts, 

macrophages and some giant cells with a small population of lymphocytes also present. 

 

Discussion 

 

The method for BC graft production, as described herein, is hinged on its simplicity and a few 

crucial steps, namely: perforation, simultaneous drying and shaping and freeze-drying 

(Figure 4-1). By processing a single BC sheet this method can render multiple grafts while 

allowing fine control over the luminal diameter, thickness, and consequently density, of the 

graft wall. 

Perforation of the graft by a sharp needle allows a precise control over the luminal diameter 

of the graft and directly affects the structure of the luminal surface of the graft (Figure 4-1). 

There seems to be a consistent and dense (and apparently single layer, see Figure 4-3E) of 

BC fibers over the entire luminal surface of the graft that is immediately followed by an open 

porous regions (discussed ahead). The uniform layer that forms the luminal wall results from 

the perforation process used to create the luminal canal. As the needle penetrates the 

cellulose block it pushes BC fibers out of its way and to the sides, the end result is a dense 

inner wall of BC fibers. This luminal surface plays an important role in containing the blood 

in the lumen of the graft while serving as a semi-permeable barrier to plasma and potentially 

adhered cells.  

Additionally, the surface created by this layer of BC fibers is quite smooth and, in regards to 

its profile, similar to that of a native artery (Figure 4-2). Blood flow and shear stress have 

been shown to contribute to plaque formation due to non-uniform blood flow [41, 42]. 

Physiological levels of shear maintain the homeostatic functioning of vessels and so, ideally, 

grafts should aim for physiological levels of shear [43-47]. In this regard the topography of 

both ePTFE and Dacron are quite different from that of both BC and the artery (Figure 4-2). 

The similarities between the surface roughness/topography of the BC grafts and that of the 
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arterial wall should theoretically match and allow for an un-interrupted and consistent 

blood flow over the transition from artery to graft maintaining physiological levels which, in 

the end, is beneficial to graft performance. 

The subsequent partial capillary drying, shaping and freeze-drying steps are largely 

responsible for the final structural and mechanical properties of the resulting grafts. The 

drying and shaping allows the BC block to be shaped into a cylindrical tube with 2mm in wall 

thickness. As a direct result the graft wall density is brought from 0.02g/cm3 to 0.09g/cm3. 

With the final freeze-drying step being required to eliminate the remaining water. This 

allows individual BC fibers to come into contact with each other and form H-bonds [48], 

while maintaining each individual fiber’s spatial position. This step is essential in order to 

reduce swellability of the graft, which would otherwise cause the loss of the cylindrical 

shape, while retaining the malleability, flexibility, the degree of the water retaining capability 

of the BC hydrogel and, above all, the shape of the graft. 

The contact and bonds created between fibers induced morphological changes in the BC 

hydrogel (Figure 4-3). BC has been extensively characterized as presenting an open porous 

structure that is relatively homogenous throughout the hydrogel [14, 48, 49]. Our grafts 

present a dual structure, presenting dense sheets, formed by the collapse of fibers onto each 

other in the drying and with bonds formed during freeze-drying, (Figure 4-3A and B) layered 

in between the characteristic open porous morphology of BC (Figure 4-3D). These two 

distinct regions/structures complement each other structurally and functionally. The dense 

regions observed at a micro/sub-micro scale provide a slight increase in mechanical support 

while allowing the graft to maintain the shape and structural integrity essential to a 

functional vascular graft. Simultaneously, the open-porous regions allow for void space and 

pore interconnectivity that in turn allows the graft to preserve its flexibility while allowing 

cellular migration from the adjoining tissues to the graft.  

A final step in graft preparation was the removal of bacterial lipopolysaccharide (LPS or 

endotoxin) from the grafts by SDS wash. A significant amount of endotoxin (2.65 ± 

0.27EU/ml) remains on BC after alkaline wash, a standard procedure in purifying BC, which 

has been shown to induce a strong inflammatory response [50]. The inflammatory response 

triggers coagulation mechanics and could subsequently cause thrombosis. A 24 hour wash 

was enough to significantly reduce the overall concentration of LPS in BC by over 83%, and 

a subsequent succession of three washes completely removes any presence of LPS. 
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In terms of tensile strength untreated BC and the BC grafts show no statistically significant 

difference between each other; though there seems to be a slight increase in the tensile 

strength of the BC grafts due to the higher number of bonds in the denser regions (95.92 vs 

91.47N). Since, the total number of BC fibers in a given cross-section is essentially identical 

the higher strength of the graft does not translate to significantly higher values. BC fibers are 

characteristically strong yet inelastic [13] as opposed to the elastin in a native vessel which, 

has lower tensile strength though capable of great deformation and shape memory. This is 

evident when comparing the tensile strength (95.92 vs 10.05N) and elasticity, or 

deformation, (41 vs 133%) of the graft compared to a porcine vessel.  

Similar to what happens with the tensile strength of the graft, suture retention of the BC graft 

is influenced by the inelasticity of the BC fibers when compared to that of native vessels. The 

large number of fibers, some organized in the stronger dense regions, provide a solid anchor 

point for the suture. This translates to a suture retention strength that is noticeably higher 

than that of native vessels, which as mentioned, tend to deform rather than resist the tensile 

stress. This suture retention strength is both comparable to that of much stronger and rigid 

materials like ePTFE, which can also be seen when comparing the tensile strength and 

deformation, and also, greatly outperforms other polymers that are being proposed as grafts 

materials (see Table 4–2). 

Another important consequence, of the distribution and layered structure of the graft wall is 

the compliance behavior the graft. Intimal hyperplasia in both autologous saphenous vein 

and synthetic artery bypass grafts is a major reason for graft failure [40] and is closely 

associated with a mismatch in mechanical properties of the native vessel and the bypass 

graft. Diastolic and systolic pressure changes cause vessel walls to expand and contract. A 

mismatch in mechanical properties of native vessels and grafts adds direct stress to ingrown 

tissues. Specifically, at the point where the mechanical properties of the vessel wall changes. 

This can cause lesions to the cell layers which can expose underlying smooth muscle cells 

resulting in an abnormal migration and proliferation, along with the deposition of 

extracellular matrix, in the intimal layer (intimal hyperplasia). This leads to thickening of the 

vessel wall and causing a reduction in the lumen of the vessel, restricting blood flow which 

can eventually cause occlusion [51].  

Therefore, mechanical compliance between the tissue and graft is paramount. The open 

porous regions of the graft, as mentioned, provide void spaces that allow for fiber movement 



Chapter 4 – A Novel Small-Caliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization and 

Preliminary In vivo Testing 

AF Leitão 
111 

inside the graft wall. The void spaces of the pores allow fiber movement in response to 

pressure changes on the grafts luminal surface. The graft wall seems to absorb the pressure 

change and does not translate outward to the surface of the material. Hence the difference 

in compliance values for the outer (0.4x10-2 %/mmHg) and inner (9.5 x10-2 %/mmHg) 

measurements. Though the method used for measuring the diameter changes of the luminal 

surface is not extremely precise, when compared to the precision of the laser detector, we 

are comfortable in the assessment that inner (luminal) compliance is significantly different 

from that of the outer (adventitial) compliance. While the BC grafts inner and outer surfaces 

comply differently, the end result is that the BC graft and native vessels present similar 

values of compliance on the blood-contacting surface. In this regard, the BC grafts greatly 

outperform the current synthetic materials available, such as ePTFE and PET, by a large 

margin (see Table 4–3).  As a final supporting note, in regards to the mechanical behavior of 

the BC graft, the ANSI/AAMI VP20-2001 standards outlines that arterial constructs are 

required to withstand normal arterial pressures and have a burst strength above 

1680mmHg. We have measured burst pressure of the BC grafts to be above 1900mmHg 

(results not shown).  

