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Carbohydrate-binding modules (CBMs) are small components of several enzymes, which present an indepen-
dent fold and function, and specific carbohydrate-binding activity. Their major function is to bind the enzyme
to the substrate enhancing its catalytic activity, especially in the case of insoluble substrates. The immense diver-
sity of CBMs, together with their unique properties, has long raised their attention for many biotechnological ap-
plications. Recombinant DNA technology has been used for cloning and characterizing new CBMs. In addition, it
has been employed to improve the purity and availability of many CBMs, but mainly, to construct bi-functional
CBM-fused proteins for specific applications. This review presents a comprehensive summary of the uses of
CBMs recombinantly produced from heterologous organisms, or by the original host, along with the latest ad-
vances. Emphasis is given particularly to the applications of recombinant CBM-fusions in: (a) modification of fi-
bers, (b) production, purification and immobilization of recombinant proteins, (c) functionalization of
biomaterials and (d) development of microarrays and probes.
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1. Introduction

Themolecular recognition of carbohydrates by proteins, namely gly-
coside hydrolases, is essential in several biological processes, including
cell–cell recognition, cellular adhesion, and host-pathogen interactions.
Therefore, understanding the structural basis of the ligand specificity of

https://core.ac.uk/display/55635635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biotechadv.2015.02.006&domain=pdf
http://dx.doi.org/10.1016/j.biotechadv.2015.02.006
mailto:carlaoliveira@deb.uminho.pt
mailto:veracarvalho@deb.uminho.pt
mailto:luciliad@deb.uminho.pt
mailto:fmgama@deb.uminho.pt
http://dx.doi.org/10.1016/j.biotechadv.2015.02.006
http://www.sciencedirect.com/science/journal/07349750
www.elsevier.com/locate/biotechadv


359C. Oliveira et al. / Biotechnology Advances 33 (2015) 358–369
carbohydrate‐binding proteins is critical (Simpson et al., 2000). Many
carbohydrate-active enzymes (CAZymes) are modular and constituted
by a catalytic module and one or more non-catalytic carbohydrate-
binding modules (CBMs) (Boraston et al., 2002, 2004; Hashimoto,
2006). Originally, the CBMs were classified as cellulose-binding do-
mains (CBDs), because the first examples of these classes of protein do-
mains bound to crystalline cellulose (Gilkes et al., 1988; Tomme et al.,
1988). However, the more broad term CBM was proposed to depict
the diverse ligand specificity of these sugar-binding modules derived
from glycoside hydrolases. The Carbohydrate-Active enZYmes Database
(CAZy) (Lombard et al., 2014) (www.cazy.org) describes the families of
structurally related catalytic domains and CBMs (or functional do-
mains) of enzymes that degrade, modify, or create glycosidic bonds
such as glycoside hydrolases, glycosyltransferases, carbohydrate ester-
ases and polysaccharide lyases.

1.1. CBM nomenclature

The nomenclature system for CBMs is based on the systematic no-
menclature adopted for glycoside hydrolases (Henrissat et al., 1998).
Briefly, a CBM is named by its family number, e.g. the family 10 CBM
from Cellvibrio japonicus Xyn10A would be called CBM10, however to
improve clarity, it could also be included the organism and even the en-
zyme from which it is derived. So, for this example, the CBM could be
defined as CjCBM10 or as Cj Xyn10ACBM10. If the glycoside hydrolase
contains tandem CBMs of the same family, a number matching to the
position of the CBM in the enzyme relative to the N-terminus is
included.

1.2. CBM classification

In the CAZy database, a CBM is defined as a contiguous amino acid
sequencewithin a carbohydrate-active enzymewith a discrete fold hav-
ing carbohydrate-binding activity (Shoseyov et al., 2006). Numerous
CBMs have been identified experimentally, and based on amino acid
similarity many putative CBMs can be further identified. Currently,
48756 CBMs have been divided into 71 different families based on
amino acid sequence, binding specificity, and structure (extensive
data and classification can be found in the CAZy database www.cazy.
org). The information on the CAZy database is constantly reviewed
and reanalyzed in order to keep the information updated in such way
that new families are frequently added (Lombard et al., 2014).

1.3. Fold families

Besides amino acid similarity classification, CBMs can also be divided
into families according to their protein fold and tridimensional struc-
ture. In 2004, Boraston et al. classified the structures into “fold families”
(Table 1 and Fig. 1).

The dominant fold among the CBMs is the β-sandwich fold in terms
of the number of families and entries in databases. This fold is
Table 1
CBM fold families.
(Updated from Boraston et al., 2004; Guillen et al., 2010; Hashimoto, 2006).

Fold family Fold CBM families

1 β-Sandwich 2, 3, 4, 6, 9, 11, 15, 16, 17, 20, 21, 22,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 40, 41, 42, 44, 48, 47, 51, 70

2 β-Trefoil 13, 42
3 Cysteine knot 1
4 Unique 5, 12
5 OB fold 10
6 Hevein fold 18
7 Unique; contains

hevein-like fold
14
characterized by two β-sheets, each consisting of three to six antiparal-
lel β-strands (Fig. 1-A, B, C). All of the β-sandwich CBMs have at least
one boundmetal atom (with the exception of CBM2a from Cellulomonas
fimi xylanase 10A).

The β-trefoil is the second most frequent fold. It comprises twelve
strands of β-sheet, establishing six hairpin turns. A β-barrel structure
is formed by six of the strands, associated with three hairpin turns.
The remainder three hairpin turns form a triangular cap on one end of
the β-barrel named ‘hairpin triplet’ (Fig. 1-E). The trefoil domain, de-
fined by Boraston et al. (2004), is a contiguous amino acid sequence
with four β-strands and two hairpin structures having a trefoil shape.
Each trefoil domain provides one hairpin (two β-strands) to the β-
barrel and one hairpin to the hairpin triplet.

The majority of the CBMs belonging to the fold family of OB (oligo-
nucleotide/oligosaccharide-binding) have planar carbohydrate-
binding sites containing aromatic residues (Fig. 1-H). Hevein domains
are relatively small CBMs (~40 amino acids) and were originally identi-
fied as chitin-binding proteins in plants. The fold ismainly coil, however
it has two small β-sheets and a tiny region of helix (Fig. 1-G).

1.4. Types of CBMs

Theprotein fold allowed CBMs to be grouped into fold families, how-
ever this is not predictive of function. The topology of CBM-ligand bind-
ing sites was also used by Boraston et al. (2004) to categorize CBMs into
different “types” (Fig. 1), replicating the macromolecular structure of
the target ligand. This organization was based on the structural and
functional similarities of the CBMs, and three types of CBMs were de-
scribed: type A (‘surface-binding’ CBMs), type B (‘glycan-chain-binding’
CBMs), and type C (‘small-sugar-binding’ CBMs).

