
A Bounded Model Checker for SPARK
Programs

Cláudio Belo Lourenço, Maria João Frade, and
Jorge Sousa Pinto

HASLab/INESC TEC & Universidade do Minho, Portugal

Abstract. This paper discusses the design and implementation of a
bounded model checker for SPARK code, and provides a proof of concept
of the utility and practicality of bounded verification for SPARK.

Introduction. SPARK is a programming language and toolset designed for the
development of high-assurance software [4]. The language is based on a restricted
subset of Ada (see [1] for a full description), complemented by an expressive
system of contracts, to describe the specification and design of programs. The
SPARK platform provides a set of tools that allow users to reason about the
correctness of the source code, making possible the detection of problems early
in the software lifecycle. The tools are based on deductive verification and as
such give full guarantees, but they require the user to provide contracts and loop
invariants, which are often difficult to write.

We believe that Bounded Model Checking (BMC) of software can be helpful
as a complement to the existing tools, particularly for finding errors and/or
validating annotations, or in assisting with the conversion of existing Ada code
to SPARK. The key idea of BMC of software, as implemented by the flagship
CBMC tool [6] for ANSI-C code, is to encode bounded behaviors of the program as
logical formulas whose models describe executions leading to violations of some
given property. The use of assert and assume annotations provide a convenient
property specification mechanism. An assert φ statement signifies that the
property φ should hold at that point of the program. If φ does not hold, that
violation is reported and a counter-example is given. Asserts can be used, for
instance, to automatically instrument the code regarding safety properties. On
the other hand, an assume ψ annotation states that one can rely on the fact
that ψ is true at that point of the program.

This paper presents the design of a BMC tool for SPARK 2005 programs.
Rather than producing the definitive BMC tool for SPARK, which would not
make sense at the present moment of development of the language (SPARK
2014 had not been launched when our development began), the main goal of the
present paper is to provide a proof of concept of the utility and practicality of
BMC of SPARK software, as a complement to deductive verification. A bounded
model checker may also serve other purposes in addition to formal verification:
in [2] it is reported how CBMC has been used for coverage analysis of safety-
critical code, in precisely the same context in which SPARK is widely used.
Other applications of BMC of software include automated fault localization [9].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55635577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

� �
package Marray i s
Array Size : constant :=10;
subtype Ind i s In t ege r range 1 . . Array Size ;
type VArray i s array (Ind) of In t ege r ;
procedure MaxArray (V: in VArray ; M: out Ind) ;
−−# der i v e s M from V;
−−# post (f o r a l l I in Ind => (V(I) <= V(M))) ;

end Marray ;

package body Marray i s
procedure MaxArray (V: in VArray ; M: out Ind) i s
I : I n t ege r ;
Max : Ind ;

begin
Max := Ind ’ F i r s t ;
−−% notOverflow (+ , Integer , INDICES ’FIRST , 1) ;
I := Ind ’ F i r s t +1;
loop
−−# as s e r t (f o r a l l J in Ind range Ind ’ F i r s t . . (I −1) => (V(J) <= V(Max))) ;
−−# as s e r t (I >= Ind ’ F i r s t) and (I <= Ind ’ Last + 1) ;
exit when I > Ind ’ Last ;
−−% as s e r t (I >= VARRAY’FIRST) and (I <= VARRAY’LAST) ;
−−% as s e r t (MAX >= VARRAY’FIRST) and (MAX <= VARRAY’LAST) ;
i f V(I) > V(Max) then

Max := I ;
end i f ;
−−% notOverflow (+ , Integer , I , 1) ;
I := I + 1 ;

end loop ;
M := Max;

end MaxArray ;
end MArray ;� �
SPARK-BMC. SPARK-BMC1 is an open source prototype bounded model
checker for SPARK programs. It is developed in Haskell and uses as backend
the SMT solver Z3 [8]. The tool checks SPARK programs for violations of prop-
erties annotated in the code. Annotations are inserted as comments beginning
with a user predefined character, assumed distinct from SPARK annotations
(--% in this paper). The annotations that may be used are assert C; assume C;
and notOverflow(op,type,e1,e2), used to check if an overflow is originated.
These can be inserted to express useful properties for debugging, and in partic-
ular safety properties corresponding to the absence of runtime exceptions (such
as overflow, array out-of-bounds accesses and division by zero), which can be
checked without requiring invariants. The figure shows a SPARK program (in-
cluding loop invariants) containing a procedure that finds the maximum element
in an array. The annotations corresponding to overflow and array out of bounds,
to be checked by SPARK-BMC, are also included.

The reader is referred to [13] for a complete description of the implementation
details that will now be outlined. The algorithm begins with a normalization into
a subset of SPARK (e.g. transforming type attributes and enumerations into
integer expressions) and inlining of routine calls. SPARK does not allow for any
form of recursion, so no bound is applied on the length of this expansion. Loops
are then unwound a fixed number of times (which reduces them to sequences of
nested if statements), and the program is thus transformed into a monolithic
iteration-free program. To enforce soundness, an unwinding assertion can be
optionally inserted, to ensure that the loop has been sufficiently unwound.