As a result of the findings presented in this work and our prior work with BC [18, 19, 52], 

along with all that presented in the literature, there was reason to believe that the graft could 

perform well in vivo. Previous in vivo studies have used rats, sheep and pigs as in vivo models 

for the study of the performance of BC grafts [14, 53, 54]. Due to the similar anatomy and 

physiology, domestic pigs were chosen as a model for this work. Despite drawbacks such as 

the lack of cooperation, without full general anesthesia, and a propensity for rapid growth, 

pigs constitute an optimal, analogous, model for pre-clinical protocol development and 

studies [55]. In order to comply with the set parameter of a small caliber vessel (<6mm) the 

femoral artery was chosen as the sight for implantation of the graft as a femoral artery 

bridge.  

The use of the pig model proved invaluable in determining surgical procedure and 

complications that could otherwise remain undetermined. Namely, failure associated with 

vessel occlusionavoiding due to muscular and arterial spasm and contraction; as was the 

case in the first surgical procedure performed. Normal and physiological Aarterial 

contraction occurred during surgery and persisted, in the immediate time frame, after 

implantation which led to a noticeably restricted blood flow before closing. We believe that 
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the restricted blood flow in these initial moments after implantation led to the collapse of 

the prosthesis and clot formation. The end result was an occluded vessel 15 days after 

surgery, though 24 hours after the procedure pulse was weak and the limb hypothermic. 

Papaverine is an antispasmodic drug commonly used in coronary artery bypass surgery [56] 

and, as a result of this initial experiment, was introduced as a procedural step to the 

implantation protocol. Papaverine has been shown to aid in venous graft performance by 

allowing the smooth muscle of the artery to relax and allow normal blood flow [57, 58]. The 

use of papaverine was therefore introduced in order to aid in assuring an uninterrupted 

blood flow in the initial stages of the grafts implantation.      

The results, in regards to in vivo experimentation, are still in their early stages yet stack up 

well as compared to the findings of both Malm [53] and Wipperman [54]. The luminal surface 

was largely populated by a cell population containing endothelial, or endothelial-like cells 

(which was confirmed via immunohistochemistry), a fibroblast population, along with some 

macrophages and giant cells, covered and infiltrated the adventitial surface. The occurrence 

of neo-vessel formation was found both, on the luminal (via immunohistochemistry staining) 

and adventitial (visible in the H&E staining and later confirmed in the 

immunohistochemistry) surfaces of the grafts. Cell infiltration and adhesion is largely 

limited to the surface and limits of the graft with the center of the BC graft wall which 

remaining largely unpopulated. Both authors reported similar findings though no neo-vessel 

formation was reported in their cases. 

While coverage of the grafts adventitial surface was complete, the exact extension of surface 

coverage on the luminal surface could not be precisely determined. Also, the origin of the 

cells on the adventitial and luminal surfaces is undetermined. However, we believe these to 

be, in large part, cells that would have migrated from the anastomotic sites, at least in regards 

to the luminal surface, rather than circulating cells that adhered to the BC graft surface 

similarly to what was proposed by Malm and colleagues [53]. Finally, the giant cells present, 

consisted of a minimal population, with large vacuoles with what seemed to be a white 

material. We believe this white material to be BC that possibly still contained a small amount 

of endotoxin that would have triggered macrophage activation, the end result being giant 

cell formation. Their presence was largely negligible and absent from the luminal surface. 
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Conclusions 

 

As mentioned, several methods have been proposed and patented for BC graft production 

and which all require dedicated bioreactors and production protocols. Our novel approach 

has allowed us to produce a dense, malleable and mechanically strong tubular BC prosthetic 

that meets most of the mechanical characteristic of native vasculature, most notably 

compliance. Both in vitro and in vivo, the BC grafts herein presented seem to constitute an 

important alternative as synthetic vascular grafts.  

This work is still ongoing mostly in order to expand upon the sample size of the in vivo tests, 

as well as, prolonging those same tests into longer implantation times in order to gain a more 

significant perspective of the feasibility of a BC grafts as a long-term, off-the-shelf and cost-

effective synthetic graft. This further work will demonstrate any potential limitations of the 

grafts, as is, and allow us to address possibilities such as nanocompositing the graft with 

other polymers, such as fibrin, or surface modifications, such as the incorporation of heparin, 

in order to extend implantation times.  
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This work consisted in the development of a viable vascular graft of bacterial 

cellulose (BC). Initially the worked focused on enhancing the production method 

described in the literature and implemented by a colleague in the course of a 

previous PhD. By feeding oxygen through an oxygen permeable silicone tubing and 

harnessing the way in which the bacteria produce bacterial cellulose the tubes were 

formed. However, they were found to be lacking in the mechanical properties that 

were required of a viable graft. As such, a nanocomposite based off of the bacterial 

cellulose hydrogel and containing poly(vinyl alcohol) (PVA) was devised, developed 

and characterized. 

Before any further development the blood-material characterization was essential. 

If the material did not perform in regards to hemocompatibility and non-

thrombogenicity there would be no reason to pursue it. There was a beneficial, side-

effect of the addition on PVA; namely a slight improvement to the hemocompatibility 

and non-thrombogenicity of the material. Results showed that the BC/PVA 

nanocomposite outperformed the industry standard, ePTFE, in regards to 

blood/material interactions. Though the differences between the 

hemocompatibility parameters were comparable to those of BC; in all of them, there 

was a tendency for BC/PVA to also outperform BC.  

Results showed that the addition of PVA did not, however, have the desired effect of 

improving the mechanical behavior of the BC hydrogel when the samples were dried 

completely. This was found to be due to changes that occurred on an organizational 

level of the fibrous network with noticeably large porous regions in dry BC/PVA 

contributing significantly to the mechanical behavior of the material. 

Observationally, the BC/PVA nanocomposite if never dried seemed to provide a 

mechanical resistance that was higher to that of BC but, this was never confirmed.  

Through the successive developmental stages of the graft and various different 

configurations and production methods a novel and cost-effective method was 

discovered. This methodology allowed the consistent production of viable grafts 

with the mechanical and morphological characteristics that a vascular graft required 

with no need for additional manipulation and formulation. The cost-effective nature 

and logistically uncomplicated method of production also proved beneficial aspects. 

BC had already been shown to have potential in vivo and as such live animal testing 
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was performed that also showed viability with 1 month patency being shown. The 

presence of an endothelial cell population on the luminal surface also gave support 

to the notion that the grafts could become a viable option. This work ultimately led 

to the application for a provisionary patent. 

Currently, studies are still ongoing and any future perspectives of the work, at the 

moment, will focus on continued in vivo studies and improvement so as to determine 

the long-term viability of the BC grafts. The intent is to attempt to achieve 3 month, 

6 month and ultimately 1 year patency of the graft. Additionally, the vascular graft 

production method should also be optimized so as to automate and scale-up the 

production method. Most noticeably the use of laser cutting technology to perforate 

the BC hydrogels may be the ideal solution rather than a mechanical perforation, as 

is currently used. Also, the addition of bioactive molecules to the luminal surface of 

the graft are also a possible prospect. The addition of heparin, or other such 

chemicals may improve biocompatibility and allow long-term patency of the graft. 

Also, the possibility of a new nanocomposite, such as BC/fibrin, may prove a viable 

course of action. The mechanical behavior of BC would support the graft while fibrin 

would allow the material surface, at the least, to be populated with endothelial cells 

that would in turn, also, allow the grafts long-term performance. 
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Annex A 

Provisionary Patent Application 

 

Adapted from: Alexandre F. Leitão and Miguel Gama; TUBULAR BACTERIAL CELLULOSE GRAFTS FOR 

VASCULAR APPLICATIONS AND METHOD OF PRODUCTION; Provisionary Patent Number: 107904; 
Date of Priority: 23-09-2014 
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DESCRIPTION 

“Tubular bacterial cellulose grafts for vascular applications and method of 
production” 

 

Field of the Invention 

 

The present invention relates to a method of production of graft for vascular 

application. More specifically consists in the production of a tubular, three-

dimensional, bacterial cellulose structures for applications as a cardiovascular 

bypass grafts or other similar tubular structures. 