Type A CBMs or surface-binding CBMs (Fig. 1-A, D, F, H) have a flat
hydrophobic binding surface comprised of aromatic residues. The pla-
nar architecture of the binding sites is consistent with the flat surfaces
of crystalline polysaccharides like cellulose and chitin (Boraston et al.,
2004). The interaction of type A CBMswith crystalline cellulose is relat-
edwith positive entropy, indicating that the thermodynamic forces that
drive the binding of CBMs to crystalline ligands are relatively unique
among CBMs. Another feature of type A CBMs is their little or no affinity
for soluble polysaccharides (Bolam et al., 1998; Shoseyov et al., 2006).

Type B CBMs (Fig. 1-B) binding site architecture displays a cleft or
groove arrangement and comprise several subsites able to accommo-
date the individual sugar units of the polysaccharide. The binding profi-
ciency of the type B CBMs is assessed by the degree of polymerization of
the carbohydrate ligand: several studies revealed high affinity toward
hexasaccharides and negligible interaction with oligosaccharides with
degree of polymerization of three or less. For this reason, type B CBMs
are often called “chain binders”. As in type A CBMs, the aromatic side
chains play a critical role in ligand binding, and the orientation of the ar-
omatic residues are crucial determinants of binding specificity
(Boraston et al., 2004; Filonova et al., 2007a; Tomme et al., 1998).

Type C CBMs (Fig. 1-C, E, G, I), or lectin-like CBMs, have the lectin-
like feature of binding optimally to mono-, di-, or tri-saccharides due
to steric restriction in the binding site, lacking the extended binding
site grooves of type B CBMs. (Abbott et al., 2008; Boraston et al.,
2003a, 2004; Gregg et al., 2008). Due to their limited existence in
plant cell wall of active glycoside hydrolases, in general, the identifica-
tion and characterization of type C CBMs falls behind type A and B
classification.

1.5. Role of CBMs in CAZymes

Several organisms produce CAZymes in order to perform various
modifications to carbohydrates such as cleavage or formation of glyco-
sidic bonds in polysaccharides and glycoconjugates. The CBMs present
in most CAZymes have three general roles with respect to the function

http://www.cazy.org
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Fig. 1. CBM fold families and functional types (CBMs represented as ribbon structures, assumed biological molecule). CBMs shown are as follows: (A) family 3 CBM from Clostridium
thermocellum (CtCBM3), PDB code 4B9C (Yaniv et al., 2014); (B) family 4 from C. thermocellum (CtCBM4), PDB code 3P6B (Alahuhta et al., 2011); (C) family 9 from Thermotoga maritima
(TmCBM9), PDB code1I82 (Notenboomet al., 2001); (D) family 1 CBM from Trichoderma reesei (TrCBM1), PDB code4BMF (Mattinen et al., 1998); (E) family 13 from Clostridiumbotulinum
(CbCBM13), PDB code 3WIN (Amatsu et al., 2013); (F) family 5 from Moritella marina (MmCBM5), PDB code 4HMC (Malecki et al., 2013); (G) family 18 CBM from Triticum kiharae
(TkCBM18) PDB code 2LB7 (Dubovskii et al., 2011); (H) family 10 CBM from Cellvibrio japonicas Ueda107 (CjCBM10), PDB code 1E8R (Raghothama et al., 2000); (I) family 14 CBM
from Homo sapiens (HsCBM14) PDB code 1WAW (Rao et al., 2005).
Images from the RCSB PDB (www.rcsb.org) (Berman et al., 2000).
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of their associated catalytic modules: proximity and avidity effect; sub-
strate targeting; and microcrystallite disruptive function.

The CBMs promote the association of the enzymewith the substrate,
securing a prolonged contact and effectively increasing the effective
concentration on the polysaccharide surface thus enhancing its enzy-
matic activity (Bolam et al., 1998; Boraston et al., 2004; Guillen et al.,
2010; Levy and Shoseyov, 2002; Shoseyov et al., 2006). This proximity
effect has been demonstrated by several studies where it is noticed
that CAZymes fail to act on their substrates when CBMs are genetically
removed (Bolam et al., 1998; Boraston et al., 2003a; Shoseyov et al.,
2006). This feature is mainly observed in enzymes that act on insoluble
substrates and also in cellulosomes (Boraston et al., 2003a). CBMs can
be present in single, tandem or even in multiple copies within the
CAZymes architecture, and the avidity effect is related to this feature
(Guillen et al., 2010). The same enzyme can be linked to several
CBMs with similar or dissimilar binding specificity. Homogenous
multimodularity could increase the avidity of the CAZyme for the
matching substrate; on the other hand, heterogeneousmultimodularity
could permit the enzyme to bind different substrates. In 2009, Connaris
et al. constructed a recombinant protein with tandem copies of the
CBM40 from Vibrio cholerae sialidase. The sialidase from V. cholerae
has two CBMs that flank the catalytic domain. The N-terminal CBM
(CBM40) recognizes sialic acid with the highest reported affinity for
a sialic acid-binding protein, Kd ~30 μM. Identical copies of VcCBM40
were fused and manipulated in order to enhance its affinity through
the avidity effect. Using four CBM40 a gain up to 3 times in affinity
(due to the avidity effect) was observed when comparing with the sin-
gle CBM40.
It has already been demonstrated that CBMs have specific substrate
affinity, able to recognize different crystalline, amorphous, soluble and
non-soluble polysaccharides (Linder and Teeri, 1997; Tomme et al.,
1995; Wang et al., 2002). The data available nowadays suggests
that the CBMs can be highly specific, targeting and distinguishing
substrates with subtle structural differences. The substrate targeting
effect has been shown in several studies and it has been used in biotech-
nological applications namely as tools for the elucidation of protein-
carbohydrate interaction mechanisms and as molecular probes for
polysaccharide localization in situ, as a means to identify different poly-
saccharides in plant cell-walls (McCartney et al., 2004).

Some CBMs have the ability to disrupt crystalline polysaccharides
leading to an increase in substrate access. Din et al. (1991) first demon-
strated this disruptive effect in 1991, but since then several CBMs were
described as having this effect on polysaccharides (Gao et al., 2001;
Pinto et al., 2004; Vaaje-Kolstad et al., 2005;Wang et al., 2008), however
themechanismof CBM-cellulose structure disruption, from amechanis-
tic stand point, is still unclear. Binding of CBMs to a crystalline substrate
leads to polysaccharide chains disorganization and enhancement of
substrate availability consequently increasing the CAZymes activity.

