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Abstract: Infrastructure rehabilitation represents a multitrillion dollar opportunity for the construction industry. 

Since the majority of the existent infrastructures are Portland cement concrete based this means that concrete 

infrastructure rehabilitation is a hot issue to be dealt with. Geopolymers are novel inorganic binders with high 

potential to replace Portland cement based ones. So far very few studies in the geopolymer field have addressed 

the rehabilitation of deteriorated concrete structures. This paper discloses results of an investigation concerning 

the development geopolymeric repair mortars. The mortars are based on Tunisian clay coming from Medenine 

region, plus calcium hydroxide, sodium silicate and sodium hydroxide. Results show that the geopolymeric 

mortar has a high compressive strength and a lower unrestrained shrinkage performance as long as partial 

replacement by metakaolin is carried out. The results also show that Tunisian calcined clay based mortars have 

hydration products with typical geopolymeric phases.  

 

Introduction 

Worldwide infrastructure rehabilitation costs are staggering. For example in the USA the needs are 

estimated to be over 1.6 trillion dollars the next five years [1]. Many of the degraded concrete 

structures were built decades ago when little attention was given to durability issues [2].  Materials 

with low durability require frequent maintenance and conservation operations or even its integral 

replacement, being associated with the consumption of raw materials and energy. The patch repair 

method is widely used to restore the original conditions of the concrete structures [3, 4]. Most patch 

repair mortars fall into two categories, the mortars based on organic binders (epoxy resin or 

polyester) or those based on inorganic binders like Portland cement. The former are associated with 

toxic side effects [5] and  they are known for its high carbon footprint [6]. Geopolymers are novel 

inorganic binders with high potential to replace Portland cement based ones [7]. The 

geopolymerization of alumino-silicate materials is a complex chemical process evolving dissolution of 

raw materials, transportation or orientation and polycondensation of the reaction products [8-

10].Investigations in the field of geopolymers reveal a third category of mortars with high potential 

to be used in the field of concrete patch repair. Some authors [11] have shown that concrete 

specimens repaired with geopolymeric mortar with 1 day curing have higher bond strength than 

specimens repaired with current commercial repair products after 28 days curing. This is a promising 
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performance because adhesion to the concrete substrate is a crucial property of the repair mortars 

[12]. This paper presents experimental results of an investigation concerning the development 

geopolymeric repair mortars based on a Tunisian clay. The influence of the partial replacement of 

Tunisian clay by fly ash and metakaolin on the mechanical performance of the repair mixtures is 

analyzed.  

 

Experimental work 

Materials 

The clay materials used were from Medenine Region of Tunisia. Previous studies showed that 

kaolinite is the major mineral and quartz the major impurity in the studied clay [13]. The dried clay 

fractions were crushed in a crusher apparatus and then sieved to 100 µm mesh. The clay fractions 

were calcined in a programmable electric furnace (Nabertherm, Mod.LH 60/14) for 6 h at a heating 

rate of 11.33 C/min at the following temperature 700 °C. Metakaolin was obtained from Barqueiros 

(origin company of mining) in Portugal and the fly ash was supplied by (origin place,type C). Table 1 

gives their composition as detected by X-ray fluorescence (XRF). 

 

Table 1. Chemical composition of raw material (%). 

 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 P2O5 TiO2 

Clay 60.8 16.2 2.15 5.87 0.08 0.003 2.38 2.71 - - 

MK 50.5        42.6        2.28         0.157     0.215     2.75        0.241        0.04          

0.207       0.807 

FA 56.0 26.0  6.6 2.10 1.24 - 0.56 2.35 1.18 - 

 

Figure.1 shows the results of X-ray diffraction analysis using an ARL  9900 series workstation  

(Thermal Scientific) with Co–Kα radiation (generated at 40 kV, 40 mA), scanning at a rate of 2.4°/min. 

In Figure. 1 it is clear that metakaolin is largely amorphous, with a small quantity of quartz as an 

impurity phase, and a small amount of residual kaolinite. The fly ash used contains large amounts of 

quartz phases in addition to the main amorphous phase. Figure 2 (a) Shows the surface morphologies 

of the fly ash in comparison with the metakaolin (MK).  

 

 
Figure 1. X-rays diffractograms of the MK (a) and the FA (b) 
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Figure 2. Scanning electron microscope (SEM) of (a) fly ash and (b) metakaolin 

 

It can be seen that the fly ash mainly consists of spherical particles with smooth outer surfaces. The 

smooth aluminosilicate spherical particles, also known as cenospheres, are formed as a result of 

thermochemical transformations of mineral particles during coal combustion process, where the 

minerals melt to form small droplets, which upon sudden cooling and action of surface tension forces 

adopt the spherical shape [14]. Also, the figure 2 (b) revealed the morphology of the metakaolin.  