 

Background of the invention 

 

Data from the World Health Organization (WHO) suggests that the number of people 

that suffer from cardiovascular diseases (CVDs) will increase from 17.3, in 2008, to 

23.3 million by 2030. In vascular surgery, surgical bypass is fundamental in the 

treatment of some diseases. Vascular grafts replace, bypass or maintain function of 

damaged, occluded or diseased blood vessels. The chosen conduit and its success 

depend on several factors such as availability, size, ease of handling and technical 

facility, thrombogenicity, resistance to infection and dilation, durability, long-term 

patency and price. 

The most common, and generally considered ideal grafts, are autografts, i.e., vessels 

collected from the patient. There are generally two major downsides to the use of 

autografts. The first is the need for prior surgical interventions, before the actual 

bypass surgeries, in order to collect the autologous vessel. Along with this, the actual 

availability of these vessels may be limited, due to prior interventions. Secondly, 

these grafts are subject to the natural progression of the patient’s disease which can 

lead to deterioration, over time, of the biological grafts [1] and so synthetic grafts 

have been used for potential application as cardiovascular grafts.  

Polyethylene terephthalate (PET or Dacron) and expanded polytetrafluoroethylene 

(ePTFE) grafts are the gold standard, at the moment, for synthetic grafts in large and 
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medium diameter (>6 mm) vessels. However, these synthetic alternatives are not 

yet the ideal solution. While demonstrating acceptable results in larger diameter 

grafts, as internal diameter decreases so does its long-term patency [2, 3]. These 

grafts ultimately fail under 6mm in diameter, due to surface adsorption of proteins 

to the luminal and consequent activation of platelet activity resulting in clot 

formation and subsequent thrombosis [4, 5]. 

A large amount of work has therefore been aimed at finding alternative solutions to 

these materials through either natural or synthetic polymer materials [6-8]. The 

field is ever growing and the lack of a clear optimal polymer has led, and continues 

to lead, to many potential options. By either, further development and research into 

the already existing grafts (PET and ePTFE) or the creation of new non-degradable 

grafts of polyurethane, polyvinyl alcohol or bacterial cellulose (BC). Another option 

is researching and developing temporary grafts that ultimately allow for a tissue 

engineered solution, either by prior cell-seeding or allowing for native cell 

migration, attachment and ingrowth. Ultimately these tissue engineered grafts 

would end up producing a new vessel out of native tissue from a scaffold of collagen, 

fibrin, elastin, silk and polycaprolactone [9-12]. 

One promising solution for these problems is BC. This polymer is a highly pure linear 

polysaccharide, consisting of β (1→4)–linked D-glucose monomers. It is secreted by 

bacteria of the Gluconacetobacter genus. Once secreted, it forms a fibrous network 

hydrogel that has been extensively studied for biomedical applications due to its 

morphology, high purity, water-holding capacity, tensile strength, malleability and 

biocompatibility [13-15] and has been proposed for applications such as wound 

dressings [16], artificial skin[17] or blood vessels [18-20] and as a scaffold for tissue 

engineering [15, 21, 22]. The hemocompatibility of BC has been comprehensively 

studied in our group, with rather promising results (19). 

Many methods have been proposed and patented [23-30] for the production of BC 

tubular grafts. Generally, the methods employed take advantage of the way the BC 

hydrogel is produced at air-medium interfaces [14, 31]. However, these production 

methods require dedicated bioreactors specifically designed for graft production. 

By using an oxygen permeable scaffold upon which BC is produced there are limits 

to the thickness and density of the BC structures because the oxygen rich 

environment produced by the likes of silicone tubing is limited to the immediate 
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vicinity of that tube. Additionally, the oxygen permeable scaffold must allow oxygen 

to permeate consistently and homogenously throughout its surface. Otherwise the 

BC on the material surface will not be produced in a homogenously. Also, some cases 

develop interconnected sheets or layers of BC in the wall of the graft. These sheets 

can potentially delaminate under arterial pressure resulting in pockets of pooled 

blood and pressure build-up which results in the graft ballooning and bursting. This 

heterogeneity in the BC structure translates to varying mechanical properties along 

and across a single BC tube. Meeting these conditions for heterogeneity, along with 

the logistic costs of producing and maintaining a series of graft producing 

bioreactors, oxygen to inflate the permeable scaffold, the oxygen permeable scaffold 

per se with appropriate characteristics and the inevitable optimization processes 

involved have yet to produce a viable model for large scale BC graft production. 

As mentioned, BC has several properties that make it a good prospect as a 

biomaterial for biomedical applications and has shown potential as an in vivo 

vascular grafts [14, 18, 20, 23]. It is already widely produced commercially in 

membranes or sheets with varying thicknesses and scale depending on the producer 

and method adopted for production. However, these methods for graft production, 

as presented to date, have an inherent inability to assure an economically viable and 

reproducible approach to the graft production. The present invention is a novel 

approach to small caliber BC graft (<6mm) production that is both easily 

reproducible and provides a graft with adequate mechanical and biocompatible 

properties and, through in vivo experimentation, has already demonstrated 

promising patency. 

 

General Description 

 

The method for BC graft production, as described herein, is hinged on its simplicity 

and a few crucial steps, namely: perforation, simultaneous drying and shaping and 

freeze-drying (Figure A-1). By processing a single BC sheet this method can render 

multiple grafts while allowing fine control over the luminal diameter, thickness, and 

consequently density, of the graft wall. 
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Perforation of the graft by a sharp needle allows a precise control over the luminal 

diameter of the graft and directly affects the structure of the luminal surface of the 

graft (Figure A-1). There seems to be a consistent and dense (and apparently single 

layer, see Figure A-3E) of BC fibers over the entire luminal surface of the graft that 

is immediately followed by an open porous regions. The uniform layer that forms 

the luminal wall results from the perforation process used to create the luminal 

canal. As the needle penetrates the cellulose block it pushes BC fibers out of its way 

and to the sides, the end result is a dense inner wall of BC fibers. This luminal surface 

plays an important role in containing the blood in the lumen of the graft while 

serving as a semi-permeable barrier to plasma and potentially adhered cells.  

Additionally, the surface created by this layer of BC fibers is quite smooth and, in 

regards to its profile, similar to that of a native artery (Figure A-2). Blood flow and 

shear stress have been shown to contribute to plaque formation due to non-uniform 

blood flow [41, 42]. Physiological levels of shear maintain the homeostatic 

functioning of vessels and so, ideally, grafts should aim for physiological levels of 

shear [43-47]. In this regard the topography of both ePTFE and Dacron are quite 

different from that of both BC and the artery (Figure A-2). The similarities between 

the surface roughness/topography of the BC grafts and that of the arterial wall 

should theoretically match and allow for an un-interrupted and consistent blood 

flow over the transition from artery to graft maintaining physiological levels which, 

in the end, is beneficial to graft performance. 

The subsequent partial capillary drying, shaping and freeze-drying steps are largely 

responsible for the final structural and mechanical properties of the resulting grafts. 