1.6. General applications of CBMs

CBMs can be obtained by twomethods: enzymatic proteolysis of the
CBM from the enzyme (Lemos et al., 2000; Pinto et al., 2004; Tilbeurgh
et al., 1986) or using the recombinant DNA technology (recombinant
CBMs) (Andrade et al., 2010a; Carvalho et al., 2008; Moreira et al.,
2008). This last method allows overcoming the purity limitations of

http://www.rcsb.org
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the former one, namely avoiding the contaminant residual catalytic ac-
tivity, but it is also a way to improve CBMs availability, and to obtain
CBMs fused with other proteins (recombinant CBM-fusions) for specific
applications, which will be the focus of this review. Recombinant CBM-
fusions can either be produced in heterologous organisms or in the CBM
original host. The heterologous host most used for producing recombi-
nant CBMs is the bacterium Escherichia coli, followed by the yeast Pichia
pastoris, due to their well-known genetics, fast growth, high-density
cultivations and the availability of large numbers of compatible biotech-
nological tools. However, the choice of the host for the production of a
given CBM is dependent upon the CBM properties and application for
which it is intended. For example, production in yeast is considered
when post-translational modifications (e.g. glycosylation) are required
(Boraston et al., 2003b). Recombinant DNA technology also allows for
structural and functional characterization of CBMs (Alahuhta et al.,
2011; Dubovskii et al., 2011; Guo and Catchmark, 2013; Khan et al.,
2013; Malecki et al., 2013; Moreira et al., 2010; Yaniv et al., 2014) and
for other uses of CBMs, such as: expression in vivo for plant modulation
studies (Safra-Dassa et al., 2006); protein engineering (consisting in the
intrinsic addition, substitution ormutation of a CBM in order to improve
the enzyme stability or hydrolytic activity) (Latorre-Garcia et al., 2005;
Mahadevan et al., 2008); expression at the surface of cells, virus, and
phages, for immobilization and targeting purposes (Fukuda et al.,
2008; J.W. Kim et al., 2013; Tarahomjoo et al., 2008; Tolba et al.,
2010); and synthetic construction of minicellulosomes (S. Kim et al.,
2013). In this way, CBMs present a broad range of biotechnological ap-
plications (Bayer et al., 1994; Greenwood et al., 1992; Levy and
Shoseyov, 2002; Ong et al., 1989; Shoseyov et al., 2006; Tomme et al.,
1998; Volkov et al., 2004), some of which are already patented (Chang
et al., 2010; Connaris and Taylor, 2011; Heerze et al., 2002; Schnorr
and Christensen, 2005). Fig. 2 illustrates the main areas where CBMs
have been used (Shoseyov et al., 2006).

Recombinant CBMs can find application in all the represented areas.
In fact, most of the applications are reported for CBMs obtained from re-
combinant hosts as fusion proteins. These include, among others: the
CBM
applica
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improvement of the cellulose fiber properties; production, purification
and immobilization of recombinant proteins; functionalization of bio-
materials; probes for protein-carbohydrate interaction andmicroarrays.
There has been an increasing number of publications on this subject in
the last few years; this review aims to summarize the applications of
CBMs produced by recombinant methods, highlighting the most rele-
vant and recent works.

2. Applications of recombinant CBMs

Recombinant CBMs are commonly produced fromhosts fusedwith a
partner (Fig. 3). Fusions aim to facilitate the production and purification
of the CBM (e.g. in the case of small CBMs), or of the partner (e.g. pep-
tides), the in situ detection of the CBM, and to obtain bi-functional pro-
teins. CBM partners can be proteins, peptides, CBMs (different or the
same), enzymes, or other molecules (e.g. antibodies). In most cases,
the role of the CBMs is to bind the tagged protein to a target or support,
taking advantage of specific carbohydrate-binding affinities.

2.1. Modification of fibers

The use of native CBMs for the modification of fibers used in the
paper and textile industry has been demonstrated in several works
(e.g. Cavaco-Paulo et al., 1999; Pala et al., 2001; Ramos et al., 2007).
There are some reports on CBMs obtained from recombinant hosts
concerning this application.

In the paper industry, enhancements in both pulp and paper proper-
ties using recombinant CBMs produced from E. coli have been reported.
The papermaking process is essentially a very large drainage operation
followed by press and dryer sections. While water removal in the press
and dryer section is expensive, enhancements in the drainage section
will have an important positive impact on the global performance of the
process. Recombinant CBM3, originally from the bacterium Clostridium
thermocellum CipA scaffolding protein, conjugated with polyethynel gly-
col (PEG), was able to improve the drainability of Eucalyptus globulus
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and Pinus sylvestris pulps without affecting the physical properties of the
paper sheets (Machado et al., 2009). This result was attributed to the
presence of PEG, since the recombinant CBM alone was unable to modify
pulp and paper properties, in spite of having high cellulose-binding affin-
ity. It was suggested that the PEGmimetized the glycosidic fraction pres-
ent in fungal CBMs, lacking in bacterial CBMs. Previously, highly
glycosylated fungal CBMs showed to improve pulp drainability (Pala
et al., 2001). Indeed, as PEG, the oligosaccharides attached to the fungal
CBMs have high water affinity, and thus may lead to the hydration and
stabilization of the fibers, thereby reducing the inter-fiber interactions
and contributing to a better water drainage. Controversially, Cadena
et al. (2010) reported that the un-glycosylated recombinant CBM3b, orig-
inally from Paenibacillus barcinonensis endoglucanase Cel9B, could alter
cellulose fiber surface and influence paper properties. This recombinant
CBM decreased the drainability of totally chlorine free kraft pulp from
E. globulus, while it slightly increased paper strength properties (Cadena
et al., 2010). In this work, the double amount of CBM was used (2 mg of
CBM per gram of dried fibers).

Concerning recombinant CBM-fusions, Levy et al. (2002) construct-
ed a bi-functional protein, containing two-fused cellulose-bindingmod-
ules (CBM3), from Clostridium cellulovorans, to mimic the chemistry of
cellulose cross-linking. The recombinant cellulose cross-linked protein
was applied ontoWhatman cellulose filter paper by immersion. The fu-
sion protein improved the treated paper's mechanical properties name-
ly, tensile strength, brittleness, Young's modulus and energy to break.
Recombinant CBM alone also improved the mechanical properties of
paper, although to a lower extent. In addition, the fusion protein, in
the range of concentrations of 0.025–2.5mg/ml, conferred to the surface
of the filter paper high hydrophobic nature transforming it into a more
water-repellent paper, comparing to single CBM. Afterwards, the same
authors constructed another bi-functional protein, a polysaccharide
cross-bridging protein, containing a cellulose-binding domain from
C. cellulovorans and a starch-binding domain from Aspergillus niger B1,
fused in frame via a synthetic elastin gene (Levy et al., 2004). The fusion
protein demonstrated cross-bridging ability in different model systems
composed of insoluble or soluble starch and cellulose. The treatment of
paper fibers with this recombinant protein, together with corn-starch,
improved paper dry strength.