1 Available from the repository https://bitbucket.org/vhaslab/spark-src

In order to extract a logical formula from the iteration-free program one has
to first transform it into a single assignment form, in which the values of the
variables do not change once they have been used (so that assignments can be
seen as logical equalities). The program is then subject to Conditional Normal
Form (CNF) normalization, which transforms it into a sequence of statements
of the form if b then S, where S is an assignment, assert or assume statement,
and the guard b encodes the path condition leading to that command. Two sets
of formulas C and P are then extracted. C describes logically the operational
contents of the program, and includes a formula b → x = e for every statement
if b then x := e. P on the other hand contains the properties to be established,
extracted from the guarded assert and assume statements of the CNF. If no assert
fails in any execution of the program one has that

∧
P is a logical consequence

of C. Any model found for the set of formulas C ∪ {¬
∧

P} corresponds to a
counter-example: an execution leading to a violation of some assertion in P.

Experiences with implementing SMT-based bounded model checkers [3,7]
have produced quite positive results, which justifies our choice of this class of
solvers. SPARK-BMC employs a bit-vector rather than an unbounded integers
theory, which has the advantage of capturing precisely the low-level fixed-width
machine semantics of program data types. The SPARK programming language
includes modular types, whose modular semantics are directly captured by fixed-
size bit-vectors. Signed integers are also conveniently encoded as bit-vectors.
Finally, arrays are modeled by a theory of arrays.

Evaluation. At the present stage of development of SPARK-BMC we can
successfully check multi-procedure programs manipulating arrays and discrete
types, and as such we are able to run SPARK-BMC on a great variety of pro-
grams. Our preliminary results clearly illustrate the positive aspects of auto-
mated verification for SPARK code. The tool scales well for certain classes of
programs, and even for other, algorithmically more complicated programs, it is
able to check for property violations in the first few iterations of loops. Let us
turn back to the MaxArray example to show how the tool can discover subtle
bugs without the need for user annotations. One common error would be to
write the exit condition as exit when I>Ind’Last+1, which would cause an
array out of bounds exception in the array access contained in the expression
V(I)>V(MAX) that could easily be missed. The SPARK tools (based on deductive
verification) would generate a Verification Condition (VC) stating that the loop
invariant is preserved by iterations of the loop, and another VC to enforce that
whenever V(I)>V(MAX) is evaluated the value of I lies within the range of the ar-
ray. For the MaxArray code both VCs are successfully discharged, but if the exit
condition is modified to the above, then the invariant preservation condition can
no longer be proved (it fails in the last iteration). If the invariant is corrected to
I<=Ind’Last+2, then the invariant preservation VC is discharged, but not the
other VC: the invariant is now correct, but does not prevent the out-of-bounds
access. This illustrates that with deductive verification it can be hard to detect
exactly what went wrong – is the program unsafe, or is the user-provided invari-

ant wrong? To use SPARK-BMC on this program, it must first be annotated as
discussed before. Depending on the user-provided bound K, SPARK-BMC will
either indicate that the unwinding assertion fails, or else (for K > 10) that an
assert violation occurs. In this case the tool displays the violated assertion, as
well as the current values of the relevant variables.

We have assessed the behaviour of SPARK-BMC with a number of example
programs, taken both from academic papers and from problem sets proposed in
the context of program verification competitions. We have either transcribed to
SPARK an algorithm implemented in C, or, when this was not available, coded
it from scratch. All the code can be found in the project’s repository.

Experimental Results: Problem Set I. We use a first set of example programs
to illustrate that BMC can be used in practice on programs that have been
designed to be verified with deductive verification tools. Although these are all
relatively simple problems, they are algorithmically complicated, which creates
difficulties for a BMC approach. Our purpose here is to investigate the viability
of the approach for small problem sizes (bounded loops requiring up to 100 iter-
ations). Specifically, we have applied SPARK-BMC to an implementation of the
inverting an injection problem taken from [12], which we have ported to SPARK:� �
MAXLEN: constant := 20 ;

subtype Index
i s In t ege r range 0 . .MAXLEN;

type ArrayType
i s array (Index) of In t ege r ;

procedure Inve r t (A: in ArrayType ;
N: in In t ege r ;
B: out ArrayType) i s

begin
for I in Index range 0 . . N − 1
loop
B(A(I)) := I ;

end loop ;
end Inve r t ;� �

� �
procedure PropertyCheck i s
A,B: ArrayType ;
N: In t ege r ;

begin
−−% assume (N > 0 and N <= MAXLEN) ;
for I in Index range 0 . . N − 1 loop
−−% assume (A(I) >= 0 and A(I) < N) ;
for J in Index range I + 1 . . N − 1 loop
−−% assume (A(I) /= A(J)) ;

end loop ;
end loop ;
Inve r t (A,N,B) ;
for I in Index range 0 . . N − 1 loop
for J in Index range I + 1 . . N − 1 loop
−−% as s e r t (A(I) /= A(J)) ;

end loop ;
end loop ;
for I in Index range 0 . . N − 1 loop
−−% as s e r t (B(A(I)) = I) ;

end loop ;
end PropertyCheck ;� �

The problem is described as follows: Invert an injective (and thus surjective)
array A of N elements in the subrange from 0 to N-1. The verification tasks are to
prove that the output array B is injective and that B(A(I)) = I for 0 <= I < N.
SPARK-BMC succeeds in both tasks for the given bound, with no further an-
notations in addition to the assumes and asserts shown in the PropertyCheck

procedure, which state that the properties described above hold after calls to
Invert, for executions corresponding to an injective array A.

