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Synopsis
OBJECTIVE: Hair follicles are widely recognized as the preferential

target and site of accumulation for nanoparticles after topical appli-

cation. This feature is of particular importance for hair cosmetics,

having the potential to refine the treatment of several hair follicle-

related disorders. The aim of this work was to improve the prepara-

tion of Poly (D,L-lactide) (PLA) nanoparticles for in vivo follicular

target and drug delivery.

METHODS: Envisaging a future industrial scale-up of the process,

nanoprecipitation method was used to prepare PLA nanoparticles:

the effect of several processing parameters on their properties was

examined and the yield of nanoparticles formation determined.

Encapsulation efficiencies and in vitro release profiles of lipophilic

and hydrophilic model compounds were also assessed. In vitro cyto-

toxicity and ex vivo penetration studies were performed on a refer-

ence skin cell line (NCTC2455, human skin keratinocytes) and

porcine skin, respectively.

RESULTS: Using acetone : ethanol (50 : 50, v/v) as the solvent

phase, 0.6% (w/w) of Pluronic� F68 as a surfactant agent and agita-

tion to mix the solvent and non-solvent phases, a monodispersed

population of non-cytotoxic spherical nanoparticles of approximately

150 nm was obtained. The yield of nanoparticles for this formulation

was roughly 90%. After encapsulation of model compounds, no sig-

nificant changes were found in the properties of particles and the

entrapment efficiencies were above 80%. The release kinetics of dyes

from PLA nanoparticles indicate an anomalous transport mechanism

(diffusion and polymer degradation) for Nile Red (lipophilic) and a

Fickian diffusion of first order for fluorescein 5(6)-isothiocyanate

(hydrophilic). Ex vivo skin penetration studies confirmed the presence

of nanoparticles along the entire follicular ducts.

CONCLUSIONS: The optimized method allows the preparation of

ideal PLA nanoparticles-based formulations for hair follicle target-

ing. PLA nanoparticles can effectively transport and release lipo-

philic and hydrophilic compounds into the hair follicles, and the

yields obtained are acceptable for industrial purposes.

R�esum�e
OBJECTIF: Les follicules pileux sont largement reconnus comme la

cible pr�ef�erentielle et le site de l’accumulation des nanoparticules

apr�es application topique. Cette caract�eristique est particuli�erement

importante pour les produits cosm�etiques pour les cheveux, ayant

la possibilit�e d’affiner le traitement de plusieurs troubles des folli-

cules de cheveux. Le but de ce travail �etait d’am�eliorer la pr�epara-
tion de nanoparticules poly (D,L-lactide) (PLA) pour une

administration folliculaire in vivo cibl�ee de drogues.

M�ETHODES: En envisageant un avenir �a l’�echelle industrielle du

proc�ed�e, une m�ethode de nanopr�ecipitation a �et�e utilis�e pour

pr�eparer des nanoparticules de PLA: l’effet de plusieurs param�etres

de traitement sur leurs propri�et�es a �et�e examin�e et le rendement de

la formation des nanoparticules a �et�e d�etermin�e. Les efficacit�es
d’encapsulation et de profils de lib�eration in vitro de compos�es mod-
�eles lipophiles et hydrophiles ont �egalement �et�e �evalu�ees. La cyto-

toxicit�e in vitro et ex vivo des �etudes de p�en�etration a �et�e effectu�ee

sur une lign�ee de cellules de peau de r�ef�erence (NCTC2455, des

k�eratinocytes de peau humaine) et la peau de porc, respectivement.

RESULTATS: En utilisant l’ac�etone : �ethanol (50 : 50, v/v) comme

phase solvant, 0,6% (p/p) de Pluronic� F68 �a titre d’agent

tensioactif et l’agitation pour m�elanger les phases de solvant et de

non-solvant, une population monodispers�ee des nanoparticules

sph�eriques non cytotoxiques d’environ 150 nm a �et�e obtenue. Le

rendement de nanoparticules pour cette formulation �etait d’environ
90%. Apr�es encapsulation de compos�es mod�eles, aucune modifica-

tion significative n’a �et�e observ�ee dans les propri�et�es des particules

et les efficacit�es de pi�egeage ont �et�e sup�erieures �a 80%. La cin�etique

de lib�eration de colorants de nanoparticules de PLA indique un

m�ecanisme de transport anormal (diffusion et d�egradation de poly-

m�ere) pour le rouge Nil (lipophile) et une diffusion selon Fick de

premier ordre pour FITC (hydrophile). Les �etudes de p�en�etration ex

vivo de la peau ont confirm�e la pr�esence de nanoparticules sur tous

les conduits folliculaires.