Very recently, Shi et al. (2014) engineered four double CBMs con-
taining family 1 (from Volvariella volvacea) and/or family 3 (from
C. thermocellum) CBMs, linked by family 1 native linker (NL) or the
(G4S)3 linker (GS). The recombinant CBM3-GS-CBM3 was the most ef-
fective double CBM in enhancing paper mechanical properties in
terms of folding endurance (27.4%) and tensile strength (15.5%), but
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led to a slight increase in bursting strength (3.1%). The recombinant
CBM1-NL-CBM1 achieved a significant simultaneous increase in tensile
(12.6%) and burst (8.8%) strengths, and folding endurance (16.7%). The
other two double CBMs, CBM3-GS-CBM1 and CBM3-NL-CBM1, had the
lowest effective paper property improvement. The amount of 2.5 mg of
double CBMs per gram of dried fibers was used.

For improving digital printing, Qi et al. (2008) constructed a
recombinant triblock protein with dispersant and binding properties.
The chimeric protein consisted in a carbon black binding peptide
and a cellulose-binding peptide (both identified from phage
display libraries through biopanning), jointed by a small, rigid, and
hydrophilic interdomain linker (adapted from endoglucanase A of
Cellulomonas fimi), whose function was to isolate the two peptides
and allow the dual binding activity. The structured triblock protein
was shown to disperse carbon black particles and attach it to paper
surfaces.

CBMs have also been recombinantly fused with other proteins in
E. coli for application in the manufacture of cotton fabrics. The scouring
process to remove the cuticle layer of cotton fiber is one of themost im-
portant processes determining the fabric quality, as it affects the water
absorption and dyeing efficiency of the cotton fabrics (Ha et al., 2008).
Multidomain proteins able to monitorize the efficiency of cotton fabrics
scouringwere obtained by the fusion of a reportermoiety and cellulose-
binding CBMs (Degani et al., 2004; Ha et al., 2008). Degani et al. (2004)
used as reporter protein the enzymeβ-glucuronidase (GUS) fused at the
C-terminal of the CBM. An increase of CBM-GUS activity on a cotton fab-
ric was correlated with the extent of the scouring process, since the
amount of bound CBM-GUS increased proportionally whenmore cellu-
losefibers became available as the binding site for themultidomain pro-
tein (Degani et al., 2004). The fabric-bound GUS activity was visualized
using the substrate 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid
(X-Gluc), which yields an indigo-blue reaction product. The CBM-GUS
test displayed higher sensitivity and repeatability than conventional
water absorption techniques traditionally used in the textile industry,
which require expensive equipment and special skills. Later, Ha et al.
(2008) demonstrated that β-glycosidase (BglA) from Thermus
caldophilus, fused at the N-terminal of C. fimi exoglucanase CBM, was
the most appropriate reporter, showing a higher applicability and sta-
bility than GFP, DsRed2, or a tetrameric GUS produced from E. coli. Cot-
ton fabrics with different scouring levels were treated with the
recombinant BglA-CBM and incubated with X-Gal as the chromogenic
substrate, resulting in a visible indigo color within 2 h, which intensity
changed according to the conditions and extent of the scouring. Recent-
ly, the scouring efficiency of Thermobifida fusca cutinase was improved
by the fusion of its C-terminus with the CBM from T. fusca cellulase
Cel6A (CBMCel6A) or C. fimi cellulase CenA (CBMCenA) (Zhang et al.,
2010). In addition, a strong synergistic effect between the recombinant
fusion proteins and pectinase was observed. The cutinase-CBMCenA
fusion protein was genetically modified in the CBM binding sites, by
site-directed mutagenesis, to enhance its activity toward polyethylene
terephthalate fiber, resulting in an improved binding and catalytic effi-
ciency of 1.4–1.5 fold, when compared to that of the native enzyme
(Zhang et al., 2013).

2.2. Recombinant protein production and purification

2.2.1. Affinity purification tools
The purification of recombinant proteins remains one of the most

difficult and expensive tasks in biotechnology. The CBMs are attractive
affinity tags for protein purification for several reasons (Wan et al.,
2011): (i) the highly specific binding ability of the protein fused with
a CBM tag; (ii) their low non-specific binding for other proteins;
(iii) the efficient release of bound protein under non-denaturing condi-
tions; (iv) its enhanced protein folding and secretion/solubility; and
(v) its increased protein yield. In addition, they may allow for simulta-
neous purification and immobilization of the fused proteins leading to
other applications (see sections “Immobilization of recombinant pro-
teins” and “Microarrays and probes”). Therefore, one of the most ex-
plored applications of CBMs has been their use as affinity purification
tags of recombinant proteins. The majority of the CBM-based purifica-
tion systems have been developed in the bacterium E. coli but also in
yeast, namely P. pastoris, typically using amodel protein tomonitor pro-
duction and purification steps (Table 2). However, P. pastoris glycosyla-
tion was reported to reduce the substrate affinity of the recombinant
CBM in some cases (CBM2 from C. fimi (Boraston et al., 2001)). Other
heterologous hosts have also been used, such as the bacteria Streptomy-
ces lividans (Ong et al., 1995) and Ralstonia eutropha (Reed et al., 2006),
and mammalian cells (Ong et al., 1995). In CBM-fusions, the CBM tag
can either be placed at the N- or C-terminus of the target protein. Engi-
neering gene fusions which introduce a specific cleavage site between
the CBM and the target polypeptide are widely used to generate free
CBM-tagged proteins. In this context, different cleavage methodologies
have been adopted, such as protease action (e.g. Factor Xa (Kavoosi
et al., 2004; Ong et al., 1995)), chemical cleavage with formic acid
(Ramos et al., 2010), and self-cleavage of intein (Hong et al., 2008a;
Liao et al., 2012; Wan et al., 2011).

Themost used CBMs are those that bind to cellulose, CBM3 in partic-
ular (Table 2). Several works relating to production and application of
biologically active CBM-protein fusions show the feasibility of
employing such CBMs as affinity tags. These include the purification of
enzymes, peptides, antibodies, etc. (e.g. Ofir et al., 2005; Ramos et al.,
2010; Xu et al., 2002).