The drying and shaping allows the BC block to be shaped into a cylindrical tube with 

2mm in wall thickness. As a direct result the graft wall density is brought from 

0.02g/cm3 to 0.09g/cm3, theoretically the density can range between 0.02-

0.15g/cm3. With the final freeze-drying step being required to eliminate the 

remaning water. This allows individual BC fibers to come into contact with each 

other and form H-bonds [48], while maintaining each individual fiber’s spatial 

position. This step is essential in order to reduce swellability of the graft, which 

would otherwise cause the loss of the cylindrical shape, while retaining the 

malleability, flexibility, the degree of the water retaining capability of the BC 

hydrogel and, above all, the shape of the graft. 
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The contact and bonds created between fibers induced morphological changes in 

the BC hydrogel (Figure A-3). BC has been extensively characterized as presenting 

an open porous structure that is relatively homogenous throughout the hydrogel 

[14, 48, 49]. The grafts developed presents a dual structure, presenting dense sheets, 

formed by the collapse of fibers onto each other in the drying and with bonds formed 

during freeze-drying, (Figure A–3A and B) layered in between the characteristic 

open porous morphology of BC (Figure A–3D). These two distinct 

regions/structures complement each other structurally and functionally. The dense 

regions observed at a micro/sub-micro scale provide a slight increase in mechanical 

support while allowing the graft to maintain the shape and structural integrity 

essential to a functional vascular graft. Simultaneously, the open-porous regions 

allow for void space and pore interconnectivity that in turn allows the graft to 

preserve its flexibility while allowing cellular migration from the adjoining tissues 

to the graft.  

A final step in graft preparation was the removal of bacterial lipopolysaccharide 

(LPS or endotoxin) from the grafts by SDS wash. A significant amount of endotoxin 

(2.65 ± 0.27EU/ml) remains on BC after alkaline wash, a standard procedure in 

purifying BC, which has been shown to induce a strong inflammatory response [50]. 

The inflammatory response triggers coagulation mechanics and could subsequently 

cause thrombosis. A 24 hour wash was enough to significantly reduce the overall 

concentration of LPS in BC by over 83%, and a subsequent succession of three 

washes completely removes any presence of LPS. 

In terms of tensile strength untreated BC and the BC grafts show no statistically 

significant difference between each other; though there seems to be a slight increase 

in the tensile strength of the BC grafts due to the higher number of bonds in the 

denser regions (95.92 vs 91.47N). Since, the total number of BC fibers in a given 

cross-section is essentially identical the higher strength of the graft does not 

translate to significantly higher values. BC fibers are characteristically strong yet 

inelastic [13] as opposed to the elastin in a native vessel which, has lower tensile 

strength though capable of great deformation and shape memory. This is evident 

when comparing the tensile strength (95.92 vs 10.05N) and elasticity, or 

deformation, (41 vs 133%) of the graft compared to a porcine vessel.  
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Similar to what happens with the tensile strength of the graft, suture retention of 

the BC graft is influenced by the inelasticity of the BC fibers when compared to that 

of native vessels. The large number of fibers, some organized in the stronger dense 

regions, provide a solid anchor point for the suture. This translates to a suture 

retention strength that is noticeably higher than that of native vessels, which as 

mentioned, tend to deform rather than resist the tensile stress. This suture retention 

strength is both comparable to that of much stronger and rigid materials like ePTFE, 

which can also be seen when comparing the tensile strength and deformation, and 

also, greatly outperforms other polymers that are being proposed as grafts materials 

(see Table A-2). 

Another important consequence, of the distribution and layered structure of the 

graft wall is the compliance behavior the graft. Intimal hyperplasia in both 

autologous saphenous vein and synthetic artery bypass grafts is a major reason for 

graft failure [40] and is closely associated with a mismatch in mechanical properties 

of the native vessel and the bypass graft. Diastolic and systolic pressure changes 

cause vessel walls to expand and contract. A mismatch in mechanical properties of 

native vessels and grafts adds direct stress to ingrown tissues. Specifically, at the 

point where the mechanical properties of the vessel wall changes. This can cause 

lesions to the cell layers which can expose underlying smooth muscle cells resulting 

in an abnormal migration and proliferation, along with the deposition of 

extracellular matrix, in the intimal layer (intimal hyperplasia). This leads to 

thickening of the vessel wall and causing a reduction in the lumen of the vessel, 

restricting blood flow which can eventually cause occlusion [51].  

Therefore, mechanical compliance between the tissue and graft is paramount. The 

open porous regions of the graft, as mentioned, provide void spaces that allow for 

fiber movement inside the graft wall. The void spaces of the pores allow fiber 

movement in response to pressure changes on the grafts luminal surface. The graft 

wall seems to absorb the pressure change and does not translate outward to the 

surface of the material. Hence the difference in compliance values for the outer 

(0.4x10-2 %/mmHg) and inner (9.5 x10-2 %/mmHg) measurements. Though the 

method used for measuring the diameter changes of the luminal surface is not 

extremely precise, when compared to the precision of the laser detector, we are 

comfortable in the assessment that inner (luminal) compliance is significantly 
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different from that of the outer (adventitial) compliance. While the BC grafts inner 

and outer surfaces comply differently, the end result is that the BC graft and native 

vessels present similar values of compliance on the blood-contacting surface. In this 

regard, the BC grafts greatly outperform the current synthetic materials available, 

such as ePTFE and PET, by a large margin (see Table A-3).  As a final supporting note, 

in regards to the mechanical behavior of the BC graft, the ANSI/AAMI VP20-2001 

standards outlines that arterial constructs are required to withstand normal arterial 

pressures and have a burst strength above 1680mmHg. We have measured burst 

pressure of the BC grafts to be above 1900mmHg (results not shown).  

As a result of the findings presented in this work and our prior work with BC [18, 

19, 52], along with all that presented in the literature, there was reason to believe 

that the graft could perform well in vivo. Previous in vivo studies have used rats, 

sheep and pigs as in vivo models for the study of the performance of BC grafts [14, 

53, 54]. Due to the similar anatomy and physiology, domestic pigs were chosen as a 

model for this work. Despite drawbacks such as the lack of cooperation, without full 

general anesthesia, and a propensity for rapid growth, pigs constitute an optimal, 

analogous, model for pre-clinical protocol development and studies [55]. In order to 

comply with the set parameter of a small caliber vessel (<6mm) the femoral artery 

was chosen as the sight for implantation of the graft as a femoral artery bridge.  

The use of the pig model proved invaluable in determining surgical procedure and 

complications that could otherwise remain undetermined. Namely, failure 

associated with vessel occlusion due to muscular and arterial spasm and 

contraction; as was the case in the first surgical procedure performed. Arterial 

contraction occurred during surgery and persisted after implantation which led to 

noticeably restricted blood flow before closing. The end result was an occluded 

vessel 15 days after surgery, though 24 hours after the procedure pulse was weak 

and the limb hypothermic. Papaverine is an antispasmodic drug commonly used in 

coronary artery bypass surgery [56] and, as a result of this initial experiment, was 

introduced as a procedural step to the implantation protocol.  

The results, in regards to in vivo experimentation, are still in their early stages yet 

stack up well as compared to the findings of both Malm [53] and Wipperman [54]. 

The luminal surface was largely populated by endothelial, or endothelial-like cells 

(which was confirmed via immunohistochemistry). A fibroblast population, along 
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with some macrophages and giant cells, covered and infiltrated the adventitial 

surface with neo-vessel formation occurring inside these infiltrated regions. The 

third and larger structure was the center of the BC graft wall which remained largely 

unpopulated. Both authors reported similar findings though no neo-vessel 

formation was reported in their cases. 

While coverage of the grafts adventitial surface was complete, the exact extension 

of surface coverage on the luminal surface could not be precisely determined. Also, 

the origin of the cells on the adventitial and luminal surfaces is undetermined. 