CONCLUSIONS: La m�ethode optimis�ee permet la pr�eparation de

formulations �a base de nanoparticules de PLA, id�eales pour ciblage

du follicule pileux. Les nanoparticules de PLA peuvent effective-

ment transporter et lib�erer des compos�es lipophiles et hydrophiles

dans les follicules pileux; les rendements obtenus sont acceptables �a

des fins industrielles.

Introduction

Nanoparticles are seen today as a key tool for the development of

new cosmetics products: they improve the stability of various active

ingredients, enhance their penetration into the skin and make

some products more aesthetically pleasing [1].
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Hair follicles are the preferential entrance point of nanoparti-

cles into the skin [2]. The penetration within the follicular duct

is dependent on their diameter, with smaller nanoparticles

showing increased penetration depths [3]. Concomitantly, if nano-

particles are larger than 100 nm, they are not able to translocate

into the viable epidermis, being trapped inside these structures

[4]. This localized accumulation is especially important for the

treatment of hair follicle-associated diseases (e.g. acne) and has

the potential to revolutionize the treatment of human hair disor-

ders (e.g. hirsutism, greying and alopecia) that have dramatic

effects on the appearance, sociocultural status and self-esteem of

the affected individuals [4–6]. As the drugs entrapped inside

nanoparticles will be released just at the specific site of action,

their bioavailability is enhanced. Consequently, minimal concen-

trations of active substances can be administered to achieve a

desired effect, enabling the utilization of many pharmacological

compounds for follicular therapy that otherwise would be unfeasi-

ble [3, 7, 8].

Polymeric nanoparticles are the most promising technology for

follicular target as they exhibit great stability and efficiently mask

the intrinsic properties of encapsulated drugs. These features facili-

tate the entrance of therapeutic agents that have low solubility

on the sebum found inside the hair follicles [9]. Currently, nano-

precipitation (first introduced by Fessi et al.) is the most com-

monly used technique to formulate polymeric nanoparticles

intended for topical application. In this method, the polymer is

dissolved in an organic phase and the solution obtained is added

to an aqueous phase (wherewith it is miscible). As the organic

solvent flows away and diffuses in the aqueous phase, polymer

molecules aggregate (due to the loss of solubility) and precipitate

in the form of nanoparticles. Once the organic solvent is removed,

the particles harden. Although it suffers the drawback of poor

encapsulation efficiency of water-soluble drugs, nanoprecipitation

allows the preparation of small nanoparticles with narrow size

distribution in a simple, fast, economic and highly reproducible

manner [9, 10].

In a recent study, Rancan et al. [4] proved the ability of Poly (D,

L-lactide) nanoparticles (228 and 365 nm) prepared with the origi-

nal nanoprecipitation method to efficiently target the hair follicles,

reaching a maximal depth corresponding to the entry of sebaceous

gland. In this work, we aimed to optimize this protocol in order to

obtain smaller PLA nanoparticles. These nanoparticles will be able

to achieve a deeper penetration into the hair follicles, allowing the

delivery of drugs at the level of the hair bulb. The bulb of hair folli-

cles is one of the most interesting targets for hair cosmetics due to

the presence of hair matrix cells (that play an important role in the

control of hair growth) and melanocytes (involved in the produc-

tion of melanin and consequent coloration of hair shafts) [3, 6,

11].

The physical properties (and especially size) of nanoparticles

obtained with nanoprecipitation are known to be dependent on

many processing parameters: polymer, solvent, nature of the poly-

mer–solvent interactions and non-solvent system [12]. Thus, the

influence of the composition of the solvent phase, concentration of

surfactant and technique used to mix both phase was studied. Once

established the optimal conditions for the preparation of PLA nano-

particles, the entrapment efficiencies and release profiles of hydro-

philic and lipophilic model compounds were determined. Ex vivo

assays on porcine skin were performed to confirm the distribution

of nanoparticles on the skin. Although the utilization of PLA is

related to the fact that it is biocompatible, biodegradable and

already approved by Food and Drug Administration (FDA) for clinic

use, the cytotoxicity of nanoparticles on a reference skin line was

determined [13].

Materials and methods

Chemicals and solvents

Poly (D,L-lactide) (Mw = 18–24 kDa), Pluronic� F68 (suitable for

cell culture), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium

bromide (MTT), methanol (ACS reagent grade, ≥99.8%), nile red

(suitable for fluorescence), fluorescein 5(6)-isothiocyanate (suitable

for fluorescence) and isopropyl myristate (Kosher grade, ≥98%)

were purchased from Sigma-Aldrich (Sigma Chemical Co., St. Louis,

MO, U.S.A.). Acetone, ethanol and dimethyl sulphoxide (DMSO)

were of the highest grade commercially available and purchase

from several suppliers.