Reversible binding is an important requirement for protein purifica-
tion. The interaction of CBMswith cellulose has long been characterized
as “irreversible” (specifically, CBMs from families 2 and 3). CBMs with
“irreversible” binding present limited usefulness as an affinity tag for
protein purification, because desorption may require strong denaturing
conditions (Rodriguez et al., 2004). However, recent works have de-
scribed the interaction of a family 3 CBM with cellulose as a dynamic
and reversible process (Machado et al., 2009), with desorption achieved
at mild conditions (Liao et al., 2012). Furthermore, Lim et al. (2014)
showed that a family 2a CBM could be readily reversible at 37 °C using
methods previously established for a family 1 CBM (Linder et al.,
1996). The “irreversible” nature of the CBM-cellulose interaction, that
depends both on the CBM and cellulose properties, is not yet fully
characterized.

The use of cellulose as purification media presents many advan-
tages: inertness, lownon-specific protein binding, commercial availabil-
ity in a variety of inexpensive forms, and safety, as it has been approved
for many pharmaceutical and human applications (Terpe, 2003). In ad-
dition, since CBMs adsorb spontaneously to cellulose, very little or no
pretreatment of the samples is required prior to purification. CBMs
bind to cellulose at a moderately wide pH range, from 3.5 to 9.5. The
main driving forces for binding are hydrogen bond formation and van
der Waals interaction (Tomme et al., 1998). The affinity is so strong
that a CBM-immobilized fusion protein can only be released with
buffers containing urea or guanidine hydrochloride, which require sub-
sequent refolding of the target protein. Fused proteins with CBMs of
families 2 and 3 can be eluted gently from cellulose with low-polarity
solvents, such as ethylene glycol, which can be removed easily by dial-
ysis. Alternatively, and asmentioned above, the target protein can be re-
leased from the CBM tag, and thus from the support, using a cleavage
strategy. CBM-fusions have been mainly purified using Avicel – micro-
crystalline cellulose (e.g. Sugimoto et al., 2012) and RAC – regenerated
amorphous cellulose (e.g. Hong et al., 2008b; Wan et al., 2011), but
also CF11 – fibrous cellulose (e.g. Ramos et al., 2010; Sugimoto et al.,
2012), according to CBMs preference. RAC has higher adsorption capac-
ity than Avicel (Hong et al., 2007, 2008b). Other cellulose-based purifi-
cation media have also been used. Bacterial microcrystalline cellulose
has a high adsorption capacity (Hong et al., 2007). On the other hand,
filter papers are easy to manipulate, but they only have one fourth of
RAC's adsorption capacity (Hong et al., 2007). Kavoosi et al. (2007b)



Table 2
Properties and uses of CBMs as affinity tags for the purification of recombinant proteins.

CBMs family Fold family Molecular weight
(kDa)

Isoelectric
point

Target protein Production host References

1 3 3.8 7.0 RFP, red fluorescent protein Pichia pastoris Sugimoto et al. (2012)
2 1 8.8 7.7 Protein A from Staphylococcus aureus Escherichia coli Rodriguez et al. (2004)

SFC, murine stem-cell factor P. pastoris Boraston et al. (2001)
10.9 6.1 Interleukin-2 E. coli, Streptomyces lividans,

mammalian COS cells
Ong et al. (1995)

3 1 17.5 6.8 k- and λ-carrageenases E. coli Kang et al. (2014)
Protein A from S. aureus E. coli Shpigel et al. (2000)
Heat shock protein hsp60 E. coli Shpigel et al. (1998)

17.1 4.8 MAG2, magainin-2 E. coli Ramos et al. (2013)
PPGK, polyphosphate glucokinase E. coli Liao et al. (2012)
EGFP, enhanced green fluorescent protein P. pastoris Wan et al. (2011)
LL37, cathelicidin derived human peptide E. coli Ramos et al. (2010)
GFP, green fluorescent protein E. coli Hong et al. (2007; 2008a,b)

17.6 4.7 Self-assembling peptides Ralstonia eutropha Reed et al. (2006)
9 1 21.3 4.8 GFP E. coli Kavoosi et al. (2004; 2007a,b,c; 2009)

Self-assembling peptides R. eutropha Reed et al. (2006)
21a 1 11.5 5.1 EGFP and phytase E. coli, P. pastoris Lin et al. (2009)
30 1 9.8 4.2 Cis-epoxysuccinic acid hydrolase E. coli Wang et al. (2012)

a CBM21 has raw starch-binding affinity, while the other CBMs in the table have cellulose-binding affinity.
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developed mechanically stable porous cellulose beads for cost-effective
purification scale-up of recombinant proteins.

Several CBMs are already commercialized as recombinant protein
production and purification systems. For example, cellulose-binding
CBMs from C. cellulovorans and C. fimi are incorporated into some
Novagen's E. coli pET expression vectors.

2.2.2. Production of peptides and enzymes
CBMs have shown to be effective fusion partners for the production

and purification of recombinant antimicrobial peptides in E. coli
(Guerreiro et al., 2008a; Klocke et al., 2005; Ramos et al., 2010, 2013).
Antimicrobial peptides (AMPs) are part of the innate immune system,
acting in a wide range of physiological defensive mechanisms devel-
oped to counteract bacteria, fungi, parasites and viruses. AMPs are gen-
erally defined as cationic, amphipathic peptides, with less than 50
amino acids, including multiple arginine and lysine residues. CBMs
allow overcoming the difficulties of the recombinant production of
this kind of molecules, due to their small size and potential toxicity for
host, and may also be used for their immobilization. The CBM3 from
C. thermocellum has been particularly employed in this respect. This
CBM is an innocuous partner since it does not present antibacterial ac-
tivity and does not bind to E. coli surface (Guerreiro et al., 2008a).
Guerreiro et al. (2008a) reported the production of four AMPs fused to
the N-terminal of CBM3, that presented cellulose-binding ability, and
suggested their immobilization in cellulosic supports for the generation
of novel bio-products possessing antimicrobial properties for biomedi-
cal application. However, the antimicrobial activity of the fusion pro-
teins remained to be elucidated. Soon after, the cathelicidin derived
human peptide LL37, which has a broad spectrum of antimicrobial and
immunomodulatory activities, was also produced fused to either N- or
C-terminal of CBM3 (Ramos et al., 2010). The fusion proteinswere puri-
fied taking advantage of the CBM3 specific affinity for cellulose, and
LL37 was cleaved from CBM3 with formic acid and further purified by
reverse-phase HPLC. The recombinant LL37 obtained from the C-
terminally fused protein showed antibacterial activity against E. coli
K12, but not the one obtained from the N-terminally fused protein, pre-
sumably due to the presence of a methionine residue at its N-terminal
(Ramos et al., 2010). Interestingly, the LL37 obtained by this methodol-
ogy has been shown to preserve its immunophysiological properties
in vitro and in vivo (Ramos et al., 2011). More recently, Ramos et al.
(2013) producedMagainin-2 (MAG2), a polycationic antimicrobial pep-
tide isolated from the skin of the African clawed frog Xenopus laevis,
fused once again to the N-terminal of CBM3. Recombinant MAG2 was
successfully cleaved andpurified from the fusionpartner, using a similar
protocol to the previously applied for LL37 recovery, and was function-
ally active against Gram-negative bacteria.