However, we believe these to be, in large part, cells that would have migrated from 

the anastomotic sites, at least in regards to the luminal surface, rather than 

circulating cells that adhered to the BC graft surface similarly to what was proposed 

by Malm and colleagues [53]. Finally, the giant cells present, consisted of a minimal 

population, with large vacuoles with what seemed to be a white material. We believe 

this white material to be BC that possibly still contained a small amount of endotoxin 

that would have triggered macrophage activation, the end result being giant cell 

formation. Their presence was largely negligible and absent from the luminal 

surface.  

 

Method 

 

In general, the process consists in Isolate a single bacterial cellulose block from a 

larger bacterial cellulose sheet with predetermined dimensions. The block is then 

perforated along the center line before a drying and shaping step until a desired wall 

thickness is achieved. The tubular structure is then freeze-dried (one or more times) 

in order to obtain the final tubular structure (Figure A-1). 

The perforation of the bacterial cellulose block can be performed by mechanical and 

physical perforation. The initial perforation of the luminal channel can be created 

by mechanical perforation using a, periodically sharpened, metallic needle. 

Alternatively, the application of a laser, or other physical or chemical process, can 

be used to form an initial luminal channel; however, care should be taken in regards 

to the choice of gas for the laser since surface modification can incur from this 

process. The luminal diameter is determined by the application of a metallic needle 
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or rod, after or during perforation, that will widen the channel to a final desired 

diameter. The final luminal diameter can vary from 2mm to 10mm, ideally 4-5mm 

for small caliber grafts. 

The drying process can be performed by mass transfer of water via capillary action, 

evaporation or compression that allows the controlled removal of water from the 

bacterial cellulose hydrogel. Mass transfer can be performed on blotting paper, or 

other such materials, at room temperature, same applies for compression. 

Evaporation should occur at temperatures ranging from 50-80oC in order to allow 

adequate control over final external diameter. 

Shaping of the external surface should occur during, but is not limited to, the drying 

step. Shaping can be performed by mechanical application of an external force that 

results in a cylindrical shape. The external force can be applied by hands or any 

equipment suitable to deliver a consistent and controlled external force. If need be 

the external surface can be trimmed, sanded or shaved in order to produce an 

external surface that presents a smoother topography. Trimming or shaving should 

be performed after freeze-drying on the completely dried material, for operability. 

The best conditions for this depend on the graft. 

Both the drying and shaping steps can be performed in order to control the final 

thickness of the wall of the tubular structure. Wall thickness is not limited to a 

predetermined thickness but should range between 1-4mm depending on luminal 

diameter ideally a 2mm thickness for a 4-8mm diameter graft. The total amount of 

bacterial cellulose used to form the final tubular structures dictates wall density and 

wall density dictates mechanical behavior of the final structure. A denser graft wall 

will translate to higher mechanical strength due to the total number of BC fibers in 

a same cross-section and can be adjusted accordingly (the ideal density should be 

0.1g/cm3 but can range from 0.02 to 0.15g/cm3) 

Surface modifications of the graft can be performed on the luminal and external 

surfaces in order to better accommodate for final desired application and the 

performance of the graft. The surface chemistry can be altered in order to improve 

biocompatibility and cell adhesion, by addition of RGD sequences or other cell 

signaling molecules, and/or reduce thrombogenicity, by addition of heparin for 

example. Surface modification can be performed chemically or physically through 
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methods such as covalent binding of the bioactive molecules or radicals and/or 

plasma-surface modifications. 

The final lyophilization step is not limited to a freeze-drying process. The objective 

is the complete removal of water without altering the 3-dimensional shape of the 

graft and as such, any other methods, such as supercritical drying, can be performed. 

As mentioned, mechanical properties of the tubular structure can be controlled by 

controlling wall density of the graft via inclusion of a larger amount of bacterial 

cellulose into the initial perforation step. Also, mechanical behavior of the graft can 

be controlled by controlling the number of freeze-drying cycles. The strength of the 

graft derives from the number of individual fibers in a cross-section and the amount 

of interaction between each fiber. Higher densities increase the number of fibers in 

a cross-section and cycle numbers increase the interaction levels both can be 

adjusted to improve mechanical behavior. We have found that the, aforementioned, 

ideal density for a 4mm graft is 0.1g/cm3 and a single freeze-drying cycle are 

sufficient. 

Complete removal of water via lyophilization can be performed before the initial 

perforation. However, all following steps must be performed sequentially. This may 

be beneficial logistically since dry cellulose is easier to handle. 

 

Detailed description 

Material and Methods 

Graft Fabrication 

 

Bacterial cellulose was produced by Gluconacetobacter xylinus (ATCC 53582), or any 

other BC producing bacteria, in a modified Hestrin-Schramm medium, 

supplemented with 2% Corn Steep Liquor (Sigma Aldrich, Germany) and 0.6 % 

ethanol, at pH 5.0. The resulting BC membranes were then washed in 4% (w/v) 

NaOH. It should also be noted that any culture medium capable of supporting the 

production of BC can also be used. The membranes were then thoroughly washed 

with distilled water until pH was neutral. Finally, endotoxin removal was 
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accomplished by further washing in 5% SDS (w/v). The water and detergent 

solutions were changed after 24 hours over the course of 2 days. 

Endotoxin removal was performed as follows: quadruplicate BC samples (1.5 x 2.5 

x 4cm (height x width x length) were placed in 200 ml of distilled water (control) 

and 5% SDS (w/v). The water and detergent solutions were changed after every 24 

hours over the course of 3 days. At each exchange, duplicate BC samples were taken 

and washed abundantly with distilled water and freeze-dried.  The samples were 

subsequently cut into samples of the same weight 20 ± 4mg and rehydrated with 

500µl of apyrogenic water. The concentration of endotoxin in each sample 

determined using the Pierce LAL Chromogenic Endotoxin Quantitation Kit and the 

standard protocol included (Thermo Scientific, Rockford, IL USA). Additionally, a 

non-washed BC graft was implanted in a single in vivo assay (as described ahead) 

and compared to the subsequent in vivo assays performed with the SDS washed BC 

grafts. 

BC grafts were prepared by cutting large BC sheets (1.5x25x30cm) into 1.5 x 2.5 x 

7cm (height x width x length) blocks with scissors. These were perforated along the 

center of the sample with a sharp 4mm (outer diameter) metallic needle and then 

dried by mass transfer of water from the hydrogel to blotting paper until a final wall 

thickness of roughly 2mm was achieved. The resulting tubular structures were then 

freeze-dried and stored at room temperature until needed (see Figure A-1). All 

grafts tested herein have a luminal caliber of 4mm and independently of the final 

length used in the varying assays were initially 7cm long. The BC grafts used for in 

vivo experimentation were rehydrated in sterile 0.9% (w/v) saline solution and 

autoclaved at 121oC for 20min 72 hours before surgery. 

 

Surface Profilometry 

 

BC grafts, created as previously described, were split open longitudinally and fixed 

with double-sided tape to glass slides. PFA, commercial ePTFE and Dacron grafts 

were also split longitudinally and affixed the same way (Dacron grafts were 

stretched as much as possible in order to remove the kinking inherent to the graft). 

The sample surface profiles were then measured 5 times along the same surface 
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(each measurement roughly 1mm apart) with a KLC TENCOR D-100 profilometer 

along 20mm (for Porcine Femoral Artery, ePTFE and PET) and 30mm for BC at set 

speed of 0.2mm/second and a resolution of 2000 points per mm. The results were 

then plotted on a 3D graph so to convey an idea of the 3 dimensional surface of the 

each sample. Roughness was calculated as the amplitude between maximum peak 

height and minimum valley depth. 