Preparation of PLA nanoparticles

PLA nanoparticles were prepared based on the nanoprecipitation

method [10]. Briefly, the polymer was dissolved in acetone – 2%

(w/w) – and added to an aqueous phase containing Pluronic� F68

(solvent phase to aqueous phase ratio was 1 : 2). The concentra-

tion of surfactant in the resultant solution was 0.6% (w/w). After

formation of nanoparticles, the organic phase was completely

removed with a rotary evaporator. The aqueous suspensions of

nanoparticle were stored at 4°C.
The cumulative effect of various processing parameters on the

properties of PLA nanoparticles was studied. Three different tech-

niques (agitation, sonication and homogenization) were used to

mix the solvent and aqueous phases. Agitation: the organic phase

was added dropwise into the aqueous phase under magnetic stir-

ring at 100 r.p.m. The solution obtained was stirred overnight at

the same velocity. Sonication: organic phase was added to the aque-

ous phase and the preparation submitted to an ultrasound treat-

ment (power delivery controlled as percentage amplitude at 40%,

18 min, 5 � 1°C) [14]. The experimental set-up used was com-

posed of an ultrasound probe (20 kHz VibracellTM CV 33) fitted

with a 3-mm diameter titanium micro-tip (Sonics and Materials

Inc., Newtown, CT, U.S.A.). Homogenization: after addition of the

solvent phase to the aqueous phase, the solution was homogenized

for 18 min (constant flux of 40 mL min�1), using an EmulsiFlex-

C3 (Avestin, Ottawa, ON, Canada). PLA nanoparticles were also

prepared using a fraction of a non-solvent (ethanol or water) in the

solvent phase. Using titration, 55% and 10% (v/v) were determined

as the maximum proportions of ethanol and water for the complete

dissolution of the polymer. Finally, the effect of the concentration

of Pluronic� F68 was studied.

Experimental yield of nanoparticles

The suspensions of nanoparticles were filtered to remove polymeric

aggregates above the range of nano sizes. All the materials that

contained the formulations were washed with acetone to dissolve

the attached polymer. Methanol was added to precipitate PLA, and

the solvents were removed on rotary evaporator. The polymer

recovered in the filter and from the materials was dried and

weighed (mass of aggregates, magg). The yield of nanoparticles was

calculated as weight percent in relation to the initial amount of

polymer used in formulation (mtotal) [12]:
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Yield of Nanoparticles ð%Þ ¼ mtotal �magg

mtotal
� 100: ð1Þ

Particle size, size distribution and zeta-potential

The mean size and polydispersity (index from 0.0 to 1.0) of nano-

particles were assessed by Photon Correlation Spectroscopy (PCS),

whereas laser Doppler anemometry (LDA) was employed for zeta

(f)-potential. All measurements were performed at 25 � 1°C, using
a ZetaSizer Nano ZS equipment (Malvern Instruments Ltd, Worces-

tershire, U.K.). The physical stability of suspensions was evaluated

over 6 months, by weekly measurements of size, polydispersity

index (PDI) and f-potential of PLA nanoparticles stored at 4°C.

Shape and surface morphology

The shape and surface morphology of nanoparticles were analysed

by scanning transmission electron microscopy (STEM). The solu-

tions containing nanoparticles were diluted and placed onto copper

grids with carbon film 3-mm 400 meshes. Then, the observations

were performed at 15 kV, using a NOVA Nano SEM 200 (FEITM,

Hillsboro, OR, U.S.A.).

Entrapment and loading efficiencies

Dye-loaded nanoparticles were obtained employing the optimized

nanoprecipitation protocol, with 1% (w/v) of nile red (NR) or fluo-

rescein 5(6)-isothiocyanate (FITC) being dissolved along with the

polymer in the organic phase. NR and FITC were used as models of

lipophilic and hydrophilic compounds, respectively. The aqueous

suspensions of nanoparticles were dialysed against distilled water

(Mw cut-off of 12.4 kDa) to remove free dye in the formulation.

The suspensions were freeze-dried, nanoparticles powder obtained

weighed and dissolved in acetone. The encapsulated drug was mea-

sured by Ultraviolet (UV)-Spectrophotometry. For Nile Red, mea-

surements were performed with an excitation wavelength of

536 nm and emission wavelength of 608 nm. For FITC, 495 and

525 nm were used as excitation and emission wavelengths, respec-

tively. The entrapment and loading efficiencies were calculated

according to the following equations:

Entrapment Efficiency ð%Þ ¼ mencapsulated dye

mdye used in formulation
� 100; ð2Þ

Loading Efficiency ð%Þ ¼ mencapsulated dye

mnanoparticles
� 100: ð3Þ

In vitro release profiling

Aqueous suspensions of dye-loaded nanoparticles were added to

vials containing the same volume of isopropyl myristate (IPM). The

chemical structure of IPM resembles that of sebum components,

and consequently, it can simulate the skin surface/interior of the

hair follicle ducts [4]. The systems were constantly stirred at 37°C.
To assess the release profile of NR, at fixed time points (0, 2, 4, 6,