Another widely explored application of CBMs has been the produc-
tion of enhanced enzymes, particularly cellulases, free (e.g. Hong et al.,
2006; Kang et al., 2007; Martin et al., 2013; Reyes-Ortiz et al., 2013;
Tang et al., 2013; Thongekkaew et al., 2013; von Ossowski et al., 2005;
Yeh et al., 2005) or immobilized (see section “Immobilization of recom-
binant proteins”), by CBM fusion. It is obvious the large diversity of bio-
logical processes that can benefit from this CBM application. For
example, a recombinant derivative of C. thermocellum xylanase, contain-
ing a CBM6, and a recombinant C. thermocellum cellulase fused to a fam-
ily 11 β-glucan-binding domain, were used in the supplementation of
animals feeding with success (Fontes et al., 2004; Guerreiro et al.,
2008b; Ribeiro et al., 2008). The efficacy of the CBM6 could be noticed
by the increased final body weight of birds fed on a wheat-based diet
supplemented with the recombinant CBM-xylanase, when compared
with birds only receiving the xylanase catalytic module (Fontes et al.,
2004). As other example, among four recombinant fusions of different
CBMs (families 3, 4–2, 6 and 9–2) with C. thermocellum cellodextrin
phosphorylase (lacking an apparent CBM), the fusion with CBM9
resulted in a non-natural cellulose phosphorylase, which opened per-
spectives for developing a highly active enzyme for in vitro hydrogen
production from cellulose by synthetic pathway biotransformation (Ye
et al., 2011).

2.3. Immobilization of recombinant proteins

CBMs have been used as efficient immobilization tools of
recombinantly fused proteins for different applications. One of these
applications is bioremediation, aiming for the development of efficient
pollutants removal systems. Some authors reported the degradation
of toxic compounds using decontaminating enzymes fused with
cellulose-binding CBMs, which enabled a single-step purification and
immobilization of the fusion proteins into different cellulosic materials
(Richins et al., 2000; Xu et al., 2002).

The immobilization of CBM-fusion proteins also allowed the en-
hancement of properties of some industrially important enzymes
(Harris et al., 2010; Hwang et al., 2004; Myung et al., 2011;
Rotticci-Mulder et al., 2001; Wang et al., 2012). For example, recently,
Wang et al. (2012) fused five different CBMs to cis-epoxysuccinic acid
hydrolase (CESH) and immobilized the chimeric enzymes on cellulose
to improve their efficiency and stability. These chimeric enzymes were
expressed in E. coli and purified using nickel or, for simultaneous immo-
bilization, cellulose affinity. CESH may be used in the chemical industry
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to produce tartaric acid, but its application is hampered due to instabil-
ity of the purified form. The stability was slightly increased by the
fusion with CBMs, and significantly by the immobilization on cellulose.
Among the CBMs used, CBM30 (from C. thermocellum) was the best fu-
sion partner for improving both the enzymatic efficiency and stability of
CESH.

Enzyme recycling is an important issue in several biotechnological
processes. A peculiar thermally reversible enzyme-binding system suit-
able for regenerating batch enzymatic processes was developed, in
which a CBM from C. cellulovorans was fused with thermophilic en-
zymes from Pyrococcus furiosus (Nahalka and Gemeiner, 2006). The en-
zyme was active and free in the reaction mixture at 80–90 °C and
deactivated and immobilized by affinity adsorption to cellulose at
30–40 °C. Craig et al. (2006) also developed a reversible high affinity in-
teraction system but using the calcium-dependent cohesin-dockerin in-
teraction from C. thermocellum. The CBM from C. cellulovorans fused to
that cohesin was immobilized onto a cellulose matrix, allowing the
binding of a complementary dockerin-tagged recombinant protein, an
interaction which could be reversed with EDTA. Recently, a recombi-
nant miniscaffoldin was constructed in E. coli, containing one family 3
CBM (from C. thermocellum CipA) and three types of cohesins for
single-step purification and co-immobilization of a synthetic multi-
enzyme complex also produced in E. coli (i.e. three complementary
dockerin-tagged enzymes). This complex allowed the enhancement of
the initial enzymatic reaction rate by facilitating substrate challenge
(You and Zhang, 2013; You et al., 2012). The economics of affinity-
tagging technologies depends in part on the cost and efficiency of
the bioprocessing step used to remove the affinity tag. Kwan et al.
(2002) used cellulose beads to immobilize a derivative of Factor
X, recombinantly fused with a CBM in mammalian cells. The so
immobilized Factor X was used for cost-effective application in tag re-
moval from recombinant fusion proteins, thus facilitating protein puri-
fication (Kwan et al., 2002). The self-activating derivative enzyme
retained approximately 80% of its initial activity after 30 days of contin-
uous hydrolysis of a fusion protein substrate (Kwan et al., 2002). In an-
other work, cellulose-containing magnetic nanoparticles were applied
for immobilizing CBM-tagged enzymes, which can be employed for en-
zyme recycling/removal from enzymatic reactions by using a magnet
(Myung et al., 2013; You et al., 2013).