 

Cryo-SEM Imaging 

 

Cross sections of the BC grafts were imaged via Cryo-SEM on a JEOL JSM 6301F/ 

Oxford INCA Energy 350/ Gatan Alto 2500. The graft samples were prepared as 

described above and then cut into 1mm wide sections and placed upright in a 

metallic support. The samples were then rapidly cooled by plunging them into sub-

cooled nitrogen (slush nitrogen) and transferred under vacuum to the cold stage of 

the preparation chamber. The samples were then fractured, sublimated for 180 

seconds at -90°C, and coated with Au/Pd by sputtering for 40 seconds. The samples 

were finally transferred into the SEM chamber and imaged at -150°C. Pore size was 

estimated from the micrographs using Image J software. 

 

Mechanical Tests 

Tensile Strength Determination 

 

BC grafts along with untreated BC (these are grafts that were not freeze-dried and 

as such did not finish the graft processing), ePTFE and porcine femoral artery (PFA) 

were tested for their tensile strength in quintuplicate (n=5) on a Shimadzu AG-X 50 

kN at a traction speed of 5mm/min and a load cell of 1kN. Each sample tested was 

split open longitudinally and the materials thickness and width was measured with 

digital calipers and accounted for in the calculations of the strength parameters. 

Special care was taken in order to prevent sample slipping from the hydraulic grips 

by using both fine grain sandpaper and construction paper. 
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Suture Retention Assay 

 

BC grafts with 6cm length (4mm internal diameter and 7mm external diameter) 

were fixed the top clamp of a Z2.5 Zwick/Roell (Zwick GmbH & Co. KG; Ulm; 

Germany). A 4-0 Prolene® suture (0.15mm diameter; Ethicon) was placed 

approximately 7mm from the edge of the prosthesis (measured with a digital 

micrometer) and looped around the bottom clamp before clamping. The assay was 

then carried out in quintuplicate, on both freeze-dried and non-freeze-dried 

bacterial cellulose prosthetics, at a set speed of 10mm/min and a 1N pre-load. 

 

Compliance Characterization 

 

Compliance characterization of BC grafts (n=5) was performed using the system and 

method described previously by Diamantouros and colleagues [32]. Briefly, the 

grafts were fixed into a chamber and initially exposed to a steady flow of purified 

water. A pulse (1Hz) was added by a linear magnetic actuator. The pressures were 

stabilized at 80-120mmHg. Variations in the outer diameter were measured by an 

optical micrometer sensor (LS-7030(M); Keyence Deutschland GmbH, Neu-

Isenburg, Germany) placed perpendicularly to the graft. Pressures were recorded 

by pressure transducers (CODAN pvd Critical Care GmbH; Forstinning, Germany). 

The measurements were realized for 30 seconds once the pressures were stable. 

Variations in the outer diameter and pressures were recorded by a LabVIEW™ 

application (National Instruments; Texas, USA). The circumferential compliance 

was then calculated with the following equation: 
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Where C is compliance (%/mmHg), D is diameter (µm) and P is pressure (mmHg). 

“Syst” and “Diast” stand for the systolic and diastolic phase respectively. 

A slight addition to the method presented by Diamantouros, consisting of the use of 

ultrasound imaging equipment (Vivid I, GE Healthcare; Freiburg, Germany), allowed 

for the acquisition of video of the changes in internal diameter in response to 
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pressure variation. The videos were then converted to still frames and the diameter 

of the lumen determined with Image J software on three points per image. Care was 

taken so that the measurements from each video would be performed at the same 

coordinates in each individual frame so as to account, as much as possible, for 

human error. 

 

In vivo Experimentation and Histological Analysis 

Surgical procedure 

 

Four female domestic pigs (Sus scrofa domesticus) with weight ranging from 30-

40kgs were restrained from food (24 hours) and water (6 hours) before each 

surgical procedure. All experiments were conducted according to the European 

Union Directive no.86/609/CEE for the use of animals in research and approved by 

the board for the ethical treatment of animals of the Faculty of Medicine of the 

University of Porto (ORBEA, FMUP, Oporto, Portugal). All procedures were 

performed under general anesthesia, with endotracheal intubation and 

spontaneous ventilation. A pre-anesthesia intramuscular injection of 32mg/ml 

azaperone (Stressnil®, Esteve Veterinaria) at a dose of 4 mg/kg reconstituted with 

1mg/ml midazolam (Dormicum®, Roche) at a dose of 0.15–0.2ml/kg was 

administered. Venous access was obtained through an IV line placed in the marginal 

ear vein. Anesthesia was induced with 3μg/kg fentanyl (Fentanest®, Janssen-Cilag), 

and sodium thiopental (12.5mg/kg IV initially and then to effect Tiopental 0.5 B 

Braun®, B. Braun). After orotracheal intubation, the 7- to 7.5-mm tube was 

connected to the anesthetic equipment (Ohmeda, Boc Health Care), and anesthesia 

was maintained with a mixture of isoflurane (1.5% to 2.5%; Isoflo®, Esteve 

Veterinaria) in 100% oxygen and fentanyl at constant-rate infusion of 30-

50μg/kg/h. Afterwards an epidural analgesia protocol was implemented with 

application of 1mg/kg morphine (Morfina 1% Braun®, B. Braunl). To address 

infection prophylaxis, all animals received intramuscular injection of 1g ceftriaxone 

(Rocephin®, Roche) before surgery. End-tidal CO2, oxygen saturation, 

electrocardiography and temperature were monitored continuously (Cygnus 1000C 

Vet® Monitor, Servive Portugal). Pigs were placed in supine position and shaved, 
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and electrocardiographic electrodes were attached to the chest for continuous 

evaluation of cardiac electrical function. Normal saline (2 to 4mL/kg hourly) was 

infused through the venous cannula in the auricular vein during surgery, to maintain 

adequate preload stability. 

Open surgery was then performed with isolation of the common femoral artery, the 

profunda femoris artery and the superficial artery. The BC grafts were implanted in 

the left hind limb in a femoro-femoral artery bridge. Papaverine was administered 

via wash to the artery to avoid arterial spasm. The animals were heparinized 

systemically with an intravenous bolus injection of 200units/kg of heparin 

(Heparina Sódica B.Braun®, B.Braun), five minutes before clamping of the target 

arteries. BC grafts were then sutured with continuous 6-0 monofilament 

polypropylene sutures (Prolene®, Ethicon). The femoral artery from the right hind 

limb was sham-operated with all the surgical procedures being equally performed, 

excluding the implantation of the graft.  

After the surgery, the pigs were transported back to their quarters, only when 

arterial oxygen tension stabilized above 95%. Pigs were monitored until their body 

temperature normalized (with digital thermometers) and they were able to 

ambulate. They then were observed at least 2 or 3 times daily for locomotor activity, 

respiratory changes, body temperature, and food and water intake. Analgesia was 

maintained during the first 24h after surgery by using meloxicam (0.5mg/kg IM; 

Metacam, Boehringer Ingelheim). Acetylsalicylic acid (150mg/animal per os daily; 

Ácido Acetilsalicílico ratiopharm 100mg, Ratiopharm) was given once daily until 

euthanasia, to prevent platelet aggregation. 