8, 12 and 24 h), a small aliquot of the lipophilic phase was col-

lected and replaced with the same volume of IPM; fluorescence

intensity was measured at 570 nm (excitation: 520 nm) [15]. For

FITC-loaded nanoparticles, at the same time points, the hydrophilic

phase was collected, centrifuged to deposit nanoparticles and

supernatant fluorescence measured at 525 nm (excitation at

495 nm). The supernatant was discharged, nanoparticles were dis-

persed in water and added again to the lipophilic phase [16]. The

amount of released dyes was determined using a calibration curve,

obtained from the values of fluorescence intensity of standard sam-

ples. The percentages were calculated with respect to the initial

amount present in the nanoparticles.

With the release rates of fluorochromes, it was possible to

achieve the release behaviour of the dyes from the PLA nanoparti-

cles. Thus, the release data were fitting to the empirical relation-

ship given by Ritger–Peppas equation (Eq. 4). The n value on the

equation is the diffusion exponent characteristic of the release

mechanism, and it is given by the relation between the fraction

drug release at time t (Mt/M∞). t is the release time and k is the

kinetic constant.

Mt

M1
¼ k� tn ð4Þ

To determine the value of n, Eq. 4 is transformed and n is the

slope value of the plot of log (% release) versus log t (Eq. 5).

logð% releasedÞ ¼ log
MT

M1

� �
¼ log kþ n� log t: ð5Þ

Ex vivo skin penetration assay

Abdominal porcine skin was excised from freshly slaughtered pigs

at Central Carnes – Matadouro Central de Entre Douro e Minho,

Lda. (Lousado, Portugal), following approved protocol by DGV-

Direc�~ao Geral de Veterin�aria. Subcutaneous fat was removed, the

skin was washed with phosphate-buffered saline (PBS, pH 7.4) and

placed in Franz Diffusion Cells (PermeGear Inc., Bethlehem, PA,

U.S.A.) with the stratum corneum facing the donor compartment

and the dermis facing the receptor compartment. After the acclima-

tization of the tissue to the receptor phase (PBS, pH 7.4, thermo-

statically maintained at 37°C), the skin surface was incubated with

dye-loaded nanoparticles suspensions for 24 h. Vertical histological

cuts (20 lm thickness) of frozen skin sections were made using a

Leica CM1900 cryostat (Leica Microsystems, Numsloch, Germany).

The distribution of nanoparticle inside the skin was investigated in

histological cuts by bright field and fluorescence microscopy – Leica

DM 5000B Microscope (Leica Microsystems) [4].

In vitro cytotoxicity

NCTC2544 (human skin keratinocytes) cells were cultured in

75-cm2 culture flasks containing Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 7% (v/v) foetal bovine serum

(FBS) and 1% (v/v) of penicillin/streptomycin solution. At every

2–3 days, cell culture medium was refreshed.

To assess the skin toxicity of PLA nanoparticles, NCTC2544 cells

were seeded on 24-well tissue culture polystyrene plates (TPP,

Switzerland) at the initial density of 4.5 9 104 cells per well. The

next day, fresh medium containing different volume fractions of

aqueous suspensions of PLA nanoparticles was added to the cells.

Before each experiment, the suspensions were sterilized with 0.45-

lm filter (SARSTEDT, N€umbrecht, Germany). Several controls were

performed simultaneously: the death control with 10% (v/v) DMSO,

the 100% viability control with just fresh medium and the solvent

dilution controls with water instead of PLA nanoparticle suspen-

sions at 5%, 10% and 20% (v/v). Cell viability at 24, 48 and 72 h
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of exposure were determined using the MTT assay – a quantitative

colorimetric assay where the yellow tetrazolium salt MTT is

reduced by living cells to blue formazan crystals [17]. Absorbance

values at 570 and 690 nm were measured in a Spectramax 340PC

microplate reader (Molecular Devices, Sunnyvale, CA, U.S.A.). Per-

centages of cell viability were calculated considering the 100% cell

viability control.

Statistical analysis

All the results are expressed as mean value � standard deviation

(SD) of at least three experiments. Statistical analysis was per-

formed with GRAPHPAD PRISM version 6.05 for Windows (GraphPad

Software, La Jolla, CA, U.S.A.), using analysis of variance (ANO-

VA). The differences were considered statistically significant at

P < 0.05.