 

Geopolymeric mortar preparation 

In order to improve the mechanical performance of the mixtures previously tested [13] the Tunisian 

clay was partially replaced by fly ash and metakaolin. The percentages of FA were 10% and 15% as 

well as the percentages of MK were10%, 15% and 30%.The reference geopolymer mortar named 

G1R3 was composed by 1264.79 g of calcined clay, 140.53g of lime (10%), 4215.97g of sand, 801.91g 

of Na2SiO3 and 322.29 g of NaOH with an activator/binder mass ratio of 80%. The alkaline solution 

used was a mixture of aqueous solution of sodium hydroxide 12 M and sodium silicate with bulk 

density of 1350 kg/m3 with ratio: Na2SiO3 / NaOH = 2.5. The sodium hydroxide solution was obtained 

by dissolving dried pellets of 99% purity in distilled water. The sodium silicate solution had a 

composition by weight Na2 (SiO2)x . y (H2O). With 3.19 ≤ x ≤ 3.53 and 50 % ≤y ≤ 60 %.The geopolymer 

mortar (G1R3 with FA/MK mixture and liquid alkaline activator) was mixed throughly for 10 min in a 

mixer and transferred to plastic molds. The molds were covered with a thin plastic film to avoid 

water evaporation and then kept for 24 h at the ambient atmosphere of the laboratory (24°C - 26°C). 

The reported results were the average of three samples for each test.  

a) 

b) 
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Mechanical properties testing 

The compressive strength and flexural strength was obtained using 160×40×40 mm3 prismatic 

specimens according to EN 1015-11. The modulus of elasticity was determinate using cylindrical 

moulds for the geopolymeric sample with (diameter: 5 cm; length: 10cm). These specimens were 

tested after 28 curing days. 

 

Unrestrained shrinkage testing 

Unrestrained shrinkage used prismatic specimens measuring 25×25×250 mm3 and was determined 

according to LNEC E389-1993. The specimens are removed from molds 24 h after being mixed and 

placed, then they are wrapped with Perspex paper. Other authors used aluminum paper, having 

reported the formation of hydrogen gas bubbles due to a reaction between the aluminum and the 

alkalis from the mortar [15]. The measurement of shrinkage was carried out on hardened 

geopolymer cylinder paste samples aged of 1, 7, 14, 21 and 28 days respectively. 

 

FTIR 

The FTIR spectra were acquired in the attenuated total reflectance mode (ATR), between 4000 and 

550 cm-1, using a Perkin Elmer FTIR Spectrum BX with an ATR PIKE MIRacle Specimens for FTIR study 

were prepared by mixing 1mg of sample in 100 mg of KBr as .suggested by Zhang et al. [16]. Spectral 

analysis was performed over the range 4000–400 cm-1 at a resolution of 4cm_1 

 

Results and discussion 

Mechanical properties 

Figure 3 shows the compressive and flexural strength and modulus of elasticity of the new mixtures. 

The results show that the partial replacement of Tunisian clay by 10% or even 15% of fly ash is not 

advantageous for 28 days compressive strength. The same occurs for flexural strength, although the 

15% fly ash mixture shows a minor increase when compared to the reference mixture. This behavior 

is related to the low reactivity of fly ash. In the geopolymneric mixtures in which the Tunisian clay 

was partially replaced by metakaolin an increase in compressive strength is visible only for 15% and 

30% percentages. This however is not reflected in terms of flexural strength. This maybe explained by 

the different shrinkage performance of the different mixtures just because a higher shrinkage is 

usually associated to a lower flexural strength. The replacement of Tunisian clays by 15% and 30% 

metakaolin allows for compressive strengths around 30 MPa which are typical of old OPC reinforced 

concrete structures and constitute an important compressive strength requirement for repair 

mortars. The results show that the modulus of elasticity increases slightly with the replacement of 

Tunisian clay by fly ash. This behavior is not influenced when the fly ash percentage increase from 

10% to 15%. A higher modulus of elasticity is associated with the replacement of Tunisian clay by 

metakaolin. This behavior is partially related to the increased in the compressive strength. 

 

Unrestrained shrinkage 

Figure 4 shows the results of unrestrained shrinkage. In the first two days the shrinkage increases 

very rapidly for the six geopolymerics mixtures. The rapid increase of unrestrained shrinkage has to 

do with the capillary tensions within the gel framework during geopolymerization process [17].  