After the designated times, the animals were sacrificed by IV KCl injection after 

sedation with azaperone reconstituted with midazolam administered IM prior to 

induction with sodium thiopental (12.5mg/kg IV initially and then to effect) and the 

grafts and sham-operated arteries were harvested and histologically evaluated for 

signs of chronic inflammation, infection, foreign body responses, clot formation, cell 

ingrowth, and diameter via electron microscopy. 
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Histology 

 

Tissues were preserved in formalin for a minimum of 4 days and were embedded in 

paraffin in an automated tissue processor (Microm STP 120). Tissues were then 

transferred to embedding workstation to obtain paraffin blocks. From these, 

sections (2µm) were cut on a rotary microtome (Leica RM 2035) and stained with 

Hematoxylin and Eosin (H&E) for light microscopic examination. Observations and 

photographs were made using an Olympus BX51 microscope with an Olympus 

camera attached 

 

Immunohistochemistry 

 

Immunostaining of endothelial cells was performed using the primary antibody – 

Mouse Anti Pig CD31 (AbD Serotec; Oxford, England). This is a mouse monoclonal 

antibody designed to detect porcine CD31. The slides were immersed in 10mM 

sodium citrate (pH 6.0) buffer. Antigen visualization was done with the Novocastra 

Novolink Polymer Detection System (Leica Microsystems GmbH, Wetzlar, Germany) 

and involved the following steps: Sections were incubated with H2O2 (3%) for 10 

min to eliminate endogenous peroxidase activity followed by a 5 min incubation 

with a protein blocking agent. Sections were subsequently incubated overnight at 4 

oC with the primary antibody diluted at 1:100 with BSA (5%), and on the following 

day, washed in TBS-buffered saline solution before incubation for 30 min with the 

secondary antibody system using diaminobenzidine (DAB) as a chromogen. 

 

Statistical Data Analysis 

 

All data and statistical analysis was performed using both GraphPad Prism and 

Origin Pro 9 software. Statistical significances were determined via One-way and 

Two-Way ANOVA tests after verifying the Normal distribution (p<0.05) of the data. 
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Results 

Graft Fabrication 

 

The novel methodology presented herein for production of the BC graft is 

schematically outlined in Figure A-1. The BC grafts were produced with needles that 

were purposely built, regularly sharpened and exchanged in order to assure 

consistent perforation. Special care was taken during perforation in order assure a 

smooth luminal channel. An unsharpened needle resulted in tears during the 

perforation with the appearance of “flaps” that could occlude or restrict flow 

through the graft. Also, while all grafts produced and presented in this work were 

4mm in diameter we found that by using different diameter needles allows the 

production of grafts with different diameters. 

The drying and shaping was performed with the needle in place with special care to 

avoid changes to the luminal diameter of the graft and an irregular topography of 

the external surface. Also, the grafts were found to dry quickly during the freeze-

drying process (a maximum of 2 days is required for complete drying) and the least 

irregular grafts were obtained the quicker this process was performed. 

Surface Profilometry 

 

The surface profiles we present here were obtained by 5 consecutive measurements 

that were 1 mm spaced (side-by-side) and plotted together in a three-dimensional 

topological graph so as to convey an idea of the topography of the materials (see 

Figure A-1 - Schematic representation BC vascular graft formation process. From left to right: the BC perforated 
with a sharp metallic needle, dried by capillary action and shaped into a cylinder and finally freeze-dried. 
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Figure A-2). Our results show that the surface roughness of BC is in the same range 

of that of porcine femoral artery, ranging roughly 300nm in both cases from highest 

peaks to lowest valley, with no statistically significant difference between them 

(p>0.05). On the other hand, both ePTFE and, to a greater extent, PET show a much 

greater surface roughness with a distance of approximately 600 and 1600nm 

between peaks and valleys respectively.  

 

Cryo-SEM Imaging 

 

Several BC grafts samples, and several different regions of each graft, were observed 

via Cryo-SEM so as to maintain the hydrated three-dimensional structure of the 

grafts; the images presented here are representative of those observations (Figure 

A-3). The fibril distribution inside of our grafts showed markedly different 

structures throughout the graft wall that are well distributed throughout. In lower 

magnifications dense sheets of BC fibers intersecting each other are visible and 

appear in wave-like patterns, parallel to the luminal surface of the graft (Figure A- 

Figure A-2 - Surface profiles of Porcine Femoral Artery (A), BC graft (B), ePTFE graft (C) and a PET graft (D). The 
plots were obtained from 5 separate linear measurements (2000 points/mm) over 2 cm (3cm for BC), spaced 
1mm apart and plotted in a 3D graph. 
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3A, B and C). Dense sheets are surrounded by low density open porous regions 

(Figure A-3D) with pore sizes ranging from 1 to 5 µm in diameter. Additionally, there 

seems to be a consistent and dense single layer of BC fibers over the entire luminal 

surface of the graft that is immediately followed by open porous regions (Figure A-

3E). 

 

Endotoxin Removal Study 

 

Endotoxin (Lipopolysaccharide; LPS) concentration on non-washed and SDS 

washed BC was determined with the Pierce LAL Chromogenic Endotoxin 

Quantitation Kit. Total LPS concentration on non-washed BC over the course of the 

study was 2.65 ± 0.27EU/ml (Endotoxin Units/ml) and dropped to 0.43 ± 0.15, 0.06 

± 0.04 and 0.003 ± 0.02EU/ml over the following 3 days (Figure A-4). Total LPS 

concentration was shown to be significantly different between washed and non-

washed BC (p<0.05). Results also show a significant difference between a single and 

Figure A - 3 - Cryo-SEM images of a portion of the cross-section of the graft wall. (A) and (B) 4000x magnification 
with noticeable dense regions layered between open-pore structures; (C) 10000x magnification of the dense BC 
regions; (D) 10000x magnification of the open-pore structures and (E) 10000x magnification of the edge of the 
luminal surface of the graft. (F) is a schematic representation of the interface between the luminal surface and 
inner wall structure.  
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twice washed (p<0.05) and no significant difference between the second and third 

washes. 

 

Mechanical Tests 

Tensile Strength Determination 

 

Mechanical testing demonstrated marked differences between porcine femoral 

artery (PFA), ePTFE and BC (both as a graft and untreated) - see Table A-1. The BC 

graft and untreated BC show no statistically significant difference between them 

(p>0.05) in regards to any of the parameters though. However, the BC graft did show 

higher values for maximum tensile strength (Max Force), maximum stress and 

strain. PFA, while mechanically weak as compared to the other materials in regards 

to strength, was by far the most elastic, deforming 133% before rupture. Also 

noteworthy, ePTFE was shown to be most rigid of the tested materials, with the 

highest values in all the parameters. The BC grafts thus better resembles the 

biological vessels than ePTFE, in the sense that it presents higher elasticity, 

translated in a Young modulus in the same order of magnitude as PFA´s. 

 

Figure A-4 - Endotoxin (LPS) concentration in EU/ml (Endotoxin Units/ml) as determined over 3, 24 hour, washes 
in 5% SDS and water (negative control). 

 



Annex A - Provisionary Patent Application 

AF Leitão 
145 

Table A-1 - Mechanical test results for Porcine Femoral Artery (PFA), ePTFE the BC Graft and unprocessed BC 
(n=5). Values marked with an asterisk (*) are not statistically different from each other in their respective 
columns (p>0.05). Data is presented as mean ± standard deviation. 

Material Young's Modulus (N/mm2) Max Force (N) Max Stress (N/mm2) Max Strain (%) 

PFA 2.58 ± 0.95 10.05 ± 3.39 1.15 ± 0.39* 133.46 ± 11.25 

ePTFE 125.40 ± 24.33 198.54 ± 13.33 23.57 ± 1.00 40.62 ± 9.92* 

BC Graft 10.56 ± 1.53* 95.92 ± 5.62* 2.75 ± 0.38* 41.08 ± 8.65* 

BC 10.70 ± 2.23* 91.47 ± 16.33* 2.10 ± 0.26* 34.5 ± 4.27* 

 

Suture Retention Strength 

 

Results show that untreated BC and our BC grafts demonstrate suture retention 

strength of 3.94 ± 0.38 and 4.20 ± 0.99 N respectively, with no statistically significant 

difference between them (p>0.05). The results demonstrate a superior performance 

of the BC grafts, as compared to most materials, presenting a suture retention 

strength comparable to that of ePTFE.  