Results and discussion

Preparation of PLA nanoparticles suitable for hair follicle targeting

The developed nanoparticles had a net negative surface charge. It

is known that PLA chains have carboxyl groups at their extremity

and, when they aggregate to form nanoparticles, these groups

tends to be located in the aqueous environment, creating a nega-

tive surface charge [18]. Independently of the tested processing

conditions, the value of f-potential was around �20 mV (data not

shown).

Effect of the preparation technique

The size and size distribution of nanoparticles prepared with agita-

tion, sonication and homogenization are shown in Fig. 1. The par-

ticles prepared with sonication were substantially smaller and more

homogeneous than those produced by homogenization. This is due

to the greater amount of energy supplied to the system during the

sonochemical treatment. It is known that higher amounts of

energy results in higher shear stress, which is inversely related to

size and size distribution of particles obtained [19]. Although the

size of nanoparticles obtained with sonication and agitation did not

display significant differences, the use of an agitation-based protocol

provided the lowest values of PDI. The dropwise addition used in

this technique can induce a better spread of the organic phase into

the aqueous phase, leading to precipitation of small and highly

homogenous polymer aggregates in the form of nanoparticles [20].

Thus, agitation was the selected procedure for the following

experiments.

Effect of the addition of a non-solvent to the solvent phase

The addition of a portion of a non-solvent to the solvent phase can

be advantageous for the preparation of a smaller nanoparticles by

nanoprecipitation [10]. In Fig. 2, the properties of nanoparticles

prepared with acetone : water (90 : 10, v/v) and acetone : ethanol

(45 : 55, v/v) are compared to those obtained when only acetone

was used as the solvent phase. Contrarily to expected, the use of

water induced a slight increase in the mean size of nanoparticles.

As PLA has low affinity to water, the polymer chains become more

shrunken and overlapped, avoiding its efficient dispersion in the

solvent phase. Consequently, the precipitation of larger polymer

clusters can occur, and particles with larger sizes are obtained [21,

22]. The same effect can explain the increase in PDI of nano-

particles prepared with both binary mixtures tested in this study.

Nevertheless, the populations obtained are still considered monodi-

spersed. On the other hand, acetone : ethanol (45 : 55, v/v)

promoted a decrease in the mean diameter of PLA nanoparticles.

This can be explained by the high affinity of the mixture to water

(acetone : ethanol is the more polar solvent phase tested). Accord-

ing to the literature, the higher the affinity of the solvent phase to

the non-solvent phase, the faster its diffusion and particles

with smaller sizes are formed [23–25]. Considering the balance

between the size and size distribution of nanoparticles obtained,

acetone : ethanol was chosen as the optimal solvent phase for the

preparation of PLA nanoparticles.

Figure 1 Size and size distribution of poly (D,L-lactide) (PLA) nanoparticles

prepared by nanoprecipitation, using three different techniques to mix the

solvent phase (acetone) with the aqueous phase; concentration of Pluronic�
F68 in the resultant solution was 0.6% (w/w). Data were analysed by one-

way ANOVA, followed by post-hoc Dunnett’s test. **P ≤ 0.01; ***P ≤ 0.001

or ****P ≤ 0.0001, compared to Agitation (used as reference as it provided

the smallest mean size and size distribution of PLA nanoparticles).

Figure 2 Size and size distribution of poly (D,L-lactide) nanoparticles pre-

pared by nanoprecipitation, using 10% (v/v) of water or 55% (v/v) of etha-

nol in the solvent phase (acetone). Agitation was used to mix the solvent

phase with the aqueous phase; concentration of Pluronic� F68 in the resul-

tant solution was 0.6% (w/w). Data were analysed by one-way ANOVA, fol-

lowed by post-hoc Dunnett’s test. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001,

compared to the results obtained when only Acetone was used as the solvent

phase.
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Effect of the surfactant concentration

Increasing concentrations of polymeric surfactants are responsible

for an enhancement of the aqueous phase viscosity which can

decrease the wavy movement, collision, aggregation (especially

during the early stages of the precipitation) and further size of the

particles [26]. Nevertheless, in this work, as the concentration of

Pluronic� F68 increased, the mean diameter of PLA nanoparticles

prepared also increased in a statistically significant manner

(Fig. 3). It is possible that the increased viscosity of the aqueous

phase had hindered the diffusion of the solvent phase. As men-

tioned before, larger nanoparticles are formed for slower solvent

phase diffusion rates [23–25]. Also, it is known that Pluronic�
F68 is adsorbed on the surface on nanoparticles and due to the

hydration of Poly (ethylene glycol; PEG) present in its composition,

the size of nanoparticles can increase. The hydrodynamic radii of

PEG polymers highly hydrated (two to three water molecules per

ethylene glycol unit) is approximately 5- to 10-fold greater than

would be predict by their nominal molecular weight [27]. Regard-

ing the PDI, until 1.5% (w/w) of surfactant, a stabilizer effect was

observed. On the other hand, at 2% (w/w), the effect of the viscos-

ity overpowers the stabilizer effect of the surfactant, justifying the

high heterogeneity of the particle populations [15, 25, 28–30].
Taking both results into consideration, 0.6% (v/v) of Pluronic�

F68 enables the preparation of the most adequate PLA nanoparti-

cles for follicular targeting.