The maximum unrestrained shrinkage is around 500 to 600 microstrain. This constitutes a reduction 

to the previous reported maximum unrestrained shrinkage [13] being due to the reduction of the 

alkaline activator. 
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Figure 3. Compressive flexural , Flexural strenght : (a),(b) and Elastic modulus : (c) for geopolymeric 

mortar mixtures with sodium hydroxide concentrations (12 M) and sand/binder mass ratio (R = 3) 

and with ratio Activator/Binder (R= 80 %) with different percentage of metakaolin and fly ash added 

to G1R3 after 28 days time of curi 

a) 

b) 

c) 
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Figure 4.Shrinkage of the geopolymer mixture  as function of curring time (days) 

 

This maximum is similar to the one reported by others [18] based on alkali activated metakaolin.  

The unrestrained shrinkage results confirm that the mixtures with higher flexural strength have lower 

unrestrained shrinkage. The partial replacement of Tunisian clay by fly ash also leads to a lower 

unrestrained shrinkage performance than the reference mixture.  Partial replacement by metakaolin 

out performs fly ash based mixtures. The comparison of the unrestrained shrinkage in 15% fly ash 

mortar and in 15% metakaolin shows a very relevant difference. When 30% metakaolin is used a very 

low unrestrained shrinkage is observed.  Since mortars required for OPC patch repair require very 

low unrestrained shrinkage [19] this means that new geopolymeric mortar mixtures based on the 

partial replacement of Tunisian clay by metakaolin have an acceptable performance concerning this 

parameter. 

 

Hydration products 

The FTIR spectra of the hardened Tunisian clay geopolymer mortars are presented in Figure 5. Strong 

vibration typical of alluminosilicates can be seeing. The peak centered around 975 cm-1 shifts to a 

lower value, and this shift is characteristic of a geopolymerization reaction corresponding to the Si–

O–Al and Si–O–Si vibration bands. The band at about 870cm-1 assigned to Si– OH bending 

vibration.Al–O–Si vibrations corresponding to the absorption bands 600–800cm-1.The absorption 

peak of 782 cm-1 was an indication of the presence of quartz [20].  The absorption band around 1413 

and 1433 cm-1 is attributed to stretching vibrations of CO3
2- ions confirming the existence of 

carbonate species [21]. Atmospheric CO2 enter in geopolymer to reacting with unhydrated sodium to 

form sodium carbonate. A peak assigned to water appears at 1645 cm-1. These bands decrease in 

intensity in the geopolymer paste after curing process. The decreasing in the OH bond may be also 

due to the zeolites structure of zeolites (crystalline phase) that needs more water molecules than the 

minerals polymers (amorphous phase). Fig 6 shows the Fourier transform infrared spectra of of 

geopolymers of G1R3 modified mixtures. All FTIR spectra involved in a single band located at 1000 

and 1004 cm-1 , corresponding to a region assigned for Si-O-Si [22-24]. The presence of the bands 

located at 776 cm-1 and at 692 cm-1 are due to the quartz [25]. The smalls bands appearing at around 

1420,1422 cm-1 and at 1489 cm-1 are related to the asymmetric stretching of the O-C-O bonds of 

CO3
2− due to atmospheric carbonation for all geopolymers mortars. 
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Figure 5: FTIR spectra of the geopolymer mortar (c) G1R2, (d) G1R3 and (e) G1R4 
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Figure 6: Fourier transform infrared spectra of of geopolymers of G1R3 modified mixtures: a) 

metakaolin based; b) fly ash based 

 

 

Conclusions 

This paper presents experimental results of an investigation concerning the development 

geopolymeric repair mortars based on a Tunisian clay. The influence of the partial replacement of 

Tunisian clay by fly ash and metakaolin on the mechanical performance of the repair mixtures is 

analyzed. The following conclusions can made. The replacement of Tunisian clays by 15% and 30% 

metakaolin allows for compressive strengths around 30 MPa which are typical of old OPC reinforced 

concrete structures and constitute an important compressive strength requirement for repair 

mortars. The modulus of elasticity increases slightly with the replacement of Tunisian clay by fly ash 

and in a higher extension when metakaolin is used.  The reduction of the alkaline activator/binder 

mass ratio to 80% of the former mixtures led to a relevant reduction in the shrinkage 

performance.The partial replacement of Tunisian clay by fly ash also leads to a lower shrinkage 

performance than the reference mixture. Partial replacement by metakaolin out performs fly ash 

based mixtures.  Since mortars required for OPC patch repair require very low unrestrained shrinkage 

this means that new geopolymeric mortar mixtures based on the partial replacement of Tunisian clay 

by metakaolin have an acceptable performance concerning this parameter. 
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