We additionally tested the tool with the following: SUM&MAX from [12];
finding the maximum in an array and finding two duplets in an array from [5];
and finally binary search in an array from [14]. The table below shows the veri-
fication time (in seconds) vs. the number of iterations unwound, as required by
the problem size. While in all cases, for a sufficiently small number of iterations,
SPARK-BMC succeeds in the verification task in a completely automatic way,
it easily becomes impractical to reach even a modest number of iterations.

Experimental Results: Problem Set II. We use both SPARK-BMC and CBMC
on a second set of example programs (running on the SPARK and C versions
of the same algorithm). In order to compare both tools at a purely logical level,
the times registered for CBMC were measured with the constant propagation
and simplification option switched off. We stress that our goal with these com-
parisons is not to present SPARK-BMC as competing with CBMC – we aim
merely to validate the algorithm underlying SPARK-BMC, and demonstrate
the practicality of bounded verification with a diverse set of problems.

The programs in this second set have been used to illustrate the performance
of various software model checking and symbolic execution tools [10,11]2. Al-
though we do not present results obtained with these tools, they would surely
outperform BMC tools, since the example programs are designed to illustrate
situations that are advantageous to them. The programs are algorithmically
simpler than in the previous set, and would be straightforward to verify deduc-
tively. Bounded verification scales quite well for these programs, with reasonable
verification times for up to 1000 iterations. The graphs below show that in all
programs CBMC (even with constant propagation switched off) performs better
than SPARK-BMC. However, it can be seen that in a log-lin scale the shapes of
the SPARK-BMC curves are relatively close to the CBMC curves.

In fact, when we run CBMC on the examples from the first problem set (times
not shown in the graph), SPARK-BMC behaves marginally better than CBMC
with binary search in array, and much better than CBMC with inverting an
injection (CBMC becomes impractical to use with just 15 iterations). It seems
that for algorithmically more complicated code the size of the propositional
formulas generated by CBMC increases very significantly.

2 The C code can be found online at http://map.uniroma2.it/smc/simp/ and
http://www.cfdvs.iitb.ac.in/~bhargav/dagger.php

Conclusion. We have demonstrated the advantages of bounded SMT-based
automated verification for SPARK code, and shown that it is practical to check
for property violations with no loop invariant annotations required. In the near
future our work will focus on adapting SPARK-BMC to work with the SPARK
2014 language definition, as well as on including support for other SMT solvers.
An interesting challenge, which will certainly increase the usefulness of SPARK-
BMC as a complement to the SPARK tools, is to extend it in order to validate
and debug SPARK contracts.

Acknowledgment. This work is funded by ERDF - European Regional Devel-
opment Fund through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT - Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020486.

References

1. Altran Praxis. SPARK - The SPADE Ada Kernel (including RavenSPARK), De-
cember 2011, Edition 7.2.

2. D. Angeletti, E. Giunchiglia, M. Narizzano, A. Puddu, and S. Sabina. Using
bounded model checking for coverage analysis of safety-critical software in an in-
dustrial setting. J. Autom. Reason., 45(4):397–414, Dec. 2010.

3. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software
using SMT solvers instead of SAT solvers. Int. J. Softw. Tools Technol. Transf.,
11(1):69–83, Jan. 2009.

4. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA, 2003.

5. T. Bormer, et al. The cost IC0701 verification competition 2011. In FoVeOOS,
pages 3–21, 2011.

6. E. M. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs.
In Tools and Algorithms for the Construction and Analysis of Systems, volume
2988 of LNCS. Springer, 2004.

7. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model checking
for embedded ANSI-C software. In ASE ’09, IEEE Computer Society, 2009.

8. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver, volume 4963 of LNCS.
Springer, 2008.

9. A. Griesmayer, S. Staber, and R. Bloem. Automated fault localization for C pro-
grams. Electronic Notes in Theoretical Computer Science, 174(4):95 – 111, 2007.

10. J. Jaffar, J. Navas, and A. Santosa. Unbounded symbolic execution for program
verification. In Runtime Verification, volume 7186 of LNCS. Springer, 2012.

11. R. Jhala and K. McMillan. A practical and complete approach to predicate refine-
ment. In TACAS’06, volume 3920 of LNCS. Springer, 2006.

12. V. Klebanov, et al. The 1st verified software competition: Experience report. In
FM 2011, volume 6664 of LNCS. Springer, 2011.

13. C. B. Lourenço. A Bounded Model Checker for SPARK Programs. Master’s thesis,
University of Minho, 2013.

14. B. Weide, et al. Incremental benchmarks for software verification tools and tech-
niques. In Verified Software: Theories, Tools, Experiments, volume 5295 of LNCS.
Springer, 2008.