Efficiency of nanoparticles formation

The calculated nanoparticles yield, using 55% of ethanol in the sol-

vent phase, was 87 � 7%. At high percentages of ethanol, the dif-

fusion of the organic phase into the aqueous phase is very fast and

higher amounts of polymer can immediately precipitate before its

agglomeration into particles occurs [23–25]. Thus, lower fractions

of this solvent in the organic phase were tested to clarify its effects

on the yield of PLA nanoparticles. Contrarily to what was expected,

no significant increase on the yield of nanoparticles was observed

(Table I). However, for volume fractions of ethanol below 55%, the

method seems to be more reproducible as lower standard deviations

were obtained.

The properties of nanoparticles, prepared with different volume

fractions of ethanol in the solvent phase, were also compared

(Table I). Despite the PDI remained unchanged, alterations on the

size and f-potential were registered. For 45% (v/v), there was a

considerable decrease on the mean diameter and f-potential (abso-
lute value) of nanoparticles when compared to the values obtained

at other ethanol percentages. The value of surface charge obtained

can be problematic during the storage of nanoparticles because it

will not be negative enough to prevent their aggregation by elec-

trostatic repulsions [31]. Regarding to 50% (v/v) of ethanol, a

slight increase in the mean size and surface charge of nanoparticles

was noticed, but the use of these particles for hair follicle targeting

is not impaired. Consequently, 50% (v/v) was chosen as the opti-

mal volume fraction of ethanol in the solvent phase: it constitutes

the best compromise between yield of nanoparticles, reproducibility

of the method and suitability of nanoparticles properties when fol-

licular targeting is intended.

Morphology and physical stability of nanoparticles

The morphology of PLA nanoparticles obtained with the optimal

conditions stated before can be observed in Fig. 4(A). The shape of

these particles is spherical. This morphology is optimal for a drug

delivery system, as it provides the longest diffusion pathways and

protection of incorporated drugs due to the minimum contact with

the aqueous environment [26]. Moreover, this suspension proved

to be physically stable after 6 months of storage at 4°C as no sig-

nificant variations in size, PDI and f-potential (data not shown)

were noticed (Fig. 4B).

Entrapment efficiency of model compounds

The dye-loaded PLA nanoparticles did not show significant differ-

ences on mean diameter, PDI and f-potential when compared to

the empty nanoparticles. Also, no significant changes were noticed

between dye-loaded nanoparticles formulations and empty nano-

particles formulations, regarding the efficiency of nanoparticles for-

mation (data not shown).

The encapsulation of both dyes proved to be highly efficient,

and the results obtained are shown in Table II. Although a high

entrapment efficiency was expected for NR (a lipophilic compound),

Figure 3 Size and size distribution of poly (D,L-lactide) nanoparticles pre-

pared by nanoprecipitation, using increasing concentrations of surfactant

(Pluronic� F68). Agitation was used to mix the solvent phase – ace-

tone : ethanol (45 : 55, v/v) – with the aqueous phase. Data were analysed

by one-way ANOVA, followed by post-hoc Dunnett’s test. **P ≤ 0.01;

***P ≤ 0.001 or ****P ≤ 0.0001, compared to 0.6% (concentration used in

the previous optimizations).

Table I Effect of decreasing volume fractions of ethanol (used in the solvent

phase) on the yield and properties of poly (D,L-lactide) nanoparticles

Volume

fraction of

ethanol (%)

Yield of

nanoparticles

(%)

Z-Average

(nm) PDI

Zeta-potential

(mV)

55 87 � 7 146 � 2 0.078 � 0.007 �21.5 � 1.3

50 91 � 1 151 � 1* 0.074 � 0.011 �18.1 � 0.5*

45 93 � 2 138 � 1** 0.074 � 0.010 �15.3 � 0.9**

These particles were prepared by nanoprecipitation, using agitation to mix the

solvent phase and the aqueous phase; concentration of Pluronic� F68 in the

resultant solution was 0.6% (w/w). Data were analysed by one-way ANOVA, fol-

lowed by post-hoc Dunnett’s test. *P ≤ 0.05 and **P ≤ 0.01, compared to the

maximal tested volume fraction of ethanol (55%).