Table A-2 Suture Retention strength (N) of several autologous and synthetic grafts for Tissue Engineered Blood 
Vessels (TEBV), Internal Mammary Artery (IMA), Polytetrafluoroethylene (ePTFE), Fibrin and Fibrin/polylactic 
acid (PLA), Human Saphenous Vein (HSV), Collagen and Bacterial Cellulose (BC). Suture retention strength for the 
BC graft and untreated BC are not statistically different (p>0.05; n=4) 

Graft Material Retention Strength (N) SD References 

IMA 1.35 ± 0.49 29 

HSV 2.60  30 

TEBV 1.49 ± 0.49 29 

Fibrin 0.19 ± 0.05 31 

Fibrin/PLA 1.32 ± 0.58 31 

Collagen 0.82-2.87 ± 0.12-0.09 32 

ePTFE 4.70 ± 0.50 33 

BC graft 4.20 ± 0.99 -- 

BC 3.94 ± 0.38 -- 

 

Compliance Characterization Assay 

 

We measured the compliance for our BC grafts externally via laser detector and 

estimated compliance internally by sonography imaging. Results show a significant 

difference between the compliance of the BC graft in regards to the internal and 

external measurements (see Table A-3). Externally compliance was measured as 
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being 0.4x10-2 %/mmHg while internally graft compliance was determined to be 

9.5x10-2 %/mmHg. While the external compliance falls far from the results for the 

most of the other materials found in the literature internally compliance seems to 

be much better matching, in most regards, the compliance values found for 

autografts.  

 

Table A-3 - Compliance (presented as value x10-2 %/mmHg) with standard deviation (SD) as collected from the 
literature for Internal Mammary Artery (IMA), Human Saphenous Vein (HSV), Human Iliac Artery (HIA), Tissue 
Engineered Blood Vessel (TEBV), Polyurethane (PU), Polyethylene terephthalate (PET), expanded 
Polytetrafluoroethylene (ePTFE), Bacterial Cellulose/Chitosan blend (BC/Chi) and measurements for the 
compliance of the BC grafts as measured externally and internally (n=5). 

Graft Material Compliance (%/mmHg; x10-2) SD References 

IMA 11.5 ± 3.9 29 

HSV 3.7-12.8 ± 1.3-1.9 34 

HIA 8 ± 5.9 35 

TEBV 1.5-3.4 ± 0.3 29; 30 

PU 8.1 ± 0.4 35 

PET 1.8 ± 1.2 35 

ePTFE 1.2-1.6 ± 0.3 35; 36 

BC/Chi 5.9 ± 2.7 36 

BC graft External 0.4 ± 0.1 -- 

BC graft Internal 9.5 ± 2.8 -- 

 

In vivo Experimentation and Histological Analysis 

 

As a preliminary in vivo assay 4 surgical procedures have been performed to date, 

with implantation of the BC graft in a femoral-femoral artery bridge on the left hind 

limb of female domestic pigs (see Figure A-5A). The right femoral artery was also 

isolated in a sham-operated procedure and served as a control for the implanted 

graft. No significant changes to the arterial wall of the control vessel were detected. 

During the first surgical intervention severe arterial spasm and contraction was 

noted during, and after, the procedure. There was noticeably reduced pulse after 

graft implantation and the limb was slightly cold to the touch 24 hours post-

operatively both situations attributed to arterial contraction. All further procedures 

were performed with papaverine administration, via topical wash to the artery. The 

following three procedures resulted in 1 month patency that were all confirmed via 
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Doppler ultrasound imaging (see Figure A-5B) being terminated at that point for 

explantation of the BC graft and subsequent histological analysis.  

Histological analysis and Immunohistochemistry were performed on the grafts 

harvested after the experiments were terminated. The BC grafts that were 

recovered one month after surgical intervention were intact and well integrated into 

the surrounding tissue with no significant fibrosis or macroscopic evidence of 

inflammation. Later histological analysis showed a distinct, three-layered, structure 

with cellular adhesion and infiltration on both the luminal and adventitial surfaces 

of the graft and an unpopulated and larger BC central region. The cells detected on 

the luminal surface were believed initially, and later confirmed via 

immunohistochemistry, to be endothelial or progenitor endothelial cells that are 

believed to have migrated from the adjoining femoral artery (Figure A-5C). Figure 

A-5E and F are representative of the cellular infiltration and population found on 

the adventitial surface of all the recovered grafts with special note to the presence 

of neo-vessels inside the BC graft itself (see Figure A-5D). The cell populations in 

these regions were determined to be composed mostly of fibroblasts, macrophages 

and some giant cells.  
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Figure A-5 Representative photographs and Haematoxylin and Eosin histopathological microscopy images of in 
vivo tests. (A) Femoral-femoral artery BC graft placement, (B) Doppler Sonography screenshot showing blood 
flow through the BC graft after one month of implantation, (C) 100x magnification of the luminal surface of the 
graft with cell adhesion on the surface of the graft along and some cell infiltration, (D) 200x External surface of 
BC graft showing formation of neo-vessels (arrow), (E) External surface of the BC grafts showing a smooth 
transition from surrounding tissues into the BC graft with cell infiltration, (F) 200x magnification of a cell 
population in a transitional region from adventitia into the BC grafts. 
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CLAIMS 

 

1. Method for production of tubular bacterial cellulose grafts for use in vascular 

applications comprising the following steps: 

- isolate a single bacterial cellulose block from a larger bacterial cellulose sheet 

with predetermined dimensions; 

- perform 2 to 4 24 hour washes  of the bacterial cellulose blocks in SDS at a 

concentration of 2-5% (w/v) followed by 5 washes a day over 3 days in water; 

- perforate the bacterial cellulose block along the center line with a needle or a 

laser or physical or chemical process in a manner to get a luminal channel; 

- maintain the needle inside the block or insert one after the laser or physical or 

chemical process of perforation;  

- perform a drying process by mass transfer of water via capillary action, or 

evaporation or compression for the removal of water from the bacterial cellulose;  

- shape the external surface by mechanical application of an external force in 

manner to result in a cylindrical shape; 

- remove the needle; 

- perform a freeze-drying process; 

 

2. Method, according to previous claim, wherein the drying process and the 

shaping are optionally made simultaneously. 

 

3. Method, according to previous claims, wherein optionally the surface is 

trimmed, or sanded or shaved in order to produce an external surface with a 

smoother topography. 
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4. Method, according to claim 1, wherein preferably is used a sharpened and 

metallic needle to perforate the bacterial cellulose block. 

 

5. Method, according to previous claim, wherein the luminal channel produced by 

the needle has a diameter between 2mm and 10mm, preferably 4-5mm. 

 

6. Method, according to claim 1, wherein the mass transfer or compression is 

performed on blotting paper at room temperature. 

 

7. Method, according to claim 1, wherein the evaporation occur at temperatures 

ranging from 50-80oC. 

 

8. Method, according to claim 1, wherein the external force of the shaping consists 

in a mechanical force applied uniformly over the surface. 

 

9. Tubular bacterial cellulose grafts for use in vascular applications, according to 

claims 1 to 8 wherein the graft has a wall density ranging from 0.02 to 0.15g/cm3 

and a wall thickness ranging from 1 to 4mm. 

 

10. Tubular bacterial cellulose graft, according to previous claim, wherein the 

preferable wall density is 0.1g/cm3 to 0.09g/cm3. 

 

11. Tubular bacterial cellulose graft, according to previous claim, wherein the 

preferable wall thickness is 2 mm. 
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12. Tubular bacterial cellulose graft, according to claims 9 to 11, wherein can have 

a surface altered by addition of RGD sequences or other cell signaling molecules, 

and/or any other bioactive molecules such as, heparin . 

 

Braga, 08 of August of 2014. 
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