Antibody-binding domains fused with CBMs have been used for
studying antibodymediated cell or particle adhesion onto cellulose sur-
faces for mammalian cell culture applications (Craig et al., 2007; Lewis
et al., 2006; Nordon et al., 2004; Pangu et al., 2007). For example,
some authors described the construction and/or application of such fu-
sions for direct immobilization of antibodies and cells onto regenerated
cellulose made hollow fiber membranes (Craig et al., 2007; Nordon
et al., 2004). Cell separation, based on themonoclonal antibody recogni-
tion, is achieved using these devices specifically for high-density cell
culture, with the potential advantage to integrate cell selection and cul-
ture processes (Craig et al., 2007). Moreover, antibody-binding domains
have been immobilized via CBMs fusion for biosensor applications. In an
interesting work, several bispecific pentameric fusion proteins,
consisting of five single-domain antibodies and five cellulose-binding
modules linked via verotoxin B subunit (self-assembly facilitator of
the 5 polypeptides), were engineered in E. coli and P. pastoris for
simultaneous immobilization on cellulose and detection of the human
pathogen Staphylococcus aureus (Hussack et al., 2009). Six bispecific
expression cassettes were constructed by fusing three different
CBMs (families 2 and 9) to the specific antibody in both orientations,
resulting in six different pentamers. One of the proteins (containing
N-terminal CBM9), when impregnated in cellulose filters, was able to
recognize S. aureus cells in a flow-through detection assay. The ability
of pentamerized CBMs to bind cellulosemay form the basis of an immo-
bilization platform for multivalent display of high avidity binding re-
agents on cellulosic filters for sensing of pathogens, biomarkers and
environmental pollutants (Hussack et al., 2009).
Functionalization of biomaterials

Recombinant fusions of CBM-bioactive peptides produced and
purified from E. coli have been employed to improve cell adhesion and
proliferation on carbohydrate-based biomaterials for biomedical appli-
cation. Among the bioactive cell adhesion motifs found in extracellular
matrix proteins, the peptides Arg-Gly-Asp (RGD) (Andrade et al.,
2010a; Carvalho et al., 2008; Hsu et al., 2004; Moreira et al., 2008;
Wierzba et al., 1995a,1995b) and Ile-Lys-Val-Ala-Val (IKVAV) (Pertile
et al., 2012) were used for such purpose. Andrade et al. (2010a) con-
structed different recombinant fusions of CBM3 from C. thermocellum
cellulosome with RGD and GRGDY (RGD/CBM, RGD/CBM/RGD,
GRGDY/CBM and GRGDY/CBM/GRGDY) in order to improve the affinity
of mouse embryo fibroblasts 3T3 for bacterial cellulose (BC). In recent
years, BC has emerged as a promising biomaterial for biomedical appli-
cations due to its properties such as high crystallinity, ultrafine fiber
network, high tensile strength, and biocompatibility (Andrade et al.,
2010b). Indeed, the recombinant bifunctional proteins improved the fi-
broblasts adhesion and spreading on BC, as compared with BC treated
with the recombinant CBM3 alone (Andrade et al., 2010a). Furthermore,
theproteins containing theRGD sequence showed a stronger effect than
those containing the GRGDY sequence. More recently, the same CBM3
recombinantly fused with two different IKVAV sequences (IKVAV and
(19)IKVAV), and ligated by the native glycanase 40 amino acid linker,
was used to promote neuronal and mesenchymal stem cells (MSC) ad-
hesion also on BC, to improve biocompatibility (Pertile et al., 2012).
IKVAV means the respective 5 peptide amino acids, while (19)IKVAV
corresponds to the extended amino-acid sequence (19 amino acids)
based on the proteolytic laminin fragment PA-22 containing the se-
quence IKVAV. Both recombinant fusion proteins were stably adsorbed
to the BCmembranes (Pertile et al., 2012). The recombinant fusion pro-
tein (19)IKVAV-CBM3was able to significantly improve the adhesion of
both neuronal andmesenchymal cells, an effect that was dependent on
the cell type. On the other hand, the recombinant fusion protein IKVAV-
CBM3 only presented a marginal effect on MSC adhesion. Furthermore,
the recombinant fusion protein (19)IKVAV-CBM3 allowed the release of
nerve growth factor (a protein that belongs to the neurotrophins pro-
teins family, which are known to induce the survival, development,
and function of neurons) secreted by MSC to the culture medium, indi-
cating that modified BC has the potential to be used in neuronal tissue
engineering applications (Pertile et al., 2012). The previously construct-
ed recombinant fusion protein RGD-CBM3 (Andrade et al., 2010a) was
also tested in this last work, showing to improve the adhesion of part
of the cell lineages studied, thus revealing a cell specific behavior
(Pertile et al., 2012).

Recombinant fusions of CBMs with other affinities to the RGD
tripeptide were also constructed to functionalize other biomaterials,
also with appealing characteristics in the perspective of biomedical ap-
plication, but with distinct success. A starch-binding module (SBM20
from Bacillus sp. TS-23 α-amylase) fused to RGD was effective in im-
proving, by more than 30%, the adhesion of fibroblasts to dextrin-
based hydrogel (Moreira et al., 2008). In fact, cell spreading on the hy-
drogel surface was only observed in the presence of the RGD-SBM,
since the recombinant SBM alone did not have any effect on cells adhe-
sion. Controversially, Carvalho et al. (2008) showed that a human
chitin-binding module (ChBM) recombinantly fused to RGD affected
negatively fibroblasts anchorage to reacetylated chitosan films,
inhibiting cells adhesion and proliferation. The authors concluded that
this unexpected effect was fundamentally due to the human ChBM, ei-
ther fused or not with the RGD peptide, but the reason for this result re-
mains unclear (Carvalho et al., 2008).

Concerning other potential biomedical applications, isolated works
describe very interesting features of some recombinant CBMs, such as:
a CBM from C. cellulovorans fused with a recombinant antigen protein
(from Aeromonas salmonicida) as adjuvant for fish parenteral vaccina-
tion (Maurice et al., 2003), the recombinant CBM4 (a domain from the
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Celk gene from C. thermocellum) as stabilizer of single-walled carbon
nanotubes (SWNTs) in water (Xu et al., 2009), and a CBM from C. fimi
fused to a murine stem cell factor as persistent activator of factor-
dependent cells (Jervis et al., 2005). Furthermore, a bi-functional pro-
tein with self-assembly and graphene-binding properties (HFBI -
hydrophobin I, from Trichoderma reesei) fused with two CBMs (from
T. reesei Cel7A and Cel6A enzymes) was recombinantly produced in
the original host for multiple uses: self-assembly of nanofibrillar cellu-
lose (NFC) (Varjonen et al., 2011), construction of nanocomposites of
graphene and NFC (Laaksonen et al., 2011), and preparation of drug
nanoparticles and their immobilization in NFC for increased storage sta-
bility (Valo et al., 2011).