286 © 2014 Society of Cosmetic Scientists and the Soci�et�e Franc�aise de Cosm�etologie

International Journal of Cosmetic Science, 37, 282–290

Hair follicle formulation B. Fernandes et al.



the results obtained for FITC are surprising taking into account

that usually, nanoprecipitation is ineffective to encapsulate com-

pounds of hydrophilic nature. Due to their water-soluble nature,

they rapid partioning from the core of nanoparticles into the aque-

ous phase, leading to considerable decrease in their encapsulation

efficiency [22]. However, the composition of the solvent phase used

makes its diffusion rate and consequently solidification of the nano-

particles very fast. Consequently, that leakage of large amounts of

FITC is avoided. The increased viscosity of the organic phase also

helps to increase the diffusional resistance of FITC, and it was pre-

viously involved on the achievement of high encapsulation effi-

ciency of some other molecules [19].

In addition to the entrapment efficiency, the loading efficiency

was also determined for both dyes (Table II). As formulations

have similar yields of nanoparticles and entrapment efficiencies,

it is not surprising that no significant differences were found for

loading efficiencies obtained for NR-loaded and FITC-loaded

nanoparticles.

Release profile of dyes from PLA nanoparticles

In vitro release of NR and FITC was evaluated using artificial sebum

(IPM) (Fig. 5). Both kinetic profiles exhibit a typical biphasic release

phenomenon. The initial burst release is attributed to the fraction

of the dyes which is adsorbed/weakly bound to the large surface

area of nanoparticles or entrapped in the matrix near the surface

of particles. The following slow and constant release over the

remaining time is due to the diffusion of compounds and erosion of

the polymeric matrix [32].

When particles were placed in contact with IPM (0 h), higher

amounts of FITC were immediately released from nanoparticles.

As mentioned before, during the formation of nanoparticles, FITC

have a tendency to rapidly partioning into the aqueous phase

(due to its hydrophilic nature). Despite this phenomenon usually

lead to low entrapment efficiencies, in this study, that did not

happen. However, it is possible that high amounts of FITC have

been poorly entrapped in the matrix near to the nanoparticles

surface. Upon contact with IPM, these FITC molecules are imme-

diately released due to the destabilization of nanoparticles [31,

33].

After the first time point, NR showed a faster release from

PLA nanoparticles: 100% was completely achieved within 24 h.

This is tightly coupled to its lipophilic nature. Upon contact with

A

B

Figure 4 STEM photograph (925 000 magnification) (A) and stability over

6 months (B) of poly (D,L-lactide) nanoparticles. These particles were

prepared by nanoprecipitation, using agitation to mix the solvent phase –
acetone : ethanol (50 : 50, v/v) – and the aqueous phase; concentration of

Pluronic� F68 in the resultant solution was 0.6% (w/w). Data were

analysed by one-way ANOVA, followed by post-hoc Dunnett’s test. No

statistical significant differences were found, compared to time point

0 months.

Table II Effect of the compounds nature (lipophilic or hydrophilic) on the

entrapment and loading efficiencies into poly (D,L-lactide) nanoparticles

Entrapped

compound

Entrapment

efficiency (%)

Loading

efficiency (%)

Nile red 89 � 7 0.0488 � 0.0019

FITC 83 � 2 0.0508 � 0.0004

These particles were prepared by nanoprecipitation, dissolving 1% (w/v) of Nile

Red or fluorescein 5(6)-isothiocyanate (FITC) in the solvent phase – ace-

tone : ethanol (50 : 50, v/v). Agitation was used to mix solvent phase with the

aqueous phase, and the concentration of Pluronic� F68 in the resultant solution

was 0.6% (w/w).

Figure 5 In vitro release profile of nile red and fluorescein 5(6)-isothiocya-

nate (FITC) from poly (D,L-lactide) nanoparticles. These particles were

prepared by nanoprecipitation, using agitation to mix the solvent phase –
acetone : ethanol (50 : 50, v/v) – with the aqueous phase; the concentra-

tion of Pluronic� F68 in the resultant solution was 0.6% (w/w). The initial

concentration of dyes in the solvent phase was 1% (w/v).

© 2014 Society of Cosmetic Scientists and the Soci�et�e Franc�aise de Cosm�etologie 287

International Journal of Cosmetic Science, 37, 282–290

Hair follicle formulation B. Fernandes et al.



IPM, a destabilization of the particles occurs (due to the dissolu-

tion of the polymer in the lipophilic phase), allowing the solvent

to penetrate into their cores. As lipophilic compounds have high

affinity to IPM, their partioning between the core of nanoparti-

cles and the lipophilic solvent occurs easily, leading to their rap-

idly diffusion out of the particles [34]. This rapid leakage

contributes to destabilize even more the particles, leading to a

loss of their particulate state, which promotes a further increase

in the release of the entrapped lipophilic compound [35]. The

fast in vitro release of NR is of great interest in the particular

case of hair follicle targeting because it is possible to assume

that in vivo, the full release of lipophilic drugs in the hair follicle

canal will occur before the excretion of nanoparticles due to

sebum production (8 days) [36]. On the other hand, as hydro-

philic compounds (like FITC) have poor solubility in the lipophilic

solvent, they partioning into IPM at a slower rate and their dif-

fusion outside the particles is hindered, resulting in prolonged

release kinetics [35, 37].