2.4. Microarrays and probes

The complexity of printing non-DNA microarrays, e.g., protein and
peptide microarrays, is one of the major drawbacks of this approach.
The use of affinity immobilization strategiesmay provide a general solu-
tion for fabrication of such microarrays. In this context, CBM-based mi-
croarray technology provides a technically simple but effective
alternative to conventional technology. The intrinsic specificity of
CBMs for individual carbohydrates and the facile modification with
other molecules allow for efficient production of protein and peptide
microarrays (Moreira and Gama, 2011). In CBM-basedmicroarray tech-
nology, the probes (recombinant CBMs fusedwith proteins, peptides, or
antibodies, produced from E. coli) are immobilized onto cellulosic sup-
ports via CBM adsorption. This technology offers fundamental advan-
tages over current non-DNA microarray technology, such as retention
of protein functionality after immobilization, ease of fabrication, ex-
tended stability of the printed microarray, integrated test for quality
control and the capacity to print test proteins without purification
steps (Ofir et al., 2005). CBM-basedmicroarrays can be used in a variety
of potential applications, technically impractical via conventional mi-
croarray technologies (Ofir et al., 2005). Nevertheless, only a couple of
works describe the construction and application of such microarrays.
Ofir et al. (2005) developed a CBM-based microarray system for
serodiagnosis of human immunodeficiency virus (HIV) patients, using
an affinity-based probe immobilization strategy, consisting in the com-
bination of cellulose-coated glass slides with the family 3a CBM, from
the cellulosome of C. thermocellum, recombinantly fused with HIV-
related antibodies or peptides. This work took advantage of a large li-
brary of CBM3-fused single-chain antibodies constructed before by
Azriel-Rosenfeld et al. (2004). Later on, Haimovitz et al. (2008) devel-
oped a CBM-based microarray system to analyze the cohesin-dockerin
specificity. The specificity of cohesin-dockerin interactions is critically
important for the assembly of cellulosomal enzymes into the multien-
zyme cellulolytic complex (cellulosome). Knowledge of the specificity
characteristics of native and mutated members of the cohesin and
dockerin families provides insight into the architecture of the parent
cellulosome and allows selection of suitable cohesin-dockerin pairs for
biotechnological and nanotechnological applications (Slutzki et al.,
2012). In the above microarray, recombinant CBM-fused cohesins
(CBM from the C. thermocellum scaffoldin CipA) were immobilized on
cellulose-coated glass slides, to which recombinant xylanase-fused
dockerin samples were applied (Haimovitz et al., 2008). Using this ap-
proach, extensive cross-species interaction among type-II cohesins
and dockerins was shown for the first time. Furthermore, selective in-
traspecies binding of an archaeal dockerin to two complementary
cohesinswasdemonstrated. In order to investigate the origins of the ob-
served specificity, a similar microarray system was then described,
consisting of CBM attached to cohesin mutants for screening of comple-
mentary binders (Slutzki et al., 2012). The advantages of this approach
are that crude cell lysate can be used without additional purification,
and the microarray can be used for screening both large libraries as ini-
tial scanning for “positive” plates, and for small libraries, wherein indi-
vidual colonies are printed on the slide (Slutzki et al., 2012).
The innate binding specificity of different CBMs offers a versatile ap-
proach formapping the chemistry and structure of surfaces that contain
complex carbohydrates. Therefore, CBMs can be used as molecular
probes for studying plant cell walls and carbohydrate-based substrates.
Several works describe the use of recombinant CBMs for characterizing
both native complex carbohydrates and engineered biomaterials. In
these studies, based on fluorescent techniques, different types of CBM-
probes are used: recombinant CBMs fused with fluorescent proteins
(e.g. Ding et al., 2006; Kawakubo et al., 2010), recombinant CBMs la-
beled with a fluorochrome (e.g. fluorescein isothiocyanate-FITC
(Filonova et al., 2007a; Filonova et al., 2007b)), or labeled by immuno-
fluorescence (i.e. using antibodies, as for instance for his-tag detection)
(e.g. Boraston et al., 2003a; Dagel et al., 2011; Jamal et al., 2004; Lehtio
et al., 2003; McCartney et al., 2004; Siroky et al., 2012). Recently, a
new technique was described (using scanning electron microscopy),
using recombinant CBM44 from C. thermocellum and recombinant
CBM2a from C. fimi, to track specific changes in the surface morphology
of cotton fibers during amorphogenesis (i.e. non-hydrolytic “opening
up” or disruption of a cellulosic substrate), one of the key steps in the
enzymatic deconstruction of cellulosic biomass when used as a feed-
stock for fuels and chemicals production (Gourlay et al., 2012).More re-
cently, the surface accessibilities of amorphous and crystalline
celluloses in Avicel to cellulase were determined quantitatively using
two recombinant fluorescent CBM-probes consisting of GFP fused
with a CBM3 (that binds to both amorphous and crystalline celluloses)
and mono-cherry fluorescent protein (CFP) fused with a CBM17 (that
binds only to amorphous cellulose), thus revealing cellulose hydrolysis
mechanism (Gao et al., 2014).
3. Perspectives

Recombinant expression systems, particularly E. coli, have boosted
the application of several CBMs in many different areas. Most applica-
tions of CBMs are strictly dependent on the fusion with a partner or tar-
get protein. In recent years, besides the exploitation of CBMs as fusion
tags for recombinant protein production and purification in different
hosts, CBMs have been investigated as biomedical tools, namely
through the functionalization of biomaterials. Recombinant CBMs
have also been used as molecular probes for characterizing and moni-
toring alterations in native and engineered polysaccharides and for
immobilizing and improving the properties of many enzymes.

There is no doubt that the trend is for the number of CBMs to contin-
uously grow, and that recombinant DNA technology will expand their
application. The design of recombinant fusions of CBMs with pathogens
and toxins binders predicts the development of CBM-based biosensors.
On the other hand, artificial CBMs with engineered biological activities
(e.g. anti-viral, anti-bacterial, and anti-tumor) may settle the grounds
for new synthetic drugs. Furthermore, recombinant production may
help to elucidate the molecular evolution of CBMs, as well as several
carbohydrate-protein interactions involved in many biological process-
es, some of which related with human diseases, in order to develop
novel therapeutic strategies.

Cellulose is the most abundant natural polymer. It is traditionally
used in different fields of activity, such as textile and pulp and paper.
The availability of pure cellulosic materials such as nanocellulose
(now produced at the industrial scale) and the emergence of bacterial
cellulose as a sophisticated new material in different fields of applica-
tion demonstrate themodernity of cellulose, with limitless applications
in the biomedical, composites and electronics. On the other hand, nano-
technology is being able to construct complex functional structures
made of biomolecules such as proteins or nucleic acids. The physiologi-
cal role of protein-protein interactions is just being unraveled. CBMs
thus show as promising tools for construction of complex puzzles in
the surface of cellulosic biomaterials. The cellulosome structurewill cer-
tainly inspire the creation of CBM based nanomachines.
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