To confirm the mechanism of drug release stated above for

NR (diffusion and polymeric matrix degradation) and FITC

(mainly diffusion), the empirical expression proposed by Ritger–
Peppas (based on the Fickian diffusion equation) was used. For a

sphere, a diffusion of first order is observed when has the limit-

ing value of 0.43. Between 0.43 and 0.85, anomalous transport

is observed coupling Fickian diffusion and polymer degradation.

Finally, for n = 0.85, Case II transport (polymer relaxation/deg-

radation) occurs, leading to a zero-order release [26]. For PLA

nanoparticles produced in this work, the n value obtained for

the tested dyes are shown in Table III. According to the values,

anomalous transport (diffusion and polymer degradation) and

Fickian diffusion of first order govern the release of Nile Red

A B C D

Figure 6 Bright field (top) and fluorescence (bottom) images of hair follicles (A,C) and stratum corneum (B,D) of porcine skin cryosections, after 24 h of incuba-

tion with nile red-loaded (A,B) and fluorescein 5(6)-isothiocyanate-loaded (C,D) poly (D,L-lactide) nanoparticles (95 magnification). These particles were pre-

pared by nanoprecipitation, using agitation to mix the solvent phase – acetone : ethanol (50 : 50, v/v) – with the aqueous phase; the concentration of

Pluronic� F68 in the resultant solution was 0.6% (w/w). The initial concentration of dyes in the solvent phase was 1% (w/v).

Table III Dye release kinetic data obtained from fitting experimental release

of Nile Red and fluorescein 5(6)-isothiocyanate (FITC) from poly (D,L-lactide)

nanoparticles to Ritger–Peppas modified equation, where n is the diffusion

exponent and R2 is the correlation coefficient

Released compound n R2

Nile red 0.847 0.993

FITC 0.209 0.959
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(lipophilic) and FITC (hydrophilic) from PLA nanoparticles,

respectively.

Penetration of nanoparticles into the hair follicles after topical

application

The penetration profile of PLA nanoparticles was assessed on porcine

skin which resembles human skin regarding its permeability proper-

ties [38]. NR-loaded and FITC-loaded nanoparticles were observed

inside the hair follicles along the entire follicular duct (Fig. 6A,C),

reaching the hair bulb (where melanocytes can be found) [3].

Although some nanoparticles have been trapped in the stratum corne-

um, they did not reach the viable epidermis as no fluorescence was

detected in this skin layer (Fig. 6B,D). These findings confirm that

the obtained PLA nanoparticles efficiently and selectively target the

hair follicles after topical application, even without the use of mas-

sage. Massage is used in ex vivo studies to simulate the hair move-

ment that occurs physiologically under in vivo conditions and

facilitate the entrance of nanoparticles into the hair follicles [39].

Cytotoxicity of nanoparticles using a reference skin cell line

The cytotoxicity of PLA nanoparticles was assessed in in vitro cul-

tured keratinocytes, as a measure of the skin toxicity. NCTC2544

cells were exposed to different concentrations of nanoparticles rang-

ing from 165 to 660 lg mL�1 [5–20% (v/v) of the optimal formu-

lation], and cell viability measured at 24, 48 and 72 h. According

to the results (Fig. 7), none of the tested amounts of PLA nanopar-

ticles had a biological significant toxicity (cell viability >78%). For

an exposure period of 24 h, there was no decrease in keratinocytes

viability when compared to the medium dilution control. For longer

periods of exposure, besides the medium dilution effect (statistically

significant just for a 72-h exposure to 20% (v/v) of formulation), a

decrease in viability was observed for concentrations higher than

165 lg mL�1 (10–20%), with varied degrees of statistical signifi-

cance. Despite this, the range of nanoparticles concentrations tested

can be safely applied to the skin.

Conclusions

On this study, an optimized nanoprecipitation method is described.

PLA nanoparticles prepared are well suited to penetrate into the

hair follicles duct, reaching the hair bulb without reaching the via-

ble epidermis. This site-specific target of hair follicles has great

impact in hair follicle therapies. The high yield obtained, the stabil-

ity over 6 months, the absence of toxicity in a skin cell line model,

the efficient entrapment and suitable in vitro release of lipophilic

and hydrophilic model compounds make these formulations viable

for industrial purposes when the development of new cosmetics for

human hair is intended.
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